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THE HESSIAN OF QUANTIZED DING FUNCTIONALS

AND ITS ASYMPTOTIC BEHAVIOR

Ryosuke Takahashi

Abstract

We compute the Hessian of quantized Ding functionals and give an elementary

proof for the convexity of quantized Ding functionals along Bergman geodesics from

the view point of projective geometry. We study also the asymptotic behavior of the

Hessian using the Berezin-Toeplitz quantization.

1. Introduction

Let X be an n-dimensional Fano manifold and k a large integer such that
�kKX is very ample. Let Hð�KX Þ be the space of smooth fiber metrics f on
�KX with positive curvature of :¼ ð

ffiffiffiffiffiffiffi
�1

p
=2pÞqqf and Bk the space of hermitian

forms on H 0ðX ;�kKX Þ. For a metric f A Hð�KX Þ, we denote the Monge-
Ampère volume form by

MAðfÞ :¼
on

f

n!
;

and the canonical volume form by

e�f :¼ ð
ffiffiffiffiffiffiffi
�1

p
Þn

2 q

qz1
5� � �5 q

qzn

����
����
2

f

dz15� � �5dzn5dz15� � �5dzn:

This expression is readily verified to be independent of the local holomorphic
coordinates ðz1; . . . ; znÞ and hence defines a volume form on X . We normalize
e�f to be a probability measure

mf :¼
e�fÐ
X
e�f

:

The space Hð�KX Þ admits a natural Riemannian metric, called Mabuchi metric,
defined by the L2-norm of a tangent vector f A CyðX ;RÞ at f: j f j2f :¼Ð
X
f 2MAðfÞ.
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Recall that Ding functionals D on the space of infinite dimensional Rieman-
nian manifold Hð�KX Þ is uniquely characterized (modulo an additive constant)
by the property

‘Djf ¼
mf

MAðfÞ �
n!

ð�KX Þn
;

where ‘ denotes the gradient and ð�KX Þn is the top intersection number.
The Ding functionals are important in the study of Kähler-Einstein metrics.
For instance, Donaldson [5] recently gave a ‘‘moment map’’ interpretation of
the Ding functional. More precisely, he showed that the ratio of volumes
mf=MAðfÞ � n!=ð�KX Þn arises as the moment map for a suitable infinite dimen-
sional symplectic manifold and the Ding functional can be viewed as the Kempf-
Ness function. This interpretation provides us the direct link between the
existence problem of Kähler-Einstein metrics and stability in Geometric Invariant
Theory.

On the other hand, quantization of the Ding functionals is also studied:
given f A Hð�KX Þ, we define a hermitian form HilbkðfÞ A Bk by

ksk2HilbkðfÞ :¼
ð
X

jsj2kfMAðfÞ:

Conversely, for a given H A Bk, we define a metric FSkðHÞ A Hð�KX Þ by

FSkðHÞ :¼ 1

k
log k�n sup

s AH 0ðX ;�kKX Þnf0g

jsj2

Hðs; sÞ

 !
:

In what follows, we fix some H0 A Bk and a reference H0-ONB s0 :¼ ðs1; . . . ; sNk
Þ,

which defines an embedding is0 : X ,! CPNk�1, where Nk :¼ dim H 0ðX ;�kKX Þ.
For g A GLðNk;CÞ, let Hg A Bk be a hermitian form such that s0 � g is an
Hg-orthonormal basis. Then the map g 7! Hg gives an isomorphism GLðNk;CÞ=
UðNkÞFBk, and the tangent space of Bk can be identified with

ffiffiffiffiffiffiffi
�1

p
uðNkÞ.

Thus the space Bk admits a natural Riemannian structure defined by the Killing
form trðABÞ (A;B A

ffiffiffiffiffiffiffi
�1

p
uðNkÞ) at each tangent space.

Write M : CPNk�1 !
ffiffiffiffiffiffiffi
�1

p
uðNkÞ for the map:

Mð½Z1; � � � ;ZNk
�Þ :¼ ZaZbP

i jZij2

 !
ab

:

We define the center of mass MðgÞ by the formula

MðgÞ :¼
ð
X

ðM � gÞmFSkðHgÞ;

where we identify X with is0ðXÞ and the measure mFSkðHgÞ with its push forward
ðis0Þ�mFSkðHgÞ. Quantized Ding functionals DðkÞ on the space of finite dimensional

Riemannian manifold Bk is uniquely characterized (modulo an additive constant)
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by the property

‘D
ðkÞ
jHg

¼ k�1 MðgÞ � Id

Nk

� �
:

There is also a finite dimensional moment-map picture for this setting: the space
of all bases ZðkÞ FGLðNkÞ is equipped with a Kähler structure induced from the
Berndtsson metric and UðNkÞ acts on ZðkÞ isometrically with a moment map
which is essentially MðgÞ � Id=Nk. Critical points of the quantized Ding func-
tionals MðgÞ ¼ Id=Nk are called anti-canonically balanced metrics. There is a
strong connection between the existence problem of anti-canonically balanced
metrics and Kähler-Einstein metrics (cf. [1, Theorem 7.1]).

In this paper, we study the Hessian of quantized Ding functionals and its
asymptotic behavior as raising exponent k ! y. We first give a formula for the
Hessian of the quantized Ding functional ‘2DðkÞ:

Theorem 1.1. The Hessian of the quantized Ding functional is computed
by

‘2D
ðkÞ
jH0

ðA;BÞ ¼ k�1

ð
X

ReðxA; xBÞFSmFSkðH0Þ � k�2

ð
X

HðAÞHðBÞmFSkðH0Þ

þ k�2

ð
X

HðAÞmFSkðH0Þ �
ð
X

HðBÞmFSkðH0Þ;

where xA denotes the holomorphic vector filed on CPNk�1 corresponding to A, and
HðAÞ is the Hamiltonian for the Killing vector JxR

A , ð� ; �ÞFS is the Fubini-Study
inner product on tangent vectors.

As a corollary, we will show the following:

Corollary 1.1. We have ‘2D
ðkÞ
jH0

ðA;AÞb 0 for any A A
ffiffiffiffiffiffiffi
�1

p
uðNkÞ, and the

equality holds if and only if A A LieðAutðX ;�kKX ÞÞ, where AutðX ;�kKX Þ denotes
the group of holomorphic automorphisms of the pair ðX ;�kKX Þ, embedded into
GLðNk;CÞ by means of the reference basis s0.

Although Corollary 1.1 is a direct consequence of Berndtsson’s convexity
theorem [2, Theorem 2.4] (see also [1, Lemma 7.2]), our proof is completely
independent, based on the viewpoint of projective geometry, and somewhat
elementary.

Next, we fix a reference metric f0 A Hð�KX Þ and set H0 :¼ Hilbkðf0Þ. For
f A CyðX ;RÞ, we associate with the derivative of the Hilbert map in the direc-
tion f :

Qf ;k :¼
d

dt
Hilbkðf0 � tf Þjt¼0 ¼

ð
X

ðkf � Df0 f Þðsa; sbÞkf0MAðf0Þ
� �

ab

;
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where Df0 denotes the (negative) q-Laplacian with respect to f0, and in the last
equality, we identified Qf ;k with a hermitian matrix by means of the reference
basis s0. With this operation, we can connect ‘2DðkÞ to ‘2D as follows:

Theorem 1.2. For any functions f ; g A CyðX ;RÞ, we have the convergence of
the Hessian

‘2D
ðkÞ
jH0

ðQf ;k;Qg;kÞ ! ‘2Djf0ð f ; gÞð1:1Þ

as k ! y. In particular, limk!y ‘2D
ðkÞ
jH0

ðQf ;k;Qf ;kÞ ¼ 0 implies that the condi-

tion characterizing degeneracy ‘2Djf0ð f ; f Þ ¼ 0 follows. Finally, the above conver-
gence is uniform when f , g vary in a subset of CyðX ;RÞ which is compact for the
Cy-topology. It is also uniform for f0 as long as f0 stays a compact set in the
Cy-toplogy.

This is an analogue of Berndtsson’s result [2, Theorem 4.1], but quantiza-
tion schemes are di¤erent. Moreover, his argument is based on Hodge theory,
whereas an important technical tool we use in our proofs is Berezin-Toeplitz
quantization provided by Ma-Marinescu [8]. We should mention as well that
J. Fine [7] studied the quantization of the Lichnerowicz operator on general
polarized manifolds. Our method follows a strategy discovered by him.

Acknowledgements. The author would like to express his gratitude to his
advisor Professor Shigetoshi Bando for useful discussions on this article. This
research is supported by Grant-in-Aid for JSPS Fellows Number 16J01211.

2. Foundations

2.1. Functionals on the space of metrics. We have a quick review on
several functionals over the space of metrics Hð�KX Þ or Bk which play a central
role in the study of Kähler-Einstein metrics. The standard reference for this
section is [1]. We fix a reference metric f0 A Hð�KX Þ. We define the Monge-
Ampère energy by

EðfÞ :¼ 1

ðnþ 1Þð�KX Þn
Xn
i¼1

ð
X

ðf� f0Þon�i
f 5o i

f0
;

and the Ding functional D by

DðfÞ :¼ �EðfÞ þLðfÞ; LðfÞ :¼ �log

ð
X

e�f:

Let hf be the Ricci potential of of:

hf :¼ log
mf

MAðfÞ :
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A direct computation implies that the derivative of D along a smooth curve ft in
Hð�KX Þ is

d 2

dt2
DðftÞ ¼ �

ð
X

ð €fft � jq _fftj
2
ft
Þ n!

ð�KX Þn
� ehft

� �
MAðfÞ

þ
ð
X

jq _fftj
2
ft
mft �

ð
X

_ff2
t mft þ

ð
X

_fftmft

� �2
:

Hence the Hessian of D is

‘2Djfð f ; gÞ ¼
ð
X

Reðqf ; qgÞfmf �
ð
X

fgmf þ
ð
X

f mf �
ð
X

gmf:ð2:1Þ

Remark 2.1. We find that the Hessian ‘2D is non-negative by the modified
Poincaré inequality on Fano manifolds (for instance, see [10, Corollary 2.1]).

Set H0 :¼ Hilbkðf0Þ. we also define the quantized Monge-Ampère energy by

EðkÞðHÞ :¼ � 1

kNk

log detðH �H�1
0 Þ;

and the quantized Ding functional by

DðkÞðHÞ :¼ �EðkÞðHÞ þ ðL � FSkÞðHÞ:

2.2. Berezin-Toeplitz quantization. The key technical result that we use in
the proof of Theorem 1.2 is the asymptotic expansion of the Bergman function
and their generalizations. For f0 A Hð�KX Þ, the Bergman function rkðf0Þ : X !
R is defined by

rkðf0Þ :¼
X
i

jsij2kf0 ;

where ðsiÞ is a Hilbkðf0Þ-ONB of H 0ðX ;�kKX Þ. The central result for the
Bergman function concerns the large k asymptotic of rkðf0Þ, obtained by Bouche
[3], Catlin [4], Tian [9] and Zelditch [11]:

Theorem 2.1. We have the following asymptotic expansion of the Bergman
function:

rkðf0Þ ¼ b0k
n þ b1k

n�1 þ b2k
n�2 þ � � � ;

where each coe‰cient bi can be written as a polynomial in the Riemannian
curvature Riemðof0Þ, their derivatives and contractions with respect to of0 . In
particular,

b0 ¼ 1; b1 ¼
1

2
Sf0 ;
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where Sf0 is the scalar curvature of of0 . The above expansion is uniform as long
as f0 stays in a compact set in the Cy-topology. More precisely, for any integer
p and l, there exists a constant Cp; l such that

rkðf0Þ �
Xp
i¼0

bik
n�i

�����
�����
C l

< Cp; l � kn�p�1:

We can take the constant Cp; l independently of f0 as long as f0 stays in a compact
set in the Cy-topology.

Another important technical tool in our proofs is provided by the Berezin-
Toeplitz quantization [8]. For f A CyðX ;RÞ, the Berezin-Toeplitz operator Tf ;k

is a sequence of linear operators

Tf ;k : H
0ðX ;�kKX Þ ! H 0ðX ;�kKX Þ

defined as two steps: first multiply a given section by f , then project to the
space of holomorphic sections using the L2-inner product Hilbkðf0Þ. Using the
Hilbkðf0Þ-ONB ðsiÞ, we obtain the explicit description of the kernel:

~KKf ;kðx; yÞ ¼
X
a;b

ð
X

f ðzÞðsa; sbÞkf0ðzÞsbðyÞn s�a ðxÞMAðf0ÞðzÞ:

If we restrict ~KKf ;k to the diagonal, we have

Kf ;kðxÞ :¼ ~KKf ;kðx; xÞ ¼
X
a;b

ð
X

f ðzÞðsa; sbÞkf0ðzÞðsb; saÞkf0ðxÞMAðf0ÞðzÞ:

Theorem 2.2 ([8]). We have the following asymptotic expansion:

rkðf0Þ ¼ bf ;0k
n þ bf ;1k

n�1 þ � � �

for smooth functions bf ; j . Moreover, there are the following formula for co-
e‰cients:

bf ;0 ¼ f ;

bf ;1 ¼
1

2
Sf0 f þ Df0 f :

The expansion is uniform in f varying in a subset of CyðX ;RÞ which is compact
for the Cy-topology. It is also uniform for f0 as long as f0 stays a compact set
in the Cy-toplogy.

For f ; g A CyðX ;RÞ, we also use the kernel of the composition Tf ;k � Tg;k:

~KKf ;g;kðx; yÞ ¼
ð
X

~KKf ;kðx; zÞ ~KKg;kðz; yÞMAðf0ÞðzÞ:
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Restricting the diagonal, we obtain a function

Kf ;g;kðxÞ :¼ ~KKf ;g;kðx; xÞ

¼
X
a;b; g

ð
X�X

f ðyÞgðzÞðsa; sbÞkf0ðyÞðsb; sgÞkf0ðzÞðsg; saÞkf0ðxÞ

�MAðf0ÞðyÞ5MAðf0ÞðzÞ:

Theorem 2.3 ([8]). We have the following asymptotic expansion:

rkðf0Þ ¼ bf ;g;0k
n þ bf ;g;1k

n�1 þ � � �

for smooth functions bf ;g; j . Moreover, there are the following formula for
coe‰cients:

bf ;g;0 ¼ fg;

bf ; f ;1 ¼
1

2
Sf0 f

2 þ 2fDf0 f þ
1

2
jdf j2f0 :

The expansion is uniform in f , g varying in a subset of CyðX ;RÞ which is compact
for the Cy-topology. It is also uniform for f0 as long as f0 stays a compact set in
the Cy-toplogy.

3. Proof of the main theorem

3.1. The second variation formula for DðkÞ. Before going to the proof,
we define some notations that we will use later. For a hermitian matrix A ¼
ðAi; jÞ A

ffiffiffiffiffiffiffi
�1

p
uðNkÞ, we write xA for the corresponding holomorphic vector field

on CPNk�1, i.e., the push forward of
P

i; j Ai; jZi

q

qZj

via the standard projection
CNknf0g ! CPNk�1. We set

HðAÞ :¼ trðAMÞ;

then HðAÞ is a real-valued smooth function satisfying

ixAoFS ¼
ffiffiffiffiffiffiffi
�1

p

2p
qHðAÞ;

where oFS A c1ðOð1ÞÞ denotes the Fubini-Study metric. Moreover, if we decom-

pose xA ¼ xR
A �

ffiffiffiffiffiffiffi
�1

p
JxR

A , we find that HðAÞ is the Hamiltonian for JxR
A :

iJxR
A
oFS ¼ � 1

4p
dHðAÞ:

For A A
ffiffiffiffiffiffiffi
�1

p
uðNkÞ, let HgðtÞ be the corresponding Bergman geodesic, i.e., the

family of hermitian forms corresponding to the one-parameter flow gðtÞ :¼ eð1=2ÞtA.
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Lemma 3.1. The function EðkÞ is a‰ne along Bergman geodesics, i.e., we
have

d

dt
EðkÞðHgðtÞÞ ¼

1

kNk

trðAÞ:

Proof. Set sðtÞ :¼ ðsðtÞ1 ; . . . ; s
ðtÞ
Nk
Þ ¼ s0 � gðtÞ. Since ðHgðtÞðsi; sjÞÞ ¼ tgðtÞ�2, the

direct computation shows that

d

dt
EðkÞðHgðtÞÞ ¼ � 1

kNk

tr ðHgðtÞðsi; sjÞÞ�1 d

dt
ðHgðtÞðsi; sjÞÞ

� �

¼ � 1

kNk

tr gðtÞ2 � dgðtÞ�1

dt
� gðtÞ�1 þ gðtÞ�1 � dgðtÞ

�1

dt

 ! !

¼ 1

kNk

tr gðtÞ � 1
2
A � gðtÞ�1 þ 1

2
A

� �

¼ 1

kNk

trðAÞ: r

Lemma 3.2. (1) we have

d

dt
LðFSkðHgðtÞÞÞ ¼ k�1MðgðtÞÞ:

(2) The second variation formula for L � FSk is

d 2

dt2
LðFSkðHgðtÞÞÞjt¼0 ¼ k�1

ð
X

jxAj2FSmFSkðH0Þ � k�2

ð
X

HðAÞ2mFSkðH0Þ

þ k�2

ð
X

HðAÞmFSkðH0Þ

� �2
:

Proof. (1) Direct computation shows that

d

dt
LðFSkðHgðtÞÞÞ ¼ �

ð
X

e�FSkðHgðtÞÞ
� ��1

�
ð
X

� d

dt
FSkðHgðtÞÞ

� �
� e�FSkðHgðtÞÞ

¼
ð
X

d

dt
FSkðHgðtÞÞmFSkðHgðtÞÞ;

and

d

dt
FSkðHgðtÞÞ ¼ k�1 � 1P

i js
ðtÞ
i j2

� d
dt

X
i

jsðtÞi j2ð3:1Þ

¼ k�1 trððM � gðtÞÞ � AÞ:
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Thus we have

d

dt
LðFSkðHgðtÞÞÞ ¼ k�1

ð
X

trððM � gðtÞÞ � AÞmFSkðHgðtÞÞ

¼ k�1MðgðtÞÞ:

(2) We compute

d 2

dt2
LðFSkðHgðtÞÞÞjt¼0 ¼ k�1

ð
X

d

dt
trððM � gðtÞÞ � AÞjt¼0mFSkðH0Þ

þ k�1

ð
X

HðAÞ � d
dt
mFSkðH0Þjt ¼ 0:

Since

d

dt
trððM � gðtÞÞ � AÞjt¼0 ¼ trðdMðxR

A Þ � AÞ

¼ �4poFSðJxR
A ; x

R
A Þ

¼ jxAj2FS;

the first term is

k�1

ð
X

jxAj2FSmFSkðH0Þ:ð3:2Þ

On the other hand, using HðAÞ ¼ trðAMÞ and (3.1), we have

d

dt
mFSkðH0Þjt ¼ 0 ¼

ð
X

d

dt
FSkðHgðtÞÞjt¼0mFSkðH0Þ

� �
� mFSkðH0Þ

� d

dt
FSkðHgðtÞÞjt¼0 � mFSkðH0Þ

¼ k�1

ð
X

HðAÞmFSkðH0Þ �HðAÞ
� �

mFSkðH0Þ:

Hence the second term is

�k�2

ð
X

HðAÞ2mFSkðH0Þ þ k�2

ð
X

HðAÞmFSkðH0Þ

� �2
:ð3:3Þ

Combining (3.2) and (3.3) gives our conclusion. r

When we take into account that the Hessian ‘2DðkÞ is a symmetric bilinear
form, we can easily get Theorem 1.1 from Lemma 3.1 and Lemma 3.2.

Proof of Corollary 1.1. For A A
ffiffiffiffiffiffiffi
�1

p
uðNkÞ, let x>A be the component of

xAjX which is tangent to X and x?A the component which is perpendicular to X

309the hessian of quantized ding functionals



with respect to the Fubini-Study metric. Then we have

ix>A
oFSkðH0Þ ¼

ffiffiffiffiffiffiffi
�1

p

2p
qðk�1HðAÞÞ

on X . It follows that k�1jx>A j
2
FS ¼ jx>A j

2
FSkðH0Þ ¼ k�2jqHðAÞj2FSkðH0Þ. Combining

with the formula jxAj2FS ¼ jx>A j
2
FS þ jx?A j

2
FS , we have

‘2D
ðkÞ
jH0

ðA;AÞ ¼ k�2‘2DjFSkðH0ÞðHðAÞ;HðAÞÞ þ k�1

ð
X

jx?A j
2
FSmFSkðH0Þ

b k�1

ð
X

jx?A j
2
FSmFSkðH0Þ ðby Remark 2:1Þ

b 0:

Now we assume that ‘2D
ðkÞ
jH0

ðA;AÞ ¼ 0, then we have x?A ¼ 0, and hence A A
LieðAutðX ;�kKX ÞÞ as desired. Conversely, the conditiion A A LieðAutðX ;
�kKX ÞÞ implies that x?A ¼ 0 and x>A is holomorphic. Di¤erentiating the equation

RicðoFSkðH0ÞÞ � oFSkðH0Þ ¼
ffiffiffiffiffiffiffi
�1

p

2p
qqhFSkðH0Þ with respect to x>A , we obtain

�DFSkðH0ÞHðAÞ � ðqhFSkðH0Þ; qHðAÞÞFSkðH0Þ �HðAÞ þ
ð
X

HðAÞmFSkðH0Þ ¼ 0:

Multiplying HðAÞ and integrating by parts, we obtain ‘2DjFSkðH0ÞðHðAÞ;HðAÞÞ ¼
0. Therefore, we have ‘2D

ðkÞ
jH0

ðA;AÞ ¼ 0. r

3.2. Asymptotic of the Hessian ‘2DðkÞ. Our starting point is the following:

Lemma 3.3 ([6], Lemma 18). For any Hermitian matrices A;B A
ffiffiffiffiffiffiffi
�1

p
uðNkÞ,

we have

HðAÞHðBÞ þ ðxA; xBÞFS ¼ trðABMÞ:

By Lemma 3.3, we have

‘2D
ðkÞ
jH0

ðA;BÞ ¼ k�1

ð
X

ReðtrðABMÞÞmFSkðH0Þ � k�1ð1þ k�1Þ
ð
X

HðAÞHðBÞmFSkðH0Þ

þ k�2

ð
X

HðAÞmFSkðH0Þ �
ð
X

HðBÞmFSkðH0Þ:

For given functions f ; g A CyðX ;RÞ, we set A :¼ Qf ;k, B :¼ Qg;k and compute

the asymptotic of ‘2D
ðkÞ
jH0

ðQf ;k;Qg;kÞ as k ! y. However, in the course of the

proof, we find that ‘2D
ðkÞ
jH0

ðQf ;k;Qg;kÞ has an asymptotic expansion whose co-

e‰cients are also symmetric and bilinear with respect to f and g. Hence it
follows that we may assume f ¼ g to prove Theorem 1.2. We set
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A1 :¼ k�1

ð
X

trðQ2
f ;kMÞmTkðf0Þ;

A2 :¼ �k�1ð1þ k�1Þ
ð
X

HðQf ;kÞ2mTkðf0Þ;

A3 :¼ k�2

ð
X

HðQf ;kÞmTkðf0Þ

� �2
;

and we will compute these terms separately, where Tk :¼ FSk �Hilbk. The
following arguments are based on [7, Section 2].

Lemma 3.4. The volume form e�Tkðf0Þ has the asymptotic expansion

e�Tkðf0Þ ¼ ð1þOðk�2ÞÞe�f0 :

Proof. Since Tkðf0Þ ¼ f0 þ k�1 logðk�nrkðf0ÞÞ, we have

e�Tkðf0Þ ¼ ðk�nrkðf0ÞÞ
�1=k

e�f

¼ ð1þOðk�2ÞÞe�f;

where we used the asymptotic expansion of rkðf0Þ in the last equality
(cf. Theorem 2.1). r

Lemma 3.5. The term A1 has an asymptotic expansion

A1 ¼
ð
X

f 2mf0 � k þ
ð
X

jqf j2f0mf0 þOðk�1Þ:

Proof. We can write MjX as

MjX ¼
ðsa; sbÞkf0
rkðf0Þ

� �
ab

:

It follows that

A1 ¼ k�1
X
a;b; g

QabQbgMga;

where

Qab ¼
ð
X

ðkf � Df0 f Þðsa; sbÞkf0MAðf0Þ;

Mga ¼
ð
X

ðsg; saÞkf0
rkðf0Þ

mTkðf0Þ:
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By Theorem 2.1 and Lemma 3.4, we have

e�Tkðf0Þ

rkðf0Þ
¼ 1þOðk�2Þ

b0kn þ b1kn�1 þOðkn�2Þ e
�f0

¼ ðk�n � b1k
�n�1 þOðk�n�2ÞÞe�f0 :

It follows that

A1 ¼ k�1

ð
X

e�Tkðf0Þ
� ��1ð

X

Kk

e�Tkðf0Þ

rkðf0Þ

¼ k�1

ð
X

e�f0

� ��1

þOðk�2Þ
 !ð

X

Kkðk�n � b1k
�n�1 þOðk�n�2ÞÞe�f0 ;

where we put Kk :¼ Kkf�Df0
f ;kf�Df0

f ;k. Although Theorem 2.3 valid for func-

tions f ; g A CyðX ;RÞ which are independent of k, we can still apply Theorem 2.3
to get an expansion of Kk since the function kf � Df0 f depends linearly on k.
Hence we obtain

Kk ¼ bf ; f ;0k
nþ2 þ ð�bf ;Df0

f ;0 � bDf0
f ; f ;0 þ bf ; f ;1Þknþ1 þOðknÞ

¼ f 2knþ2 þ ð�2fDf0 f þ bf ; f ;1Þknþ1 þOðknÞ:

This gives that

A1 ¼
ð
X

f 2mf0 � k þ
ð
X

ð�2fDf0 f þ bf ; f ;1 � bf ; f ;0 � b1Þmf0 þOðk�1Þ

¼
ð
X

f 2mf0 � k þ
ð
X

jqf j2f0mf0 þOðk�1Þ: r

Lemma 3.6. There is the following expansion:

HðQf ;kÞ ¼ fk þOðk�1Þ:

Proof. We write HðQf ;kÞ as

HðQf ;kÞðxÞ ¼
X
a;b

ð
X

ðkf � Df0 f Þðsa; sbÞkf0ðyÞðsb; saÞkf0ðxÞ
1

rkðf0ÞðxÞ
�MAðf0ÞðyÞ

¼ 1

rkðf0ÞðxÞ
Kkf�Df0

f ;k:

By Theorem 2.2, we know that Kkf�Df0
f ;k has an expansion

Kkf�Df0
f ;k ¼ bf ;0k

nþ1 þ ð�bDf0
f ;0 þ bf ;1Þkn þOðkn�1Þ:
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Combining with Theorem 2.1, we have

HðQf ;kÞ ¼ bf ;0k þ ð�bDf0
f ;0 þ bf ;1 � b1 � bf ;0Þ þOðk�1Þ

¼ fk þOðk�1Þ: r

Lemma 3.7. The term A2 has an asymptotic expansion

A2 ¼ �
ð
X

f 2mf0 � k �
ð
X

f 2mf0 þOðk�1Þ:

Proof. By Lemma 3.4 and Lemma 3.6, we have

A2 ¼ �k�1ð1þ k�1Þ
ð
X

e�Tkðf0Þ
� ��1

�
ð
X

HðQf ;kÞ2e�Tkðf0Þ

¼ �ðk�1 þ k�2Þ
ð
X

e�f0

� ��1

þOðk�2Þ
 !ð

X

ð f 2k2 þOð1ÞÞð1þOðk�2ÞÞe�f0

¼ �
ð
X

f 2mf0 � k �
ð
X

f 2mf0 þOðk�1Þ: r

Lemma 3.8. The term A3 has an asymptotic expansion

A3 ¼
ð
X

f mf0

� �2
þOðk�1Þ:

Proof. By Lemma 3.4 and Lemma 3.6, we haveð
X

HðQf ;kÞmTkðf0Þ ¼
ð
X

e�f0

� ��1

þOðk�2Þ
 !ð

X

ð fk þOðk�1ÞÞð1þOðk�2ÞÞe�f0

¼
ð
X

f mf0 � k þOðk�1Þ:

It follows that

A3 ¼
ð
X

f mf0

� �2
þOðk�1Þ: r

Proof of Theorem 1.2. Combining Lemma 3.5, Lemma 3.7 and Lemma 3.8,
we have

‘2D
ðkÞ
jH0

ðQf ;k;Qf ;kÞ ¼ A1 þ A2 þ A3

¼
ð
X

jqf j2f0mf0 �
ð
X

f 2mf0 þ
ð
X

f mf0

� �2
þOðk�1Þ

¼ ‘2Djf0ð f ; f Þ þOðk�1Þ:
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Finally, the uniformity of convergence follows from the analogous uniformity of
Theorem 2.1, Theorem 2.2 and Theorem 2.3. r
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