
N. ITO
KODAI MATH. J.
41 (2018), 375–396

BASED CHORD DIAGRAMS OF SPHERICAL CURVES

Noboru Ito

Abstract

This paper demonstrates an approach for developing a framework to produce

invariants of base-point-free generic spherical curves under some chosen local moves

from Reidemeister moves using based chord diagrams. Our invariants not only contain

Arnold’s classical generic spherical curve invariant but also new invariants.

1. Introduction

A spherical curve is the image of a generic immersion of a circle into a two-
dimensional sphere. Any two spherical curves are related by a finite sequence
consisting of three types of local replacements, namely, Reidemeister moves RI,
RII, and RIII (Fig. 1). Moves RII and RIII can be decomposed into two types of
moves: strong and weak moves (Fig. 2).
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Figure 2. Reidemeister moves strong RII, weak RII, strong RIII, and weak RIII. Dotted arcs

indicate the connections of the branches.

Figure 1. Reidemeister moves.



A chord diagram of a spherical curve is the immersing oriented circle on
which the preimages of all the double points are placed and connected by a chord
(Definition 2). For each double point of a spherical curve, a unique replacement
can be obtained by orienting the spherical curve arbitrarily, as shown in Fig. 3.
Here, this replacement does not depend on the orientation of the spherical curve.
A spherical curve with over-/under- information of every double point is said to
be a knot diagram. A double point of a knot diagram is called a crossing. A
crossing as shown in the right figure of Fig. 3 is called a negative crossing. The
chord diagram of every knot diagram consists of oriented chords; this is known
as an arrow diagram, previously introduced by Polyak and Viro [6] (see also [5]).
An oriented chord is called an arrow.

An arrow diagram with a base point is called a based arrow diagram
(Definition 3). Fig. 4 describes the process for obtaining a based arrow diagram
from a spherical curve with a base point. As shown in Fig. 4, we select an
arbitrary base point on the spherical curve that does not coincide with any of the
double points.

We are interested in such based arrow diagrams for the following reasons.
If we count the number of sub-arrow diagrams of type embedded into the
entire (based) arrow diagram of a spherical curve P, the result is an integer

determined by P, denoted as ðPÞ. We can see that ðPÞ ðmod 3Þ is a Z=3Z-

valued invariant under RI and strong RIII [3] and ðPÞ ðmod 4Þ is a Z=4Z-

valued invariant under RI and strong RII [2]. Here, when we consider invariants
under certain Reidemeister moves, as a Z-valued quantity, ðPÞ produces only
an invariant under RI.

By contrast, sub-based arrow diagrams can be used to define a greater
number of invariants of spherical curves without a base point than a single
invariant ðPÞ (Theorem 1).

Figure 4. Spherical curve with a base point, its knot diagram with a base point, and its based arrow

diagram whose circle is oriented counterclockwise.

Figure 3. Resolution from an oriented double point to an unoriented crossing.
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The following is the plan of this paper. Sec. 2 contains definitions, nota-
tions and one of the main results. Sec. 3 presents the proof of Theorem 1 and
Sec. 4 explains the framework that produces these invariants. Sec. 5 shows that
one of the invariants in Theorem 1 is equal to a linear combination of Arnold’s
invariants. Sec. 6 introduces a new invariant under RI and weak RII because
an invariant under RI and weak RII is not covered by Theorem 1. Finally, in
Sec. 7, we construct tables from the values of these invariants for prime knot
projections without 1-gons up to seven double points.

2. Definitions, notations, and main results

Definition 1 (oriented Gauss word). Let n̂n ¼ f1; 2; . . . ; ng. A word w of
length n is a map from n̂n to N and each element of wðn̂nÞ is called a letter.
Traditionally, the word is represented by wð1Þwð2Þ � � �wðnÞ. A Gauss word of
length 2n is a word w of length 2n such that each letter appears exactly twice
in wð1Þwð2Þ � � �wð2nÞ. For a given Gauss word w and for each letter k, we
distinguish the two k’s in w by calling one k a head and the other tail. The
assignments are expressed by adding extra information to w ¼ wð1Þwð2Þ � � �wð2nÞ,
that is, we add ‘‘ ’’ on the letters which are assigned tails. This new word w� is
called an oriented Gauss word. We call each letter of an oriented Gauss word an
oriented letter. Without loss of generality, we may suppose that the set of the
letters in wðc2n2nÞ is f1; 2; . . . ; ng. Clearly, the set of oriented letters of the word
w� of length 2n, denoted by w�ðc2n2nÞ, is f1; 2; . . . n; 1; 2; . . . ; ng. Let v� be another
oriented Gauss word that is induced from v. Two oriented Gauss words, v� and

w�, of length 2n are isomorphic if there exists a bijection f : wðc2n2nÞ ! vðc2n2nÞ such

that v� ¼ f � � w� where f � : w�ðc2n2nÞ ¼ f1; 2; . . . ; n; 1; 2; . . . ; ng ! v�ðc2n2nÞ is the

bijection such that f �ðiÞ ¼ f ðiÞ and f �ði Þ ¼ f ðiÞ ði ¼ 1; 2; . . . ; nÞ. Isomorphism
induces an equivalence relation on oriented Gauss words. For an oriented Gauss
word w of length 2n, the equivalence class containing w� is denoted by ½w�.

Definition 2 (chord diagram, arrow diagram, and based arrow diagram).
A chord diagram is a configuration of 2n paired points on an oriented circle.
The two points of each pair are usually connected by a straight arc, called
a chord. An arrow diagram is a chord diagram such that each pair of points
consists of a starting point and an end point and the circle is oriented counter-
clockwise. The orientation of each chord is represented by an arrow from the
tail to the head. Each oriented chord is called an arrow. A based arrow diagram
is an arrow diagram with a base point on the circle where the base point does not
coincide with one of the paired points.

Note that we have one to one correspondence between the equivalence
classes of Gauss words of length 2n and the based arrow diagrams, each of which
has n arrows, as shown in Fig. 5. In the rest of this paper, we identify these four
expressions in Fig. 5, and freely use this identification.
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Definition 3 (a based arrow diagram ADP of a spherical curve P). Let P
be a spherical curve. By definition, there exists a generic immersion g : S1 ! S2

such that gðS1Þ ¼ P. We define a base chord diagram of P (e.g., Fig. 4) as
follows. Let l be the number of the double points of P. Fix a base point,
which does not coincide with a double point, and choose an orientation of P.
The spherical curve with the orientation and the base point is denoted by _PPþ and
the oriented spherical curve P with the opposite orientation having the base point
is denoted by _PP�.

Starting at the base point, proceed along _PPþ according to the orientation
of _PPþ. To begin with, we assign integer 1 to the first double point that we
encounter. Then we assign integer 2 to the next double point that we encounter
provided it is not the first double point which has been already assigned integer 1.
If we have already assigned 1; 2; . . . ; p and we encounter the next double point
that has not assigned yet, then we assign pþ 1 to it. Following the same
procedure, we finish to label all the double points of _PPþ. By definition, g�1ðiÞ
consists of two points on S1 and we shall assign i to them. Then the chord
diagram with a base point is represented by g�1ðthe base point on PÞ; g�1ðdouble
point assigned 1Þ; g�1ðdouble point assigned 2Þ; . . . ; g�1ðdouble point assigned lÞ
on a circle. Then, g�1ðthe base point on PÞ on S1 is called the base point of a
chord diagram.

Next, we consider the knot diagram obtained from _PPþ by replacing every
double point with a negative crossing with respect to the orientation, as shown
in Fig. 3. We assign an orientation to each chord where the head corresponding
to the under path. Then, this based arrow diagram is denoted by AD _PPþ and is
called a based arrow diagram of P.

Note that by definition, it is easy to show that the based arrow diagram
AD _PPþ is the reflection image of AD _PP� . Note also that the based arrow diagram
AD _PP e gives an equivalence class of oriented Gauss words, say ½v _PP e �. Then, by the
definition of the equivalence relation, it is elementary to show that the map
_PPe 7! ½v _PP e � is well-defined.

Notation 1 (xðPÞ). Let x be a based arrow diagram. For a given spheri-
cal curve P, we choose and fix a base point and an orientation of P, i.e., we
obtain _PP e (e ¼ þ or �). We fix an oriented Gauss word G isomorphic to w _PP e .

Figure 5. Four expressions.
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We consider the set fG 0 jG 0 is obtained from G by ignoring some pairs of
oriented lettersg. Then, we consider the subset of this set consisting of the
elements, each of which is isomorphic to x. We denote the cardinality of this
subset by xðGÞ. Suppose that H is another oriented Gauss word isomorphic
to w _PP e . By definition, xðGÞ ¼ xðHÞ. Thus, this number, determined by ½w _PP e �, is
denoted by xð _PP eÞ. If P is oriented and has a base point, i.e., P ¼ _PP e but xð _PP eÞ
does not depend on the choice of the base point and the orientation, we may
write xðPÞ to represent xð _PPeÞ.

Definition 4 (connected sum, additivity). Let Pi be spherical curve
ði ¼ 1; 2Þ. Suppose that the ambient 2-spheres are oriented. Let pi be a point
on Pi such that pi does not coincide with a double point ði ¼ 1; 2Þ. Let di be
a su‰ciently small disk with center pi ði ¼ 1; 2Þ where di \ Pi consists of an arc

properly embedded in di. Let d̂di ¼ clðS2ndiÞ and P̂Pi ¼ Pi \ d̂di. Let h : qd̂di ! qd̂d2
be a homeomorphism such that hðqP̂P1Þ ¼ qP̂P2. Then, P̂P1 [h P̂P2 obtains a spher-
ical curve in the 2-sphere d̂d1 [h d̂d2. The spherical curve P̂P1 [h P̂P2 in the 2-sphere
is denoted by P1aðp1;p2;hÞP2 and is called a connected sum of the spherical curves

P1 and P2 at the pair ðp1; p2Þ (see Fig. 6). Let I be a function on the set of
spherical curves. We say that I is additive if IðP1að p1;p2;hÞP2Þ ¼ IðP1Þ þ IðP2Þ
for any spherical curves P1 and P2, for any pair ðp1; p2Þ consisting of points, and
for any h.

We have Theorem 1 as follows.

Theorem 1. Let P be a spherical curve and let _PPe be P with a base point
and an orientation. The integers ð _PPeÞ, ð _PPeÞ, and ð _PP eÞ þ ð _PP eÞ do not

depend on the choice of the base point and the orientation. Hence, these integers

can be denoted by ðPÞ, ðPÞ þ ðPÞ, and ðPÞ, respectively. Further,

ðPÞ þ ðPÞ � ðPÞ
is invariant under RI and strong RIII,

ðPÞ � ðPÞ � ðPÞ þ ðPÞ
is invariant under RI and strong RII, and

ðPÞ ð¼ ðPÞÞ

Figure 6. A connected sum of two spherical curves P1 and P2.
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is invariant under RI and weak RIII. All these invariants are additive and non-
trivial.

3. Proof of Theorem 1

Proof. (Independence of double points.)

To begin with, we show that ð _PPeÞ, ð _PPeÞ, and ð _PPeÞ þ ð _PP eÞ of a

spherical curve P are independent of the base points. It is su‰cient to consider
two cases to move the base point over an arrow A (Fig. 7). Before we consider
the two cases, we present Lemma 1.

Lemma 1. Let X be an arbitrary arrow of a based arrow diagram of an
oriented spherical curve with a base point, as shown in Fig. 8. Consider the case
where we move along X in the direction from its start to end. The number of
arrows, each of which intersects the arrow X from left to right is a if and only if
the number of arrows, each of which crosses X from right to left is a.

(Proof of Lemma 1.) Arrow X corresponds to a double point as shown in
Fig. 8. First, choose an orientation of P. Second, an operation, as shown in Fig.
9, is applied to the double point that corresponds to X . It is clear that the two-
component spherical curves Q and R mutually intersect at even number of double

Figure 8. Arrow X corresponding to a double point.

Figure 9. Smoothing at the double point corresponding to X . Dotted arcs indicate the connections

of the spherical curves.

Figure 7. Cases 1 and 2.

380 noboru ito



points. Let d be an arbitrary double point of an intersection between Q and R.
Let dQ and dR be the branches corresponding to a double point d. For d, there
are two types of intersections, (a) and (b), as shown in the left-most column of
Fig. 10. From Fig. 10, it is easy to see that the number of double points of type
(a) is equal to that of (b) (e.g., this can be seen when all the self-intersections
of the components Q and R are smoothened by Seifert resolutions, as shown in
the first line of Fig. 11. Then, the intersections between Q and R become double
points among simple closed curves. Note that any two simple closed curves q
and r mutually intersect at even number of double points. cf. Fig. 11).
(End of Proof of Lemma 1.)

Now we consider Cases 1 and 2 shown in Fig. 7 using Lemma 1. For Case
1, let S1 ¼ fa j consists of arrow a and A before the move is appliedg, and for

Case 2, let S2 ¼ fa j consists of arrow a and A before the move is appliedg.
For each case, the increment and decrement under each move are presented in
Table 1, where b1 ¼ jS1j and b2 ¼ jS2j.
(End of Proof of the independence of base points.)

(Independence of orientations.) Next, we check the independence of the orienta-

tion for functions ð _PPeÞ, ð _PP eÞ, and ð _PPeÞ þ ð _PP eÞ. First, by definition,

Figure 10. Two types of intersections of two components Q and R.

Figure 11. Q and R mutually intersect at even number of double points.
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ð _PP eÞ does not depend on the orientation. This is because the mirror image of

the based arrow diagram is itself. Similarly, it can be seen that ð _PP eÞ
and ð _PPeÞ þ ð _PP eÞ do not depend on the orientation.

(End of Proof of the independence of orientations.)

In the rest of this proof, we may write ðPÞ, ðPÞ þ ðPÞ, ðPÞ to

represent ð _PPeÞ, ð _PP eÞ þ ð _PPeÞ, and ð _PP eÞ, respectively.

(Invariance of ðPÞ þ ðPÞ � ðPÞ under RI and strong RIII.) To begin

with, we show the invariance of ðPÞ þ ðPÞ � ðPÞ under RI and strong

RIII for an arbitrary spherical curve P. Note that ðPÞ, ðPÞ þ ðPÞ, and
ðPÞ do not depend on the position of a base point; thus, the base point can be

arbitrarily positioned. By definition, we see that for an arbitrary spherical curve,

ðPÞ, ðPÞ þ ðPÞ, and ðPÞ are invariant under RI (Fig. 12). Next, we

see the di¤erences for ðPÞ þ ðPÞ and ðPÞ with respect to a single strong

RIII, as shown in Fig. 13. A single strong RIII increasing (resp. decreasing) the

number ðPÞ þ ðPÞ þ ðPÞ þ ðPÞ is denoted by s3a (resp. s3b). Table

2 provides the claim for the invariance (the row corresponding to is not used
here; we use it later).

Table 1. Cases 1 and 2.

Figure 12. Di¤erence under a single RI.

Figure 13. Di¤erence under a single strong RIII.
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(Invariance of ðPÞ � ðPÞ � ðPÞ þ ðPÞ under RI and strong RII.)

We already have the invariance of RI from the proof of the invariance of

ðPÞ þ ðPÞ � ðPÞ under RI. We have also already shown the indepen-

dence of the base point and the orientation of P for ðPÞ, ðPÞ þ ðPÞ, and
ðPÞ. Therefore, here, it is su‰cient to show the invariance of strong RII

when a base point is positioned at a suitable location. Thus, we consider the
di¤erence with respect to strong RII as shown in Fig. 14 (note that the base point
is placed at a position closest to where a strong RII is applied, as shown in Fig.
14). Here, strong RII increasing (resp. decreasing) double points is denoted by
s2a (resp. s2b) as shown in Fig. 15. When we apply s2a to an arbitrary spherical

curve P with a base point, each increment of the values of , , , and

for Cases 1 and 2 (see Fig. 16) of the based arrow diagram of P is shown in

Figure 14. A base point at the most neighbored place.

Table 2. Increment under a single s3a for each type.

Figure 15. Di¤erence under a single strong RII.

Figure 16. We set the number of arrows, indicated by the dotted arrow, as m (cf. Lemma 1).
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Table 3. By Lemma 1, there exist m arrows shown by the dotted arrow for Case
2 if there exist m arrows shown by the dotted arrow for Case 1 (Fig. 16). Table
3 shows the invariance of strong RII.

(Invariance of ðPÞ (¼ ðPÞ) under weak RIII.) We have already shown

the invariance under RI (at the beginning of the proof of invariance of
ðPÞ þ ðPÞ � ðPÞ). Thus, it is su‰cient to show the invariance under

weak RIII. A single weak RIII is shown in Fig. 17 in terms of arrow diagrams.

A single weak RIII increasing (resp. decreasing) the number ðPÞ þ ðPÞ þ
ðPÞ þ ðPÞ is denoted by w3a (resp. w3b). By the independence of the base

point for ðPÞ and ðPÞ, we can choose a suitable position for the base point

(Fig. 18). Table 4 shows the increment of ðPÞ (information corresponding to

Figure 17. Di¤erence under a single weak RIII.

Table 3. Increments under a single s2a.

Figure 18. A pair of weak RIII with base points.

Table 4. Increment under a single w3a.
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ðPÞ þ ðPÞ and ðPÞ is not used here, we used it later), which shows the

invariance of ðPÞ under weak RIII.

(Proof of the equality ðPÞ ¼ ðPÞ.)
Here, we show the equality ðPÞ ¼ ðPÞ for an arbitrary spherical curve

P. Tables 2 and 4 indicate that ðPÞ � ðPÞ does not change under any RIII.

We also know that ðPÞ � ðPÞ is invariant under RI.
Now, we consider its behavior under strong RII. Recall that ðPÞ and

ðPÞ do not depend on the position of the base point and the orientation of

P. Next, we observe the di¤erence before and after the application of a single
strong RII to the based arrow diagrams derived from spherical curves, as shown
Fig. 19. By Lemma 1, in Fig. 19, the dotted arcs Q and R must intersect at
even number of double points. Further, in the corresponding based arrow
diagram, the number of arrows from the Q-part to R-part is equal to the number
of arrows from the R-part to Q-part. See the second row in Fig. 19. The
dotted arrows, whether mutually intersecting or not, do not contribute to the
increment or decrement of ðPÞ � ðPÞ under a single strong RII. Therefore,

ðPÞ � ðPÞ is invariant under strong RII.
As a result, ðPÞ � ðPÞ is invariant under RI, RIII, and strong RII.

It is easy to see that a single weak RII is generated by RI, RIII, and strong
RII. Thus, ðPÞ � ðPÞ is invariant under RI, RII, and RIII. Therefore,

ðPÞ � ðPÞ is constant for all spherical curves. Note that ðdÞ � ðdÞ
¼ 0 where d is a simple closed curve. Thus, we have the equality ðPÞ ¼

ðPÞ for an arbitrary spherical curve P.

(Additivity.)
Finally, we can see that these invariants are additive because it is clear that

xðPaðp1;p2;hÞP
0Þ ¼ xðPÞ þ xðP 0Þ for x ¼ , , , or where Paðp1;p2;hÞP

0

is the connected sum of P and P 0 (Definition 4).

(Non-triviality.) Non-trivialities of the invariants in the statement of Theorem 1
are shown in Tables 11, 12, and 14. r

Figure 19. Di¤erences of strong RII to the based arrow diagrams (left) derived from spherical curves

(right).
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4. An explanation of a framework that produces invariants of Theorem 1

The following two questions (A) and (B) are essentially di¤erent.
(A) How do we prove the invariance under some Reidemeister moves for

functions in Theorem 1?
(B) How do we find functions in Theorem 1?
An answer to (A) (resp. (B)) is given in Sec. 3 (resp. this section). Through-

out this section, the following steps are applied. Note that we implicitly con-
sider a Q-vector space generated by arrow diagrams, and the moves of the base
point shown in Fig. 7 (Cases 1 and 2) are called base point moves. Let n be the

number of observed elements in f ; ; ; ; þ g for observed
Reidemeister moves.

� Step 1: Construct a matrix consisting of n rows, where each row corre-
sponds to an observed based arrow diagram and each column corresponds
to an observed local move.

� Step 2: Compute the rank r of the matrix. Note that there exist n� r
invariants.

� Step 3: Obtain the invariants using the matrix.
Recall that for an oriented spherical curve _PPe with a base point obtained

from P, it is easy to see that ð _PPeÞ (¼ ð _PP eÞ) and ð _PP eÞ þ ð _PP eÞ do not

depend on the orientation (see Sec. 3).

� (Invariants under base point moves.) Consider Steps 1–3 to show the invariance

under base point moves. Table 1 gives the matrix

0 0

�b1 b2
b1 �b2
0 0

0
BBB@

1
CCCA. Because the

rank of this matrix is 1, there exist two invariants under base point moves.
From the matrix, it is easy to find the two invariants ð _PP eÞ (¼ ð _PP eÞ),

ð _PP eÞ þ ð _PPeÞ under base point moves.
In the rest of this paper, we may write ðPÞ, ðPÞ þ ðPÞ, and ðPÞ

to represent ð _PPeÞ, ð _PP eÞ þ ð _PP eÞ, and ð _PP eÞ, respectively. Note also

that we have already proved that ðPÞ ¼ ðPÞ for any spherical curve P.

Thus, in the rest of this section, we exclude ðPÞ.

� (Invariants under RI and strong RIII.) Similar to the above the discussion,

Table 5 gives the matrix
1

1

� �
(see also Table 2). The rank of this matrix is 1.

Thus, there exists one invariant. From the matrix, it is clear that the invariant is
ðPÞ � ðPÞ � ðPÞ.

(Invariants under RI and strong RII.) Table 6 gives the matrix
m

2m

� �
(see also

Table 3). The rank of this matrix is 1 and thus, there exists one invariant under
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RI and strong RII as a linear combination of these based arrow diagrams. From
the matrix, we obtain the invariant 2 ðPÞ � ðPÞ � ðPÞ under RI and
strong RII.

(Invariant under RI and weak RIII.) Table 7 gives the matrix
0

1

� �
(see also

Table 4). The rank of this matrix is 1. Thus, there exists one invariant under
RI and weak RIII. The matrix gives the invariant ðPÞ.

(Invariant under RI and weak RII.) One would expect to give some invariants
under RI and weak RII in the same way mentioned above. Although we can
find an invariant under RI and weak RII in the same way, this invariant is trivial
(i.e., all the values of the invariant are 0 for all spherical curves).

Denote weak RII increasing double points by w2a. Because ðPÞ and

ðPÞ þ ðPÞ are independent of the position of the base point, it is su‰cient
to consider only Fig. 20. If we set the number of dotted arrows from the upper
to lower part of the based arrow diagram as m, then the arrows from the lower to
upper part of the based arrow diagram should be m� 1 (cf. Lemma 1). Thus,

Table 5. Increment under a single s3a.

Table 7. Increment under a single w3a.

Figure 20. Di¤erence under a single weak RII.

Table 6. Increment under a single s2a.
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we have the matrix
m

2m� 1

� �
from Table 8. For each m, the rank of the

matrix is 1. Then the dimension of the kernel is 1 for each m. If we vary m,
then the intersection of the kernels has dimension 0. Thus, there are no non-
trivial invariants in this case.

5. Relation between Arnold invariants and Theorem 1

Additive integer-valued invariants Jþ (an invariant under strong RII and
RIII), J� (an invariant under weak RII and RIII), and St (an invariant under RII)
were defined by Arnold [1]. Polyak’s Gauss diagram formulae [5, Theorem 1]
can be used to yield Lemma 2. (Note that there is a typo in Polyak’s Theorem;

thus, replace the coe‰cient � 1
2 ;

1
2 ;

3
2

� �
with � 1

2 ;
1
2 ;

1
2

� �
in the St-formula [5,

Theorem 1].)

Lemma 2. In the set of any linear combinations of three invariants Jþ, J�,
and St, up to multiplying a constant, only the linear combination Jþ=2þ St is
invariant under RI for spherical curves.

For a spherical curve P, it is well-known that Jþ=2þ St does not depend
on an orientation of P. By the definitions of Jþ and St, we have the di¤erences
under each Reidemeister move, as shown in Table 9.

Theorem 2. Let P be an arbitrary spherical curve. Jþ=2ðPÞ þ StðPÞ is

equal to ðPÞ� ðPÞ � ðPÞþ ðPÞ. Invariants ðPÞ þ ðPÞ� ðPÞ
and ðPÞ cannot be presented as a linear combination of Arnold invariants Jþ,
J�, and St. Moreover, any two invariants among the invariants Jþ=2þ St,

ðPÞ � ðPÞ � ðPÞ, and ðPÞ are mutually independent.

Proof. ðPÞ � ðPÞ � ðPÞ þ ðPÞ changes by 0 under RI, by 0

under s2a (Table 6), by þ1 under w2a (Table 8), by þ1 under s3a (Table 5), and

Table 8. Increment under a single w2a.

Table 9. Di¤erences of Jþ=2þ St under Reidemeister moves.
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by �1 under w3a (Table 7). For a simple closed curve d, JþðdÞ=2þ StðdÞ ¼
0 and ðdÞ � ðdÞ � ðdÞ þ ðdÞ ¼ 0; hence, we have the first claim.

Now, we prove the second claim. ðPÞ þ ðPÞ � ðPÞ and ðPÞ are
invariant under RI and are non-trivial. Thus, Lemma 2 implies the second
claim.

Finally, let 31, 41, and 62 be the spherical curves defined in Table 15. We
have

Jþð31Þ=2þ Stð31Þ ¼ 1; Jþð41Þ=2þ Stð41Þ ¼ 0; Jþð62Þ=2þ Stð62Þ ¼ 0;

ð31Þ þ ð31Þ � ð31Þ ¼ 0; ð41Þ þ ð41Þ � ð41Þ ¼ 1;

ð62Þ þ ð62Þ � ð62Þ ¼ 2; and ð31Þ ¼ ð41Þ ¼ 1:

Therefore, we have the third claim. r

Corollary 1. Let P be a spherical curve and let ðPÞ be ðPÞ þ
ðPÞ þ ðPÞ þ ðPÞ. If JþðPÞ=2þ StðPÞ ¼ 0, ðPÞ ¼ 4 ðPÞ; in partic-

ular, ðPÞ1 0 ðmod 4Þ.

Proof. If ðPÞ þ ðPÞ ¼ ðPÞ þ ðPÞ, we have

ðPÞ ¼ ðPÞ þ ðPÞ þ ðPÞ þ ðPÞ ¼ 4 ðPÞ: r

Remark 1. The invariant ðPÞ is non-trivial (cf. Table 15).

6. An invariant under RI and weak RII

An integer-valued invariant under RI and weak RII is not covered by
Theorem 1. Let us consider a Seifert resolution, as shown in Fig. 21, for every
double point of a spherical curve P. After all double points are resolved, we
have an arrangement of finite number of circles. The arrangement of circles on
a sphere is denoted by SðPÞ. It is known that SðPÞ is invariant under weak RII
and weak RIII. The number of circles in SðPÞ is denoted by sðPÞ.

Theorem 3. Let P be an arbitrary spherical curve and cðPÞ the number of
double points of P.

2 ðPÞ � 2 ðPÞ � 2 ðPÞ þ 2 ðPÞ þ sðPÞ � cðPÞ

Figure 21. Seifert resolution.
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is invariant under RI and weak RII and changes by �2 under w3a. Moreover,

sðPÞ � cðPÞ

is invariant under RI and weak RIII. These invariants are non-trivial.

Proof. Let 1a be a single RI increasing double points. Table 10 shows the
increments for each local move and the invariances. Non-trivialities are pro-
vided in Tables 11 and 13. r

We have Proposition 1.

Proposition 1. Let Paðp1;p2;hÞP
0 be the connected sum of the spherical curves

P and P 0. kðPÞ ¼ sðPÞ � cðPÞ and mðPÞ ¼ 2 ðPÞ � 2 ðPÞ � 2 ðPÞ þ
2 ðPÞ þ sðPÞ � cðPÞ satisfy the following properties.

(1) kðPaðp1;p2;hÞP
0Þ ¼ kðPÞ þ kðP 0Þ � 1.

(2) mðPaðp1;p2;hÞP
0Þ ¼ mðPÞ þ mðP 0Þ � 1.

7. Tables

In this section, we obtain five tables of prime spherical curves without 1-gons
up to seven double points and the trivial spherical curve (i.e., the simple closed
curve). A spherical curve P is said to be prime if P cannot be represented as
a connected sum of two non-trivial spherical curves. We define 1-gon as the
boundary with exactly one vertex of a disk. In the tables, symbol cm, for posi-
tive integers c and m, indicates the image of a projection of a knot in the Rolfsen
table. To list all prime spherical curves up to seven double points, it is su‰cient
to consider any flype for every cm (cf. Tait flyping conjecture). Thus, spherical
curves 7A (from 76), 7B (from 77), and 7C (from 75) should be added by flypes.
In Tables 11–14, every line indicates that a finite sequence consisting of finitely
many RI’s and a single Reidemeister move M (0RI) has been found, where M
is weak RIII for Table 11, strong RIII for Table 12, weak RII for Table 13, and
strong RII for Table 14. We can show that any line requires at least a single M.
The dotted arc in Table 11 (resp. 12) indicates that there exists a finite sequence
consisting of two RI’s and two weak RIII’s (resp. three strong RIII’s) [4].

Table 10. Di¤erences under 1a, w2a, and w3a.
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Table 11. Values of the invariants under RI and weak RIII by Theorem 1 and Theorem 3 for prime

spherical curves without 1-gons up to seven double points. Symbol ðkÞ with integer k indicates the

value of the invariant of Theorem 3.
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Table 12. Values of the invariant under RI and strong RIII by Theorem 1 for prime spherical curves

without 1-gons up to seven double points.
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Table 13. Values of the invariant under RI and weak RII by Theorem 3 for prime spherical curves

without 1-gons up to seven double points.
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Table 14. Values of the invariant under RI and strong RII by Theorem 1 for prime spherical curves

without 1-gons up to seven double points.
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