X. ZHANG
KODAI MATH. 1.
41 (2018), 413-420

ON TERAI'S CONJECTURE
XIN ZHANG

Abstract

Let p be an odd prime such that b" 4+ 1 = 2p’, where r, ¢ are positive integers and
b=3,5 (mod8). We show that the Diophantine equation x> + »” = p" has only the
positive integer solution (x,m,n) = (p'—1,r,2t). We also prove that if b is a prime
and r =t =2, then the above equation has only one solution for the case b = 3,5,7
(mod 8) and the case d is not an odd integer greater than 1 if » =1 (mod 8), where d is
the order of prime divisor of ideal (p) in the ideal class group of Q(,/=¢q).

1. Introduction and main results

In 1956, Jesmanowicz [5] conjectured that if positive integers satisfying a, b,
¢ are Pythagorean numbers, i.e. a> +b?> = ¢, then the Diophantine equation

a*+ b’ =c¢*
has only the positive integer solution (x,y,z) = (2,2,2). As an analogue of
Jesmanowicz’s conjecture, Terai proposed the following conjecture.
CoNJECTURE 1.1 (Terai’s conjecture [10]). If (a, b, ¢) is primitive Pythagorean
triple such that
a*+b*=¢* ab,ceN, ged(a,b) =1, a=0 (mod2),
then the Diophantine equation
X2 4 b ="
has only the positive integer solution (x,m,n) = (a,2,2).
In [10], Terai proved that if p and ¢ are primes such that (i) ¢> +1=2p

and (ii) 4 is not an odd integer greater than 1 if ¢ =1 (mod4), then the
Diophantine equation x?+4 ¢ = p"” has only the positive integer solution
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(x,m,n) = (p—1,2,2), where d is the order of a prime divisor of (p) in the ideal
class group of Q(,/=¢).

Terai’s conjecture has been verified to be true in many special cases:

*bh>8-10% b=5 (mod8), ¢ is a prime power (Le [6]);

* b2+ 1=2c¢, b#1 (mod 16), both b and ¢ are odd primes (Chen and Le

[3]);
b =7 (mod8), either b is a prime or ¢ is a prime (Le [7]);
¢c=5 (mod8), b or ¢ is a prime power (Cao and Dong [2]);

*b=45 (mod8), ¢ is a prime (Yuan and Wang [12]).

In 2014, Terai [11] proved that if ¢ =3,5 (mod 8) is a prime such that
q'+1 =2c, then the Diophantine equation x>+ ¢” = ¢" has only the positive
integer solution (x,m,n) = (c—1,t,2). In 2015, Deng [4] proved that if ¢ is
a prime such that ¢’ + 1 = 2¢2, then the Diophantine equation x> 4+ ¢ = ¢?" has
only the positive integer solution (x,m,n) = (¢* —1,t,2).

In this note, using elementary methods, we mainly prove the following
theorems.

THEOREM 1.2. Let b be a positive integer with b =3,5 (mod8). Let p
be a prime such that b"+ 1 =2p', where r, t are positive integers. Then the
Diophantine equation

(11) x2+b111:pn

has only the positive integer solution (x,m,n) = (p' —1,r,21).

Example 1.3. The only positive integral solution of each of the equations
(1) x>+ (5 x 137" =17", (2) x4+ (319 x 43)" = 19",
(3) X2+ (15 x2083)" = 5", (4) x> +21™ =97241",
(5) x* +35™ = 750313", (6) x? 4 (23 x 353)" = 5741"
is given by (x,m,n) = (342,1,6),(6858,1,6), (3124, 1, 10), (97240, 4, 2),
(750312,4,2), (32959080, 2,4), respectively.
Remark 1.4. All of these cases can be obtained by Theorem 1.2 directly.

THEOREM 1.5. Let p and q be primes such that

(i) ¢* +1=2p?

(i) d is not an odd integer greater than 1 if ¢ =1 (mod 8), where d is the
order of a prime divisor of (p) in the ideal class group of Q(\/=q).

Then the Diophantine equation

n

g =p

has only the positive integer solution (x,m,n) = (p> —1,2,4).
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Example 1.6. There are exactly three pairs (p,q) in the range ¢ < 10'?
satisfying conditions (i) and (ii) in Theorem 1.5:

(p,q) = (5,7),(29,41), (44560482149, 63018038201),
which were obtained by using Pari/GP.

Remark 1.77.  Our proofs of Theorem 1.2 and Theorem 1.5 are mainly based
on Bugeaud’s result [1].

2. Some lemmas

We need the following lemmas to prove the main results.

LemMa 2.1 (Stérmer [9]). The Diophantine equation
X241 =2p"

has no solutions in integers x > 1, y > 1 and n odd = 3.

Lemma 2.2 (Ljunggren [8]). The Diophantine equation
¥ +1=2"
has the only positive solutions in integers (x,y) = (1,1),(239,13).
Lemma 2.3 (Bugeaud [1]). Let D > 2 be an integer and let p be an odd prime

which does not divide D. If there exists a positive integer a with D = 3a> + 1 and
p =4a*> + 1, then the Diophantine equation

x*+ D" =p",
in positive integer x, m and n has at most three solutions (x,m,n), namely
(a,1,1), (8a®>+3a,1,3), (x3,m3,n3),
with m3 (if the third solution exists) even. Otherwise, the Diophantine equation
x*+ D" = p",
in positive integer x, m and n has at most two solutions. If these are (x1,my,n;)
and (xa,my,ma), then my # my (mod 2).
LEMMA 2.4.  Let p be an odd prime and ¢ a positive integer. If (mg,ny) is a
positive integer solution of
2p" =" 41,
then ny = 2° for some nonnegative integer s.

Proof. It’s obvious that the equation has no solution satisfying m,ny > 0
when ¢ =1,2. So we consider ¢ > 3. Let (mp,ny) be a solution of 2p™ — ¢"
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= 1. Supposing that there exists an odd prime / dividing ny, we have ny = kl for
some integer kK > 1. Then

zpmo — + 1= ckl + 1= (Ck + 1)(Ck(171) o Ck<172> N 1)

Hence we have

kl 1
(2.1) i-k j—rl e G NS

and
k1 =2pm,
for some 1 <m; < mgy. Therefore,

_ i B 1 oy
(22) pmo = Ck + 1 2pml 21: ( ) 2 MI ~ 1) l'
=

Modulo p in both sides of the equation (2.2), we obtain

0= i() (-1)"'=1 (mod p).

Hence / = p. Then by equation (2.1) and equation (2.2) we have p™ =" > p.
On the other hand, modulo p? in both sides of the equation (2.2), we have

mo my __ Z ( > ml 1)171' =p (mod pz)

Hence p™~™ = p, a contradiction. So ny = 2° for some nonnegative integer s.
Thus the proof of Lemma 2.4 is finished. O

3. Proofs of main results

Proof of Theorem 1.2. Let

/ k
=t ][ r]19
=1 j=1

where p;, ¢; are different primes such that p; = 3,5 (mod 8), ¢; = 1,7 (mod 8).
We show that if 5 =3 or 5 (mod 8), then / is odd. Otherwise, we have

E»

i
HpiEil (mod 8), gi=+1 (mod 8).

j=1

Thus b = +1 (mod 8), a contradiction. According to b" 4+ 1 = 2p’ and Lemma
2.4, we obtain r=2° for some nonnegative integer s.
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2f
If s=0, that is =1, then b+ 1=2p’. Thus (p>:1 for i=1,...,1.

2 Pi
In view of p; = 3,5 (mod 8), we see that (;) = —1. Hence (5) =—1fori=
1,...,/ and 7 odd. Similarly, we have (£> =1for j=1,...,k. It’s easy to
see ged(b, p) =1 and 9

6-6)

If p=1 (mod4) then we have
SURCRIGHORIGIGE

which is impossible. So

(3.2) p=3 (mod4).

Hence there doesn’t exist a positive integer a such that p=4a>+1. It is
obvious that (p’—1,1,2¢) is a solution of (1.1). Assume that (xg,mq,n9) is
another solution of (1.1). Then x3 + b"™ = p™. Hence

x;=-b"™ (mod p).

my

Thus (_

this is impossible. Hence the equation (1.1) has no other solution in this case.
If s> 1, then r=2% is even. By b"+ 1 =2p’ we have

p=1 (mod4)

t
(2£> fori=1,...,L
pi

. 2
In view of p; = 3,5 (mod 8), we see that (;) = —1. Hence <§) =—1fori=
i i

) = 1. Then by (3.1) and (3.2) we have m is odd. By Lemma 2.3,

and

1,...,/l and ¢t odd. Similarly, we have <5> =1for j=1,...,k. Then we have
J

o (- HENE-HENE)-

It is obvious that (p’ — 1,r,2¢) is a solution of equation (1.1). Let (xo,mo,n9) be
another solution of the equation (1.1). Then x3 + ™ = p™. Hence

X3 =-b"™ (mod p).
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mo

Thus (
p

) = 1. Then by equation (3.3) and p =1 (mod 4) we obtain my is

even. So we have my =r (mod 2). By Lemma 2.3, this is impossible. Hence
the equation (1.1) has no other solution in this case.
This completes the proof of Theorem 1.2.

Proof of Theorem 1.5. Assume that (xo,mp,np) is a solution of the
equation
(3.4) x2 4+ q" = p".
Then we have
(3.5) 3+ = p".

The proof is divided into two cases depending on the parity of ny as follows.

CaseE 1. ng is even. Let ng =2k. Then we obtain
g™ = (p" + x0)(p" = x0).
Because ¢> + 1 =2p% we have ged(2p,q) =1. So ged(p* + xo, pF — x0) = 1.
Hence p¥ —xp =1 and p*+ xy =¢™. Then
g™ + 1 = 2pk.

By Lemma 2.4 we know that my = 2* for some nonnegative integer s. Now
we show that s> 0. Otherwise, we have ¢+ 1 = 2p* and ¢> + 1 =2p?. This
forces ¢ + 1|¢> + 1, which is impossible. Hence s > 1 and my is even. By using
Lemmas 2.1 and 2.2, we have k=1 or 2. Then we obtain that the equation
(3.4) has the only solution (mqg,ny) = (2,4).

CASE 2. ng is odd. Assume (g, p) = (3s*> +1,45> +1). Then we have
5%+ q=p.
Hence
FH1=2p"=2"+9)"22(1+¢)

This is impossible. Thus (¢, p) # (3s*> 4+ 1,4s> +1). It’s easy to see (p>—1,
2,4) is a solution of the equation (3.4). By using Lemma 2.3, my is odd.

We note that ¢*> + 1 = 2p? implies p =1 (mod4) and ¢ =1,7 (mod 8). If
g =7 (mod 8), then by (3.5) we have 3 =3" =1 (mod 4), which is impossible.
This forces ¢ =1 (mod 8).

Let K = Q(,/—¢) and O its integer ring. Then OUx = Z[,/—¢q]. By (3.5)
we have (—7q> =1. So (p) is completely split in Ox. Hence pOx = pp, where
p, p are distinct prime ideals. Therefore we obtain the ideal decomposition:

(XO _ q(m()*l)/z /_q)(xO + q("?a*l)/z /_q) — pn()ﬁn()
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in Og. Note that the ideals (xo —¢"~1/2, /=) and (xo +¢""V/2,/=q) are
relatively prime and the fact that Ok is a Dedekind domain. We have either
(x0 + "~ D/2 /=q) = p™ or p™. We may assume that

(x0 + ¢V y/=q) = p™.

Then p™ is a principal ideal and so ny = dt for some integer z. By the assump-
tion that d is 1 or even and ng is odd, we have d = 1. So p is a principal ideal.
Let

(3.6) p=(a+by=q),

with integers a, b. Then we obtain

Xo + q(m()*l)/z\/__ =+(a+by=q)".

Thus we have

(no—1)/2
(mo=1)/2 — 4 p 00 ) gro=2=1p%(_g)d
y DV N T

. my —
Therefore b = +4q' for some integer 0 < ¢ <

By (3.6), we have

Ngjo(p) = a* + byq.
That is

p:az—i—qz'ﬂ.

Hence
¢ +1=2p" =2a’+¢*") 2 2(1 +¢)°,

a contradiction. This completes the proof of Theorem 1.5.
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