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MONOMORPHISMS IN CATEGORIES OF LOG SCHEMES
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Abstract

In the present paper, we study category-theoretic properties of monomorphisms in

categories of log schemes. This study allows one to give a purely category-theoretic

reconstruction of the log scheme that gave rise to the category under consideration. We

also obtain analogous results for categories of schemes of locally finite type over the ring

of rational integers that are equipped with ‘‘archimedean structures’’. Such reconstruc-

tions were discussed in two previous papers by the author, but these reconstructions

contained some errors, which were pointed out to the author by C. Nakayama and

Y. Hoshi. These errors revolve around certain elementary combinatorial aspects of fan

decompositions of two-dimensional rational polyhedral cones—i.e., of the sort that occur

in the classical theory of toric varieties—and may be repaired by applying the theory

developed in the present paper.
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Introduction

The purpose of the present paper is to study, in some detail, various aspects
of the structure of categories of log schemes that revolve around the behavior
of monomorphisms in such categories. This study leads naturally to a purely
category-theoretic reconstruction of the log scheme that gave rise to the category
under consideration. Our main result is the following [cf. Theorem 3.8, (iii)].
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Theorem A (Category-theoretic reconstruction of log schemes). For i ¼ 1; 2,
let X

log
i be a locally noetherian fs log scheme [cf. the discussion entitled ‘‘Log

schemes’’ in §0]. For i ¼ 1; 2, we shall write SchlogðX log
i Þ for the category of

noetherian fs log schemes of finite type over X
log
i and morphisms of finite type

[cf. the discussion at the beginning of §1 for more details]. Let

F : SchlogðX log
1 Þ !

@
SchlogðX log

2 Þ

be an [arbitrary!] equivalence of categories. Then there exists a unique isomor-
phism of log schemes

X
log
1 !@ X

log
2

such that F is isomorphic to the equivalence of categories induced by this

isomorphism of log schemes X
log
1 !@ X

log
2 .

We also obtain analogous results for categories of locally noetherian fs log
schemes

‘‘SCHlogð�Þ’’

[cf. Theorem 4.6, (iv)], as well as for versions

‘‘Schlogð�Þ’’; ‘‘SCHlogð�Þ’’

of the categories ‘‘Schlogð�Þ’’, ‘‘SCHlogð�Þ’’ for schemes of locally finite type over
Z that are equipped with ‘‘archimedean structures’’ [cf. Theorem 4.8, (iv)].

The theory exposed in the present paper arose as an attempt to correct
errors, pointed out to the author by Chikara Nakayama and Yuichiro Hoshi in
June 2013, in the theory of [4], §2. These errors concern the category-theoretic
properties of monomorphisms in categories of log schemes and are discussed in
more detail in Example 0.3 and Remark 1.4.1 of the present paper.

At the level of main results of the paper [4], these errors in the theory of
[4], §2, do not a¤ect the proof of [4], Theorem A, given in [4], §1, but they do
a¤ect the proof—although not the validity!—of [4], Theorem B. This result [4],
Theorem B, is given a correct proof in §3 of the present paper and corresponds
precisely to Theorem A [stated above].

At the level of main results of papers of the author subsequent to [4], the only
place where the errors in the theory of [4], §2, have an e¤ect is in the portion of
the proof of the main result of [5] [i.e., [5], Theorem 5.1] that involves the theory
of [5], §4. The a¤ected portions of [5], §4, are discussed in more detail in the
introduction to §4 of the present paper. The main result [5], Theorem 5.1, of [5]
is given a correct proof in §4 of the present paper and corresponds precisely to
Theorem 4.8, (iv) [quoted above].

At the level of individual propositions, lemmas, corollaries, theorems, and
examples [i.e., which do not necessarily qualify as ‘‘main results’’ of the paper
under consideration], a detailed discussion of the a¤ected portions of [4] and [5]
may be found in the Appendix to the present paper.
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One important invariant of the structure of an fs log scheme is the rank of
the groupification of the fiber of the characteristic sheaf associated to the log
structure at a geometric point of the underlying scheme of the log scheme [cf.
Definition 1.2, (i)]. For instance, when this rank is equal to 0 at all geometric
points, the log structure of the fs log scheme under consideration is trivial.
One central theme of the theory of the present paper consists of the phenomenon
that

the theory of category-theoretic properties of monomorphisms exhibits
quite substantive qualitative di¤erences, depending upon whether or not it
holds that the ranks just referred to are a 1.

When it holds that these rank are a 1, the fs log scheme under consideration will
be referred to in the present paper as submonic [cf. Definition 1.2, (i)].

Thus, in some sense, the simplest ‘‘borderline case’’ between submonic and
non-submonic fs log schemes is the case of a log scheme whose underlying
scheme is the spectrum of a field whose absolute Galois group acts trivially on
geometric fibers of the characteristic sheaf associated to the log structure, and
for which the rank of the groupification of each such geometric fiber of the
characteristic sheaf is equal to 2. In this case, the log scheme under consid-
eration will be referred to as log-nodal [cf. Definition 1.2, (i)].

One important feature of the category-theoretic properties of monomorphisms
in categories of log schemes lies in the observation that

these category-theoretic properties of monomorphisms take on a par-
ticularly straightforward and intuitive form whenever it holds that the
various fs log schemes under consideration are all submonic.

This observation is one of the main themes of the theory discussed in §1 of the
present paper. Roughly speaking, the errors pointed out by Nakayama and
Hoshi in the theory of [4], §2, may be summarized as follows:

the author wrote [4], §2, under the misunderstanding that this ‘‘straight-
forward’’ and ‘‘intuitive’’ approach to category-theoretic properties of
monomorphisms holds even if the various fs log schemes under con-
sideration are not necessarily submonic.

On the other hand, it turns out [cf. the theory of §2 of the present paper] that the
various complications that occur in the study of the category-theoretic properties
of monomorphisms of arbitrary non-submonic fs log schemes already appear in
the case of log-nodal fs log schemes. Moreover, it turns out that

these complications essentially revolve around various combinatorial
aspects of fan decompositions of two-dimensional rational polyhedral
cones, i.e., of the sort that occur in the classical theory of toric varieties.
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These elementary combinatorial aspects are reviewed in §0 of the present
paper.

The theory developed in the present paper may be summarized as follows.
In §1, we introduce basic terminology and discuss various generalities concern-
ing monomorphisms in categories of log schemes. In particular, we discuss [cf.,
especially, Lemma 1.5] how the elementary combinatorics of two-dimensional fan
decompositions reviewed in §0 may be interpreted in the context of categories of
log schemes. In §2, we apply these elementary combinatorics of two-dimensional
fan decompositions [cf. Proposition 2.3] to show, in e¤ect, that certain connected-
ness properties of such fan decompositions allow one to give a category-theoretic
characterization of submonic fs log schemes. We then proceed to give, in
Theorem 2.6, a category-theoretic reconstruction of the scheme structure of a
submonic fs log scheme. This reconstruction is quite ‘‘straightforward’’ and
‘‘intuitive’’ and amounts, in essence, to an application of the techniques of
[4], §2. In the remainder of §2, we show [cf. Corollary 2.12] that the various
complications that arise in the case of arbitrary non-submonic fs log schemes
amount, in essence, to the issue of giving a category-theoretic algorithm that
allows one

to distinguish a log-nodal fs log scheme from a nontrivial log étale
localization of such a log-nodal fs log scheme [i.e., of the sort that arises
from a nontrivial two-dimensional fan decomposition].

Such a category-theoretic algorithm is furnished, in e¤ect, by the theory of
seamless partitions of orientable log schemes developed in §3 [cf. Theorem 3.6].
This theory may be regarded as a translation into category theory of the ele-
mentary observation that

a nontrivial two-dimensional fan decomposition may be distinguished
from a trivial two-dimensional fan decomposition by considering the
‘‘seamless partition’’ constituted by the various constituent cones of the
fan decomposition.

Finally, in §4, we observe that the theory developed in §1, §2, §3 may be
generalized, without any essential complications, to the case of fs log schemes
of locally finite type over Z that are equipped with archimedean structures [cf.
Theorems 4.3, 4.8]. Such generalizations allow one to avoid the di‰culties that
arise from applying the erroneous portions of [4], §2, in the theory of [5], §4, i.e.,
by, in essence, isolating the [easily resolved] submonic aspects of these di‰culties
from the [more subtle!] non-submonic aspects of these di‰culties.

Acknowledgements. This paper owes its existence to the discovery by
Chikara Nakayama and Yuichiro Hoshi of various errors [cf. Example 0.3;
Remark 1.4.1] in the arguments of [4], §2. The author wishes to express his
gratitude to Nakayama and Hoshi for their careful reading of [4].
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Section 0: Notations and conventions

Numbers:
We will denote by N the set of natural numbers, by which we mean the set

of integers nb 0, and by Z the ring of rational integers. By a slight abuse of
notation, we shall also use the notation N, Z to denote the corresponding
monoids. We shall denote by Qb0 the additive monoid of nonnegative rational
numbers.

Generalities on monoids:
We shall refer to a finitely generated, saturated [cf. [2], §1.1] monoid that has

no nonzero invertible elements as an fs monoid. Thus, if P is an fs monoid, then
the natural homomorphism of monoids P! Pgp from P to its groupification Pgp

is injective, and Pgp is a finitely generated free abelian group. We shall refer to
the rank of Pgp as the rank rkðPÞ of the fs monoid P.

A homomorphism of monoids f : P! Q between monoids P, Q will be
called positive if f maps every nonzero element of P to a nonzero element of
Q. A nonzero element a A P of a monoid P will be called a sum-dominator
if there exists a positive integer n such that n � a may be written as the sum of
a finite collection of generators of P. Thus, if f : P! Q is a nonzero homo-
morphism [i.e., a homomorphism that maps any collection of generators of P to
a subset of Q that contains at least one nonzero element!] from an arbitrary
monoid P to an fs monoid Q, and a A P is a sum-dominator, then fðaÞ0 0. We
shall say that a homomorphism of monoids f : P! Q is sum-dominating if it
maps every nonzero element of P to a sum-dominator of Q. Thus, a sum-
dominating homomorphism is necessarily positive.

Let P be an fs monoid. Thus, in the terminology of the discussion entitled
‘‘Monoids’’ of [6], §0, P is sharp, integral, and saturated. In particular, it makes
sense to speak of the perfection Ppf of P, as well as of the set of primes PrimeðPÞ
of P—cf. the discussion entitled ‘‘Monoids’’ of [6], §0, for more details.

Rank two fs monoids:
Now let us suppose that P is an fs monoid of rank two. Then we recall that

there exists an isomorphism of monoids

Ppf !@ Qb0 lQb0

[cf. [3], Proposition 1.7]. In particular, one verifies immediately that the set of
primes PrimeðPÞ ¼ PrimeðPpf Þ is of cardinality two. Write PrimeðPÞ ¼ PrimeðPpf Þ
¼ fp1; p2g. Thus, for each i ¼ 1; 2, pi may be regarded as a collection of
elements of Ppf , which generates a submonoid P

pf
pi JPpf . For simplicity, let us

write Pi ¼
def

P
pf
pi . Then one verifies immediately that the two direct summands of

the codomain of the isomorphism of the above display correspond precisely to
P1, P2, i.e., we have a natural isomorphism

P1 lP2 !@ Ppf
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and noncanonical isomorphisms of abstract monoids P1 GP2 GQb0. In par-
ticular, these two direct summands are preserved, up to possible permutation, by
any automorphism of the monoid Ppf . Note that [since the monoid Qb0 has
no nontrivial automorphisms of finite order] these observations imply that

any finite subgroup of AutðPpf Þ—or, indeed, of AutðPÞ ð,! AutðPpf ÞÞ—
is of order a 2.

Next, let

f0 : P! J0 ¼def N
be a positive homomorphism that induces a surjection on groupifications f

gp
0 :

Pgp !! J
gp
0 ¼ Z. Thus, Kerðfgp

0 ÞGZ. Fix a nonzero element a A Kerðfgp
0 ÞJ

Pgp. For i ¼ 1; 2, write

ðPJÞ Ji JPgp

for the saturation [cf. [4], Lemma 2.5, (ii)] of the submonoid of Pgp generated by
P and a if i ¼ 1 (respectively, �a if i ¼ 2) and

fi : P ,! Ji

for the natural inclusion. Thus, Pgp ¼ J
gp
i for i ¼ 1; 2. One verifies immedi-

ately that, up to a possible permutation of the indices ‘‘1’’ and ‘‘2’’, the submonoids
J1 and J2 of Pgp are independent of the choice of a. Moreover, we observe that
it follows immediately from the definition of J1 and J2 that

if i ¼ 0 (respectively, i ¼ 1, i ¼ 2), then a positive homomorphism
f : P! N factors, via fi : P! Ji, through a positive homomorphism
Ji ! N if and only if the homomorphism induced on groupifications
fgp : Pgp ! Z satisfies the condition fgpðaÞ ¼ 0 (respectively, fgpðaÞ > 0;
fgpðaÞ < 0).

In this situation, we shall refer to J1 and J2 as bisecting monoids of P at f0.
Before proceeding, we observe the following ‘‘continuity property’’ of bisect-

ing monoids:

Suppose that P�JPgp is a rank two fs monoid that arises as a submonoid
of Pgp that contains P. For i ¼ 1; 2, suppose that there exists a homo-
morphism ci : P

� ! N whose restriction to P factors, via fi : P! Ji,
through a positive homomorphism Ji ! N. Then f0 : P! N extends to
a positive homomorphism c0 : P

� ! N.

Indeed, if f0 does not admit such an extension c0, then it follows that there
exist nonzero elements b A P, c A P� such that aþ bþ c ¼ 0 for some element
a A Kerðfgp

0 ÞJPgp. Then it follows from the above discussion of bisecting
monoids that, for some i A f1; 2g, cgp

i ðaÞb 0. Since the restriction of ci to P is
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a positive homomorphism, we thus conclude that 0 ¼ c
gp
i ðaÞ þ c

gp
i ðbÞ þ c

gp
i ðcÞ >

0 A N, a contradiction. This completes the proof of this ‘‘continuity property’’.
Bisecting monoids may be understood more explicitly if one passes to

perfections. Indeed, by restricting our attention to perfections, one verifies
immediately that we may assume without loss of generality that

Ppf ¼ Qb0 lQb0; P1 ¼ Qb0 l 0; P2 ¼ 0lQb0;

and that fpf
0 : Ppf ! Qb0 is the homomorphism determined by sending ð1; 0Þ and

ð0; 1Þ to 1. Then one computes easily that, if one takes a ¼def ð1;�1Þ, then J
pf
1

is equal to the perfection of the submonoid of ðPpf Þgp ¼ QlQ generated by
ð0; 1Þ and ð1;�1Þ, while J

pf
2 is equal to the perfection of the submonoid of

ðPpf Þgp ¼ QlQ generated by ð1; 0Þ and ð�1; 1Þ. Thus, if fpf maps

ð1; 0Þ 7! a; ð0; 1Þ 7! b

for a; b A Qb0, then one verifies immediately that fpf : Ppf ! Qb0 factors, via

f
pf
i : Ppf ! J

pf
i , through a positive homomorphism J

pf
i ! Qb0

for i ¼ 0 (respectively, i ¼ 1; i ¼ 2), a ¼ b (respectively, a > b; a < b).

In the present paper, we shall often consider certain sequences of submonoids
satisfying certain special properties, as in the following examples.

Example 0.1 (Submonoids converging from one side). Let P be an fs
monoid of rank two, yPJPgp a bisecting monoid of P at some positive homo-
morphism yf : P! N. Then there exists an infinite descending sequence

PJyPJ � � �J nPJ � � �J 1PJ 0P

—where n A N—of submonoids of Pgp such that every positive homomorphism
f : yP! N factors through a positive homomorphism nP! N for some n [which
may depend on f], and, moreover, for each m A N, mP is a bisecting monoid of
P [hence, in particular, an fs monoid of rank two] whose image yfgpðmPÞ via
yfgp : Pgp ! Z contains both positive and negative elements. Indeed, by rea-
soning as in the above discussion, one reduces immediately to the verification—
say, in the case where Ppf ¼ Qb0 lQb0,

yfpf is the homomorphism Ppf ¼
Qb0 lQb0 ! Qb0 given by ða; bÞ 7! aþ b, and yPpf is the perfection of the
submonoid of QlQ generated by ð�1; 1Þ and ð1; 0Þ—of the existence of an
infinite descending sequence

Ppf JyPpf J � � �J nPpf J � � �J 1Ppf J 0Ppf

—where n A N—of submonoids of ðPpf Þgp such that every positive homomor-
phism c : yPpf ! Qb0 factors through a positive homomorphism nPpf ! Qb0

for some n [which may depend on c], and, moreover, for each m A N, mPpf is the
perfection of a finitely generated submonoid of QlQ such that mP ¼def mPpf V
Pgp [so mPpf may be identified with the perfection of mP, as the notation
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suggests!] is a bisecting monoid of P whose image yfgpðmPÞ contains both positive
and negative elements. Such an infinite descending sequence may be obtained,
for instance, by taking nPpf to be the perfection of the submonoid of QlQ

generated by �1; 1� 1

nþ 2

� �
and ð1; 0Þ.

Example 0.2 (Submonoids converging from the center). Let P be an fs
monoid of rank two. Then there exists an infinite descending sequence

PJ � � �J nPJ � � �J 1PJ 0P

—where n A N—of submonoids of Pgp such that every positive homomorphism
f : P! N factors through a positive homomorphism nP! N for some n [which
may depend on f], and, moreover, for each m A N, the inclusion P ,! mP is a
sum-dominating homomorphism of fs monoids. Indeed, by reasoning as in the
above discussion, one reduces immediately to the verification, in the case where
Ppf ¼ Qb0 lQb0, of the existence of an infinite descending sequence

Ppf J � � �J nPpf J � � �J 1Ppf J 0Ppf

—where n A N—of perfections of finitely generated submonoids of ðPpf Þgp such
that every positive homomorphism c : Ppf ! Qb0 factors through a positive
homomorphism nPpf ! Qb0 for some n [which may depend on c], and, more-
over, for each m A N, the inclusion P ,! mP ¼def mPpf VPgp [so mPpf may be
identified with the perfection of mP, as the notation suggests!] induced by the
inclusion Ppf ,! mPpf is a sum-dominating homomorphism of fs monoids. Such
an infinite descending sequence may be obtained, for instance, by taking nPpf to

be the perfection of the submonoid of QlQ generated by 1;� 1

nþ 2

� �
and

� 1

nþ 2
; 1

� �
. Finally, we observe that this explicit construction shows that

the nP may be chosen so as to be preserved by any finite group of automorphisms
of P.

Log schemes:
If X is a scheme, then we shall write

Xred JX

for the closed subscheme determined by equipping the underlying topological
space of the scheme X with the reduced induced scheme structure. If X is the
underlying scheme of a log scheme X log [cf. [1], §1.2], then we shall write X

log
red for

the log scheme determined by restricting the log structure of X log to Xred JX .
We shall use the terms log étale (respectively, log smooth) to refer to

morphisms between log schemes which are ‘‘étale’’ (respectively, ‘‘smooth’’) in the
sense of [1], §3.3 (respectively, [1], §3.3; [2], §8.1).

We use the term ‘‘fs log scheme’’ to refer to a log scheme which is fine [cf.
[1], §2.3] and saturated [cf. [the evident étale generalization of ] [2], §1.5]. We
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shall refer to a log scheme as noetherian (respectively, locally noetherian) if its
underlying scheme is noetherian (respectively, locally noetherian). We shall say
that a morphism of log schemes is of finite type if its underlying morphism of
schemes is of finite type. We shall say that a morphism of log schemes is an
open immersion if its underlying morphism of schemes is an open immersion, and,
moreover, the log structure on its domain is obtained as the pull-back of the log
structure on its codomain. We shall say that a morphism of log schemes is
dominant if its underlying morphism of schemes is dominant.

We recall from [4], Lemma 2.6, (i), (ii), (iii), that the natural morphism from
the underlying scheme of any fiber product in the category of locally noetherian
fs log schemes to the corresponding fiber product of underlying schemes is
finite. On the other hand, this natural morphism is not necessarily surjective!
That is to say, the isomorphism asserted [unfortunately, without an explicit proof !]
in [4], Lemma 2.6, (ii), is false. Indeed, the following example constitutes a
counterexample to this isomorphism.

Example 0.3 (Empty fiber products of log schemes). Consider the fiber
product determined by the diagram of log schemes

X log ! Z log  Y log

obtained by equipping the diagram of schemes

X ¼def SpecðkÞ ! Z ¼def SpecðkÞ  Y ¼def SpecðkÞ

—where k is a field, and the arrows are the identity morphisms—with the log
structures determined by the diagram of monoids

PX ¼def hð1; 0Þ; ð�1; 1ÞiKPZ ¼def NlNJPY ¼def hð1;�1Þ; ð0; 1Þi

—where the notation ‘‘h�i’’ denotes the submonoid of P
gp
Z ¼ Ngp lNgp ¼

ZlZ generated by the element(s) in brackets—and the morphisms of monoids
PX ! k, PY ! k, PZ ! k that map 0 7! 1 A k and all nonzero elements of the
domain to 0 A k. Then one verifies immediately that this fiber product is, in fact,
empty, despite the fact that X �Y Z ¼ SpecðkÞ0j.

Section 1: Generalities on monomorphisms and minimal points

In the present §1, we discuss various definitions and generalities related to
monomorphisms and ‘‘minimal points’’ in categories of log schemes.

We suppose that we are in the situation of [4], §2. That is to say, let X log

be a locally noetherian fs log scheme [cf. the discussion entitled ‘‘Log schemes’’ in
§0]. Then we denote by

SchlogðX logÞ

the category whose objects are morphisms of log schemes of finite type Y log !
X log, where Y log is a noetherian fs log scheme, and whose morphisms [from
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an object Y
log
1 ! X log to an object Y

log
2 ! X log] are morphisms of finite type

Y
log
1 ! Y

log
2 lying over X log. To simplify the exposition, we shall often refer to

the domain Y log of an arrow Y log ! X log which is an object of SchlogðX logÞ as an
‘‘object of SchlogðX logÞ’’.

Recall the category SchðXÞ of [4], §1, i.e., the category whose objects are
morphisms of finite type Y ! X , where Y is a noetherian scheme, and whose
morphisms [from an object Y1 ! X to an object Y2 ! X ] are morphisms of finite
type Y1 ! Y2 lying over X . Note that by associating to an object Y ! X of

SchðX Þ the object Y log ! X log of SchlogðX logÞ obtained by equipping Y with the
log structure obtained by pulling back the log structure on X log via Y ! X , we
obtain a natural embedding

SchðXÞ ,! SchlogðX logÞ

—which thus allows us to regard SchðX Þ as a full subcategory of SchlogðX logÞ.
Let Y log be an fs log scheme. Then we shall denote its underlying scheme

(respectively, the morphism of monoids that constitutes its log structure) by Y
(respectively, expY : MY ! OY ). Thus, we have an exact sequence of étale
sheaves of monoids on Y

0! O�Y !MY ! PY ! 0

—where the ‘‘characteristic sheaf ’’ PY is defined so as to make the sequence
exact. It follows immediately from the fact that Y log is an fs log scheme that
the fibers of PY (respectively, the groupification P

gp
Y of PY ) at geometric points

of Y are fs monoids [cf. the discussion entitled ‘‘Generalities on monoids’’ in §0]
(respectively, are finitely generated free abelian groups). In particular, we have
natural injections

PY ,! P
gp
Y ; MY ,!M

gp
Y

—where the superscript ‘‘gp’’ denotes the groupification associated to a sheaf of
monoids. In the following, we shall use similar notation for objects associated
to arbitrary fs log schemes ‘‘ð�Þ log’’.

In this situation, we shall apply the terminology introduced in [4], §2:

Definition 1.1. In the notation of the above discussion:
(i) If Y is reduced (respectively, one-pointed—cf. [4], Proposition 1.1), then

we shall say that Y log is reduced (respectively, one-pointed ). If Y log is reduced
and one-pointed, i.e., Y is equal to the spectrum of a field k, then one may think
of PY as consisting of a [discrete] monoid equipped with a continuous action of
the absolute Galois group Gk of k; when this action is trivial, we shall say that
Y log is split and, by a slight abuse of notation, denote GðY ;PY Þ by PY .

(ii) An object Y log ! X log of SchlogðX logÞ will be called minimal if it is
non-initial and satisfies the property that any monomorphism Z log

q Y log in
SchlogðX logÞ, where Z log is non-initial, is necessarily an isomorphism [cf. [4],
Proposition 2.4].
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(iii) Suppose that Y log is a one-pointed object of the category SchlogðX logÞ.
Then a monomorphism H log

q Y log in SchlogðX logÞ will be called a hull for Y log

if every morphism S log ! Y log in SchlogðX logÞ from a minimal object S log to Y log

factors [necessarily uniquely!] through the given monomorphism H log
q Y log

[cf. [4], Proposition 2.7]. A hull H log
q Y log will be called a minimal hull if

every monomorphism H
log
1 q H log in SchlogðX logÞ for which the composite

H
log
1 q H log

q Y log is a hull is necessarily an isomorphism [cf. [4], Proposition
2.7]. A one-pointed object H log of SchlogðX logÞ will be called a minimal hull if
the identity morphism H log ! H log is a minimal hull for H log. [The notions of
‘‘hull’’/‘‘minimal hull’’ will not be used in the present paper, but are reviewed here
for the sake of comparison with the notions of ‘‘point-hull’’/‘‘minimal point-hull’’,
which do play an important role in the present paper—cf. Definition 2.9, (iii).]

(iv) Suppose that f log : Z log ! Y log is a morphism of SchlogðX logÞ. Then
[cf. [4], Definition 2.11, (i), (ii)]: f log will be called log-like if the underlying
morphism of schemes f : Z ! Y is an isomorphism; f log will be called scheme-
like if the log structure on Z log is the pull-back of the log structure on Y log via
the underlying morphism of schemes f : Z ! Y [i.e., in the terminology of many
authors, if f log is strict ]. Write

SchlogðX logÞjsch-lk J SchlogðX logÞ

for the full subcategory of objects of SchlogðX logÞ determined by scheme-like
morphisms Y log ! X log. Thus, one verifies immediately that the natural embed-
ding SchðXÞ ,! SchlogðX logÞ discussed above admits a natural factorization as the
composite of a natural equivalence of categories

SchðXÞ !@ SchlogðX logÞjsch-lk
with the natural inclusion SchlogðX logÞjsch-lk ,! SchlogðX logÞ.

Also, we introduce some new terminology as follows:

Definition 1.2. In the notation of the above discussion:
(i) Let n A N. Then we shall say that Y log is of ranka n (respectively, of

rank n) and write

rkðY logÞa n ðrespectively; rkðY logÞ ¼ nÞ

if every fiber of PY at a geometric point of Y is of ranka n (respectively, rank n)
[cf. the discussion entitled ‘‘Generalities on monoids’’ in §0]. We shall say that
Y log is submonic if it is of ranka 1. If Y log is locally noetherian, then we define
the submonic dimension of Y log to be the supremum

dimsmðY logÞ ¼def sup
Z log qY log

dimðZÞ A NU f�y;þyg

—where Z log
q Y log ranges over the monomorphisms of SchlogðY logÞ such that

Z log is submonic, and ‘‘dimðZÞ’’ denotes the scheme-theoretic dimension of the
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underlying locally noetherian scheme Z of Z log. Thus, the submonic dimension
is equal to �y if and only if it holds that the underlying scheme of every ‘‘Z log’’
that appears in the supremum of the above display is the empty scheme. We
shall say that Y log is log-nodal if it is reduced, one-pointed, split, and of rank two.

(ii) Suppose that Y log arises from an object Y log ! X log of SchlogðX logÞ.
Then a minimal point Z log

q Y log of Y log is defined to be a monomorphism
Z log

q Y log of SchlogðX logÞ such that Z log is a minimal object of SchlogðX logÞ.
Thus, a minimal point of Y log may be thought of as an object of SchlogðY logÞ.
We shall write

MinPtðY logÞ
for the set of isomorphism classes [i.e., as objects of SchlogðY logÞ] of minimal
points of Y log.

Proposition 1.3 (Empty and connected underlying schemes). Suppose that
Y log is an object of SchlogðX logÞ. Then:

(i) The underlying scheme Y of Y log is empty if and only if Y log is an initial
object in the category SchlogðX logÞ.

(ii) The underlying scheme Y of Y log is connected if and only if the object
Y log of SchlogðX logÞ is non-initial and, moreover, does not admit a representation
as a coproduct of two non-initial objects of SchlogðX logÞ.

Proof. Assertions (i) and (ii) follow immediately from the definitions. c

Proposition 1.4 (First properties of monomorphisms). Suppose that f log :
Z log ! Y log is a morphism of SchlogðX logÞ. Thus, the underlying morphism
f : Z ! Y of f log may be regarded as a morphism of SchðXÞ. Then:

(i) The property of being a monomorphism in the category of fs log schemes
(respectively, in the category SchlogðX logÞ) is stable under base-change in the
category of fs log schemes (respectively, in the category SchlogðX logÞ).

(ii) Let M ! N be a morphism of finitely generated, saturated monoids such
that the induced morphism M gp ! N gp is surjective. Then the induced morphism
of fs log schemes

SpecðZ½N�Þ log ! SpecðZ½M�Þ log

—where we use the superscript ‘‘log’’ to denote the log structures determined by the
tautological charts M ,! Z½M�, N ,! Z½N�—is a monomorphism in the category
of fs log schemes.

(iii) If f log is a monomorphism in SchlogðX logÞ, then the induced morphism of
sheaves of abelian groups P

gp
Y jZ ! P

gp
Z is surjective.

(iv) Suppose that Y log is submonic, and that the morphism P
gp
Y jZ ! P

gp
Z

induced by f log is surjective. Then Z log is submonic, and f log is scheme-like.
(v) Suppose that f log is scheme-like. Then f log is a monomorphism in

SchlogðX logÞ if and only if f is a monomorphism in SchðXÞ.
(vi) Suppose that Y log is submonic, and that f log is a monomorphism in

SchlogðX logÞ. Then the morphism P
gp
Y jZ ! P

gp
Z induced by f log is surjective; Z log
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is submonic; f log is scheme-like [which, in fact, implies the surjectivity of the
morphism P

gp
Y jZ ! P

gp
Z ]; and f is a monomorphism in SchðX Þ.

(vii) Suppose that f is a monomorphism in SchðXÞ, and that the morphism
P

gp
Y jZ ! P

gp
Z induced by f log is surjective. Then f log is a monomorphism in

SchlogðX logÞ.

Proof. Assertions (i) and (v) follow immediately from the definitions.
Next, before proceeding, let us recall that, for instance in the case of the log
scheme Y log,

(�sys) the sheaf of monoids that defines the log structure of Y log may
be thought of as the restriction to PY JP

gp
Y of a certain system

of line bundles [i.e., a system of Gm-torsors] parametrized by the
sheaf of abelian groups P

gp
Y .

Now assertion (ii) follows immediately from (�sys). Assertion (iii) follows from
the argument given in the proof of [4], Proposition 2.3 [but cf. Remark 1.4.1
below!]: That is to say, one reduces immediately to the case where Z and Y are
equal to SpecðkÞ for some field k; then, under the assumption that the asserted
surjectivity fails to hold, one constructs scheme-like morphisms W log ! Z log,
where W log is an fs log scheme whose underlying scheme is an artinian k-algebra,
whose existence contradicts the assumption that f log is a monomorphism in
SchlogðX logÞ. Assertion (iv) follows immediately from the simple and well-
understood structure of the monoid N. Assertion (vi) follows formally from
assertions (iii), (iv), and (v). Finally, assertion (vii) follows from the definitions,
together with the observation (�sys) discussed above. c

Remark 1.4.1. Suppose that we are in the situation of Proposition 1.4.
Then in general,

it is not necessarily the case that the assumption that f log is a mono-
morphism in SchlogðX logÞ implies that f is a monomorphism in SchðXÞ.

That is to say, the corresponding portion of the necessity asserted in [4],
Proposition 2.3, is false as stated. Such an example may be obtained by
considering the monomorphism constructed in Proposition 1.4, (ii), in the case
where the morphism of monoids M ! N is taken to be the morphism

M ¼def NlN! N ¼def NlN

that maps M C ð1; 0Þ 7! ð1; 1Þ A N and M C ð0; 1Þ 7! ð0; 1Þ A N, i.e., in which case
the resulting morphism of schemes is a ‘‘blow-up morphism’’ that has fibers of
dimension one.

Lemma 1.5 (Well-known generalities concerning fs monoids and associated
log schemes). Let k be a field; k sep a separable closure of k; Gk ¼def Galðk sep=kÞ; P
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an fs monoid [cf. the discussion entitled ‘‘Generalities on monoids’’ in §0] equipped
with a continuous action by Gk [i.e., relative to the discrete topology on P]; M gp an
extension, in the category of topological abelian groups equipped with continuous
Gk-actions, of Pgp by ðk sepÞ� [i.e., the multiplicative group of nonzero elements
of k sep, equipped with the discrete topology]; M ¼def M gp �Pgp P. Write T log for
the reduced, one-pointed fs log scheme whose underlying scheme is equal to T ¼
Specðk sepÞ, and whose log structure is given by the homomorphism of monoids
M ! k sep that restricts to the natural inclusion ðk sepÞ� ,! k sep on ðk sepÞ�JM and
maps non-invertible elements of M to 0 A k. Thus, the associated characteristic
sheaf PT is the constant sheaf on T determined by P; the log scheme T log admits
a natural Gk-action, which may be regarded as a collection of [ pro-] finite étale
descent data that gives rise to a reduced, one-pointed fs log scheme S log whose
underlying scheme is S ¼ SpecðkÞ. Then:

(i) Suppose that the action of Gk on P is trivial. Then the extension of Gk-
modules 1! ðk sepÞ� !M gp ! Pgp ! 1 splits.

(ii) Suppose that rkðPÞb 1. Then there exists a positive [cf. the discussion
entitled ‘‘Generalities on monoids’’ in §0], Gk-equivariant [i.e., with respect to the
trivial action of Gk on N] homomorphism f : P! N that induces a surjection on
groupifications fgp : Pgp !! Ngp. Now fix such a homomorphism f : P! N, and
assume, moreover, that rkðPÞb 2. Then there exists a positive homomorphism
c : P! N that induces a surjection on groupifications cgp : Pgp !! Ngp such that
KerðfgpÞ0KerðcgpÞ.

(iii) Suppose that rkðPÞb 2. Then there exist an fs monoid Q of rank two
and a positive homomorphism x : P! Q that induces a surjection on groupifications
xgp : Pgp !! Qgp, and, moreover, satisfies the following property:

Let z : Q! R be a positive homomorphism of fs monoids of rankb 1 and
s A Gk such that the composite homomorphism z � x � s : P! R factors
as the composite zs � x of x : P! Q with some positive homomorphism
zs : Q! R. Then s stabilizes the subquotient Pgp !! Qgp KQ and
induces the identity on Q.

In particular, if t A Gk stabilizes the subquotient Pgp !! Qgp KQ, then t induces
the identity on Q.

(iv) Let x : P! Q be a positive homomorphism of fs monoids that induces
a surjection on groupifications xgp : Pgp !! Qgp. Write X sep for the subfunctor
of the contravariant functor determined by the terminal object [i.e., T log] of
SchlogðT logÞ that consists of objects Z log ! T log of SchlogðT logÞ such that the
composite homomorphism Pgp ! GðT ;Pgp

T Þ ! GðZ;Pgp
Z Þ induces, via x, a homo-

morphism Q! GðZ;PZÞ; write X
sep
þ JXsep for the subfunctor corresponding to the

condition that, for each fiber PZ; z of PZ at a geometric point z of Z, the resulting
homomorphism Q! PZ; z is positive. Then X sep may be represented by the object
of SchlogðT logÞ determined by a log étale monomorphism

T log½x�q T log
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of SchlogðT logÞ. If, moreover, Q coincides with the saturation of the image of x
in Qgp, then the following properties hold: X

sep
þ ¼ Xsep; the closed subscheme

T ½x�red JT ½x� [cf. the discussion entitled ‘‘Log schemes’’ in §0] of the underly-
ing scheme T ½x� of T log½x� is a torus over k sep of dimension rkðPÞ � rkðQÞ; the
characteristic sheaf PT log½x� is isomorphic to the constant sheaf on T ½x� determined

by Q; if we write M½x� ¼def M gp �Pgp KerðxgpÞ, then the group of invertible functions
on the torus T ½x�red may be naturally identified with M½x�.

(v) Suppose that we are in the situation of (iv). Write HJGk for the open
subgroup of elements that stabilize the subquotient Pgp !! Qgp KQ determined

by x; S log
H for the reduced, one-pointed fs log scheme obtained by descending T log

via HJGk; X for the subfunctor of the contravariant functor determined by the

terminal object [i.e., S
log
H ] of SchlogðS log

H Þ that consists of objects Z log ! S
log
H of

SchlogðS log
H Þ such that the object Z log �

S
log
H

T log ! T log of SchlogðT logÞ determined

by base-changing from S
log
H to T log determines an element of XsepðZ log �

S
log
H

T logÞ;
Xþ for the subfunctor of X determined by the subfunctor X

sep
þ of Xsep. Then

X may be represented by the object of SchlogðS log
H Þ determined by a log étale

monomorphism

S log½x�q S
log
H

of SchlogðS log
H Þ which may be obtained, via [pro-] finite étale descent, from the

natural H-action on the monomorphism T log½x�q T log of (iv).

(vi) Suppose that we are in the situation of (v). Let S
log
þ ½x�q S log½x� be some

monomorphism of SchlogðS log
H Þ that determines an element of Xþð�ÞJXð�Þ.

[That is say, we do not make any assumption to the e¤ect that S
log
þ ½x� admits some

sort of ‘‘special functorial interpretation’’!] Then if either rkðQÞ ¼ 1 or x is as in
(iii), then the composite

S
log
þ ½x�q S log½x�q S

log
H ! S log

—where the second arrow is the monomorphism of the final display of (v); the third
arrow is the natural morphism S

log
H ! S log—is a monomorphism in SchlogðS logÞ.

(vii) Suppose that rkðPÞ ¼ 2, and that we have been given a positive homo-
morphism f0 : P! J0 ¼

def
N that induces a surjection on groupifications f

gp
0 : Pgp !!

J
gp
0 ¼ Z. Then, in the notation of the discussion entitled ‘‘Rank two fs monoids’’

in §0, for i ¼ 0; 1; 2, let us write fi : P! Ji for the associated positive homo-
morphism of fs monoids [which is well-defined, up to possible permutation of the
indices ‘‘1’’ and ‘‘2’’]. For i ¼ 0; 1; 2, write F

sep
i for the subfunctor of the contra-

variant functor determined by the terminal object [i.e., T log] of SchlogðT logÞ that
consists of objects Z log ! T log of SchlogðT logÞ such that, for each fiber PZ; z of PZ

at a geometric point z of Z, the composite homomorphism Pgp ! GðT ;P
gp
T Þ !

GðZ;P
gp
Z Þ ! P

gp
Z; z induces, via fi : P! Ji, a positive homomorphism Ji ! PZ; z. If

EJ f0; 1; 2g is a subset, then write F
sep
E for the subfunctor of the contravariant

functor determined by the terminal object [i.e., T log] of SchlogðT logÞ that consists
of the [disjoint!] union of the F

sep
i , for i A E. Then, for any EJ f0; 1; 2g such
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that 0 A E, Fsep
E may be represented by the object of SchlogðT logÞ determined by

a log étale monomorphism

T log½fE �q T log

of SchlogðT logÞ which satisfies the following properties: T log½fE � is connected
[hence nonempty]. If E ¼ f0g, then T log½fE �q T log may be identified with the
morphism T log½f0�q T log of (iv); in particular, in this case, the closed subscheme
T ½fE �red JT ½fE � of the underlying scheme T ½fE � of T log½fE � is a one-dimensional
torus over k sep. Finally, if 0 A EJE �J f0; 1; 2g, then the resulting morphism of

log schemes T log½fE � ! T log½fE � � is a dominant open immersion [cf. the discussion
entitled ‘‘Log schemes’’ in §0].

(viii) Suppose that we are in the situation of (vii). Write HJGk for the
open subgroup of elements that stabilize the subquotient Pgp !! J

gp
0 K J0 deter-

mined by f0; S
log
H for the reduced, one-pointed fs log scheme obtained by descending

T log via HJGk. Thus, H acts naturally on PrimeðPÞ, hence also on the set of
indices f0; 1; 2g [where we regard the index ‘‘0’’ as being stabilized by the action
of H]. Let EJ f0; 1; 2g be a subset that is stabilized by this natural action of
H. Write FE for the subfunctor of the contravariant functor determined by the

terminal object [i.e., S
log
H ] of SchlogðS log

H Þ that consists of objects Z log ! S
log
H of

SchlogðS log
H Þ such that the object Z log �

S
log
H

T log ! T log of SchlogðT logÞ determined

by base-changing from S
log
H to T log determines an element of F

sep
E ðZ log �

S
log
H

T logÞ.
Suppose that 0 A E. Then FE may be represented by the object of SchlogðS log

H Þ
determined by a log étale monomorphism

S log½fE �q S
log
H

of SchlogðS log
H Þ which may be obtained, via [ pro-]finite étale descent, from the

natural H-action on the monomorphism T log½fE �q T log of (vii).
(ix) Suppose that we are in the situation of (viii). Suppose further that

f0 : P! J0 satisfies the following property:

Let z : P! N be a positive homomorphism of fs monoids; s A Gk;
i0; i1 A f0; 1g. Suppose that, for m A f0; 1g, z � sm : P! N factors, via
fim : P! Jim , through a positive homomorphism Jim ! N. Then s acts
trivially on P.

Then [one verifies immediately, by taking ‘‘z’’ to be f0 that] H fixes the index

‘‘1’’. Moreover, the composite S log½ff0;1g�q S
log
H ! S log of the monomorphism of

the final display of (viii) with the natural morphism S
log
H ! S log is a monomorphism

in SchlogðS logÞ.

Proof. Since Pgp is a finitely generated free abelian group, assertion (i)
follows immediately from the assumption that the action of Gk on P is trivial,
together with the well-known fact from elementary Galois theory [i.e., Hilbert’s
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‘‘Theorem 90’’] that H 1ðGk; ðk sepÞ�Þ ¼ 0. Next, we consider assertion (ii). The
existence of f follows immediately from [4], Lemma 2.5, (iii), i.e., by considering
the [ finite!] sum of the Gk-conjugates of a positive homomorphism P! N of the
sort discussed in [4], Lemma 2.5, (iii); the existence of c then follows by applying
[4], Lemma 2.5, (iii), to two distinct elements of P that map, via f, to the same
nonzero element of N. This completes the proof of assertion (ii).

Next, we consider assertion (iii). First, we observe that the final portion of
assertion (iii) concerning t A Gk follows immediately from the property in the
display of assertion (iii) by taking z : Q! R to be the identity automorphism of
Q. Next, we observe that the homomorphisms f and c of assertion (ii) determine
a positive homomorphism ðf;cÞ : P! NlN whose image I JNlN generates

a rank two subgroup I gp of Ngp lNgp ¼ ZlZ. Thus, for some positive integer
n, it holds that n �Ngp l n �Ngp J I gp. In particular, we have n �Nl n �NJ
Q ¼def I gp V ðNlNÞJNlN; I JQ; Qgp ¼ I gp [since I gp JQgp J I gp]. One
verifies immediately that this implies that this monoid QJNlN is an fs
monoid of rank two. Write x : P! Q for the resulting positive homomorphism
of monoids. Note that x induces a surjection on groupifications xgp : Pgp !!
Qgp ð¼ I gpÞ.

Now suppose that z : Q! R is a positive homomorphism of fs monoids of
rankb 1 and s A Gk such that the composite homomorphism z � x � s : P! R
factors as the composite zs � x of x : P! Q with some positive homomorphism
zs : Q! R; in the following, we shall show that s stabilizes the subquotient
Pgp !! Qgp KQ and induces the identity on Q. Here, we note that, by applying
assertion (ii) in the case where we take ‘‘P’’, ‘‘k’’, and ‘‘M gp’’ to be R, k sep,
and Rgp � ðk sepÞ�, respectively, we may assume without loss of generality that
R ¼ N. Also, by replacing R by a suitable submonoid of R, we may assume
without loss of generality that z, zs induce surjections zgp; zgps : Qgp !! Rgp ¼
Ngp ¼ Z. Next, let us observe that, by restricting the first projection NlN!!
N to QJNlN, one may regard f : P! N as the composite h � x of x : P! Q
with a homomorphism of monoids h : Q! N. Since h vanishes on 0l n �NJQ,
it follows that h is not positive, and hence that KerðhgpÞ0KerðzgpÞ, KerðhgpÞ0
Kerðzgps Þ. Since xgp is surjective, we thus conclude that, if we write y ¼def z � x,
ys ¼

def
zs � x, then KerðfgpÞ0KerðygpÞ, KerðfgpÞ0Kerðygp

s Þ, and hence that

both KerðfgpÞVKerðygpÞJPgp and KerðfgpÞVKerðygp
s ÞJPgp are submodules

of rank rkðPgpÞ � 2 that contain KerðxgpÞ. Since KerðxgpÞ is also a submodule
of Pgp of rank rkðPgpÞ � 2, we thus conclude [since Pgp=KerðxgpÞ !@ Qgp is

torsion-free] that KerðfgpÞVKerðygpÞ ¼ KerðfgpÞVKerðygp
s Þ ¼ KerðxgpÞ. But,

since f is Gk-equivariant, this implies that KerðxgpÞ is stabilized by s, i.e.,
that s induces an automorphism of the quotient xgp : Pgp !! Qgp, as well as of
the quotient hgp : Qgp !! Ngp ¼ Z, and maps the quotient zgp : Qgp !! Ngp ¼ Z
to the quotient zgps : Qgp !! Ngp ¼ Z.

Now to complete the proof of assertion (iii), it su‰ces to verify that s
induces the identity on Qgp. Thus, we suppose that s does not induce the
identity on Qgp. Then since s clearly stabilizes the fs monoid of rank two
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obtained by forming the saturation of the image of x : P! Q in Q [cf. [4],
Lemma 2.5, (ii)], it follows [cf. the discussion entitled ‘‘Rank two fs monoids’’
in §0] that s acts on Qgp as an automorphism of order 2, and hence that s
permutes the quotients determined by zgp, zgps . In particular, s stabilizes the
kernel of the homomorphism on groupifications zgpþ : Qgp ! Z determined by the
positive homomorphism zþ : Q! N obtained by forming the sum of z, zs. Since
s acts nontrivially on Qgp, this implies that Kerðzgpþ Þ ¼ KerðhgpÞ. Thus, the
positivity of zþ contradicts the non-positivity of h. This completes the proof of
assertion (iii).

Next, we observe that assertions (iv), (v), (vii), and (viii) are immediate
consequences of the well-known correspondence between the theory of log schemes
and the classical theory of toric varieties. Next, we consider assertion (vi). First
of all, given an object Z log of SchlogðS logÞ and two S log-morphisms a : Z log !
S

log
þ ½x�, b : Z log ! S

log
þ ½x�, to verify that a ¼ b, it su‰ces to verify that a and

b coincide after base-change from k to k sep. Moreover, since the morphism
SH ! S is finite étale, and the morphism S

log
þ ½x�q S

log
H is already known to be

a monomorphism, one verifies immediately that we may assume without loss of
generality that Z log is reduced and one-pointed—an assumption which reduces
the assertion under consideration to an assertion concerning fs monoids, i.e.,
the assertion that if, for some s A Gk, there exist positive homomorphisms of
fs monoids z : Q! R and zs : Q! R such that z � x � s ¼ zs � x : P! R, then s
stabilizes the subquotient Pgp !! Qgp KQ determined by x. But this assertion
concerning fs monoids follows immediately, i.e., if one assumes either that
rkðQÞ ¼ 1 or that x satisfies the properties stated in (iii). This completes the
proof of assertion (vi). Finally, we observe that assertion (ix) may be verified by
a similar argument to the argument applied in the proof of assertion (vi). c

Proposition 1.6 (Minimal objects). Suppose that Y log is an object of
SchlogðX logÞ. Then:

(i) Suppose that Y log is a nonempty object of SchlogðX logÞ. Then there
exists a minimal point Z log ! Y log such that Z log is submonic. Now fix such a
minimal point Z log ! Y log, and assume, moreover, that Y log is not submonic.
Then there exists a minimal point W log ! Y log, where W log is submonic, that is
not isomorphic to Z log ! Y log.

(ii) Y log is a minimal object of SchlogðX logÞ if and only if Y log is reduced,
one-pointed, and submonic. Put another way, Y log is a minimal object of
SchlogðX logÞ if and only if, for some field k, Y log is either equal to SpecðkÞ
equipped with the trivial log structure or equal to SpecðkÞ equipped with the log
structure N C 1 7! 0 A k.

(iii) Suppose that Y log and Z log are minimal objects of SchlogðX logÞ. If
f log : Z log ! Y log is a morphism in SchlogðX logÞ, then let us write

MinLgð f logÞ A NU fþyg
for the ‘‘minimal length’’ of f log: that is to say, we set MinLgð f logÞ ¼def 0 if f log

is an isomorphism; if f log is not an isomorphism, then we take MinLgð f logÞ to
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be the supremum of the set of positive integers n such that f log admits a
factorization

Z log
n ¼def Z log ! Z

log
n�1 ! � � � ! Z

log
1 ! Z

log
0 ¼def Y log

as a composite of morphisms of SchlogðX logÞ which are not isomorphisms such
that, for each i ¼ 1; . . . ; n, Z log

i is a minimal object of SchlogðX logÞ. Then Y log

is of rank one if and only if MinLgð f logÞ is finite for every morphism f log in

SchlogðX logÞ with codomain equal to Y log [and domain given by some minimal
object].

Proof. First, we consider assertion (i). Observe that we may assume
without loss of generality that Y log is reduced and one-pointed [cf. [4], Proposition
1.1, (i)], and hence that the underlying scheme Y of Y log may be written in
the form SpecðkY Þ, for a suitable field kY . Next, let us consider the situation
discussed in Lemma 1.5, (v), in the case where

� one takes the data that gives rise to ‘‘S log’’ to be the data that arises
from Y log [so ‘‘k’’ corresponds to kY ];

� if rkðY logÞ ¼ 0, then one takes the positive homomorphism ‘‘x’’ to be
the identity morphism;

� if rkðY logÞb 1, then one takes the positive homomorphism ‘‘x’’ to be
the homomorphism ‘‘f : P! N’’ of Lemma 1.5, (ii).

Then one verifies immediately from the description of the torus ‘‘T ½x�red’’ in
Lemma 1.5, (iv), that any splitting as in Lemma 1.5, (i), over a suitable finite
separable extension of k—which, in the terminology of [3], Definition 1.3, may
be regarded as a ‘‘Galois-equivariant clean chart’’—determines a closed point
of S½x�. In particular, by restricting the log structure of the submonic log
scheme S log½x� to this closed point, we obtain, by Proposition 1.4, (vii); Lemma

1.5, (vi), a monomorphism f log : Z log ! Y log in SchlogðX logÞ, for some submonic
Z log. Since, by [4], Proposition 2.4, (ii), (iii), Z log is necessarily minimal, we

thus conclude that the morphism f log determines a minimal point of Y log, as
desired. In a similar vein, if Y log is not submonic [i.e., is of rank nb 2], then we
consider the situation discussed in Lemma 1.5, (v), in the case where one takes
the data that gives rise to ‘‘S log’’ to be the data that arises from Y log [so ‘‘k’’
corresponds to kY ], and one takes the positive homomorphism ‘‘x’’ to be the
homomorphism ‘‘c : P! N’’ of Lemma 1.5, (ii). Then a splitting as in Lemma
1.5, (i), over a suitable finite separable extension of k determines a closed point of
S½x� whose residue field kW is a finite separable extension field of kY . Now, by
restricting the log structure of the submonic log scheme S log½x� to this closed
point, we obtain, by Proposition 1.4, (vii); Lemma 1.5, (vi), a monomorphism

W log ! Y log in SchlogðX logÞ, for some submonic W log whose underlying scheme
W is equal to SpecðkW Þ, which determines, by [4], Proposition 2.4, (iii), a minimal

point of Y log that is not isomorphic to f log : Z log ! Y log. This completes the
proof of assertion (i).
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Next, we consider assertion (ii). The su‰ciency portion of assertion (ii)
follows immediately from [4], Proposition 2.4, (ii), (iii). Thus, to complete the
proof of assertion (ii), it su‰ces to verify the necessity portion of assertion (ii).
To this end, suppose that Y log is minimal. Then it follows from [4], Proposition
2.4, (i), that Y log is reduced and one-pointed, i.e., that Y ¼ SpecðkY Þ, for some
field kY , and hence, from assertion (i), that there exists a minimal point
f log : Z log ! Y log in SchlogðX logÞ, for some submonic Z log. If Y log is not
submonic, then it follows that f log is not an isomorphism, i.e., in contradiction
to the assumed minimality of Y log. This completes the proof of assertion (ii).

Finally, we consider assertion (iii). First, let us observe that it follows from
assertion (ii) that the underlying scheme Y (respectively, Z) of Y log (respectively,
Z log) may be written in the form SpecðkY Þ (respectively, SpecðkZÞ), for a
suitable field kY (respectively, kZ). Then if Y log is of rank one, then the
finiteness of MinLgð f logÞ follows immediately by considering the finiteness of the
extension degree ½kZ : kY �, together with the simple, well-understood structure of
the monoid N. On the other hand, if Y log is of rank zero, but Z log is of rank
one, then the fact that MinLgð f logÞ ¼ þy follows by considering the infinite
descending sequence of submonoids NK 2 �NK � � �K 2n �NK � � � , for 1a n A N.
This completes the proof of assertion (iii). c

Proposition 1.7 (Monomorphisms from log-nodal objects into non-submonic
objects). Suppose that Y log is a non-submonic object of SchlogðX logÞ. Then there
exists a log-nodal object Z log of SchlogðX logÞ that admits a monomorphism
Z log

q Y log.

Proof. As in the proof of Proposition 1.6, (i), one verifies immediately that

we may assume without loss of generality that Y log is reduced and one-pointed,
i.e., that Y ¼ SpecðkY Þ, for some field kY . Now we consider the situation
discussed in Lemma 1.5, (v), in the case where one takes the data that gives rise
to ‘‘S log’’ to be the data that arises from Y log [so ‘‘k’’ corresponds to kY ], and
one takes the positive homomorphism ‘‘x’’ to be the homomorphism ‘‘x : P! Q’’
of Lemma 1.5, (iii). Then one verifies immediately that any splitting as in
Lemma 1.5, (i), over a suitable finite separable extension of k determines a closed
point of S½x� whose residue field kZ is a finite separable extension field of kY
such that the log scheme Z log obtained by restricting the log structure of the log
scheme S log½x� to this closed point determines an element of Xþð�ÞJXð�Þ.
Thus, we obtain, by Proposition 1.4, (vii); Lemma 1.5, (vi), a monomorphism

Z log ! Y log in SchlogðX logÞ, for some reduced, one-pointed, split [cf. the final
portion of Lemma 1.5, (iii)] Z log of rank two [cf. Lemma 1.5, (iii)] whose
underlying scheme Z is equal to SpecðkZÞ, as desired. c

Proposition 1.8 (Submonic one-pointed log schemes). Suppose that Y log is

an object of SchlogðX logÞ. Then Y log is submonic and one-pointed if and only if
MinPtðY logÞ is of cardinality one.
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Proof. First, we verify necessity. Suppose that Y log is submonic and one-
pointed. Then it follows that Y log

red [cf. the discussion entitled ‘‘Log schemes’’ in
§0] is reduced, one-pointed, and submonic, hence, by Proposition 1.6, (ii), that Y log

red
is minimal. Since any morphism from a [necessarily reduced, by Proposition 1.6,
(ii)!] minimal object of SchlogðX logÞ to Y log clearly factors uniquely through Y

log
red ,

we thus conclude that MinPtðY logÞ is of cardinality one, and that the unique
element of MinPtðY logÞ arises from the natural inclusion Y

log
red ,! Y log. This

completes the proof of necessity. Next, we verify su‰ciency. Suppose that
MinPtðY logÞ is of cardinality one. Then by applying the initial portion of

Proposition 1.6, (i), to the objects ‘‘Z log’’ of SchlogðX logÞ obtained by consider-
ing scheme-like monomorphisms Z log

q Y log that arise from monomorphisms
Z q Y in SchðXÞ for reduced, one-pointed Z [cf. Proposition 1.4, (vii); [4],
Proposition 1.1, (iii)], we conclude that Y log is one-pointed. Thus, by applying
the final portion of Proposition 1.6, (i), to Y log, we conclude that Y log is
submonic. This completes the proof of su‰ciency. c

Before proceeding, we review a well-known consequence of the general
theory of fs log schemes.

Lemma 1.9 (Specialization morphisms associated to characteristic sheaves).
Suppose that the underlying scheme Y of Y log is the spectrum of a strict henselian
domain A. Write s for the tautological geometric point of Y associated to the
unique closed point of Y. Let h be a geometric point of Y whose image in Y is
the unique generic point of Y. In the following, we shall use subscripted ‘‘s’s’’ and
‘‘h’s’’ to denote the respective fibers at s, h of sheaves on the étale site of Y. Then
the natural ‘‘specialization morphism’’

PY ; s ! PY ;h

is surjective. In particular, this specialization morphism is an isomorphism if
and only if rkðPY ; sÞ ¼ rkðPY ;hÞ. Finally, if rkðPY ;hÞb 1, and a A PY ; s is a
sum-dominator [cf. the discussion entitled ‘‘Generalities on monoids’’ in §0] such
that, for elements a� A MY ; s and f A A, it holds that a� 7! a, a� 7! f , then f ¼ 0.

Proof. The asserted surjectivity follows immediately from the existence,
étale locally, of charts that give rise to the log structure of Y log. If rkðPY ; sÞ ¼
rkðPY ;hÞ, then we thus obtain a surjection P

gp
Y ; s !! P

gp
Y ;h between free abelian

groups of the same rank; since such a surjection is necessarily an isomorphism,
we thus conclude from the inclusion PY ,! P

gp
Y , that the specialization mor-

phism PY ; s ! PY ;h is an isomorphism, as desired. Finally, we observe that if
rkðPY ;hÞb 1, and MY ; s C a� 7! f A A, where a� lifts a sum-dominator a A PY ; s,
then, in light of the surjectivity of the specialization morphism PY ; s ! PY ;h, it
follows immediately from the discussion of sum-dominators in §0 that a maps to
a nonzero element b A PY ;h. On the other hand, if we write K for the quotient
field of A, then it follows immediately from the definition of the notion of a
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log structure that the image f A AJK of any lifting b� A MY ;h of the element
b A PY ;h in K is noninvertible, hence 0, as desired. This completes the proof of
Lemma 1.9. c

Proposition 1.10 (Lower bounds on the submonic dimension). Suppose that
Y log is an object of SchlogðX logÞ, and that Z log

q Y log is a monomorphism of
SchlogðX logÞ such that, for suitable n; d A N, the log scheme Z log is of rank n, and
the underlying scheme Z of Z log is of dimension d. Then if nb 1 (respectively,
n ¼ 0), then the submonic dimensions dimsmðY logÞ, dimsmðZ logÞ of Y log, Z log

satisfy the inequality

dimsmðY logÞb dimsmðZ logÞ ¼ d þ n� 1

ðrespectively; dimsmðY logÞb dimsmðZ logÞ ¼ dÞ:

Proof. First, let us observe that it follows immediately from the definition
of submonic dimension [cf. Definition 1.2, (i)] that dimsmðY logÞb dimsmðZ logÞ.
In particular, we may assume without loss of generality that Z log ¼ Y log. Thus,
it follows immediately from Lemma 1.9 that the characteristic sheaf PY is locally
constant. Next, by replacing Y log by the log scheme determined by a suitable
subscheme of Y , one verifies immediately we may assume without loss of
generality that the scheme Y is integral. Now the case where n ¼ 0 is immediate
[cf. Proposition 1.4, (vi)], so we may assume without loss of generality that
nb 1. Thus, we may apply the theory reviewed in Lemma 1.5 to the generic
point of Y . Moreover, one verifies immediately from the fact that PY is locally
constant that the objects [and properties of these objects] discussed in this theory
extend to objects [and properties of these objects] over the entire scheme Y [i.e.,
not just the generic point of Y ]. In particular, by applying Lemma 1.5, (iv), (v),
(vi), where we take the fs monoid ‘‘Q’’ to be N, we conclude that given any
monomorphism W log

q Y log, where W log is a submonic object of SchlogðX logÞ
whose underlying scheme W is integral, there exists a monomorphism V log

q

Y log, where V log is a submonic object of SchlogðX logÞ whose underlying scheme
V is a family of ðn� 1Þ-dimensional tori [cf. Lemma 1.5, (iv)] over Y , such that
the monomorphism W log

q Y log factors as a composite of monomorphisms
W log

q V log
q Y log. In particular, dimðWÞa dimðVÞ ¼ d þ n� 1 [cf. Propo-

sition 1.4, (vi)], so we conclude that dimsmðY logÞ ¼ d þ n� 1, as desired. c

The following generalities on log-like and scheme-like morphisms will be of
use in the remainder of the present paper.

Proposition 1.11 (Generalities on log-like and scheme-like morphisms). Let
f log : Z log ! Y log be a morphism of SchlogðX logÞ. Then:

(i) Write U log for the log scheme whose underlying scheme is equal to
the underlying scheme Z of Z log and whose log structure is the pull-back of
the log structure of Y log via the underlying morphism of schemes f : Z ¼ U ! Y
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associated to f log. Then U log may be regarded, in a natural way, as an object of
SchlogðX logÞ, and there exists a natural factorization

Z log �!f log
1

U log �!f log
2

Y log

of f log in SchlogðX logÞ, where f
log
1 is log-like, and f

log
2 is scheme-like.

(ii) The factorization Z log �!f log
1

U log �!f log
2

Y log of (i) may be characterized, up to

a unique isomorphism, via the following universal property: The morphism f
log
2 is

scheme-like, and, moreover, if

Z log �!h log
1

V log �!h log
2

Y log

is a factorization of f log in SchlogðX logÞ such that h
log
2 is scheme-like, then there

exists a unique scheme-like morphism g log : U log ! V log such that h
log
1 ¼ g log � f log

1 ,
h
log
2 � g log ¼ f

log
2 .

(iii) Base-change via the morphism f
log
1 : Z log ! U log of (i) determines an

equivalence of categories

SchlogðU logÞjsch-lk !
@

SchlogðZ logÞjsch-lk
[cf. the notational conventions of Definition 1.1, (iv)]. The morphism f

log
2 : U log !

Y log of (i)—which may be regarded as an object of SchlogðY logÞjsch-lk—determines
an equivalence of categories

SchlogðU logÞjsch-lk !
@ fSchlogðY logÞjsch-lkgf log

2

of SchlogðU logÞ with the category fSchlogðY logÞjsch-lkgf log
2

of objects of the cate-

gory SchlogðY logÞjsch-lk equipped with a structure morphism to the object f
log
2 of

SchlogðY logÞjsch-lk and morphisms of the category SchlogðY logÞjsch-lk that are com-
patible with the structure morphisms to the object f

log
2 .

Proof. Assertions (i), (ii), and (iii) follow immediately from the various
definitions involved. c

Section 2: The scheme structure of submonic log schemes

In the present §2, we give a category-theoretic reconstruction of the under-
lying scheme structure of submonic objects of the categories of log schemes defined
in §1.

We maintain the notation of §1.

Definition 2.1. Let f log : Z log ! Y log be a morphism of SchlogðX logÞ.
Then we shall say that the morphism f log is SLEM [i.e., a ‘‘submonically log étale

monomorphism’’] if f log is a monomorphism in SchlogðX logÞ, and, moreover, for
any commutative diagram
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V log ���! Z log???y
???y f log

W log ���! Y log

—where V log and W log are one-pointed and submonic, and the left-hand verti-
cal arrow is a monomorphism in SchlogðX logÞ—of objects and morphisms in
SchlogðX logÞ, there exists a unique [‘‘lifting’’] morphism W log ! Z log that renders
the two resulting triangles in the above diagram commutative.

Proposition 2.2 (SLEM morphisms and open immersions). Let f log : Z log

! Y log be a morphism of SchlogðX logÞ. Thus, the underlying morphism f : Z !
Y of f log may be regarded as a morphism of SchðX Þ. Then:

(i) If f log is an open immersion [cf. the discussion entitled ‘‘Log schemes’’ in
§0], then f log is SLEM.

(ii) If Y log is submonic, and f log is SLEM, then f log is an open immersion.

Proof. First, let us observe that any monomorphism between one-pointed
objects in SchðXÞ is necessarily a closed immersion between spectra of artinian
rings [cf., e.g., the proof of [4], Corollary 1.2]. In particular, it follows from
Proposition 1.4, (vi), that any monomorphism V log !W log as in Definition 2.1 is
necessarily scheme-like, and, moreover, that the underlying morphism of schemes
associated to any monomorphism V log !W log as in Definition 2.1 is necessarily
a closed immersion between spectra of artinian rings. Thus, it is immediate that
if f log is an open immersion, then f log is SLEM. This completes the proof of
assertion (i). Now suppose that Y log is submonic, and f log is SLEM. Thus, it
follows from Proposition 1.4, (vi), that f log is scheme-like, and, moreover, that f
is a monomorphism in SchðX Þ. In particular, the existence of unique liftings as
stipulated in Definition 2.1 implies that f is an étale monomorphism in SchðXÞ,
hence [cf., e.g., [4], Corollary 1.3] an open immersion. This completes the proof
of assertion (ii). c

Proposition 2.3 (Connectedness with respect to SLEM localizations).
(i) Let S log be a connected [hence nonempty] object of SchlogðX logÞ [cf.

Proposition 1.3]; U log, fV log
i gi AN nonempty objects of SchlogðX logÞ; U log

q S log,

fV log
i q S loggi AN SLEM morphisms of SchlogðX logÞ such that, for each i A N, the

morphism V
log
i q S log admits a [necessarily unique] factorization V

log
i q V

log
iþ1

q S log through the morphism V
log
iþ1 q S log, and, moreover, the fiber product

U log �S log V
log
i [in SchlogðX logÞ] is empty. Then the natural map

MinPtðU logÞ
a

6
i AN

MinPtðV log
i Þ

( )
!MinPtðS logÞ

is injective.
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(ii) In the situation of (i), suppose further that S log is submonic. Then the
natural map of (i) is never surjective.

(iii) Suppose that S log is a log-nodal object of SchlogðX logÞ. Then, for
suitable choices of U log

q S log and fV log
i q S loggi AN as in (i), the natural

map of (i) is surjective.
(iv) Let T log be an object of SchlogðX logÞ. Then T log is non-submonic if and

only if there exist morphisms U log
q S log and fV log

i q S loggi AN as in (i), together

with a monomorphism S log
q T log in SchlogðX logÞ, such that the natural map of

(i) is surjective.

Proof. First, we consider assertion (i). Let i A N. Then the injectivity of
each of the natural maps MinPtðU logÞ!MinPtðS logÞ, MinPtðV log

i Þ!MinPtðS logÞ
follows immediately from the definition of ‘‘MinPtð�Þ’’. The fact that the
images of these two maps are disjoint follows immediately from the definition
of ‘‘MinPtð�Þ’’, together with the assumption that the fiber product U log �S log

V
log
i is empty. This completes the proof of assertion (i).

Next, we consider assertion (ii). Since S log is submonic, it follows from
Proposition 2.2, (ii), that the morphisms U log

q S log, fV log
i q S loggi AN are open

immersions. Since [the underlying scheme of ] S log is connected, it thus follows
from the assumption that the objects U log, fV log

i gi AN are nonempty, whereas
the fiber products fU log �S log V

log
i gi AN are empty, that the open subscheme of

S log determined by the union of the images of the morphisms U log
q S log,

fV log
i q S loggi AN does not coincide with S log, and hence [cf. Proposition 1.6, (i)]

that the natural map of (i) is not surjective. This completes the proof of
assertion (ii).

Next, we consider assertion (iii). First, let us observe that, in light of the
various assumptions imposed on S log, one verifies immediately that S log may
be regarded as the ‘‘S log’’ that appears in Lemma 1.5, (viii). Here, the positive
homomorphism f0 : P! J0 ¼ N of Lemma 1.5, (viii), may be taken to be the
positive homomorphism ‘‘f’’ of Lemma 1.5, (ii). In particular, we also obtain
homomorphisms f1 : P! J1 and f2 : P! J2. Now we apply Example 0.1,
where we take ‘‘P’’ to be P and ‘‘yP’’ to be J2. This yields an infinite
descending sequence

PJ J2 J � � �J iPJ � � �J 1PJ 0P

—where i A N—of submonoids of Pgp satisfying various properties as described
in Example 0.1. Suppose that, for i A N, iP is obtained as the bisecting monoid
of P at a positive homomorphism ic0 : P! N that is assigned the index ‘‘2’’.

Thus, for i A N, the log étale monomorphism

S log½ icf0;2g�q S log

of Lemma 1.5, (vii), (viii) [where we take ‘‘f0’’ to be ic0] factors through the
log étale monomorphism

S log½iþ1cf0;2g�q S log
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of Lemma 1.5, (vii), (viii) [where we take ‘‘f0’’ to be iþ1c0], as well as through
the log étale monomorphism

S log½ff0;2g�q S log

of Lemma 1.5, (vii), (viii) [where we take ‘‘f0’’ to be f0]. In particular, it follows
from the fact that S log½ff0;1g� �S log S log½ff0;2g� ¼ S log½ff0g� [cf. Lemma 1.5, (vii),

(viii)], together with the discussion of Example 0.1, that the fiber product
S log½ff0;1g� �S log S log½ icf0;2g� is empty.

Thus, in summary, if we take U log
q S log to be the morphism

S log½ff0;1g�q S log

and, for i A N, V
log
i q S log to be the morphism

S log½ icf0;2g�q S log

discussed above, then we obtain data as in assertion (i). Note, moreover, that it
follows immediately from the discussion of Example 0.1 that the natural map of
assertion (i) is surjective, as desired. This completes the proof of assertion (iii).

Finally, we observe that the su‰ciency (respectively, necessity) portion of
assertion (iv) follows formally from assertion (ii) (respectively, (iii)), together
with Proposition 1.4, (vi) (respectively, together with Proposition 1.7, applied to
T log). This completes the proof of assertion (iv). c

Proposition 2.4 (Characterization of scheme-like morphisms between min-
imal objects). Let h log : T log ! S log be a morphism between minimal objects of
SchlogðX logÞ. Set r ¼def rkðS logÞ A f0; 1g [cf. Proposition 1.6, (ii)]. Then h log is
scheme-like if and only if there exists a connected, submonic object Z log of
SchlogðX logÞ such that the domain of every minimal point of Z log is of rank r, and,
moreover, h log admits a factorization

T log ! Z log ! S log

as the composite of a minimal point T log
q Z log of Z log with a morphism

Z log ! S log that admits a section S log ! Z log [i.e., such that the composite
S log ! Z log ! S log is the identity morphism].

Proof. First, we observe that since the underlying morphism of schemes
T ! S necessarily arises from [i.e., by applying ‘‘Specð�Þ’’ to] a finite extension of
fields, the asserted necessity follows immediately by taking Z log ¼def AN

Z �Z S log

[i.e., N-dimensional a‰ne space over S log, for a suitable positive integer N].
Here, we note that the fact that ‘‘the domain of every minimal point of this Z log

is of rank r’’ follows immediately from Proposition 1.4, (vi). Thus, it remains
to verify su‰ciency. First, let us observe that it follows from the manifestly
constructible nature of the characteristic sheaf PZ [cf. also Propositions 1.4, (vi);
1.6, (i), (ii)] that the assumption that ‘‘the domain of every minimal point of Z log

is of rank r’’ implies that Z log itself is of rank r, and hence [cf. Lemma 1.9]
that the characteristic sheaf PZ is locally constant. Since the monoids 0 and N
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have no nontrivial automorphisms, we thus conclude that the characteristic sheaf
PZ is constant, with fibers isomorphic to the monoid 0 (respectively, N) if r ¼ 0
(respectively, r ¼ 1). The existence of the section S log ! Z log thus implies that
the morphism Z log ! S log is scheme-like. Since the monomorphism T log

q Z log

is also scheme-like [cf. Proposition 1.4, (vi)], we thus conclude that h log is
scheme-like, as desired. This completes the proof of su‰ciency and hence of
Proposition 2.4. c

Proposition 2.5 (Characterization of scheme-like morphisms between sub-
monic objects). Let f log : Z log ! Y log be a morphism between submonic objects
of SchlogðX logÞ. Then f log is scheme-like if and only if, for every minimal point

T log
q Z log of Z log, there exists a minimal point S log

q Y log of Y log and a scheme-
like morphism T log ! S log of SchlogðX logÞ that fit into a commutative diagram

T log
q Z log???y

???y f log

S log
q Y log

of objects of SchlogðX logÞ.

Proof. The asserted necessity is immediate from the definitions and Prop-
ositions 1.4, (vi), (vii); 1.6, (ii). The asserted su‰ciency follows immediately, in
light of the manifestly constructible nature of the characteristic sheaves PZ, PY ,
from the definitions and Propositions 1.4, (vi); 1.6, (i), (ii). c

Theorem 2.6 (Reconstruction of the scheme structure of submonic objects).

For i ¼ 1; 2, let X
log
i be a locally noetherian fs log scheme [cf. the discussion

entitled ‘‘Log schemes’’ in §0]. For i ¼ 1; 2, we shall write SchlogðX log
i Þ for the

category defined at the beginning of §1. Let

F : SchlogðX log
1 Þ !

@
SchlogðX log

2 Þ
be an [arbitrary!] equivalence of categories. Then:

(i) F preserves the following:
(i-a) monomorphisms;
(i-b) empty objects;
(i-c) connected objects;
(i-d) minimal objects;
(i-e) minimal points;
(i-f ) submonic one-pointed objects;
(i-g) ranks of minimal objects;
(i-h) SLEM morphisms;
(i-i) submonic objects;
(i-j) scheme-like morphisms between minimal objects;
(i-k) scheme-like morphisms between submonic objects;
(i-l) the submonic dimension of objects.
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(ii) For i ¼ 1; 2, let Y
log
i be an object of SchlogðX log

i Þ; write Yi for the

underlying scheme of Y
log
i . Suppose further that FðY log

1 Þ ¼ Y
log
2 . Thus, [cf. the

portion of (i) concerning (i-i)] Y log
1 is submonic if and only if Y

log
2 is. Suppose that

Y
log
i is submonic for i ¼ 1; 2. Then F induces an equivalence of categories

ðSchðY1Þ !@ Þ SchlogðY log
1 Þjsch-lk !

@
SchlogðY log

2 Þjsch-lk ð!
@

SchðY2ÞÞ
—where the equivalences in parentheses are the natural equivalences of Definition
1.1, (iv)—that is functorial [in the evident sense!] with respect to Y

log
1 , Y

log
2 .

Finally, the composite of the equivalences of categories in the above display induces,
by applying [4], Theorem 1.7, (ii), an isomorphism of schemes

Y1 !@ Y2

that is functorial [in the evident sense!] with respect to Y
log
1 , Y

log
2 .

Proof. First, we consider assertion (i). The preservation of (i-a) is a matter
of general nonsense. The preservation of (i-b) follows from Proposition 1.3, (i).
The preservation of (i-c) follows from Proposition 1.3, (ii). The preservation
of (i-d) and (i-e) follows immediately from the preservation of (i-a). The
preservation of (i-f ) follows immediately, in light of Proposition 1.8, from the
preservation of (i-e). The preservation of (i-g) follows immediately, in light of
Proposition 1.6, (iii), from the preservation of (i-d). The preservation of (i-h)
follows immediately from the preservation of (i-a) and (i-f ). The preservation of
(i-i) follows immediately, in light of Proposition 2.3, (iv), from the preservation of
(i-a), (i-b), (i-c), (i-e), and (i-h). The preservation of (i-j) follows immediately, in
light of Proposition 2.4, from the preservation of (i-c), (i-d), (i-e), (i-g), and (i-i).
The preservation of (i-k) follows immediately, in light of Proposition 2.5, from
the preservation of (i-e), (i-i), and (i-j). This completes the proof of assertion (i),
except for the verification of the preservation of (i-l). Assertion (ii) follows
immediately [i.e., in the spirit of [4], Corollary 2.15] from the portion of assertion
(i) concerning the preservation of (i-k). Here, we note that the functoriality
of the isomorphism of schemes in the final display in the statement of assertion
(ii) follows immediately from the characterization given in Proposition 1.11, (ii),
of the factorization discussed in Proposition 1.11, (i), together with the natural
equivalences of categories discussed in Proposition 1.11, (iii). Finally, the portion
of assertion (i) concerning the preservation of (i-l) follows from the portion of
assertion (i) concerning the preservation of (i-a), (i-i), together with the isomor-
phisms of schemes obtained in assertion (ii). c

Lemma 2.7 (Characterization of isomorphisms among positive homomor-
phisms). Let x : P! Q be a positive homomorphism between fs monoids such
that rkðPÞb rkðQÞ, and, moreover, the following condition is satisfied:

Every positive homomorphism f : P! N admits a factorization P! Q!
N as a composite of x with a positive homomorphism c : Q! N.

Then x is an isomorphism.
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Proof. First, let us observe that, by Lemma 1.5, (ii), there exists a positive

homomorphism fy : P! N. Next, let us observe that if p is a prime number,
then given a surjective homomorphism z : Pgp !! Fp, there exists a homomor-
phism z : Pgp ! Z whose composite with the natural surjection Z!! Fp is
equal to z. [Indeed, this follows immediately from the fact that Pgp is a finitely
generated free abelian group—cf. the discussion entitled ‘‘Generalities on mono-
ids’’ in §0.] In particular, it follows from the fact that P is a finitely generated

monoid that, for su‰ciently large n A N, the homomorphism ðzþ pn � ðfyÞgpÞ :
Pgp ! Z coincides with z when composed with the natural surjection Z!! Fp

and, moreover, determines a positive homomorphism f : P! N. In particular,
it follows from the hypotheses imposed on x that f admits a factorization
P! Q! N as a composite of x with a positive homomorphism c : Q! N.
Since the resulting composite Pgp ! Qgp ! Z!! Fp coincides with z, we thus
conclude, by allowing p and z to vary, that the reduction of the homomorphism
of finitely generated free abelian groups xgp : Pgp ! Qgp modulo any prime
number is injective, and, hence, since rkðPÞb rkðQÞ, that xgp : Pgp ! Qgp is an
isomorphism. That is to say, P and Q may be regarded as finitely generated
saturated monoids within a single Z-module Pgp !@ Qgp. In particular, it follows
from well-known properties of fs monoids [cf., e.g., [4], Lemma 2.5, (iv)] that the
hypotheses imposed on x imply that x is an isomorphism, as desired. c

Proposition 2.8 (Characterization of scheme-like morphisms between re-
duced, one-pointed, non-minimal objects). Let f log : Z log ! Y log be a morphism
between reduced, one-pointed, non-minimal objects of SchlogðX logÞ. Then f log is
scheme-like if and only if dimsmðZ logÞa dimsmðY logÞ, and, moreover, the following
condition is satisfied:

Let S log be a minimal object of SchlogðX logÞ, h log : S log ! Y log a mor-
phism of SchlogðX logÞ. Then there exists a commutative diagram of
morphisms of SchlogðX logÞ

T log ���! Z log???y
???y f log

S log ���!h log

Y log

in which the left-hand vertical arrow T log ! S log is a scheme-like mor-
phism between minimal objects of SchlogðX logÞ.

Proof. First of all, we observe that the asserted necessity follows imme-
diately from Proposition 1.10, together with the definition of the term ‘‘scheme-
like’’. Thus, it su‰ces to verify the su‰ciency of the condition that appears
in the statement of Proposition 2.8. To this end, let us first observe that it
follows [cf. Proposition 1.6, (ii)] from the assumption that Z log and Y log are non-
minimal that rkðZ logÞb 2, rkðY logÞb 2. Thus, it follows from Proposition 1.10
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that rkðZ logÞ ¼ dimsmðZ logÞ þ 1a dimsmðY logÞ þ 1 ¼ rkðY logÞ. Next, let us ob-
serve—i.e., by applying Lemma 1.5, (v), as in the proof of Proposition 1.6, (i)—
that the condition under consideration implies that the restriction to a geometric
point of Z log of the morphism of characteristic sheaves PY jZ ! PZ induced by
f log satisfies the condition discussed in Lemma 2.7. In particular, we conclude
from Lemma 2.7 that this morphism PY jZ ! PZ is, in fact, an isomorphism, and
hence that f log is scheme-like, as desired. c

Definition 2.9. (i) Let Z be a scheme. Then we shall refer to a point z of
the underlying topological space of Z as a locally closed point if z determines a
closed point of some open subscheme of Z. Write

LCPtðZÞ
for the set of locally closed points of Z.

(ii) Let Z log be an object of SchlogðX logÞ. For i ¼ 1; 2, let U
log
i be a

minimal object of SchlogðX logÞ and f
log
i : U log

i ! Z log an arrow of SchlogðX logÞ.
Then we shall say that f

log
1 and f

log
2 are point-equivalent if there exist a morphism

f
log
W : W log ! Z log and, for each i ¼ 1; 2, a morphism h

log
i : V log

i ! U
log
i between

minimal objects of SchlogðX logÞ such that W log is log-nodal, and, moreover, for

each i ¼ 1; 2, the composite morphism f
log
i � h log

i : V log
i ! Z log admits a facto-

rization V
log
i !W log ! Z log through f

log
W : W log ! Z log.

(iii) Let Z log be an object of SchlogðX logÞ whose underlying scheme we

denote by Z, z A LCPtðZ logÞ ¼def LCPtðZÞ. Then a monomorphism H log
q Z log

in SchlogðX logÞ will be called a point-hull at z if H log is one-pointed, and,
moreover, every morphism S log ! Z log in SchlogðX logÞ from a minimal object S log

to Z log that maps the unique point of the underlying scheme S of S log to z factors
[necessarily uniquely!] through the given monomorphism H log

q Z log. A point-
hull H log

q Z log at z will be called a minimal point-hull at z if every mono-
morphism H

log
1 q H log in SchlogðX logÞ for which the composite H

log
1 q H log

q

Z log is a point-hull at z is necessarily an isomorphism. An arrow of SchlogðX logÞ
which is a minimal point-hull at some element of LCPtð�Þ of the codomain of
the arrow will be referred to as a minimal point-hull. Thus, if Z log is one-pointed,
and one restricts one’s attention to monomorphisms with one-pointed domains,
then the notion of a point-hull (respectively, minimal point-hull) at z is identical
to the notion of a hull (respectively, minimal hull) [cf. Definition 1.1, (iii)].

Proposition 2.10 (Point-classes and minimal point-hulls). Let Z log be an
object of SchlogðX logÞ. For i ¼ 1; 2, let U log

i be a minimal object of SchlogðX logÞ
and f

log
i : U log

i ! Z log an arrow of SchlogðX logÞ. For i ¼ 1; 2, write Z, Ui for the
underlying schemes of Z log, U

log
i , respectively. Then:

(i) Z log is one-pointed if and only if the set LCPtðZ logÞ ¼ LCPtðZÞ is of
cardinality one.

(ii) Let z be a point of the underlying topological space of Z. Then the
following conditions are equivalent: (ii-a) z is locally closed; (ii-b) z appears as
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the image of a morphism U ! Z of SchðXÞ for some minimal object U [cf. [4],
Proposition 1.1, (ii)] of SchðXÞ; (ii-c) z appears as the image of a morphism

U log ! Z log of SchlogðX logÞ for some minimal object U log of SchlogðX logÞ.
(iii) Write zi for the image in Z via [the underlying morphism of schemes

associated to] f
log
i of the unique point of Ui. Then the arrows f

log
1 and f

log
2

are point-equivalent if and only if z1 ¼ z2. In particular, the notion of point-
equivalence determines an equivalence relation on the collection [i.e., which, strictly
speaking, is not necessarily a set!] of arrows in SchlogðX logÞ from minimal objects
of SchlogðX logÞ to Z log. Write

PtClðZ logÞ

for the set of equivalence classes of such arrows. We shall refer to an element of
PtClðZ logÞ as a point-class of Z log.

(iv) If f log : U log ! Z log is an arrow that determines a point-class of Z log,
then let us write Imð f logÞ for the image in Z via [the underlying morphism of

schemes associated to] f log of the unique point of the underlying scheme U of
U log. Then the assignment f log 7! Imð f logÞ determines a bijection of sets

PtClðZ logÞ !@ LCPtðZ logÞ ¼ LCPtðZÞ

that is functorial [in the evident sense] with respect to Z log.
(v) Let z A LCPtðZÞ. Write z log for the reduced, one-pointed object of

SchlogðX logÞ obtained by restricting the log structure of Z log to z. Then a
monomorphism h log : H log

q Z log in SchlogðX logÞ is a minimal point-hull at z if

and only if h log induces an isomorphism H log !@ z log.

Proof. First, we observe that assertion (i) follows immediately from the
various definitions involved [cf. also [4], Proposition 1.1, (i)]. Next, we consider
assertion (ii). First, we recall from [4], Proposition 1.1, (ii), that an object of
SchðX Þ is minimal if and only if it is reduced and one-pointed. Next, we recall
from Proposition 1.6, (ii), that a minimal object of SchlogðX logÞ is necessarily
reduced and one-pointed. Now the implication (ii-a)) (ii-b) follows immedi-
ately. In a similar vein, the implication (ii-a)) (ii-c) follows immediately, by
applying Proposition 1.6, (i). To verify the implications (ii-b)) (ii-a), (ii-c))
(ii-a), it su‰ces to verify that if U is a one-pointed object of SchðXÞ, then the
image via any morphism U ! Z of SchðXÞ of the unique point of U is a locally
closed point of Z. Note that, by considering the schematic closure of such a
morphism in a suitable a‰ne open of Z, we may assume without loss of
generality that U and Z are a‰ne, and that the morphism [of finite type!] U ! Z
has dense image. Since this image [which consists of a single point!] is neces-
sarily constructible, hence contains a dense open subset of the underlying topo-
logical space of Z, we thus conclude that we may assume, after replacing Z by a
suitable a‰ne open of Z, that the morphism U ! Z is surjective, i.e., that Z is
one-pointed. This completes the proof of assertion (ii).
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Next, we consider assertion (iii). Since minimal objects of SchlogðX logÞ are
necessarily one-pointed [cf. Proposition 1.6, (ii)], the necessity portion of the
asserted equivalence follows immediately from the various definitions involved.
Thus, it su‰ces to verify the su‰ciency portion of the asserted equivalence. To
this end, let us first observe that, since minimal objects of SchlogðX logÞ are
necessarily reduced [cf. Proposition 1.6, (ii)], we may assume without loss of
generality that Z log is reduced and one-pointed. Also, by base-changing to a
suitable finite extension of the field whose spectrum is Z, we conclude that we
may assume without loss of generality that f

log
1 and f

log
2 are log-like, and that

Z log is split. Thus, by considering a suitable splitting as in Lemma 1.5, (i), one
verifies immediately that, to complete the proof of su‰ciency, it su‰ces to verify
the following assertion concerning fs monoids:

Let P be an fs monoid. For i ¼ 1; 2, let fi : P! N be a positive
homomorphism of fs monoids. Then there exist an fs monoid Q of
rank two and a positive homomorphism c : P! Q of fs monoids such
that, for i ¼ 1; 2, the homomorphism 2 � fi : P! N [i.e., the composite
of fi with the positive homomorphism N! N given by multiplication
by 2] admits a factorization P! Q! N as the composite of c with
some positive homomorphism ci : Q! N.

This assertion concerning fs monoids may be verified as follows. For i ¼ 1; 2,
write N

gp
i JPgp for the kernel of the morphism f

gp
i : Pgp ! Z. If N

gp
1 ¼ N

gp
2 ,

then one verifies immediately that one obtains data as desired by considering
the factorization N! NlN! N [i.e., determined by the assignments N C 1 7!
ð1; 1Þ A NlN and NlN C ða; bÞ 7! aþ b A N] of the homomorphism N! N
given by multiplication by 2. Thus, we may assume without loss of generality
that N

gp
1 0N

gp
2 . Write Q for the saturation [cf. [4], Lemma 2.5, (ii)] of the

image of P in ðPgp=N gp
1 Þl ðPgp=N gp

2 Þ ðGZlZÞ. Thus, we obtain a natural
positive homomorphism of monoids c : P! Q such that, for i ¼ 1; 2, fi : P! N
admits a factorization P! Q! N as the composite of c with some positive
homomorphism ci : Q! N. Here, we note that the positivity of ci follows
immediately from the positivity of fi. Also, we observe that the positivity of ci

implies that the monoid Q has no nonzero invertible elements. We thus conclude
that Q is an fs monoid of rank two, as desired. This completes the proof of
assertion (iii). Assertion (iv) follows immediately from assertion (iii), together
with the equivalence (ii-a), (ii-c) of assertion (ii).

Finally, we consider assertion (v). First, we consider the su‰ciency portion
of the asserted equivalence. To verify this su‰ciency, it su‰ces to verify that the
natural monomorphism h log

z : z log q Z log [cf. Proposition 1.4, (vii)] is a minimal
point-hull at z. The fact that h log

z is a point-hull at z follows immediately from
the various definitions involved. Now suppose that h log

1 : H log
1 q z log is a mono-

morphism such that the composite h log
z � h

log
1 : H log

1 q Z log is a point-hull at z
[so both z log and H

log
1 are one-pointed ]. Then one verifies immediately that, by

applying Lemma 1.5, (v), as in the proof of Proposition 1.6, (i), it follows from

396 shinichi mochizuki



Proposition 1.4, (iii), and Lemma 2.7 that h
log
1 is scheme-like, and hence, by

Proposition 1.4, (v); [4], Proposition 1.1, (ii), that h
log
1 is an isomorphism, as

desired. Thus, to complete the proof of assertion (v), it su‰ces to verify the
necessity portion of the asserted equivalence. First, let us observe that it
follows from the existence of the natural monomorphism H

log
red q H log, together

with the definition of the notion of a minimal point-hull, that H log is reduced
and one-pointed. Thus, it follows immediately from Proposition 1.6, (i), that
h log induces a monomorphism H log

q z log. Since we have already verified that
h log
z is a minimal point-hull at z, we thus conclude that this monomorphism

H log
q z log is an isomorphism, as desired. This completes the proof of assertion

(v). c

Proposition 2.11 (Characterization of scheme-like morphisms between ar-
bitrary objects). Let f log : Z log ! Y log be a morphism between arbitrary objects
of SchlogðX logÞ. Then f log is scheme-like if and only if, for every minimal point-
hull h log : T log ! Z log, there exists a commutative diagram of morphisms of
SchlogðX logÞ

T log ���!h log

Z log???y
???y f log

S log ���! Y log

in which the lower horizontal arrow S log ! Y log is a minimal point-hull, and the
left-hand vertical arrow T log ! S log is a scheme-like morphism between reduced,
one-pointed objects of SchlogðX logÞ.

Proof. The asserted equivalence follows immediately, in light of the mani-
festly constructible nature of the characteristic sheaves PZ, PY , from Proposition
2.10, (v), together with the definition of the term ‘‘scheme-like’’. c

Corollary 2.12 (Conditional reconstruction of the scheme structure of
arbitrary objects). Suppose that we are in the situation of Theorem 2.6, and that
F satisfies the following condition:

(�nod) an object of SchlogðX log
1 Þ is log-nodal if and only if its image via F

is a log-nodal object of SchlogðX log
2 Þ.

Then:
(i) F preserves the following:

(i-a) point-equivalent pairs of arrows;
(i-b) the set-valued functor LCPtð�Þ [up to natural equivalence];
(i-c) arrows which are minimal point-hulls;
(i-d) scheme-like morphisms between arbitrary objects.
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(ii) For i ¼ 1; 2, let Y log
i be an object of SchlogðX log

i Þ; write Yi for the under-

lying scheme of Y
log
i . Suppose further that FðY log

1 Þ ¼ Y
log
2 . Then F induces an

equivalence of categories

ðSchðY1Þ !@ Þ SchlogðY log
1 Þjsch-lk !

@
SchlogðY log

2 Þjsch-lk ð!
@

SchðY2ÞÞ
—where the equivalences in parentheses are the natural equivalences of Definition
1.1, (iv)—that is functorial [in the evident sense!] with respect to Y

log
1 , Y

log
2 .

Finally, the composite of the equivalences of categories in the above display induces,
by applying [4], Theorem 1.7, (ii), an isomorphism of schemes

Y1 !@ Y2

that is functorial [in the evident sense!] with respect to Y
log
1 , Y

log
2 .

Proof. First, we consider assertion (i). The preservation of (i-a) follows
immediately, in light of the preservation of (i-d) asserted in Theorem 2.6, (i), from
the condition (�nod), together with the definition of the term ‘‘point-equivalent’’.
The prservation of (i-b) now follows from the preservation of (i-a), together
with the bijection of Proposition 2.10, (iv). The preservation of (i-c) then follows
from the preservation of (i-b) [cf. also the preservation of (i-a), (i-d) asserted in
Theorem 2.6, (i)], together with the equivalence of Proposition 2.10, (i). The
preservation of (i-d) follows, in light of the preservation of (i-c), from Propo-
sitions 2.8; 2.10, (v); 2.11 [cf. also the preservation of (i-d), (i-j), (i-l) asserted in
Theorem 2.6, (i)]. This completes the proof of assertion (i). Now assertion (ii)
follows immediately [i.e., in the spirit of Theorem 2.6, (ii); [4], Corollary 2.15]
from the portion of assertion (i) concerning the preservation of (i-d). Here, we
note that the functoriality of the isomorphism of schemes in the final display
in the statement of assertion (ii) follows immediately from the characterization
given in Proposition 1.11, (ii), of the factorization discussed in Proposition 1.11,
(i), together with the natural equivalences of categories discussed in Proposition
1.11, (iii). c

Section 3: Seamless partitions of orientable log schemes

In the present §3, we discuss the notion of a seamless partition of an orientable
log scheme. This notion leads naturally to a category-theoretic characterization
of log-nodal objects, which we apply to eliminate the dependence on the condition
‘‘(�nod)’’ in Corollary 2.12.

We maintain the notation of §2.

Definition 3.1. (i) Suppose that Y log is an object of SchlogðX logÞ. Then
we shall say that Y log is log-Dedekind if it satisfies the following conditions:

(i-a) dimsmðY logÞa 1;
(i-b) if Z log is a minimal object of SchlogðX logÞ such that there exists a

morphism Z log ! Y log in SchlogðX logÞ, then Z log is of rank one;
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(i-c) if Z log is a nonempty submonic object of SchlogðX logÞ, with un-
derlying scheme Z, such that there exists a SLEM morphism
Z log

q Y log in SchlogðX logÞ, then the closed subscheme Zred JZ is
regular and of positive dimension.

If y is a point of the underlying scheme Y of a log-Dedekind object Y log, and the
fiber of PY at some geometric point of Y that maps to y is of rank two, then we
shall say that y is a nodal point of Y log.

(ii) Suppose that Y log is a log-Dedekind object of SchlogðX logÞ. For i ¼ 1; 2,

let Z
log
i be a connected [hence nonempty], submonic object of SchlogðX logÞ and

f
log
i : Z log

i q Y log

a SLEM morphism. We shall say that f
log
1 and f

log
2 are submonically equivalent

if the fiber product Z
log
12 ¼

def
Z

log
1 �Y log Z

log
2 determined by f

log
1 and f

log
2 is

nonempty. [Here, we note that, for i ¼ 1; 2, the projection Z
log
12 ! Z

log
i , is

SLEM, hence, by Proposition 2.2, (ii), an open immersion, whose image is,
by condition (i-c), dense whenever it is nonempty.] One verifies immediately
that the notion of submonic equivalence determines an equivalence relation on the
collection [i.e., which, strictly speaking, is not necessarily a set!] of arrows of
SchlogðX logÞ which are SLEM morphisms from connected, submonic objects of
SchlogðX logÞ to Y log. Write

SmCpðY logÞ

for the set of equivalence classes of such arrows. We shall refer to an element of
SmCpðY logÞ as a submonic component of Y log.

(iii) Suppose that Y log is a log-Dedekind object of SchlogðX logÞ. If h log :
H log

q Y log is a monomorphism of SchlogðX logÞ, then we shall write

Chnðh logÞJ SmCpðY logÞ

for the subset of submonic components for which there exists a representative
arrow Z log

q Y log that admits a factorization Z log
q H log

q Y log through h log :
H log

q Y log. If CJ SmCpðY logÞ is a nonempty subset, then we shall refer to C
as a chain if there exists a SLEM morphism h log : H log

q Y log of SchlogðX logÞ
such that H log is connected [hence nonempty!], and C ¼ Chnðh logÞ. If CJ
SmCpðY logÞ is a subset, then we shall refer to C as an N-chain if there exists
a collection fCigi AN of chains Ci J SmCpðY logÞ such that C ¼6

i AN Ci, and
Ci JCiþ1 for all i A N.

Proposition 3.2 (First properties of log-Dedekind objects). Suppose that
Y log is a log-Dedekind object of SchlogðX logÞ. Then:

(i) Y log is of rankJ 2.
(ii) The non-nodal points of the underlying scheme Y of Y log form an open

subset of the underlying topological space of Y. Write Ysm JY for the corre-
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sponding open subscheme and Y log
sm for the log scheme obtained by restricting

the log structure of Y log to Ysm. Then the complement of Ysm in Y is a closed
subscheme of Y of dimension zero, and Y log

sm is submonic. We shall refer to Y log
sm

as the submonic locus of Y log.
(iii) Let Z log be a nonempty submonic object of SchlogðX logÞ and Z log

q Y log

a SLEM morphism. Then the closed subscheme Zred JZ of the underlying
scheme Z of Z log is regular and of dimension one, and Z log is of rank one. In
particular, [cf. Proposition 2.2, (i)] ðYsmÞred is regular and of dimension one, and
Y log

sm is of rank one.
(iv) Let f log : Z log

q Y log be a SLEM morphism from a connected, submonic
object Z log of SchlogðX logÞ to Y log. Then f log either admits a factorization
Z log

q Y log
sm q Y log as the composite of an open immersion Z log

q Y log
sm with the

natural monomorphism Y log
sm q Y log or maps the entire underlying scheme Z of

Z log to some nodal point y of Y log. In the former case, we shall say that f log

is non-nodal; in the latter case, we shall say that f log is nodal and lies over y.
We shall also apply this terminology ‘‘non-nodal’’/‘‘nodal’’ to the element of
SmCpðY logÞ determined by f log.

(v) Let y be a nodal point of Y log. Then the subset

SmCpðY logÞy J SmCpðY logÞ
of nodal elements that lie over y forms an N-chain. Moreover, every morphism
H log ! Y log in SchlogðX logÞ from a minimal object H log to Y log that maps the
unique point of the underlying scheme of H log to y factors through some repre-
sentative of an element of SmCpðY logÞy.

(vi) Every element g A SmCpðY logÞ admits a ‘‘maximal’’ representative arrow
f log : Z log

q Y log, i.e., a representative arrow such that every arrow U log
q Y log

of SchlogðX logÞ that is submonically equivalent to f log admits a factorization

U log
q Z log

q Y log

as the composite of some open immersion U log
q Z log with f log. If, moreover, g

is non-nodal, then such a maximal representative f log : Z log
q Y log arises from an

isomorphism of Z log onto some connected component of Y log
sm .

Proof. First, let us observe that the inequality dimsmðY logÞa 1 of Defini-
tion 3.1, (i-a), together with the restriction imposed by Definition 3.1, (i-b)
[cf. also Propositions 1.4, (iv); 1.6, (i)], imply that the integers ‘‘d’’ and ‘‘n’’ in
Proposition 1.10 satisfy the following conditions:

(�1) n A f1; 2g;
(�2) n ¼ 2) d ¼ 0;
(�3) n ¼ 1) da 1.

Assertion (i) thus follows from (�1) [cf. also Lemma 1.9]. Assertion (ii) follows
from (�1), (�2) [cf. also Lemma 1.9]. Assertion (iii) follows from (�1), (�3),
together with Definition 3.1, (i-c) [cf. also Proposition 2.2, (i)].
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Next, we consider assertion (iv). If y is a nodal point of Y log, then write
y log for the log scheme obtained by restricting the log structure of Y log to the
closed subscheme, equipped with the reduced induced scheme structure, of Y
determined by y. Write Z log

y ¼def Z log �Y log y log. Thus, the underlying scheme

Zy of Z log
y may be identified with the scheme-theoretic fiber of Z over y. Note

that if Zy ¼ j for every nodal point y of Y log, then f log admits a factorization

Z log
q Y log

sm q Y log as the composite of a monomorphism Z log
q Y log

sm with the
natural monomorphism Y log

sm q Y log; moreover, since f log is SLEM, it follows
immediately that the morphism Z log

q Y log
sm is SLEM and hence, by assertion (ii)

and Proposition 2.2, (ii), an open immersion. Thus, since, by assertion (iii), Zred

is regular and of dimension one, it follows immediately—i.e., by possibly replacing
Z log by the log scheme determined by a suitable dense open subscheme of Z—
that, to complete the proof of assertion (iv), it su‰ces to verify, under the
additional assumption that Z log

y is connected [hence nonempty] for some fixed

nodal point y of Y log, that dimðZyÞ ¼ 1. To this end, let us first observe that

the natural morphism Z log
y ! y log is SLEM. Since Z log

y is connected and [by

assertion (iii)] of rank one, it follows from Lemma 1.5, (v) [where we take ‘‘S log’’
to be y log], that the monomorphism Z log

y ! y log admits a factorization as a
composite of monomorphisms

Z log
y q y

log
Z q y log

—where y
log
Z is, in the notation of Lemma 1.5, (v), a log scheme of rank one of

the form ‘‘S log½x�’’; y
log
Z q y log is the composite monomorphism of Lemma 1.5,

(vi) [where we take ‘‘S log
þ ½x�q S log½x�’’ to be the identity morphism]. Since

Z log
y q y log is SLEM, it follows immediately that Z log

y q y
log
Z is SLEM and

hence, by Proposition 2.2, (ii), an open immersion. Since the underlying scheme

of y
log
Z is of dimension one [cf. Lemma 1.5, (iv), (v)], we thus conclude that

dimðZyÞ ¼ 1, as desired. This completes the proof of assertion (iv).
Next, we consider assertion (v). Write k for the residue field of Y at y,

S log ¼def Y log �Y SpecðkÞ [where the morphism implicit in the right-hand factor
of the fiber product is the tautological morphism SpecðkÞ ! Y associated to y].
Thus, S log is a log scheme of the sort that appears in Lemma 1.5, so, in the
following discussion, we shall apply the notational conventions introduced at
the beginning of Lemma 1.5. Write OŶY for the complete noetherian local ring
obtained by completing Y along y, ŶY ¼def SpecðOŶY Þ, ŶY log ¼def Y log �Y ŶY , ŷy for
the unique closed point of ŶY . Write OŶY sep for the completion of the strict

henselization of OŶY determined by k sep, ŶY sep ¼def SpecðOŶY sepÞ [so ŶY sep is equipped

with a natural action by Gk], ðŶY sepÞ log ¼def Y log �Y ŶY sep, ŷysep for the unique closed
point of ŶY sep.

Next, let us fix a chart P! OŶY sep of ðŶY sepÞ log that determines a ‘‘clean
chart’’ in the sense of [3], Definition 1.3. This chart thus determines a natural
isomorphism of the fiber at ŷysep of the monoid MŶY sep that defines the log structure
of ðŶY sepÞ log with the product P� O�

ŶY sep . In particular, the natural action of Gk

on this fiber determines an action of Gk on P� O�
ŶY sep [i.e., which is compatible
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with the factor f0g � O�
ŶY sep , but not necessarily compatible with the factor

P� f1g, of this product decomposition!], hence also on the groupification
Pgp � O�

ŶY sep of P� O�
ŶY sep . Note that since Y log is a log-Dedekind object of

SchlogðX logÞ, it follows immediately from assertion (ii) that the support of the
closed subscheme ŶY sep

� J ŶY sep determined by the ideal generated by the image via
the chart under consideration of Pnf0g is equal to f ŷysepg.

Next, let

QJPgp

be a finitely generated, saturated submonoid such that PJQ0Pgp. Write
GQ JGk for the open subgroup of elements that preserve Q [i.e., relative to
the natural action of Gk on the quotient ðPgp � O�

ŶY sepÞ=O�ŶY sep !
@

Pgp determined,

as discussed above, by the chart under consideration!]. Thus, the action of Gk

on Pgp � O�
ŶY sep determines an action of GQ JGk on the submonoid Q� O�

ŶY sep J
Pgp � O�

ŶY sep . Moreover, we assume further that one of the following [mutually
exclusive!] conditions holds:

(v-a) GQ ¼ Gk, and, moreover, the natural inclusion PJQ is a sum-
dominating homomorphism of fs monoids [cf. the discussion
entitled ‘‘Generalities on monoids’’ in §0].

(v-b) There exists a positive homomorphism x : P! N which induces a
surjection on groupifications xgp : Pgp !! Z such that Q coincides
with the saturation [cf. [4], Lemma 2.5, (ii)] of the submonoid of
Pgp generated by P and KerðxgpÞ.

Thus, even when GQ 0Gk [which implies that condition (v-b) holds], one verifies
immediately that the natural inclusion PJQ is a sum-dominating homomor-
phism. That is to say, the natural inclusion PJQ is a sum-dominating homo-
morphism, no matter which of the two conditions (v-a), (v-b) one assumes.

Next, let us observe that the inclusion P ,! Q determines a log étale mono-
morphism

Z log½Q� ¼def SpecðOŶY sep ½Q�Þ log ! Z log½P� ¼def SpecðOŶY sep ½P�Þ log

[cf. the construction discussed in Proposition 1.4, (ii), as well as [1], Proposition
3.4]. Thus, one verifies immediately that the actions [determined, as discussed
above, by the chart under consideration!] of Gk on P� O�

ŶY sep and of GQ on
Q� O�

ŶY sep determine, respectively, actions of Gk on Z log½P� and GQ on Z log½Q�.
Moreover, the chart P! OŶY sep under consideration determines a tautological Gk-

equivariant morphism ðŶY sepÞ log ! Z log½P� and hence a fiber product [of fs log
schemes]

ðẐZ sepÞ log ¼def ðŶY sepÞ log �Z log½P� Z
log½Q�

equipped with a natural action by GQ. This natural GQ-action in turn deter-
mines descent data for the projection morphism ðẐZ sepÞ log ! ðŶY sepÞ log, which may
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be used to descend this projection morphism to a log étale monomorphism

ẐZ log ! ŶY
log
Q , where we write ŶYQ ! ŶY for the finite étale covering corresponding

to the open subgroup GQ JGk, ŶY
log
Q ¼def ŶY log �ŶY ŶYQ.

Next, let us observe that since Y log is a log-Dedekind object of SchlogðX logÞ
[or, equivalently, of SchlogðY logÞ], it follows immediately from assertions (ii) and
(iii) that any minimal object of SchlogðẐZ logÞ is of rank one. Thus, since the
inclusion PJQ is sum-dominating, it follows from the final portion of Lemma
1.9 that any regular function on the underlying scheme ẐZ sep of ðẐZ sepÞ log that
arises [i.e., via the various charts implicit in the above discussion] from an
element A Pnf0g necessarily vanishes at every point of ẐZ sep, hence [since ẐZ sep is
noetherian] is necessarily nilpotent. Since, as observed above, the support of

the closed subscheme ŶY sep
� J ŶY sep is equal to f ŷysepg, we thus conclude that

the natural morphism ẐZ sep ! ŶY sep factors through a closed subscheme of ŶY sep

whose support is equal to f ŷysepg. This in turn implies that, if we write ẐZ for the
underlying scheme of ẐZ log, then the composite morphism ẐZ ! ŶYQ ! ŶY factors
through a closed subscheme of ŶY whose support is equal to f ŷyg.

Next, I claim that the composite morphism

ẐZ log ! ŶY
log
Q ! ŶY log

is a log étale monomorphism. Indeed, in light of what has already been verified,
it su‰ces to prove, in the case where GQ 0Gk [which implies that condition (v-b)
holds], that this composite morphism is a monomorphism. Since the morphism

ẐZ log ! ŶY
log
Q is already known to be a monomorphism, and the morphism ŶY

log
Q !

ŶY log is a scheme-like morphism whose underlying morphism of schemes is finite
étale, one verifies immediately that to complete the proof of the claim, it su‰ces
to verify [cf. the argument applied in the proof of Lemma 1.5, (vi); the fact that
the composite morphism ẐZ ! ŶYQ ! ŶY factors through a closed subscheme of ŶY
whose support is equal to f ŷyg] that the base-change of the morphism ẐZ log ! ŶY log

via the natural morphism S log ! ŶY log is a monomorphism. On the other hand,
one verifies immediately that this base-changed morphism ẐZ log �ŶY log S log ! S log

may be identified with the morphism ‘‘S log½x� ! S log’’ of Lemma 1.5, (vi) [where
the objects ‘‘x’’, ‘‘H’’ of Lemma 1.5, (vi), correspond, respectively, to x and GQ

in the present discussion; we observe that it follows immediately from condition
(v-b) that ‘‘Xþ ¼ X’’]. Thus, the fact that this base-changed morphism ẐZ log �ŶY log

S log ! S log is a monomorphism follows from Lemma 1.5, (vi). This completes
the proof of the claim.

Thus, in summary, the composite morphism ẐZ log ! ŶY log ! Y log may be re-
garded as a log étale monomorphism of SchlogðY logÞ, or, indeed, of SchlogðX logÞ.
In the following, we shall use the notation

f log : Z log ! Y log

to denote this composite morphism. Moreover, one computes easily that, if we
write Z for the underlying scheme of Z log, then Zred �ŶYQ

ŶY sep may be identified
with the reduced closed subscheme of Specðk sep½Q�Þ determined by forming the
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zero locus of the set of functions Pnf0gJQ. Thus, if condition (v-a) holds, then
one verifies immediately, by applying an isomorphism Qpf !@ Qb0 lQb0 as in the
discussion entitled ‘‘Rank two fs monoids’’ in §0 [cf. also Lemma 1.5, (iv)], that
Zred �ŶYQ

ŶY sep may be regarded as the codomain of a finite surjective morphism

whose domain consists of two copies of the a‰ne line over k sep glued together at
a single point, hence, in particular, is connected. On the other hand, if condition
(v-b) holds, then one verifies immediately that Zred �ŶYQ

ŶY sep is a one-dimensional

torus [cf. the situation discussed in Lemma 1.5, (iv)], hence, in particular, is
connected.

Thus, in summary, the morphism f log : Z log ! Y log is a log étale mono-
morphism with connected domain such that the resulting chain

Chnð f logÞJ SmCpðY logÞ
is contained in SmCpðY logÞy. Now we consider the monoids constructed in
Example 0.2, where we allow n A N to vary. Then it follows immediately from
the discussion of Example 0.2 that given any element g A SmCpðY logÞy, it holds

that g A Chnð f logÞ, if, in the notation of Example 0.2, we take Q ¼def nP—a
submonoid which, as discussed in Example 0.2, may be constructed in such a way
that condition (v-a) holds—for n su‰ciently large.

Finally, let H log ! Y log be a morphism in SchlogðX logÞ from a minimal
object H log to Y log that maps the unique point of the underlying scheme H of

H log to y. Thus, if we regard H as the spectrum of a finite subextension of k in
the perfection of k sep, then the morphism H log ! Y log determines, by considering
the induced morphism on log structures, a positive homomorphism x : P! N and
submonoid QJPgp that satisfy condition (v-b). Moreover, it follows immedi-
ately from the construction of f log that Z log is submonic [so f log may be regarded
as a representative of an element of SmCpðY logÞy], and that the morphism
H log ! Y log factors through f log. This completes the proof of assertion (v).

Finally, we consider assertion (vi). If g is non-nodal, then assertion (vi)
follows immediately from assertions (iii) and (iv). Thus, we may assume without
loss of generality that g is nodal. Then assertion (vi) follows immediately by
gluing, in the notation of Definition 3.1, (ii), the various Z

log
i q Y log that

constitute an element of SmCpðY logÞ along the open immersions Z
log
12 q Z

log
i .

Here, we note that it follows immediately from the fact that the log scheme y
log
Z

that appeared in the proof of assertion (iv) is noetherian that this gluing process
terminates after a finite number of steps. This completes the proof of assertion
(vi). c

Definition 3.3. Suppose that Y log is a connected, non-submonic, log-
Dedekind object of SchlogðX logÞ. Let g A SmCpðY logÞ. Write

MonoðY logÞ

for the full subcategory of SchlogðY logÞ determined by the arrows H log ! Y log of

SchlogðX logÞ which are monomorphisms in SchlogðX logÞ.

404 shinichi mochizuki



(i) Let C1;C2 J SmCpðY logÞ be chains. Then we shall say that the pair of
chains fC1;C2g forms a partition at g if the chains C1, C2 satisfy the following
conditions:

(i-a) C1 UC2 ¼ SmCpðY logÞ, C1 VC2 ¼ fgg;
(i-b) for i ¼ 1; 2, the subset CinfggJ SmCpðY logÞ is an N-chain [hence

nonempty];
(i-c) the N-chains of (i-b) are ‘‘maximal ’’ in the sense that every N-chain

CJ SmCpðY logÞ such that g B C is contained in Ci for some
i A f1; 2g;

(i-d) if, for i ¼ 1; 2, we write Ci for the subfunctor of the contravariant
functor determined by the terminal object [i.e., Y log] of MonoðY logÞ
that consists of objects h log : H log

q Y log of MonoðY logÞ such that
every composite morphism H log

� q H log
q Y log, where H log

� q H log

is a minimal point of H log, factors through some representative of
an element A Ci ðJ SmCpðY logÞÞ, then Ci is representable by an
object h

log
i : Y log

i q Y log of MonoðY logÞ.

We shall say that Y log is orientable if Y log admits a partition at every element of
SmCpðY logÞ.

(ii) Let fC1;C2g be a partition at g. Suppose that h log
1 , h log

2 are as in (i-d).
Then we shall say that the partition fC1;C2g is seamless if the following
condition is satisfied:

a monomorphism h log : H log
q Y log in SchlogðX logÞ is an isomorphism if

and only if, for i ¼ 1; 2, the projection H log �Y log Y
log
i ! Y

log
i associated

to the fiber product determined by h log and h
log
i is an isomorphism.

We shall say that Y log is homogeneous if Y log is orientable, and, moreover, no
partition at an element A SmCpðY logÞ is seamless.

Remark 3.3.1. In the situation of Definition 3.3, (i-d), we observe that it
follows immediately from Proposition 3.2, (v), (vi), that [the underlying morphism
of schemes of ] the morphism

h
log
1

a
h
log
2 : Y log

1

a
Y

log
2 ! Y log

is surjective.

Proposition 3.4 (First properties of partitions). (i) Suppose that Y log is an
orientable object of SchlogðX logÞ. Let fC1;C2g be a partition at an element
g A SmCpðY logÞ. Then, up to a possible permutation of the indices ‘‘1’’, ‘‘2’’,
every partition at g coincides with fC1;C2g.

(ii) Suppose that Y log is an orientable object of SchlogðX logÞ. Let fC1;C2g
be a partition at a non-nodal element g A SmCpðY logÞ; h

log
1 : Y log

1 q Y log, h
log
2 :

Y
log
2 q Y log monomorphisms as in Definition 3.3, (i-d). Then, for i ¼ 1; 2,
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h
log
i : Y log

i q Y log is an open immersion, and the fiber product Y
log
1 �Y log Y

log
2

determined by h
log
1 and h

log
2 is a maximal representative for g, i.e., in the sense of

Proposition 3.2, (vi). In particular [cf. Remark 3.3.1], the partition fC1;C2g is
seamless.

(iii) Suppose that Y log is a homogeneous object of SchlogðX logÞ. Then Y log is
one-pointed, and Y log

sm is empty.
(iv) Suppose that Y log is a log-nodal object of SchlogðX logÞ. Then Y log is

homogeneous, hence, in particular, orientable. Moreover, relative to the nota-
tional conventions introduced in Definition 1.1, (i), SmCpðY logÞ may be naturally
identified with the set of positive homomorphisms x : PY ! N such that x induces
a surjection on groupifications xgp : Pgp

Y !! Z.
(v) Suppose that Y log is a reduced, one-pointed, non-split object of rank two

of SchlogðX logÞ. Then Y log is log-Dedekind, but not orientable. In particular,
Y log is not homogeneous. If, moreover, Y ¼ SpecðkY Þ for some field kY , and kZ

is a finite Galois extension of kY such that Z log ¼def Y log �kY kZ is log-nodal, then
SmCpðY logÞ may be naturally identified with the set of GalðkZ=kY Þ-orbits of the
set SmCpðZ logÞ [i.e., which was described explicitly in (iv)].

Proof. Assertion (i) follows, by applying entirely formal set-theoretic con-
siderations, from Definition 3.3, (i-a), (i-b), (i-c). Next, we consider assertion (ii).

If one restricts the morphisms h
log
i : Y log

i q Y log to the open subscheme Ysm JY
[cf. Proposition 3.2, (ii)], then one verifies immediately that the corresponding
‘‘restrictions’’ [in the evident sense] to Ysm of the properties asserted in assertion
(ii) follow immediately from Proposition 3.2, (vi). Next, let y be a nodal point of

Y log. Then, since g is non-nodal, it follows immediately from Propositions 1.6,
(i); 3.2, (iv), (v); Definition 3.3, (i-a), (i-c), (i-d), that there exists a j A f1; 2g
such that, if i ¼ j (respectively, i0 j), then SmCpðY logÞy JCi (respectively,

SmCpðY logÞy VCi ¼ j), and, moreover, the restriction of h log
i to the formal scheme

obtained by completing Y along y is an isomorphism (respectively, has empty
domain). Thus, it follows immediately [cf. Proposition 3.2, (ii)] that there exists a
Zariski open neighborhood U of y in Y such that, for i ¼ 1; 2, the restriction
h
log
i jU of h

log
i to U is scheme-like, and, moreover, the underlying morphism of

schemes associated to h
log
i jU is an étale monomorphism [cf. Proposition 1.4, (v)],

hence, by elementary scheme theory, an open immersion, whose image contains y
if i ¼ j. The seamlessness of the partition fC1;C2g thus follows from elementary
scheme theory [i.e., an easy case of ‘‘Zariski descent’’]. This completes the proof
of assertion (ii).

Next, we consider assertion (iii). First, let us observe that it follows for-
mally from assertion (ii) that every submonic component of a homogeneous object
of SchlogðX logÞ is necessarily nodal. It thus follows formally [cf. Proposition 3.2,
(vi)] that Y log

sm is empty and hence, by Proposition 3.2, (ii), that Y is of dimension
zero. Since homogeneous objects of SchlogðX logÞ are, by definition, connected
[hence nonempty], we thus conclude that Y log is one-pointed. This completes the
proof of assertion (iii).
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Next, we consider assertion (iv). First, let us observe that Y log satisfies the
hypotheses imposed on the log scheme ‘‘S log’’ of Lemma 1.5. Thus, Lemma 1.5,
(iv), (v), which we apply in the case where, in the notation of loc. cit., ‘‘Q’’ is of
rank one, yields a log étale monomorphism ‘‘S log½x�q S log’’, whose domain is
connected and submonic. In particular, it follows immediately from the existence
and functorial interpretation [cf. Lemma 1.5, (iv), (v)] of such monomorphisms
‘‘S log½x�q S log’’ that Y log is log-Dedekind [cf. Propositions 1.4, (vi); 2.2, (ii)].
Next, for simplicity, let us write P ¼def PY . Then observe that, since Y log is split,
it follows immediately from the various definitions involved that any element
g A SmCpðY logÞ determines—i.e., by considering the morphism induced on log
structures by a representative of g [cf. Proposition 1.4, (iii)]—a positive homo-
morphism xg : P! N such that xg induces a surjection on groupifications
xgp
g : Pgp !! Z. Moreover, it follows immediately from Proposition 3.2, (vi),

together with the various properties of the monomorphisms ‘‘S log½x�q S log’’
discussed in Lemma 1.5, (v), that the assignment

g 7! xg

just discussed determines a natural bijection between SmCpðY logÞ and the set of
positive homomorphisms x : P! N such that x induces a surjection on group-
ifications xgp : Pgp !! Z. In the following, we shall apply this natural bijection
to identify these two sets.

Next, let g A SmCpðY logÞ. Write f0 : P! J0 ¼def N for the element xg dis-
cussed above. In the notation of the discussion entitled ‘‘Rank two fs monoids’’
in §0, for i ¼ 1; 2, let us write fi : P! Ji for the associated positive homo-
morphism of fs monoids [which is well-defined, up to possible permutation of
the indices ‘‘1’’ and ‘‘2’’] and Ci J SmCpðY logÞ for the subset of elements
d A SmCpðY logÞ such that xd : P! N factors through either f0 or fi. Then I
claim that

fC1;C2g is a partition at g which is not seamless.

Indeed, let us first observe that condition (i-a) of Definition 3.3 follows imme-
diately from the discussion of bisecting monoids in §0. Next, let us observe that,
if we take the log scheme ‘‘S log’’ in Lemma 1.5 to be Y log, then it follows, by
applying Lemma 1.5, (vii), (viii), to f0, that, for i ¼ 1; 2, the log étale mono-

morphism ‘‘S log½ff0; ig�q S log’’ yields an object h log
i : Y log

i q Y log as in condition

(i-d) of Definition 3.3. Next, we verify condition (i-c) of Definition 3.3. To this
end, suppose that CJ SmCpðY logÞnfgg is a chain that intersects both C1nfgg and
C2nfgg. Then it follows immediately from the connectedness assumption in the
definition of a chain [cf. Definition 3.1, (iii)], together with Proposition 1.4, (iii);
Lemma 1.9, that there exists a rank two fs monoid P� that arises as a submonoid
of Pgp that contains P and, moreover, for i ¼ 1; 2, admits a homomorphism
ci : P

� ! N whose restriction to P determines an element of Cinfgg. Moreover,
it follows immediately from the description given above of SmCpðY logÞ [i.e., by
considering suitable minimal points—cf. also Proposition 2.2, (ii)] that P� may
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be chosen so that any positive homomorphism P� ! N that induces a surjection
on groupifications determines an element of C. On the other hand, it follows
immediately from the ‘‘continuity property’’ of bisecting monoids discussed in
§0 that f0 extends to a positive homomorphism P� ! N and hence that g A C, a
contradiction. This completes the verification of condition (i-c) of Definition
3.3. Next, we observe that condition (i-b) of Definition 3.3—i.e., the fact
that, for i ¼ 1; 2, Cinfgg is an N-chain—follows immediately by considering the
log étale monomorphisms ‘‘S log½ff0; ig�q S log’’ that arise by applying Lemma 1.5,
(vii), (viii) [for an appropriate choice of the indices ‘‘1’’ and ‘‘2’’], to a sequence of
bisecting monoids as in Example 0.1, where we take ‘‘PJyP’’ to be the inclusion
of monoids PJ Ji that appears in the present discussion. This completes the
proof of the fact that fC1;C2g is a partition at g. The fact that this partition
is not seamless follows immediately from the existence of the log étale mono-
morphism ‘‘S log½ff0;1;2g�q S log’’ that arises by applying Lemma 1.5, (vii), (viii),
to f0. This completes the proof of the claim. Now it follows formally that
Y log is homogeneous. This completes the proof of assertion (iv).

Finally, we consider assertion (v). First, we observe that the fact that Y log

is log-Dedekind follows immediately from assertion (iv), via a routine étale de-
scent argument; the description given in the statement of assertion (v) of the
set SmCpðY logÞ also follows immediately, in light of the various definitions
involved, via a routine étale descent argument [cf. also Proposition 3.2, (vi)]. Now
let d A SmCpðY logÞ be an element that arises from a GalðkZ=kY Þ-invariant ele-

ment g A SmCpðZ logÞ. Here, we note that the existence of such an element of
SmCpðZ logÞ follows immediately from the description of SmCpðZ logÞ given in
assertion (iv), together with Lemma 1.5, (ii), which implies the existence of a

suitable positive homomorphism xg : P ¼
def

PZ ! N. Then to complete the proof
that Y log is not orientable, it su‰ces to verify that Y log does not admit a partition
at d. Moreover, to verify that Y log does not admit a partition at d, it su‰ces, in
light of conditions (i-b), (i-c) of Definition 3.3, to show that SmCpðY logÞnfdg is
an N-chain.

To this end, we consider the sequence of bisecting monoids fnPgn AN of
Example 0.1, where we take ‘‘PJyP’’ to be one of the two bisecting monoids of
P at xg. Thus, the homomorphism ‘‘yf’’ of Example 0.1 corresponds to xg in
the present discussion. Now let us consider the log étale monomorphisms

‘‘S log½ff0;1g�q S log’’

that arise by applying Lemma 1.5, (vii), (viii), (ix), where we take the log scheme
‘‘S log’’ of loc. cit. to be Y log, and we take ‘‘f1 : P! J1’’ to be the inclusion
PJ nP, for n A N. Here, we observe that if z : P! N and s are as in the
condition of the display of Lemma 1.5, (ix), and s acts nontrivially on P, then it
follows immediately from the GalðkZ=kY Þ-invariance of xg [i.e., ‘‘yf’’] that s acts
nontrivially on Kerðxgp

g Þ ðGZÞ, and hence [since both z and z � s are assumed to
factor through J1 and hence through ‘‘yP’’] that zgp vanishes on Kerðxgp

g Þ; but
this implies that we may assume without loss of generality that z ¼ xg, which in
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turn implies [cf. Example 0.1] that zgpðJ1Þ ¼ xgp
g ðJ1ÞJZ contains both positive

and negative elements, in contradiction to the assumptions imposed on z. That is
to say, the condition of the display of Lemma 1.5, (ix), is satisfied.

Thus, in summary, we obtain a collection

fZ log
n q Y loggn AN

of log étale monomorphisms with connected domains [cf. Lemma 1.5, (vii), (viii)]
such that [cf. the discussion of Example 0.1] d B ChnðZ log

n q Y logÞJ SmCpðY logÞ,
and, moreover, 6

n AN ChnðZ log
n q Y logÞ ¼ SmCpðY logÞnfdg. This completes the

proof of the fact that SmCpðY logÞnfdg is an N-chain and hence of assertion (v).
c

Proposition 3.5 (Characterization of log-nodal objects).
(i) Suppose that Y log is nonempty object of SchlogðX logÞ. Then Y log is one-

pointed if and only if the following condition is satisfied:

For i ¼ 1; 2, let U
log
i be a minimal object of SchlogðX logÞ and f

log
i :

U
log
i ! Y log an arrow of SchlogðX logÞ. Then there exist a morphism

f
log
W : W log ! Y log and, for each i ¼ 1; 2, a morphism h

log
i : V log

i ! U
log
i

between minimal objects of SchlogðX logÞ such that W log is homogeneous,
and, moreover, for each i ¼ 1; 2, the composite morphism f

log
i � h log

i :

V
log
i ! Y log admits a factorization V

log
i !W log ! Y log through f

log
W :

W log ! Y log.

(ii) Suppose that Y log is an object of SchlogðX logÞ. Then Y log is log-nodal
if and only if Y log is homogeneous, and the identity morphism Y log ! Y log is a
minimal point-hull in SchlogðX logÞ.

Proof. First, we consider assertion (i). Since, by Proposition 3.4, (iii),
homogeneous objects are one-pointed, one verifies immediately from the su‰cency
portion of Proposition 2.10, (iii), that the condition under consideration implies
that PtClðY logÞ is of cardinality one, and hence, by Proposition 2.10, (i), (iv), that
Y log is one-pointed, as desired. Now suppose that Y log is one-pointed. Then, by
Proposition 2.10, (i), (iv), it follows that PtClðY logÞ is of cardinality one. Since,
by Proposition 3.4, (iv), log-nodal objects are homogeneous, we thus conclude
from the definition of the notion of ‘‘point-equivalence’’ that the condition under
consideration is satisfied. This completes the proof of assertion (i).

Next, we consider assertion (ii). The necessity portion of assertion (ii)
follows immediately from Propositions 2.10, (v); 3.4, (iv). The su‰ciency portion
of assertion (ii) follows immediately, in light of the definition of the term
‘‘homogeneous’’, from Propositions 2.10, (v); 3.2, (i); 3.4, (v). This completes the
proof of assertion (ii). c

Theorem 3.6 (Reconstruction of the scheme structure of arbitrary objects).

For i ¼ 1; 2, let X
log
i be a locally noetherian fs log scheme [cf. the discussion
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entitled ‘‘Log schemes’’ in §0]. For i ¼ 1; 2, we shall write SchlogðX log
i Þ for the

category defined at the beginning of §1. Let

F : SchlogðX log
1 Þ !

@
SchlogðX log

2 Þ

be an [arbitrary!] equivalence of categories. Then:
(i) F preserves the following:

(i-a) log-Dedekind objects;
(i-b) the set SmCpð�Þ associated to a log-Dedekind object;
(i-c) the subsets of the set SmCpð�Þ of (i-b) which are [N-]chains;
(i-d) partitions at elements of the set SmCpð�Þ of (i-b);
(i-e) orientable objects;
(i-f ) homogeneous objects;
(i-g) one-pointed objects;
(i-h) point-hulls with one-pointed codomains;
(i-i) minimal point-hulls with one-pointed codomains;
(i-j) log-nodal objects.

(ii) For i ¼ 1; 2, let Y log
i be an object of SchlogðX log

i Þ; write Yi for the under-

lying scheme of Y
log
i . Suppose further that FðY log

1 Þ ¼ Y
log
2 . Then F induces an

equivalence of categories

ðSchðY1Þ !@ Þ SchlogðY log
1 Þjsch-lk !

@
SchlogðY log

2 Þjsch-lk ð!
@

SchðY2ÞÞ

—where the equivalences in parentheses are the natural equivalences of Definition
1.1, (iv)—that is functorial [in the evident sense!] with respect to Y

log
1 , Y

log
2 .

Finally, the composite of the equivalences of categories in the above display induces,
by applying [4], Theorem 1.7, (ii), an isomorphism of schemes

Y1 !@ Y2

that is functorial [in the evident sense!] with respect to Y
log
1 , Y

log
2 .

Proof. First, we consider assertion (i). The preservation of (i-a) follows
immediately from the preservation of (i-b), (i-d), (i-g), (i-h), (i-i), (i-l) asserted in
Theorem 2.6, (i), together with the isomorphisms of schemes obtained in Theorem
2.6, (ii). The preservation of (i-b) follows immediately from the preservation
of (i-b), (i-c), (i-h), (i-i) asserted in Theorem 2.6, (i). The preservation of (i-c)
follows immediately, in light of the preservation of (i-b), from the preservation
of (i-c), (i-h) asserted in Theorem 2.6, (i). The preservation of (i-d) follows
immediately, in light of the preservation of (i-a), (i-b), (i-c), from the preservation
of (i-a), (i-c), (i-e), (i-i) asserted in Theorem 2.6, (i). The preservation of (i-e)
follows formally from the preservation of (i-b), (i-d). The preservation of (i-f )
follows formally from the preservation of (i-b), (i-d), (i-e), together with the
preservation of (i-a) asserted in Theorem 2.6, (i). The preservation of (i-g)
follows immediately, in light of the preservation of (i-f ) and the characteriza-
tion given in Proposition 3.5, (i), from the preservation of (i-b), (i-d) asserted in
Theorem 2.6, (i). The preservation of (i-h), (i-i) follows immediately, in light of
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the preservation of (i-g), from the preservation of (i-a), (i-d) asserted in Theorem
2.6, (i). The preservation of (i-j) follows immediately from the preservation
of (i-f ), (i-i), together with the characterization given in Proposition 3.5, (ii).
Finally, assertion (ii) follows formally, in light of the portion of assertion (i)
concerning the preservation of (i-j), from Corollary 2.12, (ii). c

It remains to reconstruct, in a category-theoretic fashion, the log structures of
the various log schemes under consideration. The approach taken in the present
paper is essentially similar to the approach taken in [4], but is formulated in a
slightly di¤erent way. We begin by introducing notation as in the discussion
preceding [4], Lemma 2.16: Write A1

Z ¼ SpecðZ½t�Þ [where t is an indeterminate]

for the a‰ne line over Z; A log
Z for the a‰ne line A1

Z over Z equipped with the log
structure determined by the divisor VðtÞ [i.e., ‘‘the origin’’]; expA : A log

Z ! AZ for
the natural morphism determined by ‘‘forgetting the log structure’’;

expY log : A
log
Y log ! AY log

for the ‘‘exponentiation morphism’’ obtained by base-changing expA via the natural
morphism Y log ! SpecðZÞ;

A�Y log ,! AY log

for the open immersion determined by the complement of the origin of AY log ; A�Y ,
AY for the underlying schemes of A�Y log , AY log ;

0Y : Y ! AY ; 1Y : Y ! AY

for the sections determined by the assignments t 7! 0, t 7! 1. Thus, the map
induced by expY log on Y log-valued points may be naturally identified with expY :
MY ! OY . Moreover, one verifies easily that the morphism AZ �Z AZ ! AZ

that defines the multiplication operation on the ring scheme AZ ! SpecðZÞ
determines a morphism of log schemes over Y log

A
log
Y log �Y log A

log
Y log ! A

log
Y log

that induces, i.e., on Y log-valued points, the monoid operation on MY . In the
following,

we shall always regard AY log as being equipped with the ‘‘ring log
scheme’’ structure—i.e., the ring object structure in the category of log
schemes—determined by the ring scheme structure of AZ ! SpecðZÞ.

One verifies immediately that any automorphism of the log scheme AY log that
lies over the identity automorphism of Y log and is compatible with the ring
log scheme structure of AY log is necessarily equal to the identity automorphism.
Finally, if Y log is an object of SchlogðX logÞ, then we observe that expY log :
A

log
Y log ! AY log may be regarded, in a natural way, as an arrow between objects of

SchlogðX logÞ.
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Proposition 3.7 (Categories of quasi-exponentiation morphisms). We main-
tain the notation of the above discussion. Suppose that Y log is an object of
SchlogðX logÞ. Thus, AY log may be regarded, in a natural way, as an object of
SchlogðX logÞ. Write

QExpðY logÞJ SchlogðAY logÞ
for the full subcategory of SchlogðAY logÞ consisting of objects f log : Z log ! AY log

[i.e., ‘‘quasi-exponentiation morphisms’’] that satisfy the following conditions:

(a) the morphism Z log ! Y log determined by f log is log smooth;
(b) f log is log-like, i.e., induces an isomorphism f : Z !@ AY between the

underlying schemes of Z log, AY log ;
(c) the base-change of f log via the open immersion A�Y log ,! AY log is an

isomorphism;
(d) if

T log ���! Z log ���!f log

AY log???yg log

???y
S log ���! Y log

is a commutative diagram of morphisms of SchlogðX logÞ in which
the horizontal arrows of the square are minimal point-hulls, and
the resulting fiber product T log �A

Y log
A�Y log is the empty object of

SchlogðX logÞ, then g log is not an isomorphism, and, moreover, if S log

is not a minimal object of rank zero, then, for some reduced, one-
pointed object W log of SchlogðX logÞ, there exist two distinct mor-
phisms h

log
1 ; h log

2 : W log ! T log such that the two resulting composite
morphisms g log � h log

1 ; g log � h log
2 : W log ! T log ! S log coincide and are

scheme-like;
(e) there exists a Y log-morphism Z log �Y log Z log ! Z log in SchlogðX logÞ

for which the induced morphism on underlying schemes coincides,
relative to the isomorphism f : Z !@ AY of condition (b), with the
morphism AY �Y AY ! AY determined by the multiplication opera-
tion arising from the ring log scheme structure of AY log .

[Thus, expY log : A
log
Y log ! AY log may be regarded as an object of QExpðY logÞ.]

Then every object f log : Z log ! AY log of QExpðY logÞ is isomorphic to the object
of QExpðY logÞ determined by expY log : A

log
Y log ! AY log . Finally, the morphism

Z log �Y log Z log ! Z log of condition (e) is, in fact, uniquely determined by the
hypotheses imposed in condition (e).

Proof. Proposition 3.7 follows formally from [4], Lemma 2.16. Indeed,
one verifies immediately that property (i) (respectively, (ii); (iii) [cf. Remark 3.7.1
below]; (iv)) of [4], Lemma 2.16, follows, in light of condition (b) in the statement
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of Proposition 3.7, from condition (c) (respectively, (d); (a); (e)) in the statement
of Proposition 3.7. Here, we note in passing that the argument applied in the
final paragraph of the proof of [4], Lemma 2.16, may be simplified considerably:
that is to say, in the notation of loc. cit., the fact that ‘‘the morphism of monoids
Q! P may be identified with the natural inclusion Q ,! Q�N’’ may be con-
cluded directly from the isomorphism of rings ‘‘k½½Q��½½T �� !@ k½½P��’’ obtained in
the second to last paragraph of the proof of [4], Lemma 2.16, by considering
an element x A P such that, if we apply this isomorphism to identify the rings
k½½Q��½½T �� and k½½P��, then the set QU fxg generates the maximal ideal of the
local ring k½½P��. c

Remark 3.7.1. In the context of Proposition 3.7, we take the opportunity to
correct a misprint in the statement of [4], Lemma 2.16: In [4], Lemma 2.16, (iii),
the phrase ‘‘a monomorphism’’ should read ‘‘a scheme-like monomorphism’’.

The following result may be regarded as the culmination of the theory
developed in the present paper and corresponds to Theorem B [or, more precisely,
Theorem 2.19, (ii)] of [4], the proof of which [i.e., as given in [4]] is, unfortunately,
incomplete.

Theorem 3.8 (Reconstruction of the log scheme structure of arbitrary
objects). For i ¼ 1; 2, let X

log
i be a locally noetherian fs log scheme [cf. the

discussion entitled ‘‘Log schemes’’ in §0]. For i ¼ 1; 2, we shall write SchlogðX log
i Þ

for the category defined at the beginning of §1. Let

F : SchlogðX log
1 Þ !

@
SchlogðX log

2 Þ
be an [arbitrary!] equivalence of categories. Then:

(i) F preserves the following constructions [i.e., up to, in the case of (i-a), (i-c),
a unique isomorphism] associated to an object ‘‘ð�Þ’’:

(i-a) the ring object Að�Þ;
(i-b) the full subcategory QExpðð�ÞÞJ SchlogðAð�ÞÞ;
(i-c) the exponentiation morphism expð�Þ : A

log
ð�Þ ! Að�Þ;

(i-d) the monoid object structure on the object A
log
ð�Þ of (i-c).

(ii) For i ¼ 1; 2, let Y log
i be an object of SchlogðX log

i Þ; write Yi for the under-

lying scheme of Y
log
i . Suppose further that FðY log

1 Þ ¼ Y
log
2 . Then F induces an

isomorphism of log schemes

Y
log
1 !@ Y

log
2

that is functorial [in the evident sense!] with respect to Y
log
1 , Y log

2 and compatible
with the isomorphism of schemes of Theorem 3.6, (ii).

(iii) There exists a unique isomorphism of log schemes

X
log
1 !@ X

log
2

such that F is isomorphic to the equivalence of categories induced by this iso-

morphism of log schemes X
log
1 !@ X

log
2 .

413monomorphisms in categories of log schemes



Proof. First, we consider assertion (i). The preservation of (i-a) follows
immediately from Theorem 3.6, (ii); [4], Proposition 1.6, (iii). To verify the
preservation of (i-b), it su‰ces to verify the preservation of the conditions (a), (b),
(c), (d), (e) in the statement of Proposition 3.7. The preservation of condition (a)
follows immediately, in light of the functorial definition of log smoothness [i.e., in
terms of scheme-like closed immersions, as in [2], §8.1, (i)], from Theorem 3.6, (ii).
The preservation of condition (b) follows formally from Theorem 3.6, (ii). The
preservation of conditions (c) and (e) follows immediately from the preservation of
(i-a) [i.e., which has already been verified], together with Theorem 3.6, (ii). The
preservation of condition (d) follows immediately from the preservation of (i-c)
[cf. also Proposition 2.10, (v)], (i-d) asserted in Corollary 2.12, (i) [which is
applicable in light of the preservation of (i-j) asserted in Theorem 3.6, (i)],
together with the preservation of (i-b), (i-d), (i-g) asserted in Theorem 2.6, (i).
This completes the proof of the preservation of (i-b). The preservation of (i-c)
and (i-d) follows formally from Proposition 3.7, together with the preservation of
(i-b). This completes the proof of assertion (i).

Since the map induced by the exponentiation morphism expð�Þ on ð�Þ-valued
points may be naturally identified with the morphism between sheaves of monoids
that defines the log structure of ‘‘ð�Þ’’ [cf. the discussion preceding Proposition
3.7], assertion (ii) follows immediately from assertion (i); Theorem 3.6, (ii).
Finally, assertion (iii) follows immediately from the existence of the functorial
isomorphisms of log schemes discussed in assertion (ii), by considering, for i ¼ 1; 2,
a suitable ind-object of SchlogðX log

i Þ
faiY log

i gai AAi

—where the transition morphisms [notation for which was omitted for the sake
of simplicity!] are assumed to be open immersions—that ‘‘represents X

log
i ’’ in

SchlogðX log
i Þ. [Here, we recall that if X

log
i fails to be quasi-compact, then X

log
i

does not determine an object of SchlogðX log
i Þ in the usual sense.] c

Section 4: Category-theoretic representation of archimedean structures

In the present §4, we explain the relatively minor modifications to the theory
developed in the present paper for log schemes that are necessary in order to
accommodate categories of log schemes equipped with archimedean structures as
discussed in [5]. At a more concrete level, we observe that

� Theorem 3.1;
� Proposition 4.3;
� Proposition 4.4

of [5] depend on the portions of the theory of [4] that [cf. Example 0.3; Remark
1.4.1] are in error. Thus, in the present §4, we explain how these results, as well
as the main theorem of [5] [i.e., [5], Theorem 5.1], may be repaired by applying
the theory developed thus far in the present paper.
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We begin by reviewing [and slightly modifying] the notation introduced at
the beginning of [5], §4. Write

SCH

for the category of arithmetic schemes,

SCHlog

for the category of arithmetic log schemes [cf. [5], Definition 4.2, and the follow-
ing discussion], and

SCHJ SCH; SCHlog J SCHlog

for the full subcategories determined by the purely nonarchimedean objects [cf. [5],
Definition 4.3, (i)]. Let X log be an object of SCHlog. Thus, X log determines
underlying objects X log, X , and X of the categories SCHlog, SCH, and SCH,
respectively. Write

SCHlogðX logÞ ¼def ðSCHlogÞX log ; SCHlogðX logÞ ¼def ðSCHlogÞX log ;

SCHðXÞ ¼def SCHX ; SCHðXÞ ¼def SCHX

for the respective categories of ‘‘objects over the subscripted objects’’ [cf. the
notational conventions introduced in the discussion entitled ‘‘Categories’’ in [5],
§2] and

SchlogðX logÞJ SCHlogðX logÞ; SchlogðX logÞJ SCHlogðX logÞ;
SchðXÞJ SCHðX Þ; SchðXÞJ SCHðXÞ

for the full subcategories determined by the noetherian objects. To simplify the
exposition, we shall often refer to the domain of an arrow which is an object of
any of the categories of the preceding display as an ‘‘object’’ of the category.

Note that the notation just introduced is consistent with the notational
conventions introduced at the beginning of §1 of the present paper for
‘‘SchlogðX logÞ’’ and ‘‘SchðXÞ’’. Indeed, if X log is any locally noetherian fs log
scheme, then one may define [in a fashion consistent with the notation introduced
above!]

SCHlogðX logÞ
to be the category whose objects are morphisms of log schemes of locally finite

type Y log ! X log, where Y log is a locally noetherian fs log scheme, and whose
morphisms [from an object Y

log
1 ! X log to an object Y

log
2 ! X log] are morphisms

of locally finite type Y
log
1 ! Y

log
2 lying over X log. In a similar vein, if X is any

locally noetherian scheme, then one may define [in a fashion consistent with the
notation introduced above!]

SCHðX Þ
to be the category whose objects are morphisms of schemes of locally finite type
Y ! X , where Y is a locally noetherian scheme, and whose morphisms [from an
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object Y1 ! X to an object Y2 ! X ] are morphisms of locally finite type Y1 ! Y2

lying over X .

Definition 4.1. (i) We shall apply similar terminology to data [i.e., such
as collections of objects and collections of morphisms] associated to any of the
categories

SchlogðX logÞ; SCHlogðX logÞ; SchlogðX logÞ; SCHlogðX logÞ;
SchðXÞ; SCHðX Þ; SchðXÞ; SCHðXÞ

to the terminology that has already been established earlier in the present paper
for ‘‘SchlogðX logÞ’’ or in [4], §1, for ‘‘SchðXÞ’’ whenever this terminology may
be defined in an evidently analogous fashion for the category of the above
display under consideration. When it is necessary, in order to avoid confusion,
to specify the category of the above display with respect to which the terminology
is to be understood, we shall append an appropriate prefix such as

Schlog-; SCHlog-; Schlog-; SCHlog-; Sch-; SCH-; Sch-; SCH-

to the terminology in question. This convention concerning prefixes will be
applied, in particular, when the terminology is to be understood as being applied
to the underlying object in one of the categories of the first display that is
determined by another of the categories of the first display.

(ii) Let C log A fSchlog; SCHlogg, X log an arithmetic log scheme, Y log an
object of C logðX logÞ. Then we shall say that Y log is submonically nonarchime-
dean if it holds that every submonic one-pointed object Z log of C logðX logÞ that

admits a morphism to Y log is purely nonarchimedean.

Theorem 4.2 (Equivalences of categories of schemes). Let C A fSch; SCHg.
For i ¼ 1; 2, let Xi be a locally noetherian scheme. Then, relative to the notation
introduced at the beginning of the present §4, any equivalence of categories

F : CðX1Þ !@ CðX2Þ

arises from a unique isomorphism of schemes X1 !@ X2.

Proof. When C ¼ Sch, Theorem 4.2 is precisely the content of [4], The-
orem 1.7, (ii). When C ¼ SCH, Theorem 4.2 follows from an entirely similar
argument. c

Theorem 4.3 (Equivalences of categories of arithmetic schemes). Let C A
fSch; SCHg. For i ¼ 1; 2, let X i be an arithmetic scheme [cf. [5], Definition 4.2,
(i)]. Then, relative to the notation introduced at the beginning of the present §4,
any equivalence of categories

F : CðX 1Þ !@ CðX 2Þ
arises from a unique isomorphism of arithmetic schemes X 1 !@ X 2.
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Proof. If C ¼ Sch, then set C ¼def Sch; if C ¼ SCH, then set C ¼def SCH.
Then Theorem 4.3 follows, in e¤ect, by combining the theory of [4], §1, with the
non-logarithmic portion of the theory developed in [5], §4, §5. [That is to say, the
errors in [5] discussed at the beginning of the present §4 concern subtleties that
arise from the log structures of the log schemes involved and hence have no e¤ect
on the non-logarithmic portion of the theory.] Indeed, let i A f1; 2g; write Xi for
the underlying scheme of Xi. Then one verifies immediately that the C-minimal
objects of CðXiÞ are the purely nonarchimedean objects that arise from the
C-minimal objects of CðXiÞ. Thus, the one-pointed objects of CðXiÞ are precisely
the objects Y such that MinPtðY Þ ¼MinPtðY Þ [where we write Y for the object
of CðXiÞ determined by the underlying scheme of Y ] is of cardinality one. This
characterization of one-pointed objects of CðXiÞ allows one to circumvent the
application of [5], Proposition 4.3, in the theory of [5], §4. In particular, we
obtain a category-theoretic characterization of C-minimal point-hulls as in [5],
Proposition 4.4, (iii). One thus obtains—i.e., by considering epimorphisms as
in [5], Proposition 4.5—a category-theoretic characterization of the purely non-
archimedean one-pointed objects of CðXiÞ as in [5], Corollary 4.1, (i), and of
the purely archimedean morphisms [cf. [5], Definition 4.3, (ii)] of CðXiÞ as in [5],
Corollary 4.1, (ii). In particular, we obtain a category-theoretic characterization,
as in [5], Corollary 4.2, of the purely nonarchimedean objects of CðXiÞ and hence,
by applying Theorem 4.2, a category-theoretic reconstruction of the underlying
scheme of an object of CðXiÞ, as in [5], Corollary 4.3. Now, to complete the
proof of Theorem 4.3 [cf. the proof of [5], Theorem 5.1], it su‰ces to apply the
‘‘non-logarithmic global compatibility’’ established in [5], Lemma 5.1. c

Next, we consider analogues of Theorem 2.6 for SCHlog, Schlog, and SCHlog.

Theorem 4.4 (Reconstruction of the scheme structure of submonic objects for
SCHlog). For i ¼ 1; 2, let X

log
i be a locally noetherian fs log scheme [cf. the

discussion entitled ‘‘Log schemes’’ in §0]. We shall apply the notation introduced
at the beginning of the present §4. Let

F : SCHlogðX log
1 Þ !

@
SCHlogðX log

2 Þ

be an [arbitrary!] equivalence of categories. Then:
(i) F preserves the following:

(i-a) monomorphisms;
(i-b) empty objects;
(i-c) connected objects;
(i-d) minimal objects;
(i-e) minimal points;
(i-f ) submonic one-pointed objects;
(i-g) ranks of minimal objects;
(i-h) SLEM morphisms;
(i-i) submonic objects;
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(i-j) scheme-like morphisms between minimal objects;
(i-k) scheme-like morphisms between submonic objects;
(i-l) the submonic dimension of objects.

(ii) For i ¼ 1; 2, let Y
log
i be an object of SCHlogðX log

i Þ; write Yi for the

underlying scheme of Y
log
i . Suppose further that FðY log

1 Þ ¼ Y
log
2 . Thus, [cf. the

portion of (i) concerning (i-i)] Y log
1 is submonic if and only if Y

log
2 is. Suppose that

Y
log
i is submonic for i ¼ 1; 2. Then F induces an equivalence of categories

ðSCHðY1Þ !@ Þ SCHlogðY log
1 Þjsch-lk !

@
SCHlogðY log

2 Þjsch-lk ð!
@

SCHðY2ÞÞ

—where the equivalences in parentheses are the evident analogues for SCH, SCHlog

of the natural equivalences of Definition 1.1, (iv)—that is functorial [in the evident

sense!] with respect to Y
log
1 , Y

log
2 . Finally, the composite of the equivalences of

categories in the above display induces, by applying Theorem 4.2, an isomorphism
of schemes

Y1 !@ Y2

that is functorial [in the evident sense!] with respect to Y
log
1 , Y

log
2 .

Proof. The proof is entirely similar to the proof of Theorem 2.6. c

Theorem 4.5 (Reconstruction of the scheme structure of submonic objects for
Schlog, SCHlog). Let C log A fSchlog; SCHlogg. If C log ¼ Schlog, then set C log ¼def

Schlog, C ¼def Sch; if C log ¼ SCHlog, then set C log ¼def SCHlog, C ¼def SCH. For
i ¼ 1; 2, let X

log
i be an arithmetic log scheme [cf. [5], Definition 4.2, (ii)]. We

shall apply the notation introduced at the beginning of the present §4. Let

F : C logðX log
1 Þ !

@
C logðX log

2 Þ

be an [arbitrary!] equivalence of categories. Then:
(i) F preserves the following:

(i-a) monomorphisms;
(i-b) empty objects;
(i-c) connected objects;
(i-d) minimal objects;
(i-e) minimal points;
(i-f ) submonic one-pointed objects;
(i-f non) purely nonarchimedean submonic one-pointed objects;
(i-g) ranks of minimal objects;
(i-h) C log-SLEM morphisms;
(i-i) submonic objects;
(i-inon) purely nonarchimedean submonic objects;
(i-j) C log-scheme-like morphisms between minimal objects;
(i-k) C log-scheme-like morphisms between submonic objects;
(i-l) the submonic dimension of objects.
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(ii) For i ¼ 1; 2, let Y
log
i be an object of C logðX log

i Þ; write Y
log
i for the

underlying log scheme of Y
log
i , Yi for the underlying scheme of Y

log
i . Suppose

further that FðY log
1 Þ ¼ Y

log
2 . Thus, [cf. the portion of (i) concerning (i-i), (i-inon)]

Y
log
1 is submonic if and only if Y

log
2 is; Y log

1 is purely nonarchimedean submonic if

and only if Y
log
2 is. Suppose that Y

log
i is submonic for i ¼ 1; 2. Then F induces

an equivalence of categories

ðCðY1Þ !@ Þ C logðY log
1 Þjsch-lk !

@
C logðY log

2 Þjsch-lk ð!
@

CðY2ÞÞ

—where the equivalences in parentheses are the evident analogues for C, C log of the
natural equivalences of Definition 1.1, (iv)—that is functorial [in the evident sense!]

with respect to Y
log
1 , Y

log
2 . Finally, the composite of the equivalences of cate-

gories in the above display induces, by applying Theorem 4.2, an isomorphism of
schemes

Y1 !@ Y2

that is functorial [in the evident sense!] with respect to Y
log
1 , Y

log
2 .

Proof. First, we consider assertion (i). The preservation of (i-a), (i-b), (i-c),
(i-d), (i-e), (i-f ), and (i-g) follows from an entirely similar argument to the
argument applied in the proof of the preservation of the corresponding properties
in Theorem 2.6, (i). Here, we observe that one verifies immediately, by arguing
as in [5], Proposition 4.2, that

the minimal objects of C logðX log
i Þ are precisely the purely nonarchime-

dean objects of C logðX log
i Þ that arise from the minimal objects of

C logðX log
i Þ, where we write X

log
i for the underlying log scheme of X log

i .

The preservation of (i-f non) now follows, in light of the preservation of (i-f ), from
an entirely similar argument—i.e., by considering epimorphisms as in [5], Prop-
osition 4.5—to the argument applied to verify the category-theoretic character-
ization of purely nonarchimedean one-pointed objects given in [5], Corollary 4.1,
(i). In light of the preservation of (i-f non), the preservation of (i-h) follows from
an entirely similar argument to the argument applied in the proof of the pre-
servation of (i-h) in Theorem 2.6, (i). In light of the preservation of (i-h), the
preservation of (i-i) follows from an entirely similar argument to the argument
applied in the proof of the preservation of (i-i) in Theorem 2.6, (i). The
preservation of (i-inon) now follows from the preservation of (i-f ), (i-f non), (i-i),
since [one verifies immediately that] the purely nonarchimedean submonic objects
Y log of C logðX log

i Þ may be characterized as the submonically nonarchimedean
submonic objects Y log of C logðX log

i Þ. In light of the preservation of (i-i), the
preservation of (i-j), (i-k) follows from an entirely similar argument to the
argument applied in the proof of the preservation of (i-j), (i-k) in Theorem 2.6,
(i). This completes the proof of assertion (i), except for the verification of the
preservation of (i-l).
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Next, we consider assertion (ii). Suppose that Y log
i is submonic for i ¼ 1; 2.

Let Z
log
i ! Y

log
i be a purely archimedean morphism of C logðX log

i Þ such that Z
log
i

is purely nonarchimedean submonic. Here, one verifies immediately that such a
morphism Z

log
i ! Y

log
i exists, and, moreover, that Z log

i may be characterized up to

isomorphism as an object over Y
log
i by the property that any arrow T log ! Y

log
i

in C logðX log
i Þ such that T log is purely nonarchimedean submonic admits a unique

factorization T log ! Z
log
i ! Y

log
i . Thus, it follows from the portion of assertion

(i) concerning the preservation of (i-inon) that we may assume without loss of

generality that FðZ log
1 Þ ¼ Z

log
2 . Moreover, since Z

log
i is purely nonarchimedean,

one verifies immediately from the various definitions involved that the full
subcategory

C logðZ log
i ÞJC logðY log

i Þ

admits a natural equivalence of categories C logðY log
i Þ !

@
C logðZ log

i Þ [cf. the state-
ment of [5], Corollary 4.3]. Thus, by applying the portion of assertion (i) con-
cerning the preservation of (i-k), one verifies immediately that assertion (ii)
follows immediately follows from an entirely similar argument to the argument
applied to verify Theorem 2.6, (ii). Finally, the portion of assertion (i) con-
cerning the preservation of (i-l) follows from an entirely similar argument to the
argument applied in the proof of the preservation of (i-l) in Theorem 2.6, (i).

c

Next, we consider the analogue of Corollary 2.12 and Theorems 3.6, 3.8 for
SCHlog.

Theorem 4.6 (Reconstruction of the log scheme structure of arbitrary objects
for SCHlog). For i ¼ 1; 2, let X

log
i be a locally noetherian fs log scheme [cf. the

discussion entitled ‘‘Log schemes’’ in §0]. We shall apply the notation introduced
at the beginning of the present §4. Let

F : SCHlogðX log
1 Þ !

@
SCHlogðX log

2 Þ

be an [arbitrary!] equivalence of categories. Then:
(i) F preserves the following:

(i-a) log-Dedekind objects;
(i-b) the set SmCpð�Þ associated to a log-Dedekind object;
(i-c) the subsets of the set SmCpð�Þ of (i-b) which are [N-]chains;
(i-d) partitions at elements of the set SmCpð�Þ of (i-b);
(i-e) orientable objects;
(i-f ) homogeneous objects;
(i-g) one-pointed objects;
(i-h) point-hulls with one-pointed codomains;
(i-i) minimal point-hulls with one-pointed codomains;
(i-j) log-nodal objects.
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(ii) F preserves the following:
(ii-a) point-equivalent pairs of arrows;
(ii-b) the set-valued functor LCPtð�Þ [up to natural equivalence];
(ii-c) arrows which are minimal point-hulls;
(ii-d) scheme-like morphisms between arbitrary objects.

(iii) For i ¼ 1; 2, let Y
log
i be an object of SCHlogðX log

i Þ; write Yi for the

underlying scheme of Y
log
i . Suppose further that FðY log

1 Þ ¼ Y
log
2 . Then F

induces an equivalence of categories

ðSCHðY1Þ !@ Þ SCHlogðY log
1 Þjsch-lk !

@
SCHlogðY log

2 Þjsch-lk ð!
@

SCHðY2ÞÞ

—where the equivalences in parentheses are the evident analogues for SCH, SCHlog

of the natural equivalences of Definition 1.1, (iv)—that is functorial [in the evident

sense!] with respect to Y
log
1 , Y

log
2 . Finally, the composite of the equivalences of

categories in the above display induces, by applying Theorem 4.2, an isomorphism
of schemes

Y1 !@ Y2

that is functorial [in the evident sense!] with respect to Y
log
1 , Y

log
2 .

(iv) There exists a unique isomorphism of log schemes

X
log
1 !@ X

log
2

such that F is isomorphic to the equivalence of categories induced by this

isomorphism of log schemes X
log
1 !@ X

log
2 .

Proof. In light of Theorem 4.4, the proof of assertion (i) (respectively,
assertion (ii)) is entirely similar to the proof of Theorem 3.6, (i) (respectively,
Corollary 2.12, (i)). Now assertion (iii) follows from the portion of assertion (ii)
concerning the preservation of (ii-d) by applying an entirely similar argument to
the argument applied to verify Corollary 2.12, (ii). Finally, it follows imme-
diately from assertion (iii) that F preserves objects whose underlying scheme is
noetherian [i.e., quasi-compact ], and hence that F induces an equivalence of
categories

SchlogðX log
1 Þ !

@
SchlogðX log

2 Þ

[i.e., as in Theorem 3.8]. Thus, assertion (iv) follows immediately from Theorem
3.8, (iii). c

Finally, we consider analogues of Theorems 3.6, 3.8 for Schlog, SCHlog. In
order to formulate and prove these analogues, it will be necessary to introduce
some new terminology [patterned after the terminology introduced in Definition
3.3], as follows.

Definition 4.7. Let C log A fSchlog; SCHlogg. If C log ¼ Schlog, then set
C log ¼def Schlog; if C log ¼ SCHlog, then set C log ¼def SCHlog. Let X log be an
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arithmetic log scheme. We shall apply the notation introduced at the beginning
of the present §4. Let Y log be a connected, non-submonic, C log-log-Dedekind,
submonically nonarchimedean [cf. Remark 4.7.1 below] object of C logðX logÞ; write
Y log for the underlying log scheme of Y log. Let g A C log-SmCpðY logÞ ¼def
SmCpðY logÞ. Write

MonoðY logÞ

for the full subcategory of C logðY logÞ determined by the arrows H log ! Y log of
C logðX logÞ which are monomorphisms in C logðX logÞ.

(i) Let C1;C2 JC log-SmCpðY logÞ be C log-chains. Then we shall say that
the pair of C log-chains fC1;C2g forms a €CC log-partition at g if the C log-chains C1,
C2 satisfy the following conditions:

(i-a) C1 UC2 ¼ C log-SmCpðY logÞ, C1 VC2 ¼ fgg;
(i-b) for i ¼ 1; 2, the subset CinfggJC log-SmCpðY logÞ is a C log-N-chain

[hence nonempty];
(i-c) the C log-N-chains of (i-b) are ‘‘maximal ’’ in the sense that every

C log-N-chain CJC log-SmCpðY logÞ such that g B C is contained in
Ci for some i A f1; 2g;

(i-d) if, for i ¼ 1; 2, we write Ci for the subfunctor of the contravariant
functor determined by the terminal object [i.e., Y log] of MonoðY logÞ
that consists of objects h log : H log

q Y log of MonoðY logÞ such that
every composite morphism H log

� q H log
q Y log, where H log

� q H log

is a minimal point of H log, determines an underlying morphism
in C logðY logÞ that factors through some representative of an
element A Ci ðJC log-SmCpðY logÞÞ, then Ci is representable by

an object h
log
i : Y log

i q Y log of MonoðY logÞ.

We shall say that Y log is €CC log-orientable if Y log admits a €CC log-partition at every
element of C log-SmCpðY logÞ.

(ii) Let fC1;C2g be a €CC log-partition at g. Suppose that h
log
1 , h log

2 are as in

(i-d). Then we shall say that the €CC log-partition fC1;C2g is €CC log-seamless if the
following condition is satisfied:

a monomorphism h log : H log
q Y log in C logðX logÞ is an isomorphism if

and only if, for i ¼ 1; 2, the projection H log �Y log Y
log
i ! Y

log
i associated

to the fiber product determined by h log and h
log
i is an isomorphism.

We shall say that Y log is €CC log-homogeneous if Y log is €CC log-orientable, and,
moreover, no €CC log-partition at an element A C log-SmCpðY logÞ is €CC log-seamless.

Remark 4.7.1. Let Y log be as in Definition 4.7, i.e., a connected, non-
submonic, C log-log-Dedekind, submonically nonarchimedean object of C logðX logÞ.
Write Y log for the underlying log scheme of Y log; Y for the underlying arithmetic
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scheme of Y log; Y for the underlying scheme of Y ; K log for the compact set that
determines the archimedean structure of Y log [i.e., the set ‘‘H’’ of [5], Definition
4.2, (ii)]; K for the compact set that determines the archimedean structure of Y
[i.e., the set ‘‘H’’ of [5], Definition 4.2, (i)]. Thus, it follows immediately from
the various definitions involved that we have a natural surjection K log !! K whose
fibers are compact [cf. the discussion of such compact subsets in the proof of
[5], Lemma 4.1]. Now observe that the assumption that Y log is submonically
nonarchimedean implies [cf. Proposition 3.2, (i), (ii)] that

K is a finite compact set which is supported over the nodal points of Y log.

Since the finiteness of K implies that any [e.g., open!] subset of K is compact
[i.e., relative to the topology induced by K ], we thus conclude that

any subset of K log that arises as the inverse image via the natural
surjection K log !! K of a subset of K is compact [i.e., relative to the
topology induced by K log].

In particular, it follows that any open subscheme ZJY determines, in a natural

way, not only a log scheme Z log ¼def Y log �Y Z, but also an arithmetic scheme Z
and an arithmetic log scheme Z log [i.e., by considering the subsets of K , K log

consisting of points that map to points of Z ðJYÞ]. Moreover, one verifies
immediately that

Z log (respectively, Z) represents the covariant subfunctor of the functor
represented by Y log (respectively, Y ) on the category of arithmetic log
schemes (respectively, arithmetic schemes) determined by the condition
on a morphism to Y log (respectively, Y ) that the associated underlying
morphism of schemes maps into ZJY .

These observations may be applied, for instance, to open subschemes of Y that
arise as images of open immersions of the sort discussed in Proposition 3.4, (ii).

Theorem 4.8 (Reconstruction of the arithmetic log scheme structure of
arbitrary objects for Schlog, SCHlog). Let C log A fSchlog; SCHlogg. If C log ¼
Schlog, then set C log ¼def Schlog; if C log ¼ SCHlog, then set C log ¼def SCHlog. For
i ¼ 1; 2, let X

log
i be an arithmetic log scheme [cf. [5], Definition 4.2, (ii)]. We shall

apply the notation introduced at the beginning of the present §4. Let

F : C logðX log
1 Þ !

@
C logðX log

2 Þ

be an [arbitrary!] equivalence of categories. Then:

(i) Let Y log, Z log be objects of C logðX log
i Þ, for some i A f1; 2g, that are

connected, non-submonic, C log-log-Dedekind, and submonically nonarchime-dean;
write Y log, Z log for the underlying log schemes of Y log, Z log, respectively.
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Suppose further that Z log is purely nonarchimedean. Then the following properties
hold:

(i-aY ) every €CC log-partition at an element g A C log-SmCpðY logÞ determines

a C log-partition at g;
(i-aZ) there is a natural bijective correspondence between €CC log-

partitions at elements A C log-SmCpðZ logÞ and C log-partitions at
elements A C log-SmCpðZ logÞ;

(i-bY ) if Y log is €CC log-orientable, then Y log is C log-orientable;
(i-bZ) Z log is €CC log-orientable if and only if Z log is C log-orientable;
(i-cZ) a €CC log-partition at an element A C log-SmCpðZ logÞ is €CC log-seamless

if and only if it corresponds to a C log-partition [cf. (i-aZ)] that is
C log-seamless;

(i-dY ) if Y log is €CC log-homogeneous, then it is one-pointed, and Y log
sm is

empty;
(i-dZ) Z log is €CC log-homogeneous if and only if Z log is C log-homogeneous.

(ii) F preserves the following:
(ii-a) C log-log-Dedekind objects;
(ii-b) the set C log-SmCpð�Þ associated to a C log-log-Dedekind object;

(ii-c) the subsets of the set C log-SmCpð�Þ of (ii-b) which are C log-[N-]chains;
(ii-d) €CC log-partitions at elements of the set C log-SmCpð�Þ of (ii-b);
(ii-e) €CC log-orientable objects;
(ii-f ) €CC log-homogeneous objects;
(ii-g) one-pointed objects;
(ii-h) point-hulls with one-pointed codomains;
(ii-i) minimal point-hulls with one-pointed codomains.

(iii) For i ¼ 1; 2, let Y
log
i be an object of C logðX log

i Þ; write Y
log
i for the

underlying log scheme of Y
log
i . Suppose further that FðY log

1 Þ ¼ Y
log
2 . Then Y

log
1

is purely nonarchimedean if and only if Y
log
2 is. In particular, F induces an

equivalence of categories

C logðY log
1 Þ !

@
C logðY log

2 Þ

that is functorial [in the evident sense!] with respect to Y
log
1 , Y

log
2 . Finally, the

equivalence of categories in the above display induces, by applying Theorems 3.8,
(iii); 4.6, (iv), an isomorphism of log schemes

Y
log
1 !@ Y

log
2

that is functorial [in the evident sense!] with respect to Y
log
1 , Y

log
2 .

(iv) There exists a unique isomorphism of arithmetic log schemes

X
log
1 !

@
X

log
2

such that F is isomorphic to the equivalence of categories induced by this
isomorphism of arithmetic log schemes X

log
1 !

@
X

log
2 .
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Proof. First, we consider assertion (i). Properties (i-aY ), (i-aZ), (i-bY ),
(i-bZ), (i-cZ), and (i-dZ) follow formally from the definitions [cf. also the first
display in the proof of Theorem 4.5]. Property (i-dY ) then follows, in light of
properties (i-aY ) and (i-bY ) [cf. also the first display in the proof of Theorem 4.5],
by applying a similar argument to the argument [i.e., involving Proposition 3.4,
(ii)] applied in the proof of Proposition 3.4, (iii). Here, we note that one
must apply the assumption [cf. the beginning of Definition 4.7] that any €CC log-
homogeneous object is submonically nonarchimedean in order to conclude that

any €CC log-partition that determines a C log-seamless C log-partition as in [the evident
analogue for C log of ] Proposition 3.4, (ii), is necessarily €CC log-seamless. That is
to say, this assumption that any €CC log-homogeneous object is submonically non-
archimedean implies [cf. the discussion of Remark 4.7.1] that the discrepancy
between €CC log-/C log-seamless €CC log-/C log-partitions may—at least in the case of
C log-seamless C log-partitions as in [the evident analogue for C log of ] Proposition
3.4, (ii)—be ignored. This completes the proof of assertion (i).

Next, we observe that, in light of Theorem 4.5, (i), (ii), assertion (ii) follows
by applying a similar argument to the argument applied to verify Theorem 3.6,
(i). Here, we observe that the preservation of the crucial property of being
submonically nonarchimedean [cf. the beginning of Definition 4.7] follows formally
from the portion of Theorem 4.5, (i), concerning the preservation of (i-f ), (i-f non).
Also, we observe, with regard to the preservation of (ii-g), that, by applying

� the property (i-dY ) of assertion (i) in place of Proposition 3.4, (iii), and
� the property (i-dZ) of assertion (i), together with the evident analogue
for C log of Proposition 3.4, (iv), in place of Proposition 3.4, (iv),

one obtains a suitable analogue for C log—i.e., by considering €CC log-homogeneous
objects—of the characterization of one-pointed objects given in Proposition 3.5,
(i). This completes the proof of assertion (ii).

Next, we consider assertion (iii). First, let us observe that the portion of
assertion (ii) concerning the preservation of (ii-g), (ii-i) allows one to circum-
vent the application of [5], Propositions 4.3, 4.4, in the theory of [5], §4. One
thus obtains—i.e., by considering epimorphisms as in [5], Proposition 4.5—
category-theoretic characterizations of the purely nonarchimedean one-pointed
objects of C logðX log

i Þ as in [5], Corollary 4.1, (i), and of the purely archimedean

morphisms of C logðX log
i Þ as in [5], Corollary 4.1, (ii) [cf. also Proposition 1.4, (iii),

(v), of the present paper]. In particular, we obtain a category-theoretic char-
acterization, as in [5], Corollary 4.2, of the purely nonarchimedean objects of
C logðX log

i Þ and hence, by applying Theorems 3.8, (iii); 4.6, (iv), a category-

theoretic reconstruction of the underlying log scheme of an object of C logðX log
i Þ,

as in [5], Corollary 4.3. This completes the proof of assertion (iii). Finally,
assertion (iv) follows from assertion (iii) [cf. the proof of [5], Theorem 5.1], by
applying the ‘‘logarithmic global compatibility’’ established in [5], Lemma 5.2.

c

425monomorphisms in categories of log schemes



Appendix

In the present Appendix, we discuss in more detail, at the level of individual
propositions, lemmas, corollaries, theorems, and examples, the validity of the
theory developed in [4] and [5].

First, we recall that the errors discussed in the Introduction of the present
paper have no e¤ect on [4], §1. The e¤ect of these errors on the validity of the
statements [second column], as well as on the validity of the proofs [third column],
of the individual propositions, lemmas, corollaries, and theorems of [4], §2, is
summarized in Fig. 1 below. Here, the symbol ‘‘c’’ indicates no e¤ect on the
validity in question; the symbol ‘‘�’’ indicates some e¤ect on the validity in
question. Certain results that concern equivalences are divided into su‰ciency
and necessity portions. Moreover, the necessity portion of [4], Proposition 2.3, is
divided into

� a portion concerning whether or not the underlying morphism of
schemes is a monomorphism in the case where the given morphism
of log schemes is scheme-like,

� a portion concerning whether or not the induced morphism of group-
ifications of characteristics is surjective, and

� a portion concerning whether or not the underlying morphism of
schemes is a monomorphism in the case where the given morphism
of log schemes is not scheme-like.

Individual propositions/lemmas/

corollaries/theorems

Validity of

statement

Validity

of proof

Explicit logical

application in

the present paper

2.3 (surjectivity portion of necessity); 2.5; 2.6,

(i), (iii); 2.6, (ii) (closed immersion, [final]

surjectivity portions); 2.16 [cf. Remark 3.7.1]

c c c

2.1; 2.2; 2.3 (su‰ciency); 2.3 (monomorphism

portion of necessity: scheme-like case); 2.7,

(i), (ii); 2.8; 2.12, (i) (necessity); 2.12, (ii);

2.17; 2.18; 2.19, (i); 2.20

c c �

2.4 c � s

2.14; 2.15; 2.19, (ii); 2.13 c � �

2.3 (monomorphism portion of necessity: non-

scheme-like case); 2.6, (ii) (isomorphism portion);

2.7, (iii); 2.9; 2.10; 2.12, (i) (su‰ciency)

� � �

Figure 1. Validity of individual propositions/lemmas/corollaries/theorems of [4]
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The statement of [4], Lemma 2.6, (ii), is also divided into a closed immersion
portion, an isomorphism portion, and a [ final ] surjectivity portion. We also
indicate, in the fourth column of Fig. 1, whether [‘‘c’’] or not [‘‘�’’] the result
in question is applied, in an explicit [i.e., via a direct reference] logical sense, in
the present paper. The data of this fourth column does not include references
for the statements of definitions/conditions or references made for the sake of
pointing out content that is related in an expository sense [i.e., but not in a
logical sense!]. The unique ‘‘s’’ in this fourth column in the case of [4],
Proposition 2.4, indicates that although we apply this result in an explicit logical
sense in the present paper [i.e., despite the fact that the proof given in [4] is in
error!], this does not result in any logical gaps, since the proof of [4], Proposition
2.4, given in [4] may be repaired if, instead of applying [4], Proposition 2.3,
one applies Proposition 1.4, (vi), of the present paper [i.e., which corresponds
to the necessity portion of [4], Proposition 2.3, in the case of submonic log
schemes].

Next, we consider the e¤ect of the errors discussed in the Introduction of
the present paper on [5]. Here, we recall that [5], §1, consists of an expository
introduction to the theory of [5], while [5], §2, is devoted to a discussion of the
notations and conventions applied in [5]. Thus, it su‰ces to consider the e¤ect
of the errors discussed in the Introduction of the present paper on [5], §3, §4,
§5. The e¤ect of these errors on the validity of the statements [second column],
as well as on the validity of the proofs [third column], of the individual proposi-
tions [‘‘P’’], lemmas [‘‘L’’], corollaries [‘‘C’’], theorems [‘‘T’’], and examples [‘‘E’’]
of [5], §3, §4, §5, is summarized in Fig. 2 below. Here, the symbol ‘‘c’’ indicates
no e¤ect on the validity in question; the symbol ‘‘�’’ indicates some e¤ect on the
validity in question; the numbers in parentheses indicate, for ease of reference,
the corresponding result in the preprint version [available on the homepage
http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html] of [5]. We also
indicate, in the fourth column of Fig. 2, whether [‘‘c’’] or not [‘‘�’’] the result
in question is applied, in an explicit [i.e., via a direct reference] logical sense, in
the present paper. The data of this fourth column does not include references
for the statements of definitions/conditions or references made for the sake of
pointing out content that is related in an expository sense [i.e., but not in a logical
sense!]. The three ‘‘s’s’’ in this fourth column indicate the following state of
a¤airs:

� The results marked with a ‘‘s’’ are indeed applied in an explicit logical
sense in the present paper in the proofs of Theorems 4.3, 4.5, 4.8—i.e.,
despite the fact that the proofs given in [5] of these results are in error!

� The explicit logical application of these results in the present paper
does not, however, result in any logical gaps for the following reason:
In the case of the first and third (respectively, case of the second ) ‘‘s’’,
the only problem with the proofs given in [5] is that they rely on
the reconstruction of one-pointed objects given in [5], Proposition 4.3
[i.e., which is in error!] (respectively, on [5], Corollaries 4.2, 4.3 [i.e.,
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whose proofs are in error!]). On the other hand, these results are
only applied in the present paper in situations in which the one-
pointed objects have already been reconstructed (respectively, in which
results corresponding to [5], Corollaries 4.2, 4.3, have already been
proven).

� Put another way, one may think of the application in the present
paper of the results marked with a ‘‘s’’ as consisting of a ‘‘similar
argument’’ to the argument given in [5]—i.e., a ‘‘similar argument’’
which does not su¤er from the logical gaps of [5], since, in the case of
the first and third (respectively, case of the second ) ‘‘s’’, this ‘‘similar
argument’’ is only applied in situations in which the one-pointed objects
have already been reconstructed (respectively, in which results corre-
sponding to [5], Corollaries 4.2, 4.3, have already been proven).
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