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LINEAR COMBINATIONS OF HARMONIC QUASICONFORMAL
MAPPINGS CONVEX IN ONE DIRECTION

YoNG SuN, ANTTI RaSILA AND YUE-PING JIANG

Abstract

In this paper, we introduce a new class S (k,y;¢) of harmonic quasiconformal
mappings, where k € [0,1), y € [0,7) and ¢ is an analytic function. Sufficient conditions
for the linear combinations of mappings in such classes to be in a similar class, and
convex in a given direction, are established. In particular, we prove that the images of
linear combinations in this class, for special choices of y and ¢, are convex.

1. Introduction

A complex-valued function f defined in the open unit disk D ={zeC:
|z| < 1} is called harmonic if f is twice continuously differentiable and satisfies
Af =4f.: =0. Let # denote the class of all complex-valued harmonic functions
f in D normalized by the condition f(0) = f.(0) —1=0. Let ¥ be the sub-
class of # consisting of univalent and sense-preserving functions. Such func-
tions can be written in the form f =/h+ g, where

(1) hiz) =z+ Za,,z” and ¢(z) = Zb,,z"
n=2 n=1

are analytic in D and the Jacobian J;(z) = |h'(2)]* = ¢’ (2)|* > 0, or equivalently,
the analytic complex dilatation w =g’/h’ of f satisfies |w| <1 in D. The
classical class % of analytic univalent and normalized functions in D is a subclass
of %y with ¢g(z) =0. The class of all functions f € .9y with the additional
property that f:(0) =0 is denoted by ¥. We refer to [6, 9, 10] for the basic
theory of harmonic mappings, and [2, 3, 5, 14, 16, 23] for some recent inves-
tigations on the topic.
If a univalent harmonic mapping f = h + g satisfies the condition

g'(z)
h’(z)‘ <k<l1l (zeD),
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then f is called a harmonic K-quasiconformal mapping in D, where K = %]z
Let y(k) be the subclass of % consisting of harmonic K-quasiconformal
mappings. Recently, several authors derived the conditions for univalent har-
monic mappings to be K-quasiconformal, see (for example) the works [1, 11, 12,
18] and the references therein.

A domain Q < C is said to be convex in the direction y € [0,7), if for all
ae C, the set QN {a+ te” : t € R} is either connected or empty. In particular, a
domain is convex in the direction of the real (imaginary) axis if every line parallel
to the real (imaginary) axis has either an empty intersection or a connected
intersection with the domain. A function is said to be convex in the direction y
if it maps D univalently onto a domain convex in the direction y.

Let fi =h;+9;1 and f; = hy +g; be two univalent harmonic mappings in
D with respective dilatations w; and w;. Then, the linear combination f of f
and f, is given by

2) f=th+ {1 =0)fa=[th + (1 - 0h]+ [tg7 + (1 - 1)g2]
=h+g, (0<t<1).

Even if f and g are convex analytic functions, Macgregor [15] has shown that
tf + (1 —1)g (0 < <1) need not be univalent. For results on the analytic linear
combination, see (for example) [4, 21]. For linear combinations of harmonic
functions, Dorff and Rolf [8] provided sufficient conditions for the linear com-
bination f =tf; + (1 —¢)f> to be univalent and convex in the direction of the
imaginary axis under the assumption that w; = @w,. Furthermore, Wang et al.
z
-z
(j=1,2) is univalent and convex in the direction of the real axis. Recently,
Kumar et al [13] established that the linear combination f =1tf; + (1 —1)f>
z(1 — %2)
1—2z2
direction of the imaginary axis.
Let ./ be the subclass of & consisting of analytic functions. For k € [0, 1),
y€[0,7) and ¢ € o/, consider the following subclass S (k, y; ¢) of Sy defined by

Su(k,y;¢) ={f =h+geSulk):h—e*g=g}.

[22] proved that the linear combination [ =1tfj + (1 —1¢)f; with ;4 g; =

with 7+ g; = (-1 <o <1;j=1,2) is univalent and convex in the

For simplicity, we write 94 (k,0;¢) =: S7 (k;¢) and Sy (k,g;qﬁ) =: 9 (k; §).

These subclasses of harmonic mappings were introduced in [17, 24] for specific
choices of y and ¢.

In this paper, we derive sufficient conditions for the linear combinations
of harmonic quasiconformal mappings to be univalent and convex in a given
direction. In particular, we prove that the images of linear combinations in this
subclass, for special choices of y and ¢, are convex.
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2. Preliminary results

The proofs of our main results are based on the following lemmas.

LemmA 1 (see [6]). A sense-preserving harmonic function f =h+g in D is a
univalent mapping of D onto a domain convex in the direction of the real (resp.

imaginary) axis if and only if h— g (resp. h+ g) is an analytic univalent mapping
of D onto a domain convex in the direction of the real (resp. imaginary) axis.

It is clear that Lemma 1 of Clunie and Sheil-Small can easily be generalized
to a domain convex in the direction 7y.

LEMMA 2. A sense-preserving harmonic function f = h+ g in D is a univalent
mapping of D onto a domain convex in the direction y if and only if h — e*"g is an

analytic univalent mapping of D onto a domain convex in the direction y.

LemMa 3 (see [19]). Let f be an analytic function in D with f(0) =0 and
f'(0) #0 and let

3) K(z) =
If

z
(1 + ze)(1 + ze~10)

%(ZJ,:(S)) >0 (zeD),

then f is convex in the direction of the real axis.

(6 €R).

LemMA 4 (see [20]). Let ¢(z) be a non-constant function regular in D.  The
Sfunction ¢(z) maps D univalently onto a domain convex in the direction of imagi-
nary axis, if and only if there are numbers u and v, 0 < u < 2m and 0 < v < 7 such
that

4) R(—ie™(1 —2ze " cos v+ z%e 2M)p'(z)) =0 (zeD).
Lemma 5. If fie Sulk,y;¢) (j=1,2), then the dilatation w of the linear
combination f=1tfi + (1 —1)fa (0<1t<1) satisfies
tgi + (1 —1)g3
= < 1
ol = = on| < F <

Proof. Since h; — e*7g; = ¢ and g; =wihl (j=1,2), we get
Y-

We obtain a new harmonic mapping as follows

f=th+0-0fhi=[th+0 -] +[tg+ (1 —-0g]=h+4g,
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and the dilatation w = g’/h’ satisfies the condition

ICO1¢I (1 — I)a)2¢/

5) o] = g1 + (1 = 1)g; _ |1 =ew; 11— ey
]+ (1= ) 9 (-0
1 —e2rw; 1 — e,
w1 (1 — l‘)a)z
1 =ew; 1 —eXmy
t 1—1¢ ’
1 — e2ve,; + 1 —ée%rew,

From (5) it follows that |w| < k if and only if

PRI P o (1- 0w, |* 0
1 —e%re; 1 — e, 1 —e%rw; 1 — e, '
Let
wj=pie (0<p <k<1,0,eR;j=1.2)
and

2t(1 — 1)

[T — e |*|1 — e2res)*

Then we have

2 2

t 1—1¢
1 —e2rw; 1 —e2vw,

_ 2K —Jenf’) (1= 0K — |on|?)

(0] (1 — l‘)a)z

k2
1 —e2rw; 1 —e2rw,

Tl = e 2 |1 — e27y)?
k2 — w1y
2t(1 — R . -
#2100 )
2t(1 —1)

1= e P11 — e2iran|?
= O((k* = pip3) + p1(p3 — k?) cos(2y + 61)

+pa(pi = k) cos(2y + 02) + pypy(k* — 1) cos(02 — 01))
> O((k* = pip3) = p1(k* = p3) = pa(k* = pi) = p1pa(1 = &%)
=®(k> = p1py)(1 = py)(1 = py) > 0.

The proof of Lemma 5 is thus completed. |

%((kz —wy;)(1 - 6_2’760_1)(1 - eziycoz))
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Obviously, we may generalize Lemma 5 as follows.

Lemma 6. If fie Sulk,y;¢) (j=1,2,...,n), then the dilatation w of the
linear combination f =1t f1 + tofy + -+ t,fn satisfies

o] = 191 205+t g,

thi + thl+ -+ t,h)
where 0 < t; <1 and ty +tr+ -+, =1

<k<l,

3. Main results

We begin by presenting sufficient conditions for the linear combinations for
the class Sy (k,y;$) to preserve certain properties of mappings.

THEOREM 1. Let fi=hi+gie Sulk,p;¢) (j=1,2). If ¢ is convex in the
direction vy, then f=1tfi + (1 —10)fa e Fglk,y;¢) (0<t<1), and it is convex in
the direction y.

Proof. In view of Lemma 5, we know that the dilatation w of f = if; +
(1—1)f> satisfies |o| <k. Since h; —e*’g; =¢ (j =1,2), we have

h—e*g = [thy + (1 — 1)hy] — e*7[tg1 + (1 — 1)g]
= t(lh —¥"g1) + (1 = 1) (h2 — €*"g0) = ¢,
which is convex in the direction y by the assumption. Thus, from Lemma 2, we
see that f e Sy(k,y;¢) and convex in the direction . |

In view of Theorem 1 and Lemma 6, we have the following result.

..,n).  If ¢ is convex

COROLLARY 1. Let fj=hj+gje€ Su(k,y;¢) (j=1,2,
O<y<1,X 0 4=1), and it

in the direction y, then f =37, t;f; € Su(k,y;¢)
is convex in the direction Y.

Remark 1. If we set n=2, y=0 and ¢ = I iz in Corollary 1, then it

reduces to the result of Wang er al. [22, Theorem 3].

By making use of Theorem 1, we can obtain some interesting results for
specific choices of y and ¢.
COROLLARY 2. Let fi=hi+g;e Sulk,y;¢) (j=1,2), where
z eiy dC
6 = , .
© )= | e e
Then f=thi+ (1 —1)fre Sulk,y;¢) (0<t<1), and it is convex in the direction .

(0 eR).
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Proof. By setting x(z) by (3), we find that

Z —iy (! 20y 1 Z —iy - i)
%(%) _ %(ﬂ (] — e¥7g}) + (1 = 1) (h} — ez'«a;n)

ze ¢! (2) ze ¢ (z)
=t R|———= 1—¢8) - R ————=
(g )+ -0 n(*5
=t+(l-0H=1>0.
Therefore, by Lemma 3, we see that e 7 (h — ¢2’3’g) is convex in the direction
of the real axis, and hence the function / — e?”g is convex in the direction y.

Furthermore, by Lemma 2 and Lemma 5, we deduce that f e %y (k,y;¢) and
convex in the direction 7. ]

COROLLARY 3. Suppose that o€ [—1,1], 0 € (0,n) and A,B>0, A+ B #0.
Let fi=hi+g;e %4 (k;¢) (j=1,2), where

(7) ¢:A-Z(l_“z)+B 1 ]g(l—FZeie)’

1—2z2 2isin0 °\1+ze
then f=1tfi + (1 —1)fre %5 (k;$) (0<t<1), and it is convex in the direction of

the imaginary axis.

Proof. By taking u=v :g in (4), we find that

(1 =)@ =4 %(W) +B §R((l ¥ zez‘lf))_(lzi zei0)>

(1= 211 = 20R(z) + |2
11—z
(1 —]2)*)(1 + 2 cos OR(z) + |2|%)

B. -  LEL S,
[T+ ze)” - |1 + ze— 0]

Therefore, by Lemma 4, ¢ is convex in the direction of the imaginary axis, and
hence by Theorem 1 with y = g, we see that f € 9 (k;¢) and f is convex in the

direction of the imaginary axis. |

Remark 2. The main results of Kumar et al. [13] reduce to special cases of
Corollary 3.

Since the function defined by (8) is convex in the direction of the real axis
(see [7]), we can obtain the following result.



372 YONG SUN, ANTTI RASILA AND YUE-PING JIANG

COROLLARY 4. Suppose that A,B>0, A+ B#0 and ce [-2,2]. Let f; =
hi+g;€ S5 (kip) (j=1,2), where

1+z z
(8) ¢A-log<1_z)+B~1+cz+22,

then f =11+ (1 —t)fr e Sy (k;p) (0<t<1), and it is convex in the direction of
the real axis.

THEOREM 2. Let fi=h +g1i € Pulk,y;d) and fo=hy+g; € Fulk,y;¥).
Suppose that

R(k>hihy — g1g5) = 0
and tp+ (1 — )y is convex in the direction y, then f = tfy + (1 —1)f> € Fy(k)
(0<t<1), and it is convex in the direction 7.
Proof. For g; = w;h] satisfy the conditions |w;| <k <1 (j=1,2), we have

tworh) + (1 — t)wah),
(1~ 1)

g + (1 - 1)g5
thy + (1 — 1)k}

©) jof =

By assumption, it follows that
(10) K2|th! + (1 — i) = [tk + (1 = D)k
= I PR — o *) + (1= 0215 (k> = |on]?)
+21(1 — 1) - R((k* — wi@2)hihy)
> 20(1 — 1) - RN — g}gh) = 0.
Hence |w| <k < 1. Since i —e*’g; = ¢ and hy — e*’g, =, we have
h—eg = [th + (1 = )h] — &*7[tg1 + (1 = 1)g2)]
=t —e*g1) + (1 = 1)(hy — €¥7g0) = 1 + (1 — 1),

which is convex in the direction y by the assumption. Thus, from Lemma 2, we
know that f e (k) and is convex in the direction 7. |

THEOREM 3. Let
f1=h1+§]_1€=7H(k7V;¢) and f2:/’12+§]_2€y[-1( 7V+ a¢)

where
z eiy dC
() #2) = L (T4 ) (1 + L)

(0 eR).
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Suppose that
R(k*hih5 — g1g}) = 0,
then f=th+(1—1t)fae Sulk) (0<t<1) and convex in the direction y.

Proof. Making use of the similar arguments as in the proof of Theorem 2,
in view of (9) and (10), we obtain that the dilatation w of f =1+ (1—1)f;
satisfies || <k < 1.

Now we show that f is convex in the direction y. Note that

) hl — 621‘;' / , 1= eziyw
hy —e*7gy = (hy + e*"gh) <27g2> =¢'(2) <42) = ¢'(2)p(2),

hé +62i;’g£ 1+62i}'w2
where
B 1 — e,
Z)=—
P 1+ 82”)(,02

satisfies R(p(z)) > 0. By setting x(z) by (3), we find that

o= (B — o2y ze i / iy !
%(W) - %(ﬁ [t(hy — e7g1) + (1 — 1) (hy — € V.Gz)])

ze "¢'(z) ze "¢’ (z)p(z)
=1- EREEE A A 1—1)- -
"G 0) -0
=t+(1-R(p(z)) > 0.
Therefore, by Lemma 3, we see that e~ (h — e*"g) is convex in the direction of
the real axis, and hence the function / —e*”g is convex in the direction y.

Furthermore, by Lemma 2 and Lemma 5, we conclude that f € %y (k), and it is
convex in the direction 7. |

Next, we prove the convexity of the linear combinations f = tf; + (1 — 1) f>
for the classes %, (k;¢) and % (k;¢) for special ¢.

THEOREM 4. Let fi=hj+7q,€ S (k;¢) (j=1,2), where

4(2) :% 10g<1 + Z) (zeD).

1-z

Then f=th+(1—0freFyk;¢) (0<t<1), and f(D) is convex.

Proof. In view of Corollary 4, we have f =h+ge Sy (k;¢), then by
Lemma 2 the set f(D) will be convex if and only if the analytic functions
h —e*"g are univalent and convex in the direction @ for all §, 0 <0 < z. To
show the latter, it is sufficient to show that the functions Fy = ie " (h — e*?g) are
univalent and convex in the direction of the imaginary axis.
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Note that
h(2) = ¢'(z) = [thi(2) + (1 = )y(2)] = [1g1(2) + (1 = 1)g5(2)]
1(h(2) = 91(2)) + (1 = )(Ay(2) — g3(2))

—_

1
Taking u =v==/2 in (4), we have
R((1 = 22)F(2)) = =S(e [ (2) = ¢ (2)](1 — 2%))
Uh'(z) = e"g'(2))(1 - %))
H(2) = g'(2)) cos 0 — i(i(2) + ¢'(2)) sin 6)(1 — 22))

h'(z) + g’(Z))
h'(z) —g'(2)

3
-3l
-3

—

cos —isin @

||
(J)

=R(p(z)) sin 0 > 0,
where

KD +g()
A IOErE

satisfies R(p(z)) > 0. Thus by Lemma 4, we see that the function Fj is univalent
and convex in the direction of the imaginary axis. |

In view of Theorem 4 and Lemma 6, we have the following result.

COROLLARY 5. Let fi=hi+gje Sy (k;¢) (j=1,2,...,n), where
1 l1+z
¢(Z) = E log <E> (Z € D)

Then f =3 i€ Sy(kig) 0<4;, <1,3°7,4;=1), and f(D) is convex.

By similarly applying the method as in the proof of Theorem 4, we can
easily get the following result for the class % (k;¢) for special .

THEOREM 5. Let fi=hj+gj€ % (kip) (j=1,2), where

#(z)=— (zeD).

z

Then f=th+(1—10)fre S5 (ki) (0<t<1), and f(D) is convex.

Proof. By Corollary 3 with 4 =1, B=0and o« = —1, we have f =h+ge
i (k;¢). In order to prove that f(D) is convex, by Lemma 2, it suffices to
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show that the analytic function / — e*’g is convex in the direction # for every
0e[0,m). The function i —e*’g is convex in the direction 6 if and only if
Fy = ie ™ (h — ¢*?g) is convex in the direction of the imaginary axis.

Note that

h'(z)+4¢'(2)

[thi(2) + (1 = Dhy(2)] + [191(2) + (1 = 1)g3(2)]
1(h1(2) +91(2) + (1 = )(ha(2) + ¢3(2))
1

(1-2)%
For 0 €[0,n/2), taking u=v =0 in (4), we have
R(=iF;(2)(1 = 2)%) = R(e [ (z) — 9" (2)](1 = 2)°)
(
(

= R([e " (z) — "' (2)](1 — 2)*)
= R([(h'(z) — ()) cos 0 — i(h'(z) + ¢'(2)) sin 6] (1 — 2)?)
:§R<Z:j cosH—zsm@)

R

(p(2)) cos 0 = 0,
where

h(z) —g'(2)
h'(z) +¢'(z)

satisfies R(p(z)) > 0. Therefore, by Lemma 4, the function Fy is convex in the
direction of the imaginary axis for 6 € [0,7/2). The same conclusion can be
drawn for the function Fy with 0 € [n/2,n) if we apply Lemma 4 with 4 =v =7.

|

p(z) =

In view of Theorem 5 and Lemma 6, we have the following result.

COROLLARY 6. Let fi=h;+gje % (kid) (j=1,2,...,n) with

#z)=—— (zeD).

l1-z
Then =31 tifie S(k¢) (0<t4; <137 t;=1), and f(D) is convex.
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