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SOME NEW LOWER BOUNDS OF THE FIRST
EIGENVALUE ON FINSLER MANIFOLDS
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Abstract

We establish some unified lower bounds for the first Neumann and closed eigen-
values of the Finsler-Laplacian on compact Finsler manifolds under the weighted Ricci
curvature conditions, which extend some recent theorems on the first eigenvalue of the
Riemannian-Laplacian. Moreover, the Lichnerowicz type lower bound for the first
Dirichlet eigenvalue of the Finsler-Laplacian is also obtained.

Introduction

For a closed Riemannian n-manifold (M,g) with the Ricci curvature sat-
isfying Ric > (n — 1)k(k > 0), Lichnerowicz ([9]) gave the lower bound of the
first eigenvalue of Laplacian

A (M) > nk.

When k =0, using the gradient estimate, Li-Yau ([8]) obtained

2

ll(M) = Td,z,

where d is the diameter of M. By utilizing the method of barrier function,
Zhong-Yang ([27]) further proved that

B |
)

(M) = —,

2

1(M)>%ifn>1. If k <0, it is

NN

Afterwards, Hang-Wang ([7]) showed that
proved by Li-Yau ([8]) that

(M) > m exp{—[1 + \/—4(n — 1)*d2k]}.
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The estimate above was improved by Yang ([22]) to the following
2

(M) = % exp{—max{vn — 1,V2}/—(n — 1)kd?}.

For the first closed and Neumann eigenvalues, Bakry-Qian ([1]) and Chen-
Wang ([4]) put these two lower bound estimates in the same framework, and gave
estimates for the first eigenvalue of very general elliptic symmetric operators, via
diameter and Ricci curvature.

It is an important and interesting problem to find a unified lower bound of
the first eigenvalue for Laplace operator. For this, Peter Li ([23]) conjectured
that for a compact Riemannian manifold (M, g) satisfying Ric > K > 0, the first

2

eigenvalue 4;(M) > %4—1(. In this direction, Yang ([23]) proved that
72 K
> 4 —.
(M) = pER

Later, this lower bound was improved by Ling ([10]) to

2

. K .
When K <0, Yang ([22]) conjectured that 1;(M) > %4—5. In 2007, Ling

([11]) proved Yang’s conjecture. Generally, for a closed Riemannian manifold
with Ric > K(K € R), Chen-Wang ([4]) gave that

2 K
M — 4+ —.
11( )Z d2+2

There are many generalizations of the above lower bound estimations.
Qian-Zhang-Zhu ([15]) extended them into Alexandrov spaces. Lott-Villani
([12]) generalized Lichnerowicz’s estimate to metric measure spaces with curvature-
dimension conditions. Wei-Wylie ([20]) and Chu-Hu ([3]) and Futaki-Li-Li
([5]) generalized them to f-Laplacian with the N-Bakry-Emery Ricci curvature
conditions.

As a natural generalization of Riemannian manifolds, Finsler manifolds are
differentiable manifolds of which on each tangent space one endows a Min-
kowskian norm instead of a Euclidean norm. There exists a Finsler-Laplacian,
which is a nonlinear elliptic operator, on Finsler manifolds. In recent years,
studies on the bound estimations of the first eigenvalue of the Finsler-Laplacian
have taken on a new look. In [6] Shen firstly gave the Faber-Krahn type
inequality and then further got the Cheng type inequality in [18]. After that,
Wu-Xin ([21]) proved Mckean type inequalities, while Chen ([2]) gained the
Cheeger type inequality and also improved the Cheng type inequality obtained by
Shen. There is still plenty of scope for improvement. Recently, some refine-
ments of the results above were achieved by Yin-He in [24]. As for the first
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Neumann and closed eigenvalues, Wang-Xia ([19]) gave a sharp lower bound
estimation on Finsler manifolds with weighted Ricci curvature conditions (see
Lemma 2.1 below). In addition, Yin-He-Shen ([24][25][26]) obtained some
estimates of the first eigenvalue under the variant weighted Ricci curvature
conditions (Ricy > (n— 1)k, N € (n,0) for k>0 or kK <0 and Ric, >0) and
further established some rigidity theorems on Finsler manifolds.

But until now, there are no universal explicit estimations of the first eigen-
value on the Finsler manifolds with the weighted Ricci curvature Ricy > K
(N €n,0],K e R). In this paper we are to answer Li’s Conjecture and Yang’s
Conjecture in the Finsler setting. Here the weighted Ricci curvature and other
concepts will be explained in Sec. 1 below.

THEOREM 0.1. Let (M,F,du) be a compact Finsler n-manifold without
boundary or with a convex boundary. If the weighted Ricci curvature satisfies
Ricy > K for N € [n, o], K € R, then the first closed or Neumann eigenvalue of
Finsler-Laplacian

2

A =4s(1 — ) 7

+ 5K := C(d,K,s),
where d denotes the diameter of (M,F) and V¥se (0,1). In particular,

A= +

3|3
[3S) [3%)
o] >

Remark. (i) For any K, we give a universal lower bound estimate which is
independent of N. Moreover, we have

4 2
0, K e <—oo7 ;),
Kd\* 4n? 4’
sup C(d,K,s) =4 (E+29) kel 21
Ip (d,K,s) <d+4n>, e{ d2’d2]’
4n? (N — 1)=?
K, K <d2’ 7 }
)
When N = o0 and K =0, the estimate 1; > 7 is sharp (see [26]). Unfortu-
2

nately, our estimation gives no information for K < -
better estimate when K < 0.

(i) Theorem 0.1 generalizes the corresponding results in the Riemannian
case and the method of proof is similar (see [3][5]).

(iii) A; is the first Neumann eigenvalue of the Finsler-Laplacian means that
Au = —2u in M with a Neumann boundary condition Vu(x) € T(0M) if OM is
not empty ([19]).

So we have to give
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We should remark that, in the Finsler setting, the gradient and the Laplacian
are both nonlinear operators (see Section 1 below). In general, the following
DO NOT hold:

V(u+v) =Vu+ Vo, V(u)=uVo+ vVu,
A(u+v) =Au+ Av, A(uv) = uAv + vAu + 2{Vu, Vv).

This creates many difficulties in the calculations. To overcome it, we use the
weighted-linear operators, such as the weighted gradient and the weighted Finsler
Laplacian. With them, we can convert some nonlinear problems into the linear
ones and then do some calculations as in the Riemannian case. It is shown in
[6] that the eigenfunction u of the Finsler Laplacian has only the regularity
ue CH*(M)NC*(M,), where M, := {du # 0}. The lack of the good regularity
forces us to avoid the point x where du(x) = 0 and address the issue on M,. For
example, we can not compute Au in M\M,.

It is well known that Riemannian metrics are reversible metrics, but in gen-
eral, Finsler metrics are not reversible. This means that if u is an eigenfunction
of the Finsler-Laplacian, then —u is not necessarily so. In this case, it is an issue
to construct an auxiliary function when coping with the gradient estimate.

Finally, and most importantly, we know that Yau’s gradient estimate
belongs to the linear problem, the gradient and Laplacian, however, are both
nonlinear operators in Finsler manifolds. Besides, for any function f, if
df(x) =0, then Af generally has no definition at the point x. Thus we can
not use the Finsler Laplacian A to adopt the maximum principle and obtain
the gradient estimate, which is the key method in Riemannian geometry. To
establish a gradient estimate in the Finsler setting, we have to utilize the
maximum principle for the weighted Finsler Laplacian AY* and guarantee
that the test function constructed attains its maximum in AM,,.

By the above skill, we may reform the techniques used in the Riemannian
case to solve the corresponding problems in Finsler geometry. In view of the
Bochner-Weitzenbock formula obtained by Ohta-Sturm ([14]), we then prove the
following results.

THEOREM 0.2. Let (M,F,du) be a compact Finsler n-manifold without
boundary or with a convex boundary. If the weighted Ricci curvature satisfies
Ricy > K(K < 0) for N € (n,0), then the first closed or Neumann eigenvalue of
Finsler-Laplacian

—C2r2K
1 > N CydV-K/4 _ 1)~2
N TR )

)

where Cy = max{v/N — 1,v/2}. In particular, we have the following estimations.
(1) If —4n*/d* < K <0, then

7[2 d2K2 CudV—F
== —CvdV=K/2,
1= <d2+ 16n2)e
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(2) If K < —47*/d?, then

27'[2
, —CydV=EK/2
Al = — € .

Remark. (i) From Theorem 0.2, we obtain the universal lower bound

2
;»1 = r e_CNd -K/2

d2

for any compact Finsler manifold with Ricy > K(K < 0).
(i) Theorem 0.2 is a generalization of the results by Yang ([22]) for Rieman-
nian Laplacian and Chu-Hu ([3]) for Riemannian f-Laplacian.

For a compact Riemannian rn-manifold (M,g) with Ricci curvature Ric >
(n— 1)k > 0, if the non-empty boundary dM has nonnegative mean curvature
with respect to the outward normal vector, Reilly ([16]) proved that the first
Dirichlet eigenvalue of the Laplacian also satisfies 1; > nk.

The second objective of this paper is to extend Reilly type estimate for the
first Dirichlet eigenvalue to the Finsler setting. Since the first eigenfunctions are
not C*(M), we adopt approximation method to build the integral inequality.
The key issue is how to choose a suitable convexity of the boundary. On the
base of the suitable convexity, we can give a proper estimate on the integral
inequality, and then obtain the following theorem.

THEOREM 0.3. Let (M, F,du) be a compact reversible Finsler n-manifold with
a mean convex boundary. If S curvature vanishes and the Ricci curvature satisfies
Ric > (n— 1)k > 0, then the first Dirichlet eigenvalue of Finsler-Laplacian

A1 > nk.

The paper is organized as follows. In Section 1, the related fundamentals
of Finsler geometry such as Finsler metric, weighted Ricci curvature, gradient
vector, Finsler-Laplacian and some lemmas are briefly introduced. The main
results will be proved in Sections 2, and 3, respectively.

1. Preliminaries

Let M be a smooth n-manifold and 7 : TM — M be the natural projection
from the tangent bundle TM. Let (x,y) be a point of TM with xe M,
yeTeM, and let (x',y’) be the local coordinates on TM with y = yid/ox".
A Finsler metric on M is a function F : TM — [0,400) satisfying the following
properties:

(i) Regularity: F(x,y) is smooth in TM\0;

(i) Positive homogeneity: F(x,1y) = AF(x,y) for 1> 0;
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(iii) Strong convexity: The fundamental quadratic form
= gii(x, ) dx' ® dx’ i ~—1[F2}
g:=gy(x,y) dx' @ dx’!, gy =S [F7],1,;

is positively definite.
.0
Let X=X lﬁ be a vector field. Then the covariant derivative of X by
ve TyM with reference vector we T,M\0 is defined by

w ,_ 0X! i i vk g
D)X (x) := {v/ oy (x) + Tj(w)o’ X (x)}@,

where T, denote the coefficients of the Chern connection.
Given two linearly independent vectors V, W e T.M\0, the flag curvature is
defined by
gr(RV(V, W)W, V)
gr (V. V)gr(W, W) = gy(V, W)*’

KV, W):=

where R is the Chern curvature
RY(X,Y)Z =DyDyZ —DyDyZ — D)y yZ.
Then the Ricci curvature for (M, F) is defined as

n—1

Ric(V) =Y K(V,e),

i=1

where eq,..., e, 1, form an orthonormal basis of 7 M with respect to gy .

v
E(V)

For a given volume form du=o(x)dx and a vector Ve T.M\0, the
distortion of (M, F,du) is defined by

det(g;(V)) .

(V) :=In .

To measure the rate of changes of the distortion along geodesics, we define

SV) 2= & el o

where ¢(z) is the geodesic with ¢(0) = V. S is called the S-curvature.
Now we introduce the weighted Ricci curvature on Finsler manifolds, which
was defined by Ohta. In the present paper, we reform it as follows:
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Dermnition 1.1 ([13]). Let (M, F,du) be a Finsler n-manifold. Given a
vector Ve TyM, let y:(—ee) — M be a geodesic with y(0) =x, 7(0)="V.
Define

S(V) 1= F2(07) 21860, 50,0,

where S(V') denotes the S-curvature at (x, V).
The weighted Ricci curvature of (M, F,du) is defined by

Ric, (V) = { Ric(V) + S(V), for S(V) =0,
T e otherwise,
s()?

Ricy (V) := Ric(V) + S(V) — , VN e (n o),

(N =mF(V)?
Ric, (V) := Ric(V) + S(V),

Let & :TM — T*M denote the Legendre transformation, which satisfies

Z£0)=0and L(Ay) =A% (y) forall A>0and ye TM\{0}. Then ¥ : TM\{0}

— T'*M\{0} is a norm-preserving C* difftomorphism. For a smooth function

u: M — R, the gradient vector of u at x € M is defined as Vu(x) := £ (du(x)) e
T.M, which can be written as

. ou 0
q -
Vu(x) = { 9" 05 Vi) 55 e ) #0,
0, du(x) = 0.

Set My :={xe M| V(x) # 0} for a vector field V on M, and M, := My,. For
a smooth vector field ¥ on M and x € My, we define VV(x) e TYM ® T M by
using the covariant derivative as

VV(v):=D)V(x)e T\M, veT.M.

For a smooth function u: M — R and xe M,, We set VZu(x):= V(Vu)(x).
Let {e,},_; be a local orthonormal basis with respect to gy, on M, and put
Uay = gvu(DY"Vu,e;). Then we have

Ugh = Upg, vav b.
.0 .
Let V = Vl@ be a smooth vector field on M. The divergence of V with
respect to an arbitrary volume form du is defined by

. " (oVi ;00
div V:—Z<ax[ +V $>,

i=1

where du = e® dx. Then the Finsler-Laplacian of u can be defined by
Au := div(Vu).
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Given a vector field V" such that V' # 0 on M, the weighted gradient vector and the
weighted Laplacian on the weighted Riemannian manifold (M, gy ) are defined by

N ou
gy Y
VVu = g ( )0x/ axiv
0, in M\M,,
We note that VY = Vu, AV"u = Au.

m Muy Ay = div(V ).

Let (M,F) be a Finsler manifold with boundary ¢M and v be the nor-
mal vector that points outward M. Here a normal vector v at x € M means
that for any we Ty(0M), g,(v,w) =0. There are exactly two normal vectors

v,v e TyM. 1In general, v # —v. The normal curvature A,(V) at xe€ dM in
direction V € Ty(0M) is defined by ([17])

A(V) = go(v, DI,

where y is the unique local geodesic for the Finsler structure Fjy, on 0M induced
by F with the initial data y(0) = x and $(0) = V. M is said to have convex
boundary if for any x € M, the normal curvature A at x is non-positive in any
directions V e T (0M).

DerFiNiTION 1.2 ([26]). Let Q@ < M be a smooth domain of a reversible
Finsler manifold (M, F). The boundary 0Q is called mean convex if there exists
(and then for all) a C? function ¢ satisfying

$;(x) =0, xeUNoQ,;
$i(x) >0, xeUNQ,
dg(x) #0, xeUNQ,
where U is a neighborhood of x € Q, such that F(Vg)H = 3"—| V2¢(e,, e,) < 0.

Here {e,},_, is a gyy-orthogonal frame field with e, = Vo

F(Vg)

LemMa 1.3 ([14]). Let (M,F) be a Finsler n-manifold. Given ue C* (M),
we have

Vu F(Vu)2 2 . 2 12
A —5 |- D(Au)(Vu) = |Vu|” Rico (Vu) + [Vul g vy

point-wise on M,. Here ‘V2”|12{swu) stands for the Hilbert-Schmidt norm with
respect t0 gv.

LemMa 1.4 (|21]). Let (M,F) be a Finsler n-manifold and u: M — R be a
smooth function. Then on M, we have

Au = trye, (V2u) = S(Vu) = sty — S(Vur),

where U, = gy (Vzu(ea),ea) and {e,},_, is a local gy,-orthonormal basis on M,.
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2. The first Neumann and closed eigenvalue

Before the proof of our main results, we introduce the following

Lemma 2.1 ([19]). Let (M",F,m) be an n-dimensional compact Finsler mea-
sure space, equipped with a Finsler structure F and a smooth measure m, without
boundary or with a convex boundary. Assume that Ricy > K for some real
numbers N € [n,0] and K € R.  Let Ay be the first Neumann eigenvalue of the
Finsler-Laplacian if 0M is not empty. Then

Al > )LI(K,N7 d),

where d is the diameter of M, A1(K,N,d) represents the first eigenvalue of the
1-dimensional problem

o) vt kv in (L), o(-9)=v(?) -0

where T(t) is defined by

/| K

T() =} _ /—_(N—I)Ktanh< —Nlilz>, K<0,1 <N < oo;

0, K=0,1<N < o0;
Kt, N = 0.

Using the above Lemma and similar arguments as in the Riemaniann case, it
is easy to prove

THEOREM 2.2. Let (M,F,du) be a compact Finsler n-manifold without
boundary or with a convex boundary. If the weighted Ricci curvature satisfies
Ricy > K for N € [n, o], K € R, then the first closed or Neumann eigenvalue of
Finsler-Laplacian

2
n
(2.2) A1 = 4s(1 —s)ﬁ—i—sl( =C(d,K,s),
where d denotes the diameter of (M,F) and V¥se (0,1). In particular,

72 K

;\,1> +§

~a
Proof. Differentiating both sides of (2.1), we have

(2.3) " =T — Tv" = ) (K,N,d)v.
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Multiplying (2.3) by (v/)* for a > 0 and integrating it over (—62—11%) yields

42 dj2 dj2
(24) J v///(vl)a dt _J T/(U/)l+a df—J Tv//(vl)a dt
—d/2 —d/2 —d)2
dj2
= —J1(K,N,d) J (") dr.
—d)2
Notice that v’ > 0 in (_c_z’ﬁ) (see [19] for details) and u’(— i) = u’<6_i> =0,
we get 22 2 2
d/2 d/2
(2.5) J o (0")" di = —aJ (") ()" dr
—d/2 —d)2
dj2
_ 4a 2J ((Uz)(a+1)/2)/)2 dr.
(1+a)" J-ap
In addition,
dj2 1 d/2 1 d/2
(26) —J TU”(D,)a dt = — J Td(yl)mrl = J T/(U/)a+1 dt
~d)2 L+a) ap l+al_yp

Substituting (2.5) and (2.6) into (2.4), one obtains

4—a " nla+1)/2yn2 g, " __a 1\ (. a+l
en ] ey ras [ (g - e

. d d . _ . .
Since v’ (— 2) = u’<2) =0, by using Wirtinger’s inequality

Jl, #) de < @)T @200 d, e CLIL g =0,

) )

we achieve that

2 d)2 5
e n_zj (") dr < J </11(K, N.d)——2 T/) ()" dr
(1 + a) d —d/2 —d/2 a+1
s
< (il(K,N,d) — min T’) J (vl)(Hrl dr.
a+1 te[-dj2,d/2 _ap
2
It is easy to check that 7' = K+N— - Hence,
4 2
WK Nd) > 2T a

— + K.
(a+1)*d*> a+1
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Taking s = a and using Lemma 2.1, we conclude
a

+1
2
A1 = 4s(1 —S)E—FSK = C(d,K,s).
View the right side of above formula as a quadratic polynomial on s, and note
vN -1 . o
that d < Tn, K >0 (see [13] for details), then it is not hard to get
sup, C(d,K,s) in the remark. O

THEOREM 2.3. Let (M,F,du) be a compact Finsler n-manifold without
boundary or with a convex boundary. If the weighted Ricci curvature satisfies
Ricy > K(K < 0) for N € (n, ), then the first closed or Neumann eigenvalue of
Finsler-Laplacian

2.2
- K
(2.8) > C;vizn(ecmd\/—mzt _ 1)727

where Cy = max{v/N — 1,v/2}. In particular, we have the following estimations.
(1) If —4n?/d* < K <0, then

n’*  d’K*\ ¢ dv=K
y r —CndV—K/2
(2.9) Al = <d2 + 167t2>€ .
(2) If K < —4n?/d?, then
e Ve
(2.10) iz e CxdV=K/2,

Remark. Before the proof, we give some explication. Since gradient and
Laplacian are nonlinear operators in Finsler manifolds, the calculations are
not so easy as in the Riemannian case. For instance, V(u+ v) # Vu+ Vv and
V(cu) # c¢Vu for ¢ e R in general. We construct the weighted operators V'* and
AY" with the reference direction Vu. This is because these weighted operators
are linear operators and moreover in M, we have VV'u = Vu, A"u = Au. We
should also point out that AY* satisfies the maximal principle on M, but have
no sense on M\M,. Therefore, with the weighted operators at hand, we can
use the technique similar to the Riemannian case to handle the problems on M,
but need to give additional discussion on M\M,,.

Proof. We firstly consider the case that M = 0. Let u be a first eigen-
function on (M, F) corresponding to the first eigenvalue A;. Since [, udu=

1 . . . . .
I Jas Audp = 0 and noting that —u is not necessarily the first eigenfunction on
(M, F), we assume that
l=supu>infu=—-k>-1 (resp. l >k=supu>infu=-1), 0<k<l.
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For small ¢ > 0, let

v:—u_%(l_k) resp.v:—u+%(1_k) .
TA+k)(1+e) TA+k)(1+e)
2
Clearly, dv = ————— du. Thus by the property of Legendre transform we
have (I+k)(1+¢)
Vo = VVMU =5 2 VI/I,

1+5)(1+e)

under which

1-k
Av=-L{v+a), a=-———,
v=—hlka) @ =g,
sup v = ! inf v=— !
PU=T R
Let v =sin 6, then dv = cos 0 df and
1 . 1 Vo|? )
— < < = .
1+8_s1n0_1+8, 1 —v? Vol

We note that 0 e 7E+5,E —J|, where ¢ satisfies sin T 5)= L, and that
2 2 2 l+e¢
VO = V"0 since cos 0 > 0. Set

\V, 2
U@):= max |V0’= max |—”|2
xeM,6(x)=0 xeM,6(x)=01 —v

. e [—gw,g—a].
Here and from now on, we use |V, |Vu| to denote F(VO), F(Vv). Then U(0)
is continuous on [—g—i—é,g — 5] . Moreover, for any 6, € (—;4— 5,% — 5), there
exists a point xp € M such that O(xo) = 6y and U(6y) = |VO]*(xo).

Now we claim that

V0| < \/21(1 + a,) + bV —K cos 0, 06[—%4—6,%_5}

where b =1 max{yv/N —1,v2} :=1Cy. If it is not true, one would take xo
attaining

A = max{|V0(x)| - hbvV—K cos 0(x)}.

and put 6y :=0(xp). Clearly,

(2.11) A>(+a).
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If \/U(0) —bv—K cos 0 attains its maximum at xo € M\ M,, then
VU(0) — bV —K cos 0 < +/U(0y) — bvV—K cos 0y
= —bvV—K cos Oy < /(1 +a;).

The claim holds undoubtedly. Next, we suppose that /U(6) — bv/—K cos 0
attains its maximum at xp € M,. Put

2
G(x) = Vel” _ (A + bvV—K cos 0)* } cos? 0.
1 — 0?2

By the definitions of U(f) and 4, we have at x, that

G(XO) = 07

VV“G(xp) = 0,

AV“G(x9) < 0.
Vu \%%

[Vu[ ~ [V
gvy on M,. Then by simple computations on VV“G(xo) =0 we have

Let ej,er,...,e, = be a local orthonormal basis with respect to

van =0, a#n
(2.12) Umn = —(A + bv/—K cos 0)(A + 2by/—K cos 0) sin 0

—u|Vu|?
=12 bV —Kv|Vv|.

Furthermore, a straightforward calculation yields

(2.13) 0 = AVG(xp) = cos> OA™" ( 1|V”| — (A +bV—K cos 0) )

+ <1|V ol —(A+bV—K cos 0) )AV” cos? 0

~+ 29wy (VV” < |VU| — (44 bV —K cos 0) ) , VY cos? 0)
= cos? AV <1|VU| — (A +bvV—K cos 0) ) +0+4+0

2
= cos? OA" (%) — cos? OAV"((A + bvV/—K cos 0)%).
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On the other hand,
Vol AV (|Vo]?) ) 1
AVu | —_ AVu
<1 —02> T2 T IVIAT T

1
Vu 2 Vu
+2gw(V (|Vo]"),V (1 —1;2))

=A+B+C

where

oAl
1 —v?

1 1
_ 2 AVu _ 2 3 Vu
B = |Vy|"A (I_UZ)—WU le(V (1_02))
20 v
= |Vo|*{ ——— div(VV") + 2gvi | V"0, VY| ————
Vol {(1 = )+ 206 ( T

v|? v Av+ [Vl 4 8v |VU|3 7
(1 —10v2) (1—02)" (1-1v?)

1
C = 2gva <VV“(|V02), VV“<1 — 1;2))

A B 8v2|Vul* B 8byv/—Kv?|Vu|?
(1-v?)? (1-0?)?

(1 - 02)2 nn
By Lemma 1.3 and the conditions of Theorem 2.3, we get
(2.14)  AY(|Vu]*) = 2|Vu|* Ric, (Vo) + 2D(Av) (Vo) + 2|V 0] frs(vey

= 2|V Ric, (Vo) + 2D(— 41 (v + a,)) (Vo) + 2 v,
ab

n—1
> 2|Vu|* Ric,, (V) — 24 |Vo|* +2 <u,§,, +y° v§a>
a=1
2
2 n—1
> 2|Vo|? Ric., (Vo) — 24| Vo|* + 202, + — (Z um>
- a=1
= 2|Vo|? Ric., (Vo) — 24 |Vo|* + 202,

2
—&—m(Av — U + S(VD))?



332 SONG-TING YIN, QUN HE AND DA-XIAO ZHENG
> 2|Vo|? Ric., (Vo) — 24| Vo|* + 202,

2 2 25(Vv)?

ty A )T -

. 2
= 2|Vu|? Ricy (V) — 241 |Vo|* + 202+ H(AU — U)?

2
> —2(4 — K)|Vo|* + 202, + ~ A0 V)’
Therefore we have that

2
2
(2.15) cos? OAY" <1V_—”|UZ> > —2(4 — K)|Vo|* 4 202, + 7B — V)’

2 [vAv +|Vo|? 8bv/—Kv2|Vu|®
+ 2|V 0= (~ 2

at xo. In addition,
(2.16) —cos? OAV*((4 + bvV/'=K cos 0)?)
= —cos? 02(A + bv/—K cos 0)A¥ (A4 + bv/—K cos 0)
+ 2gvu(bV/ =KV cos 0, bv/—KVY" cos 0))]

= —cos’ 0

2bV—K(A 4+ bvV—K cos 0)

A1 sin O(sin 0 + a,)  |VO|?
>< —
cos 0 cos 0

) — 2b°K sin® 0|Vt9|2]
= 2bV/—K (A + bvV/—K cos 0)(—4, sin 0 cos 0(sin 0 + a,) + cos 0]VO|*)
+ 2b*K sin’ 0 cos® 6|V6)*.
Setting y := A + bv/—K cos 0 and substituting (2.15) (2.16) into (2.13), we have
(2.17) y? < Ai(1 +a,) — K cos® 0 4+ byvV—K cos 0 — 24bv/—K cos® 0

+2b°K cos* 0+ bvV—K cos 0 Al a)

sin 0'

1 TA(=sin0F a;)
N-1

2
+ A sin0+2b\/—Kcosesin0} .

Notice that

'/M(I—;ras) sin 0’ <vVh(l+a)=<4
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and

4 Ju(-sinb Fa)
N -1
_ 4 [A(=sinfFa,)
- N-1 y
< —Ab\/ K cos® 0,
N —
one gets from (2.17) that

(2.18) (y - %bﬁ cos 0)2

+ A sin 0} bv—K cos 0 sin 0

sin 0 + A} bv—K cos 6 + %Ab\/ —K cos’ 6

1 : 4h?
< (\/)vl(l + a;) +§b\/—K cos 0> —K(l —Nb_ 1) cos? 0
1
If N >3, by choosing b =3+/N — 1, then (2.18) implies
y<+vAu(l+a)+bvV—K cos 0

which contradicts (2.11). If N <3, then

1 A (—sin 0 F a,)
N -1

4
+ (N— — 2) AbV—K cos® 0 — (— — 2) b%K cos* 0.

2
+ A sin 0 + 2bv —K cos 0 sin 0]

- 1 [il(sin 0Fa,

2
3 )+Asin0+2b\/Kcosﬁsin0} .

By a similar argument, we can also draw the conclusion. Thus we have proved
that

VO < /ii(l+ @) +bvV—Kcos0, Oec|-Z"46Z%_5|
| 2793

where b =1 max{vN —1,V2} :=1Cy. . .
Let p,qge M be two points such that 0(p) = —§+5, 0(q) :5—5. Let y

be a shortest geodesic from p to g. Denote by T the tangent vector of y. Then

g <Vu T )
Vu S Ty
(2.19) Vol = [V :F(Vv) S F(T)
cos cosf cos 0
oo
Tv ds ds

 F(T)cos F(T)cosf F(T)'
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. .. do . . .
We restrict s to y with — > 0. Then the following integration [d0 still covers

d.
whole (—g—i—&,g—&). Therefore, from (2.19), one gets

7[/2—(5 d@
d > J F(T) ds > J
y () —n/2+46 \/il(l—kaa)—k%CN\/—K cos 0
n/2—0 4o
- |

—7/24+0 //11(1 +Cl,q) +%CN\/ —K(g — |6|>

4 \//11(1+as)+gCNV—K
= og .
Cyvv—K V(1 +a;) +4Cyé

Let ¢ — 0, then 6 — 0 too. Thus we obtain
2. 20 -2
Al > C’Vn?’igK) {exp(%d\/ —K> — 1} .

By using the inequality (e — 1)2 <e*™ —1, ¥x >0, we further have

e B () 1]

- 32
-2
> X exp @d\/fK -1
2 4
-1
> . exp @d\/—K -1
2 2
which implies
(2.20) g > A <1 - exp(%d\/ —K)).
2 22
From the remark below Theorem 0.1, we know that A; > n—+5+d—K for
d> 2 16rn?
—47? . . . —47?
Ke 7,0 . This together with (2.20) gives (2.9). If K < 7 then from
(2.20) we have
727‘[2 CN
d2 Zi] (l—exp(Td\/—K>>,

which implies (2.10).
Now we consider the case that 0M # (. Let u be a first Neumann eigen-
function corresponding to the first eigenvalue A; and

G(x) = { Vol (A + bV—K cos 0)2} cos? 0.

1—02
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If x¢ is an interior point of M, the proof has been given above. Now we assume
that xo e oM. Let vy, be the unit normal vector that points outward M with
respect to gy,. Then

DG(v,)(x0) = 0.
Since Neumann boundary condition yields Vue T(0M), we have Du(vy,) =

gvu(vwy, Vu) = 0. Noting that oM is convex and the fact that Vo=
2

—V t
T u, one gets
DG(vy,) = Dgv,(Vo, Vv)(vy,) = ZgVM(DYV‘in, Vv)
= 2ng(VVUa DgﬁVU) < 0

at xo. The last inequality follows from Lemma 3.1 and Lemma 3.2 in [19],
which shows that it is equivalent to g,(v, DY'Vv) < 0, where v denotes the unit
normal vector that points outwards M. The tangent derivative of G obviously
vanishes due to its maximality. Therefore

VV“G(xo) = 0.
The rest of the proof proceeds as the case that dM = (. O

3. The first Dirichlet eigenvalue

Recall that under the weighted Ricci curvature conditions, the lower bound
of the first eigenvalue on closed Finsler manifolds was obtained in [25], where the
Obata type rigidity theorem was also established. In this section, we give the
lower bound of the first Dirichlet (resp. Neumann) eigenvalue on compact Finsler
manifolds.

THEOREM 3.1. Let (M, F,du) be a compact reversible Finsler n-manifold with

a mean convex boundary. If' S curvature vanishes and the Ricci curvature satisfies
Ric > (n — 1)k > 0, then the first Dirichlet eigenvalue of Finsler-Laplacian

A = nk.

Proof. Let ue Cy°(M) be a nonnegative function. By using Lemma 1.3
and the condition of Theorem 3.1, we have

1 .
S AT (Val®) = D(Au) (Var) + [Vul* Ricr (Vr) + [Vl sy

> |Vu|* Ric., (Vi) + D(Au) (Vi) + Z u2,

> |Vu|* Ric.. (Vu) + D(Au) (Vi) + <Z um>
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= |Vu|? Ric(Vu) + D(Au)(Vu) + (A:)z
2
> (n— 1)k|Vu|> + D(Au)(Vu) + (A:) .

Integrating both sides of the formula above and using the divergence theorem, we
have

2
(3.1) %JM 9v(v, VYU Vu|?) d¢ > JM l(n — Dk|Vul® + D(Au)(Vu) +@ du

where d{ = v|du denotes the induced volume form on dM and v denotes the unit
normal vector outwards oM.

In what follows, we estimate g,(v,VV*|Vu|*) on oM. If |Vu|(xo) =0,
Xo € 0M, we draw geodesic y such that y(0) =x, p(0)=w for we T\,M.
Then

0|Vul® - Vu(x) — [Vul(xo)

= 1
ow (x0) yo iz d(x, xo)

2
i Vel
y3X—Xo d(x, X())

~ lim [Val(y) fim VA

72X—X0 yax—x0 d(x, X0)

By arbitrariness of w, we have VV”|Vu|2 =0. If xoe M,N0M, we can choose

Vu . . .
{el, cesln_1,8y = V—u|} as gy,-orthonormal basis. Then v= — 1s the unit

Vu

|Vul

normal vector outwards M. Therefore, by Lemma 1.4, Definition 1.2 and the

condition S =0, we get

Vu(gvu(Vu, Vu))
|Vul

n—1
= 2|Vu| (—Au + Z Ugqg — S(Vu))
a=1

= 2|Vu|*H — 2|Vu|Au < —2|Vu|Au.

gy (v, VY| Vu?) = — = —2|Vu|uty,

From (3.1) we have
2
(3.2) fj VulAu d¢ > J l(n 1)k|Vu|2+D(Au)(Vu)+(A_”)] d.
OMNM, M n

By a classical density argument, the above formula still holds for the first Dirichlet
eigenfunctions. In the following, we may as well assume u is a first Dirichlet
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eigenfunction relative to 4;. Namely,

Au=—2u, in M,
u=20, on oM.

Since (M, F,du) is a compact reversible Finsler n-manifold, we can suppose that
u>0in M (see [6] for details). Notice that

1
(3.3) (Au)? = —Jqulu = A <|Vu|2 - ZAV”uZ).

Integrating both sides of (3.3) and using the divergence theorem and u|;;, = 0,
one obtains

J (Au)* du = 7y J \Vul* du — 7 J
M M 0

o

ugy(v, V) d = 7 j Val? dp,
M

Combining it with (3.2) and noting Au|,,, =0, we get

0> JM[(n—l)k_

which implies A; > nk. O

n—1

}4} \Vu|* du,

In what follows, we give the following result which can be obtained by a bit
modification in the proof above.

ProrosITION 3.2. Let (M,F,du) be a compact Finsler n-manifold with a
convex boundary. If the weighted Ricci curvature satisfies Ricy > (n— 1)k >0
for N € (n,00), then the first Neumann eigenvalue of Finsler-Laplacian

/11> n—1

> S Vk.

Proof. By a similar argument as Theorem 3.1, and using the relationship
2 (at+b)? _a* b
~ N N-n

Ricy = Ric,, —
(n,0), we get

1
—j g0 (v, VY Vul?) dC = j
2 Jomnm,

Since Neumann boundary condition gives Vu e T(0M), we have

J (Au)* du =y J \Vu|* du— A J
M M

oM

and inequality for any N e

(N —n)F?

(Au)®

[(n — 1)k|Vu|* + D(Au)(Vu) + — | -

M

ugy(v,Vu) di = 4 J |Vu|2 du.
M

Therefore,

1

N -1
s ey s | o e
2 oMNM, M

N

/11]|Vu|2 du.
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Next we have only to prove g,(v, VV*|Vu|*) < 0 on M N M, for the Neumann
condition. In this case (see [19])

gv(v, VY4 Vul?) <0 < gya(vyu, VY4 Vu|?) < 0.

Here vy, denotes the unit outward normal vector with respect to gy,. Since oM
is convex, g,(v, D¥"Vu) <0. Hence,

gVu(VVua Vvu|Vu|2) = DgVu(Vu> Vu)(VVu)
= 2gvu(DY" Vu, Vi) = 2gv, (v, DgZVu)

VVu
<0.
The last inequality is due to Lemma 3.1 and Lemma 3.2 in [19], which shows that
it is equivalent to g,(v, DY“Vu) < 0. O
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