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A NOTE ON HOLOMORPHIC QUADRATIC

DIFFERENTIALS ON THE UNIT DISK

Guowu Yao

Abstract

Let QðDÞ be the set of all integrable holomorphic quadratic di¤erentials on the unit

disk D. The subset Q0ðDÞ of QðDÞ is the set associated with T0 classes in the universal

Teichmüller space TðDÞ. In this paper, it is shown that Q0ðDÞ is dense in QðDÞ. The

infinitesimal version is also obtained.

1. Introduction

Let D be the unit disk in the complex plane C. Denote by BelðDÞ the
Banach space of Beltrami di¤erentials m ¼ mðzÞ dz=dz on D with finite Ly-norm
and by MðDÞ the open unit ball in BelðDÞ. Denoted by QðDÞ the Banach space
of the integrable holomorphic quadratic di¤erentials on D with L1-norm

kjk ¼
ðð

D

jjðzÞj dxdy < y:ð1:1Þ

In what follows, let SQðDÞ denote the unit sphere and Q1ðDÞ the closed unit ball
of QðDÞ.

For each element m A MðDÞ there exists a uniquely determined quasiconformal
mapping f m of D onto itself such that f m keeps 1, �1, i fixed and has the complex
dilatation m. Two elements m1 and m2 are said to be Teichmüller equivalent
(denoted by m1 @ m2) if and only if f m1 jS 1 ¼ f m2 jS 1 . We denote the Teichmüller
equivalence class of m by ½m� or by ½ f m�. The universal Teichmüller space TðDÞ
is defined as the quotient space of MðDÞ under the equivalence relation. The
point ½0�, the Teichmüller equivalence class of the trivial Beltrami di¤erential
m ¼ 0, is called the basepoint of TðDÞ.

Define

k0ð½m�Þ :¼ inffknky : n A ½m�g:
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We say that m is extremal in ½m� if kmky ¼ k0ð½m�Þ (the corresponding quasi-
conformal map f m is said to be extremal for its boundary values as well),
uniquely extremal if knky > k0ðmÞ for any other n A ½m�.

As is well known, a Beltrami di¤erential m is extremal if and only if it has a
so-called Hamilton sequence, namely, a sequence fjn A SQðDÞg, such that

lim
n!y

ðð
mjnðzÞ dxdy ¼ kmky:ð1:2Þ

Define h�ðmÞ to be the infimum over all compact subsets E contained in D
of the essential supremum norm of the Beltrami di¤erential mðzÞ as z varies over
DnE and hð½m�Þ to be the infimum of h�ðnÞ taken over all representatives n of the
class ½m�. It is obvious that hð½m�Þa k0ð½m�Þ. Following Earle and Li Zhong [4],
½m� is called a Strebel point if hð½m�Þ < k0ð½m�Þ; otherwise, t is called a non-Strebel
point. The result in [10] shows that the set of Strebel points is open and dense
in TðDÞ.

By the result in [4] ½m� is a non-Strebel point if and only if the extremal in ½m�
has a degenerating Hamilton sequence. A sequence in QðDÞ is called degen-
erating if it converges to 0 uniformly on compact subsets of D.

By Strebel’s frame mapping criterion (see Chapter 4 in [6]), every Strebel
point ½m� is represented by the uniquely-extremal Beltrami di¤erential of the form

k
j

jjj , where k ¼ k0ð½m�Þ A ð0; 1Þ and j is a unit vector in QðDÞ. Define the set of

Strebel di¤erentials QSðDÞ by

QSðDÞ ¼ j A QðDÞnf0g : bk A ð0; 1Þ s:t: k
j

jjj

� �
is a Strebel point

� �
:

The complement QNðDÞ of QSðDÞ in QðDÞ is called the set of non-Strebel
di¤erentials.

Define

T0ðDÞ ¼ f½m� A TðDÞ : hð½m�Þ ¼ 0g:

T0ðDÞ is a closed subspace of TðDÞ [7] and every point in T0ðDÞnf½0�g is a Strebel
point. The set Q0ðDÞ of T0-class di¤erentials is defined by

Q0ðDÞ ¼ j A QðDÞnf0g : bk A ð0; 1Þ; s:t: k
j

jjj

� �
A T0ðDÞ

� �
:

In [10], Lakic proved that both QSðDÞ and QNðDÞ are dense in QðDÞ. Nat-
urally, we ask the following problem.

Problem 1. Is it true that Q0ðDÞ is dense in QðDÞ?

In this paper, we answer the problem a‰rmatively.

Theorem 1. Q0ðDÞ is dense in QðDÞ.
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The theorem is proved in the next section. An infinitesimal version of
Theorem 1 is obtained in Section 3.

2. Proof of Theorem 1

To prove Theorem 1, we need several lemmas.
The following lemma derives from the result in Lecture 4 of L. Bers’

Courant Institute book [1].

Lemma 2.1. Let mðzÞ be a Cnþa (0 < a < 1, n ¼ 0; 1; 2; . . .) function on a
disk around zero, kmky < 1. Let a, b be two complex constants. Then any local
solution w ¼ f ðzÞ of the Beltrami equation

wz ¼ mðzÞwz; wð0Þ ¼ a; wzð0Þ ¼ b;ð2:1Þ

is of class Cnþ1þa.

Proof. By the theorem in Lecture 4 of L. Bers’ Courant Institute book
[1], the system (2.1) possesses, in the neighborhood of the origin, a solution wðzÞ
of class Cnþ1þa. Furthermore, by the similarity principle, any local solution
w ¼ f ðzÞ of the system (2.1) is of class Cnþ1þa. r

Let C be a Jordan curve in C. We say that C is smooth if there is a
parametrization C : wðtÞ, t A ½0; 2p� such that w 0ðtÞ is continuous and nowhere
vanishing. The following result due to Kellogg can be found in [8] or [9]
(Chapter X. Theorem 6, page 426).

Lemma 2.2. Let g map D conformally onto the inner domain of the Jordan
curve C of class C1þa, 0 < a < 1. Then g 0 and log g 0 are both C a on D. In
particular, g 0ðzÞ is bounded from above and below on D.

A quasiconformal map f : D ! D is called asymptotically conformal if for
every e > 0 there is a compact set E in D such that f is ð1þ eÞ-quasiconformal on
DnE.

If ½m� A T0ðDÞ, by Theorem 2 in Chapter 15 of [6] there is a so-called
asymptotically extremal representative in ½m�, say m, such that f m is asymptoti-
cally conformal. Conversely, it is clear that if f m is asymptotically conformal,
then hð½m�Þ ¼ h�ðmÞ ¼ 0 and ½m� A T0ðDÞ.

Let q : S1 ! S1 be a quasisymmetric map of the unit circle. The map q is
said to be symmetric (see [7], [13]) if

lim
t!0

qðeiðtþt0ÞÞ � qðeit0Þ
qðeit0Þ � qðeiðt0�tÞÞ ¼ 1;ð2:2Þ

uniformly in t0 for all points z0 ¼ eit0 A S1.
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Strebel [13] and Fehlmann [5] showed respectively that a quasisymmetric
map q : S1 ! S1 is symmetric if and only if q admits an asymptotically con-
formal extension to D.

To sum up, we have the following conclusion.

Lemma 2.3. ½m� A T0ðDÞ if and only if the boundary map q ¼ f mjS 1 is
symmetric.

Lemma 2.4. Suppose j belongs to QðDÞ and is holomorphic in
fz : jzj < 1þ rg for some r > 0. If j has no zero points on S1, then
½m� A T0ðDÞ and j A Q0ðDÞ where

mðzÞ ¼ k
jðzÞ
jjðzÞj ; k A ð0; 1Þ:

Proof. By the discreteness of zero points of non-zero holomorphic func-
tions, there exists some small d > 0 such that j has no zero points in R ¼
fz : 1� d < jzj < 1þ dg. Therefore, mðzÞ is Cy on R. Let ~ff be a quasicon-
formal mapping from fz : jzj < 1þ dg onto the unit disk D with the complex
dilatation m. Applying Lemma 2.1 on R piecewise, we see that ~ff is Cy on R.
It yields that C ¼ ~ff ðS1Þ is a smooth Jordan curve of class Cy.

Denote by J the inner Jordan domain of C and by g a conformal mapping
from D onto J. By Carathéodory’s theorem ([2] or see Theorem 2 on page 41
in [9]), g has a continuous extension to D. By Lemma 2.2, g 0ðzÞ is nowhere
vanishing on D. It derives that the inverse map g�1 is a C 1 di¤eomorphism from
J onto D.

Let g ¼ g�1 � ~ff be the quasiconformal mapping from D onto D. It is clear
that g is at least C1 on D and hence gjS 1 is a symmetric map of S1 by the
definition. Notice that the Beltrami di¤erential of g is m. Therefore, by Lemma
2.3 we have ½m� A T0ðDÞ. r

Proof of Theorem 1. Given a holomorphic quadratic di¤erential j in
QðDÞnf0g, let jrðzÞ ¼ jðrzÞ for r A ð0; 1Þ. Obviously, jr converges to j uniformly
on compact subset of D. Moreover, we have

lim
r!1

kjr � jk ¼ 0:

Since j is holomorphic in D, the set of zero points of j is discrete in D. We
can choose a sequence frng in ð0; 1Þ such that rn ! 1, n ! y and jn ð¼ jrnÞ has
no zero points on S1.

Fix k A ð0; 1Þ and consider the Beltrami di¤erential

mnðzÞ ¼ k
jnðzÞ
jjnðzÞj

:ð2:3Þ
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Since jn is holomorphic in z : jzj < 1

rn

� �
, it follows from Lemma 2.4 that

½mn� A T0ðDÞ and hence jn A Q0ðDÞ. It is clear that

lim
n!y

kjn � jk ¼ 0:

The proof of Theorem 1 is complete.

3. Infinitesimal version of Theorem 1

Two Beltrami di¤erentials m and n in BelðDÞ are said to be infinitesimally
equivalent if ðð

D

mj dxdy ¼
ðð

D

nj dxdy; for any j A QðDÞ:

The tangent space BðDÞ of TðDÞ at the basepoint is defined as the set of the
quotient space of BelðDÞ under the equivalence relation. Denote by ½m�B the
equivalence class of m in BðDÞ.

BðDÞ is a Banach space with its standard sup-norm

k½m�Bk ¼ kmk :¼ sup
j ASQðDÞ

ðð
D

mj dxdy

����
����

and infinitesimal metric

dð½m�B; ½n�BÞ :¼ km� nk

¼ sup
j ASQðDÞ

ðð
D

ðm� nÞj dxdy

����
����; ½m�B; ½n�B A BðDÞ:

Define the (infinitesimal) boundary dilatation bð½m�BÞ of ½m�B to be the
infimum over all elements in the equivalence class ½m�B of the quantity b�ðnÞ.
Here b�ðnÞ is the infimum over all compact subsets E contained in D of the
essential supremum of the Beltrami di¤erential nðzÞ as z varies over DnE.
We call ½m�B in BðDÞ an infinitesimal Strebel point if bð½m�BÞ < kmk. Clearly,
the basepoint is not a Strebel point since bð½0�BÞ ¼ k½0�Bk ¼ 0. It follows from
Reich’s infinitesimal frame mapping theorem (see Theorem 2.4 in [11]) that if
½m�B is an infinitesimal Strebel point, then there exists a unique vector j in QðDÞ

such that m and kmk j

jjj are infinitesimally equivalent.

In [3], the semi-norm b on BðDÞ is defined by

bðmÞ ¼ sup
jn

lim sup
n!y

ðð
D

mjn dxdy

����
����;

where the supremum is taken over all degenerating sequences in Q1ðDÞ. It is
also proved in [3] that bðmÞ ¼ bð½m�BÞ.
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Define

B0ðDÞ ¼ f½m�B A BðDÞ : bð½m�BÞ ¼ 0g:

Then B0ðDÞ is a linear subspace of BðDÞ and every point in B0ðDÞnf½0�Bg is an
infinitesimal Strebel point.

In a parallel way, one can define the sets of infinitesimal Strebel and non-
Strebel di¤erentials respectively. Whereas there is no di¤erence between these
two kinds of Strebel (or non-Strebel) di¤erentials due to the property that a(n)
(infinitesimal) Strebel point has no degenerating Hamilton sequence and vice
versa. So, we still use QNðDÞ and QSðDÞ to denote them.

By use of a trick in [10] for the infinitesimal setting, one easily proves (also
see [12]) that the set of infinitesimal Strebel points is open and dense in BðDÞ.

We now define a new set of B0-class (parallel to T0-class) di¤erentials
independently. The set QZðDÞ of B0-class di¤erentials is defined by

QZðDÞ ¼ j A QðDÞnf0g : bk A R; s:t: k
j

jjj

� �
B

A B0ðDÞ
� �

:

The infinitesimal counterpart of Theorem 1 is as follows.

Theorem 2. QZðDÞ is dense in QðDÞ.

Proof. Let j be a holomorphic quadratic di¤erential in QðDÞnf0g. Use the
same denotation as in the proof of Theorem 1. Since mn is continuous on some
ring domain Un ¼ fz : rn a jzja 1g, rn A ð0; 1Þ, where mn is defined by (2.3). It
follows from the following Lemma 3.1 that ½mn�B belongs to B0ðDÞ and hence
jn A QZðDÞ. It yields directly that QZðDÞ is dense in QðDÞ. r

Lemma 3.1. Suppose m A BelðDÞ is continuous in the ring domain
fz : ra jzja 1g, r A ð0; 1Þ. Then ½m�B A B0ðDÞ.

Proof. Since bð½m�BÞ ¼ bðmÞ, it su‰ces to prove that bðmÞ ¼ 0. For any
given degenerating sequence fcng in SQðDÞ, we need to prove that

lim sup
n!y

ðð
D

mcn dxdy

����
����¼ 0:ð3:1Þ

Let � > 0 and

Pðz; zÞ ¼
XN
k; l¼0

cklz
kzl ¼

XN
k; l¼0

cklr
kþleiðk�lÞy

be a polynomial in z and z for which

jmðzÞ � Pðz; zÞja �; ra jzja 1:
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Notice that ð2p

0

einy dy ¼ 0; n ¼ 1; 2; . . . :

We haveðð
rajzja1

Pðz; zÞcnðzÞ dxdy ¼
ðð

rajzja1

XN
k; l¼0

cklz
kzl

Xy
m¼0

cðmÞ
n ð0Þ
m!

zm

" #
dxdy

¼
ð2p

0

ð1

r

XN
k; l¼0

Xy
m¼0

ckl
cðmÞ
n ð0Þ
m!

rmþkþlþ1eiðmþk�lÞy

" #
drdy

¼
ð2p

0

ð1

r

XN
k; l¼0

XN
m¼0

ckl
cðmÞ
n ð0Þ
m!

rmþkþlþ1eiðmþk�lÞy

" #
drdy

¼
XN
m¼0

cðmÞ
n ð0Þ
m!

XN
k; l¼0

ckl

ð1

r

rmþkþlþ1 dr

ð2p

0

eiðmþk�lÞy dy:

Since cn converges to 0 uniformly on compact subsets of D, it holds that

lim
n!y

cðmÞ
n ð0Þ ¼ 0

for any fixed m. Therefore,

lim
n!y

ðð
rajzja1

Pðz; zÞcnðzÞ dxdy ¼ 0:

It follows readily that

lim
n!y

ðð
D

mðzÞcnðzÞ dxdy
����

����¼ lim
n!y

ðð
rajzja1

ðmðzÞ � Pðz; zÞÞcnðzÞ dxdy
�����

�����a �:

Thus, we obtain (3.1). r

Lemma 3.1 indicates that a Beltrami di¤erential belongs to B0ðDÞ if it is
continuous near the boundary S1. It is unclear whether there is a similar con-
clusion for the T0 classes. Precisely, we pose the following problem.

Problem 2. Suppose m is continuous in the ring domain fz : ra jzja 1g,
r A ð0; 1Þ. Can we say that ½m� A T0ðDÞ?

The author believes that the boundary map f mjS 1 corresponding to m is
Lipschitz or even bi-Lipschitz if m is continuous near S1.

At last, we note that it is very interesting to determine the relation between
the two sets Q0ðDÞ and QZðDÞ. The following problem is open.
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Problem 3. Is it true that Q0ðDÞ and QZðDÞ coincide?
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