N. YAGITA
KODAI MATH. J.
40 (2017), 537-552

NOTE ON RESTRICTION MAPS OF CHOW RINGS TO
WEYL GROUP INVARIANTS
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Abstract

Let G be an algebraic group over C corresponding a compact simply connected
Lie group. When H*(G) has p-torsion, we see ply : CH*(BG) — CH*(BT) KCEREN
always not surjective. We also study the algebraic cobordism version pg,. In particular
when G = Spin(7) and p =2, we see each Griffiths element in CH*(BG) is detected by
an element in Q*(BT).

1. Introduction

Let p be a prime number. Let G be a compact Lie group and 7 the
maximal torus. Let us write H*(—)= H*(—;Z(,), and BG, BT classifying
spaces of G, T. Let W = Wg(T)=Ng(T)/T be the Weyl group and
Tor C H*(BG) be the ideal generated by torsion elements. Then we have the
restriction map

pi; - H(BG) — H*(BG)/Tor c H*(BT)"

by using the Becker-Gottlieb transfer.

It is well known by Borel ([3]) that when H*(G) is p-torsion free (hence
H*(BG) is p-torsion free), then pj; is surjective. However when H*(G) has
p-torsion, there are cases that pj;, are not surjective, which are founded by
Feshbach [5].

Let us write by G¢, Tc¢ the reductive group over C and its maximal
torus corresponding the Lie groups G, T. Let us write simply CH*(BG) =
CH*(BGc),, CH*(BT)= CH*(BTc), the Chow rings of BGc and BTc
localized at p. We consider the Chow ring version of the restriction map

piy : CH*(BG) — CH*(BG)/Tor ¢ CH*(BT)".

Our first observation is
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THEOREM 1.1. Let G be simply connected. If H*(G) has p-torsion, then the
map piy is always not surjective.

In the proof, we use an element x € H*(BG) with py(x) ¢ Im(p%y). Hence
x ¢ Im(cl) for the cycle map c¢/: CH*(BG) — H*(BG), from the commutative
diagram

CH*(BG) L, cH*(BT)"

H*(BG) — " H*(BT)"

The corresponding element 1 ® x € CH*(BG,, x BG) is the element founded as
a counterexample for the integral Hodge and hence the integral Tate conjecture
in [15].

Next, we consider elements in Tor. To study torsion elements, we consider
the following restriction map

resy « H*(BG) — Tpapetianc gH* (BA) ).

There are cases such that resy are not injective, while for many cases resy are
injective. We consider the Chow ring version ([21], [22]) of the above restriction
map

rescy : CH*(BG) — Ty CH*(BA) "™ € T1 1.0 H*(BA) ")

In general rescy has nonzero kernel. In particular, elements in Ker(c/)
(i.e. Griffiths elements) for the cycle map ¢/ are always in Ker(rescy). Namely
Griffiths elements are not detected by rescy.

On the other hand, if the Totaro conjecture

(for the Brown-Peterson cohomology BP*(—)) is correct, then of course all
elements in CH*(BG) are detected by elements in BP*(BG). We show that there
is a case that Griffiths elements are detected by p¢, the restriction for algebraic
cobordism theory Q*(—).

Let Q*(X) = MGL**(X )®MU(»« BP* be the BP-version of the algebraic
cobordism defined by Voevodsky, Levine-Morel ([25]), [13], [14]) such that
CH*(X) = Q" (X) ®pp- Z In particular, we consider the case G = Spin(7)
and p=2. We note that there are (nonzero) Griffiths elements in CH*(BG).

THEOREM 1.2. Let G = Spin(7) and p =2. Then each Griffiths element (in
CH*(BG)) is detected by an element in Q*(BT)" ~ BP*(BT)"

In §2 we study the map pj, for the ordinary cohomology theory, and recall
Feshbach’s result. In §3, we study the Chow ring version and show Theorem
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1.1. 1In §4, we study the case G = Spin(n). In §5, we study the BP*-version and
the algebraic cobordism version for the restriction p*. In §6, we write down the
case G = Spin(7) quite explicitly, and show Theorem 1.2. In the last section, we
note some partial results for the exceptional group G = F; and p = 3.

The author thanks Kirill Zainoulline to start considering this problem,
and Masaki Kameko to let the author know the works by Benson-Wood and
Feshbach.

2. Cohomology theory and Feshbach theorem

Let p be a prime number. Let G be a compact Lie group and 7T the
maximal Torus. Then we have the restriction map

pi : H*(BG) — H*(BT)"

where H*(—) = H*(—;Z,), BG, BT are classifying spaces and W = Ws(T) =
Ng(T)/T is the Weyl group.

It is well known by Borel ([3], [5], [2]) that when H*(G) is p-torsion free,
then pj, is surjective (and hence is isomorphic). However when H*(G) has
p-torsion, there are cases that pj, are not surjective by Feshbach.

For a connected compact Lie group G, we have the Becker-Gottlieb transfer
©: H*(BT) — H*(BG) such that p;, = x(G/T) for the Euler number y(—), and
pit(x) = x(G/T)x for xe H*(BT)". Let y(G/T) = N and Tor be the ideal of
H*(BG) generated by torsion elements. Then we have the injections

N-H*(BT)" c H*(BG)/Tor c H*(BT)".

Feshbach found good criterion to see pj; is surjecive.

THEOREM 2.1 (Feshbach [5]). The restriction pj; is surjective if and only if
(H*(BG)/Tor) ® Z/p has no nonzero nilpotent elements.

Proof. First note that H*(BT)=Z[t,...,t;] for || =2. Hence if
x" = px’ in H*(BT), then x = px” for x”" e H*(BT). Moreover if x = px’e
H*(BT)", then so is x’ since H*(BT) is p-torsion free. Thus we see
H*(BT)" ® Z/p has no nonzero nilpotent elements.

Assume that pj, is not surjective, and x € H*(BT )" but x ¢ Im(pj;). Let
s>1 be the smallest number such that p’x = pj,(y) for some ye H*(BG).
Hence y #0 mod(p). Then

pir(Y) = (p°x)" = p™NxV e pN - H*(BT)" C p Im(pj;).
This means that y is a nilpotent element in (H*(BG)/Tor) ® Z/p. O
Using this theorem, Feshbach [5] showed pj; is surjective for G = G», Spin(n)

when n < 10, and is not surjective for Spin(11), Spin(12). Wood [27] showed
that Spin(13) is not surjective but Spin(n) for 14 < n < 18 are surjective. Benson
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and Wood [2] solved this problem completely, namely pj, is not surjective if and
only if n > 11 and n=3,4,5 mod(8).
For odd prime, we consider mod(p) version

P H'(BG;Z[p) — H*(BT;Z/p)" = (H"(BT)/p)""

It is known that pj; I is surjective when G = F4 for p =3 by Toda [20] using
a completely different arguments. Also using different arguments (but without
computations of H*(BT)" for concrete cases), Kameko and Mimura [9] prove
that pl*{/p are surjective when G = Eg, E7 for p =3 and G = Eg for p =5. (The
only remain case is G = Eg, p =3 for odd primes.)

Kameko-Mimura get more strong result. Recall the Milnor Q; operation

Q;: H*(X;Z/p) — H™* "~ (X;Z/p)

defined by Qp = f and Qi1 = [P?'Q;, 0;P'] for the Bockstein f8 and the reduced
powers P/,

THEOREM 2.2 (Kameko-Mimura [9]). Let G = F4, Es.E7 for p =3 or Eg for
p =35 Let us write a generator by x4 in H*(BG) = Zy). Then we have

H*(BT:Z/p)" = H""(BG:Z/p)/(Q1Q2xs).
COROLLARY 2.3. For (G, p) in the above theorem, pj, is surjective.

We can identify Q10>(x4) is a p-torsion element in H*(BG), since its
Qop-image is zero. The above corollary is immediate from the following lemma.

LemMmaA 2.4. If the composition
p: (H*(BG)/Tor)® Z/p — H*(BT)"/p — H*(BT;Z/p)"
is injective, then pj, is surjective.
Proof. Let pj, be not surjecive and y € H*(BT)" with y¢ Im(pj;). Then

P’y =pj(x) for some s> 1 and an additive generator x € H*(BG)/Tor. Of
course p(x) =0¢e (H*(BT)/p)". O

3. Chow rings

Let us write by G¢, T¢ the reductive group over C and its maximal torus
corresponding the Lie group G and its maximal torus 7. Let CH*(BG) =
CH*(BGc),,) be the Chow ring of BGc localized at p.

The arguments of Feshbach also work for Chow rings since the Becker-
Gottlieb transfer is constructed by Totaro [22].

LemMa 3.1.  The restriction map piy of Chow rings is surjective if and only
if (CH*(BG)/T)® Z/p has not nonzero nilpotent elements.
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However if H*(G) has p-torsion and G is simply connected, then
(CH*(BG)/Tor) ® Z/p always has nonzero nilpotent elements. In fact,
¢y = pxg € CH*(BG) in the proof of Theorem 3.3 below, is nilpotent in
(CH*(BG)/(Tor)) ® Z/p. However from the proof of the above lemma, we
note

COROLLARY 3.2. If xe CH*(BT)" but x ¢ Im(ply), then there is ye
CH*(BG) such that ply(y) = p°x for some s>1 and y is nonzero nilpotent
element in (CH*(BG)/(Tor)) ® Z/p.

Voevodsky [25], [26] defined the Milnor operation Q; on the mod p motivic
cohomology (over a perfect field k& of any ch(k))

Qi H""(X;Z/p) — H 20 D"r 1 (x; Zp)
which is compatible with the usual topological Q; by the realization map

tc: H*'(X;Z/p) — H*(X(C);Z/p) when ch(k)=0. In particular, note for
smooth X,

Q;|CH*(X)/p = Qi|H*"*(X;Z/p) = 0.

(See §2 in [Pi-Ya] for details.) We will prove the following theorem without
using Feshbach theorem (Lemma 3.1).

THEOREM 3.3. Let G be simply connected and H*(G) has p-torsion. Then
the restriction map

piy : CH*(BG) — CH*(BT)"

is not surjective.

Proof. (See §2, 3 in [15].) At first, we note that H*(BT)" =~ CH*(BT)"”
since H*(BT) =~ CH*(BT). Therefore we have the commutative diagram

CH*(BG) s cH*(BT)"

{0

H*(BG) — " H*(BT)"

If H*(G) has p-torsion, then G has a subgroup isomorphic to G, (resp.
Fy, Eg) for p =2 (resp. p =3,5). (For details, see [29] or §3 in [15].) We prove
the theorem for p =2 but the other cases are proved similarly.

It is known that the inclusion G, C G induces a surjection H*(BG) —
H*(BG,) =~ Zp and let us write by x4 its generator. Then it is also known
Oi1x4 #0 in H*(BGy;Z/2) where Q) is the Milnor operation. Therefore
x4 € H*(BG,) is not in the image of the cycle map

cl : CH*(BG,) — H*(BG>).
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On the other hand, the element 2x4 is in Im(cl) because it is represented by
the second Chern class ¢;. Since pj; ® Q is an isomorphism, pj;(xs) #0. But
py(x4) is not in the image py, from the above diagram. O

Remark. The condition of simply connected is necessary. By Vistoli ([24],
[9]), it is known that p{, is surjective for G = PGL(p).

Remark. The above theorem is also proved by seeing that x4 is not
generated by Chern classes, since CH?(X) is always generated by Chern classes
[22].

Recall that for a smooth projective complex variety X, the integral Hodge
conjecture is that the cycle map

gyt CH*(X) — H*(X)/Torn H**(X)

is surjective where H**(X) C H*(X;C) is the submodule generated by (x,)-
forms. Since px4 = ¢, in the proof of the above theorem and ¢, € H**(X), we
see x4 € H*(X).

We know [21], [15] that BG,, x BG can be approximated by smooth
projective varieties. Hence counterexamples for the integral Hodge conjecture
with X = BG,, x BG give the examples such that pf, is not surjective.

Lemma 34. Let 1® y¢ Im(clir,) C H (BG, x BG)/Tor be a counter-
example of the integral Hodge conjecture. Then it gives an example such that
P&y is not surjective, namely, p(y) ¢ Im(pp).

Proof. First note that py ., « H*(BG)/Tor — H*(BT) " s injective.
Since CH*(BT) = H*(BT) " “we note Péy = p;I/TorCI/T”V' Therefore y ¢
Im(cly7,,) implies that p(y) ¢ Im(pjy 7,,Clyror) = Im(pey). O

For each prime p, there are counterexamples X = BG,,, x BG for the integral
Hodge conjecture, while they are not simply connected. Indeed, Kameko,
Antieau and Tripaphy ([7], [8], [1], [23]) show this for G = (SL, x SL,)/Z/p
and SU(p?)/Z/p. Hence these mean that they give the examples such that p%y,
are not surjective for non simply connected and all p cases. They proved these
facts by using Chern classes.

We also note its converse. Recall [15] that the integral Tate conjecture over
a finite field k is the ch(k) > 0 version of the integral Hodge conjecture.

LEMMA 3.5. Let xe H*(BT)" such that xé¢pey but x=pi(y). More-
over let p°y be represented by a Chern class for some s>1. Then 1® ye
H*(BG,, x BG) gives a counterexample of the integral Hodge conjecture. It also
gives a counterexample of the integral Tate conjecture for a finite field k of
ch(k) # p.
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Proof. Since p°y is represented by a Chern class, we see p®y e Im(cl).
Hence it is contained in the Hodge class H**(BG,, x BG). Hence so is y.
Since x ¢ p¢y, we see y ¢ clyr,. For details of the integral Tate conjecture see

[15]. O

4. Spin(n) for p=2

In this section, we study Chow rings for the cases G = Spin(n), p =2.
Recall that the mod(2) cohomology is given by Quillen [17]

H*(BSpin(n); Z/2) =~ Z./2[wa, ..., w,|/J ® Z/2]e]

where e =wyi(A) and J = (wy, Qowa, ..., Qp_owa). Here w; is the Stiefel-
Whitney class for the natural covering Spin(n) — SO(n). The number 2" is
the Radon-Hurwitz number, dimension of the spin representation A (which is the
representation A|C # 0 for the center C =~ Z/2 C Spin(n)). The element e is the
Stiefel-Whitney class w,: of the spin representation A.

Hereafter this section we always assume G = Spin(n) and p = 2.

By Kono [11], it is known that H*(BG;Z) has no higher 2-torsion, that is

H(H*(BG;Z/2); Qo) = (H*(BG)/Tor) ® Z/2

where H(A4; Q) is the homology of A4 with the differential d = Q.

For ease of arguments, let n be odd i.e., n=2k+ 1. Let T’ be a maxi-
mal Torus of SO(n) and W' = Wso((T') its Weyl group. Then W' = Sif is
generated by permutations and change of signs so that |Ski\ = 2%k!. Hence
we have

H* BT = Zyylpi,....pe) CH*(BT) = Zy[t1, ..., 1, |t =2

where the Pontriyagin class p; is defined by IT;(1+2) =", p:.

For the projection z: Spin(n) — SO(n), the maximal torus of Spin(n) is
given 7~ (T") and W = Wy (T) = W'. To seek the invariant H*(BT)" is
not so easy, since the action W =~ S,;i is not given by permutations and change of
signs. Benson and Wood decided the H*(BT’)" -algebra structure of H*(BT)"
(Theorem 7.1 in [2]) and proved

THEOREM 4.1 (Benson-Wood). Let G = Spin(n) and p=2. Then pj; is
surjective if and only if n < 10 or n # 3,4,5 mod(8) (i.e., it is not the quaternion
case).

Hereafter to study the Chow ring version, we assume Spin(n) is in the real
case [17], that is n =8/ —1,8/,8/+1 (hence pj, is surjective and h =4/ —1,
4¢ — 1,4/ respectively).

In this case, it is known [17] that each maximal elementary abelian 2-group
A has ranky, A=h+1 and

eld = Uiz (z+x)
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where we identify 4 ~ C® A and H'(BA;Z/2) =~ Z/2{xi,...,x;} is the Z/2-
vector space generated by xp,...,x;, and

H*(BC;Z)2) = Z7)2]z], H*(BA;Z)2) = Z/2|x1,...,xp).
The Dickson algebra is written as a polynomial algebra
Z)2[x1,. .., x;) M ED ~ 2 )2(dy, . . . dyi).
where d; is defined as
|

eld = 2 d T oz
We can also identify d; = wyi_,:(A) € H*(BG;Z/2) [17].

Lemma 4.2 (Lemma 2.1 in [19]). Milnor operations act on d; by
On_1d; = dod;,  Qj1dj =dy, for 1 < j,
Qidi=0 fori<h—1and i#j—1
LemMa 4.3 (Corollary 2.1 in [19]). We have
On1e=doe and Qre=0 for 0 <k <h-2.

THEOREM 4.4. Let T C G = Spin(n) for n=8/,8/ + 1. There is an e’ €
CH*(BT)" such that ¢’ ¢ Im(ply;) and pi(e) = e’ mod(2).

Proof. First note that e|C =z and wjC=0. Hence H*(BG;Z/2)|C =~
Z./2[z*"], which implies that e is not in the Qp-image. From the preceding
Lemma 4.3 we sece Qpe =0. By Kono’s result, we see

0+ e e H(H"(BG;Z/2); 0y) = (H*(BG)/Tor) ® Z,/2).
Take ¢’ € H*(BG)/Tor with that ¢’ = ¢ mod(2). Then
e =pi(e") #0 in H(BG)/Tor c H*(BT)"

From the preceding Lemma 4.3, Q;_i(e) # 0. Hence we see e’ ¢ py; by the
existence of Q; in the motivic cohomology by Voevodsky. O

Let Ac be the complex representation induced from the real representation
A. Then we see (see Theorem 4.2 in [19])

i1 (AC)|C = 2wy |C = 222"

Of course this element c,i-1(Ac) is in the Chow ring CH*(BG). Hence we see
that we can take 2e¢’ € Im(ply).

From the result by Benson-Wood, we know pj; is surjective in this (real)
case. Hence from Lemma 3.5 (or Qj_i(e) # 0), we have
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COROLLARY 4.5. Let X =BG, x BSpin(n) with n=28/,8/ + 1. The ele-
ment 1@eec H> (X)NH?* 2" (X) gives a counterexample for the integral
Hodge and the integral Tate conjectures, namely 1 ® e ¢ Im(cly 7o)

5. Cobordism

Let BP*(X) be the Brown-Peterson cohomology theory with the coeflicients
ring BP* = Z,[v1,v,...] of degree |v;]| = —=2(p' — 1) (see [16] for details). Let
Q*(X) = MGL*"*(X) ®,u- BP* be the BP*-version of the algebraic cobordism
([25], [13], [14], [29]) such that Q"(X) ®pp: Z(p) = CH*(X).

We consider the cobordism version of the map pj,

p : Q*(BG) — Q*(BT)" ~ BP*(BT)" .

Although A'-homotopy category has the Becker-Gottlieb transfer t (this fact is
announced in [4]), we see

T-ps =x(G/T) mod(vy,vy...)
which is not y(G/T) in general. So we can not have the Q*-version of
Feshbach’s theorem.

We are interesting in an element xe Q*(BG) such that pi(x) #0 in
Q*(BT). Of course, x is torsion free in Q*(BG), but there is a case such that

and x is p-torsion in CH*(BG).

LemMa 5.1. Let fe H*(BT)Y, f # 0 mod(p), and identify f € gr Q*(BT)
Q" Q@ H*(BT). Let f¢Im(py) but vy,felm(py) for m=>0. Then vif e
Im(pg) for all 0 < j <m. Namely, there is c¢j € Q"(BG) such that p¢(c;) = vif,

¢; #0 € Q" (BG) ®pp- Z/p = CH"(BG)/p.
Moreover pc; =0 in CH*(BG) for j>0.

Proof. We consider the Landweber-Novikov cohomology operation r, (see
[16] for details) in gr Q*(BT) =~ Q" ® H*(BT). By Cartan formula,

ra(Umf) = Z ra’(vm)ra”(f)'

a=a'+a"

Here r,(f) =0 for |a"| >0 in gr Q*(BT) Q" ® H*(BT). It is known that
there are operations rg(v,) =v; for j<m ([16]). Thus we see the first
statement.

From the assumption, f itself is not in the cycle map po-. Hence v;f is
a BP*module generator in Q*(BT)” nIm(Q*(BG))). Hence it is also
nonzero in CH*(BG)/p. Since pv;f = vjpf € v; Im(Q"(BG)), we have pc; =0¢€
CH*(BG). O
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We consider the Atiyah-Hirzebruch spectral sequence (AHss)
E}" = H*(X; BP*') = BP*(X)
It is known that
(x) dypi_1(x) = v; ® Qi(x) mod(p,v1,...,v;i1).
In general, there are many other types of nonzero differential. However we

consider cases that differentials are only of this form.

LemmA 5.2. Let X = BSpin(n) and n=28/,8/ + 1. In AHss for BP*(X),
assume all nonzero differentials are of form (x). Then 2e,vie,...,vp_2e are all
permanent cycles.

Proof. We use Lemma 4.2, 4.3 in the preceding section. First recall
Qi(dy) =0, Oi(e) =0 for i <h—1. Therefore dye exists in Eyi_;.

Since Qj_1d; =dy and Qk(d;) =0 for k < j—1, the differential in AHss
is

dyi-1(dje) = vj1 ® Qj-1(dje) = vj-1doe.

Hence we have (2,v1,02,...,05-2)(doe) =0 in Ez*,;fl.

Now we study the differential

d2h,1(6) = Up—1 Qh_l(e) = U/,_ld()e.

Note that e is BP*-free in Ez*,’,i/
have

., since ¢|C =z?" and e ¢ Im(Q;). Hence we

Ker(dyi_1) N BP*{e} = Ideal(2,v1,...,v5-2){e}.

(In this paper, R{a,b,...} means the R-free module generated by a,b,...) By the
assumption (x) for differentials, 2e,vie,...,v,_2e are all permanent cycles. []

For 7<n <9, AHss converging BP*(BSpin(n)) is computed in [12], ([19]
also), and it is known that (x) is satisfied.

COROLLARY 5.3. For n="17,8 (resp. n=29), the elements 2e, vie (resp. 2e,
vie, vae) are in Im(p}p) C BP*(BT)Y (but e itself is not).

Let K(s)"(X) be the Morava K-theory with the coefficients ring K(s)" =~
Z/plvs, 0], and AK(s)*(X) = AK(s)*"*(X) its algebraic version [29]. Here we
consider an assumption such that

(xx) AK(s)"(BG) — K(s)"(BG) is surjecive.

It is known by Merkurjev (see [21] for details) that AK*(BG) =~ K*(BG) for the
algebraic K-theory AK*(X) and the complex K-theory K*(X), which induces
AK(1)"(BG) =~ K(1)"(BG). Hence (*x) is correct when s =1 for all G.
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LemmA 54. Let X = BSpin(n), n=28/,8/ + 1 and suppose (x). Moreover
suppose (%) for s =h—2. Then v,_se € Im(pf), and hence there is ¢; € CH*(X)
for 0<i<h-—2 in Lemma 5.1.

Proof. First note 0 # v, e € K(h—2)"(X) (hence so is e¢). On the other
hand [29]
AK(h—2)"(X) = K(h—2)"® CH*(X)/I

for some ideal I of CH*(X). Therefore there is an element ¢e CH*(X)
which corresponds v} ,e that is clo(c) = v} _,e for clg : Q*(X) — BP*(X). Since
e ¢ Im(clg), we see s must be positive. The possibility of

v e = —2(2" 2~ 1)s+2" >0

is s=1or s=2. When s=2, we note |v; ,e| =4 and clcy(c) =0. However
it is known by Totaro (Theorem 15.1 in [22]),

cl: CH*(X) — H*(X) is injective.
Hence s =1 and clg(c) = vy_ze. O
From Merkurjev’s result for K(1)*(BG), we have clo(c) = vye.

COROLLARY 5.5. For X = BSpin(n) n =1,8, there is an element c € CH3(X)
such that ¢ #0e CH*(X)/2, cl(c) =0 but p§(c) #0eQ*(BT) v

6. Spin(7) for p =2
Let G be a compact Lie group. Consider the restriction map
respgp - H*(BG, Z/p) — Limy .ol ab, H*(BV, Z/p) We(A)

where Wg(A) = Ng(A4)/Cg(A) and V' ranges in the conjugacy classes of ele-
mentary abelian p-groups. Quillen [18] showed this resy, is an F-isomorphism
(i.e. its kernel and cokernel are generated by nilpotent elements). We consider its
integral version

resy : H*(BG) — My H*(BA) "™,

where A ranges in the conjugacy classes of abelian subgroups of G.

Hereafter this section, we assume G = Spin(7) and p =2 and hence & = 3.
The number of conjugacy classes of the maximal abelian subgroups of G is two,
one is the torus 7 and the other is A’ =~ (Z/2)* which is not contained in 7.
The Weyl group is Wg(A') = (U, GL3(Z/2)) C GL4(Z/2) where U is the maxi-
mal unipotent group in GL4(Z/2). It is well known

H*(BG;Z/2) =~ H*(BA";Z)2)"*“) = Z./2[w4, we, w7, wg]
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where w; for i < 7 (resp. i = 8) are the Stiefel-Whitney class for the representation
induced from Spin(7) — SO(7) (resp. the spin representation A and hence wg =
wg(A) = e).

Since H*(BG) has just 2-torsion by Kono, the restriction map resy injects
Tor into H*(BA';Z,/2)"¢") and

(H*(BG)/Tor) ® Z/2 ~ H(H"(BG;Z/2); Qy).
Since Qyw; =0 for i # 6 and Qywe = w7, we have
H(H"(BG;Z/2); Qo) = Z/2[ws,c,ws] c6 = we.

Of course the right hand side ring has no nonzero nilpotent elements. Hence we
see that pj, is surjective and

H*(BT)" @ 22 =~ Z./2|w4, cs, wy).
Thus the integral cohomogy is written as
H*(BG) = Z(z) [W4, Co, Wg} ® (Z(g){l} (—D Z/z[W7]{W7}).

In particular, we note resy is injective.
Next we consider the Atiyah-Hirzebruch spectral sequence

E}* ~ H*(BG) ® BP* = BP*(BG).

Its differentials have forms of (x) in §5. Using Q1(ws) = w7, O2(w7) = 7,
0>(wg) = wywg and Qs(w7wg) = c7¢3, we can compute the spectral sequence

gr BP*(BG) =~ BP"[ca, cg, c3]{1, 2w4, 2wg, 2wawg, viwy }
@ BP*/(2,v1,v2)[ca, cs, ¢7,c8){c7}/ (v3¢7C8).
Hence BP*(BG) ®pp- Zy) is isomorphic to
Z})[ca, co, cs]{1, 2wa, 2wg, 2waws, viws }/(2v1ws)
® Z/2[ca, cs, c7,c8){c7}
On the other hand, the Chow ring of BG is given by Guillot ([6], [29], [30])
CH*(BG) = BP"(BG) ®gp- Z3)
= Zylea, ¢, 03] @ (Zy {1, 3, ¢h.c} © Z/2{&3} @ Z/2[er]{e7})

where cl(c;) = w2, cl(ch) =2wa, cl(c;) =2ws, cl(ct) =2waws, and cl(&3) =0,
|&5] = 6. Note clo(&3) =wviws in BP*(BT)"Y, and & =c¢ in Corollary 5.5.
Hence we have

CH*(BG)/Tor = Z)[cs, cs, cs){1, ¢5, c4.c4}
- Z(z) [Wa, c6,ws] = CH*(BT) "
In fact the nilpotent ideal in (CH*(BG)/(Tor)) ® Z/2 is generated by ¢}, cj, c¢.



CHOW RINGS AND WEYL GROUP INVARIANTS 549
Next we consider the Chow rings version for the restriction map
rescy : CH*(BG) — g0 CH*(BA) "¢
Recall CH*(BA') = Zp)[y,..., ya] with ¢/(y;) =x?. Hence we have
(CH*(BA')/2)"1) = Z./2[¢4, cs, 7, c).
Since Tor is just 2-torsion, we have
LemMA 6.1.  For the torsion ideal Tor C CH*(BG), we have

rescy(Tor) = Z.)2[ca, cg, cs, ¢7]{c7} € CH*(BA').

Thus we see that Ker(rescy) = Z/2[ca,ce,cs]{3}, which is the ideal of
Griffiths elements. We write down the above results.

THEOREM 6.2. Let (G, p) = (Spin(7),2). Let Grif be the ideal generated by
Griffiths elements and D = Z)[c4,cs,c3].  Then we have

CH*(BG)/Tor = D{1,2wa4,2wg, 2wawg}
C D{1,wyq, wg,wawg} = CH*(BT) W, with wi2 = ¢,
Tor/Grif = D/2[c7){c7}, Grif = D/2{&}.

Thus we see Theorem 1.2 in the introduction.

COROLLARY 6.3. Take an element &€ Q*(BG) such that &=E&; in
Q" (BG) ®pp Ly = CH*(BG). Also identify ¢; as an element in Q"(BG).
Then we have Z.)2|cy.co, cs]{E} € Q*(BT)")2.

COROLLARY 6.4. Let J=(222vy,v},v5,...) C BP* so that BP*]J =
Z/4{1} ® Z/2{n1}. For D = Zy|cs,cs,cs], we have

Q'(BG)/J = D® (BP"[J{1,¢3, ¢}, ¢, &3}/ (283 = v1¢4)) @ Z/2[e7){cr}).

7. The exceptional group Fy, p =3

In this section, we assume (G, p)= (Fs,3). (However similar arguments
also work for (G, p)= (Es,3),(E7,3) and (Es,5) [10].) Toda computed the
mod(3) cohomology of BFy. (For details see [20].)

H*(BG;Z/3) = C® D, where

C = F{1,x20, X3} ® Z/3[x26] ® A(x9) ® {1,x20,x21, X2}
D = Zg)[x36,Xas], F = Z3)[x4, Xg].
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Using that H*(BG) has no higher 3-torsion and Qyxs = x9, QoXx20 = X21,
Qox25 = X26, WE can compute

H*(BG) =D ® C'" where
C'/Tor = Zi3{1,x4} ®E, where E = F{ab|a,b e {x4,x3,x20}}
C' D Tor = Z,/3[x2]{x26, X21, X9, X9X21 }-
Note xy6 = 0>01(x4) in Theorem 2.2 and
H*(BT;Z/3)" = H""(BG;Z/3)/(0:01x4) = D ® F{1,x20,x3}.
(For x3, # 0, see [20]). Hence we have
(H*(BG)/Tor) ® Z/3 =~ D/3® (Z/3{1,x4} ® E) C D/3® F{1,x2,x3}-
From Lemma 2.3, we see pj, is surjective and
H*(BT)" ~ H"(BG)/Tor ~ D ® (Z3){1,x4} ® E).
Next we consider the Atiyah-Hirzebruch spectral sequence [12]
E;" =~ H*(BG) ® BP* = BP*(BG).

Its differentials have forms of (x) in §5. Using Q(x4) = x9, O1(x20) = X2,
01(x21) = x36 and Qrx9 = Xp6, We can compute

gr BP*(BG) ~D® (BP* ® (Z<3){1,3X4} ) E) &) BP*/(?), vy, Uz)[x%]{x%}).
Hence we have

BP*(BG) ®pp Z3=D® (Z3{1,3x4} ® E ® Z/3[x26]{x26})-

ProposiTION 7.1, Let (G, p) = (F4,3) and Tor O Grif be the ideal generated
by Griffiths elements. Then we have
CH*(BG)/Tor C D® (Z3{1,3x4} ® E) C H*(BG)/Tor,
Tor/Grif = D ® Z/3[x2]{x2}
If Totaro’s conjecture is correct, then Grif' = {0} and the first inclusion is an
isomorphism. From [28], it is known that if x3 € Im(cl) for the cycle map cl,

then we can show that ¢/ itself is surjective. However it seems still unknown
whether x3 e Im(cl) or not.

COROLLARY 7.2. Let (G,p) = (Fs,3). If (xx) in §5 is correct for some
n=>2, then the cycle map CH*(BG) — BP*(BG) ®gp- L3) is surjective and

CH*(BG)/TO}’ ~D® (Z(3>{1,3X4} @E)

Proof. The corollary follows from |v,xZ| =16 —2(3" — 1) < 0. O
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