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MONOMORPHISMS IN CATEGORIES OF LOG SCHEMES

SHINICHI MOCHIZUKI

Abstract

In the present paper, we study category-theoretic properties of monomorphisms in
categories of log schemes. This study allows one to give a purely category-theoretic
reconstruction of the log scheme that gave rise to the category under consideration. We
also obtain analogous results for categories of schemes of locally finite type over the ring
of rational integers that are equipped with “archimedean structures”. Such reconstruc-
tions were discussed in two previous papers by the author, but these reconstructions
contained some errors, which were pointed out to the author by C. Nakayama and
Y. Hoshi. These errors revolve around certain elementary combinatorial aspects of fan
decompositions of two-dimensional rational polyhedral cones—i.e., of the sort that occur
in the classical theory of foric varieties—and may be repaired by applying the theory
developed in the present paper.
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Introduction

The purpose of the present paper is to study, in some detail, various aspects
of the structure of categories of log schemes that revolve around the behavior
of monomorphisms in such categories. This study leads naturally to a purely
category-theoretic reconstruction of the log scheme that gave rise to the category
under consideration. Our main result is the following [cf. Theorem 3.8, (iii)].
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THEOREM A (Category-theoretic reconstruction of log schemes). For i = 1,2,
let X/°® be a locally noetherian fs log scheme [cf the dzscusszon entitled “Log
schemes” in §0]. For i=1,2, we shall write Schlog( %) for the category of
noetherian fs log schemes of ﬁmle type over X ¢ and morphlsms of finite type
[cf. the discussion at the beginning of §1 for more details|. Let

@ : Sch'*%(X°%) = Sch'°¢(X,°¥)

be an |arbitrary!] equivalence of categories. Then there exists a unique isomor-
phism of log schemes

1 ~ 1
Xlog it X2Og

such that ® is isomorphic to the equivalence of categories induced by this
isomorphism of log schemes X, llog = leog.

We also obtain analogous results for categories of locally noetherian fs log
schemes

“SCHlog(_)u
[cf. Theorem 4.6, (iv)], as well as for versions
uﬁlog(i)n7 “S(:—Hl()g(*)”

of the categories “Sch'®¢(—)”, “SCH!¢(—)” for schemes of locally finite type over
Z that are equipped with “archimedean structures” [cf. Theorem 4.8, (iv)].

The theory exposed in the present paper arose as an attempt to correct
errors, pointed out to the author by Chikara Nakayama and Yuichiro Hoshi in
June 2013, in the theory of [4], §2. These errors concern the category-theoretic
properties of monomorphisms in categories of log schemes and are discussed in
more detail in Example 0.3 and Remark 1.4.1 of the present paper.

At the level of main results of the paper [4], these errors in the theory of
[4], §2, do not affect the proof of [4], Theorem A, given in [4], §1, but they do
affect the proof—although not the validity!—of [4], Theorem B. This result [4],
Theorem B, is given a correct proof in §3 of the present paper and corresponds
precisely to Theorem A [stated above].

At the level of main results of papers of the author subsequent to [4], the only
place where the errors in the theory of [4], §2, have an effect is in the portion of
the proof of the main result of [5] [i.e., [5], Theorem 5.1] that involves the theory

f [5], §4. The affected portions of [5], §4, are discussed in more detail in the
introduction to §4 of the present paper. The main result [5], Theorem 5.1, of [5]
is given a correct proof in §4 of the present paper and corresponds precisely to
Theorem 4.8, (iv) [quoted above].

At the level of individual propositions, lemmas, corollaries, theorems, and
examples [i.e., which do not necessarily qualify as “main results” of the paper
under consideration], a detailed discussion of the affected portions of [4] and [5]
may be found in the Appendix to the present paper.
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One important invariant of the structure of an fs log scheme is the rank of
the groupification of the fiber of the characteristic sheaf associated to the log
structure at a geometric point of the underlying scheme of the log scheme [cf.
Definition 1.2, (i)]. For instance, when this rank is equal to 0 at all geometric
points, the log structure of the fs log scheme under consideration is trivial.
One central theme of the theory of the present paper consists of the phenomenon
that

the theory of category-theoretic properties of monomorphisms exhibits
quite substantive qualitative differences, depending upon whether or not it
holds that the ranks just referred to are < 1.

When it holds that these rank are < 1, the fs log scheme under consideration will
be referred to in the present paper as submonic [cf. Definition 1.2, (i)].

Thus, in some sense, the simplest “borderline case” between submonic and
non-submonic fs log schemes is the case of a log scheme whose underlying
scheme is the spectrum of a field whose absolute Galois group acts trivially on
geometric fibers of the characteristic sheaf associated to the log structure, and
for which the rank of the groupification of each such geometric fiber of the
characteristic sheaf is equal to 2. 1In this case, the log scheme under consid-
eration will be referred to as log-nodal [cf. Definition 1.2, (i)].

One important feature of the category-theoretic properties of monomorphisms
in categories of log schemes lies in the observation that

these category-theoretic properties of monomorphisms take on a par-
ticularly straightforward and intuitive form whenever it holds that the
various fs log schemes under consideration are all submonic.

This observation is one of the main themes of the theory discussed in §1 of the
present paper. Roughly speaking, the errors pointed out by Nakayama and
Hoshi in the theory of [4], §2, may be summarized as follows:

the author wrote [4], §2, under the misunderstanding that this “straight-
forward” and “intuitive” approach to category-theoretic properties of
monomorphisms holds even if the various fs log schemes under con-
sideration are not necessarily submonic.

On the other hand, it turns out [cf. the theory of §2 of the present paper| that the
various complications that occur in the study of the category-theoretic properties
of monomorphisms of arbitrary non-submonic fs log schemes already appear in
the case of log-nodal fs log schemes. Moreover, it turns out that

these complications essentially revolve around various combinatorial
aspects of fan decompositions of two-dimensional rational polyhedral
cones, 1.e., of the sort that occur in the classical theory of toric varieties.
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These elementary combinatorial aspects are reviewed in §0 of the present
paper.

The theory developed in the present paper may be summarized as follows.
In §1, we introduce basic terminology and discuss various generalities concern-
ing monomorphisms in categories of log schemes. In particular, we discuss [cf.,
especially, Lemma 1.5] how the elementary combinatorics of two-dimensional fan
decompositions reviewed in §0 may be interpreted in the context of categories of
log schemes. In §2, we apply these elementary combinatorics of two-dimensional
fan decompositions [cf. Proposition 2.3] to show, in effect, that certain connected-
ness properties of such fan decompositions allow one to give a category-theoretic
characterization of submonic fs log schemes. We then proceed to give, in
Theorem 2.6, a category-theoretic reconstruction of the scheme structure of a
submonic fs log scheme. This reconstruction is quite “‘straightforward” and
“intuitive” and amounts, in essence, to an application of the techniques of
[4], §2. In the remainder of §2, we show [cf. Corollary 2.12] that the various
complications that arise in the case of arbitrary non-submonic fs log schemes
amount, in essence, to the issue of giving a category-theoretic algorithm that
allows one

to distinguish a log-nodal fs log scheme from a nontrivial log étale
localization of such a log-nodal fs log scheme [i.e., of the sort that arises
from a nontrivial two-dimensional fan decomposition].

Such a category-theoretic algorithm is furnished, in effect, by the theory of
seamless partitions of orientable log schemes developed in §3 [cf. Theorem 3.6].
This theory may be regarded as a translation into category theory of the ele-
mentary observation that

a nontrivial two-dimensional fan decomposition may be distinguished
from a trivial two-dimensional fan decomposition by considering the
‘“seamless partition” constituted by the various constituent cones of the
fan decomposition.

Finally, in §4, we observe that the theory developed in §1, §2, §3 may be
generalized, without any essential complications, to the case of fs log schemes
of locally finite type over Z that are equipped with archimedean structures |cf.
Theorems 4.3, 4.8]. Such generalizations allow one to avoid the difficulties that
arise from applying the erroneous portions of [4], §2, in the theory of [5], §4, i.e.,
by, in essence, isolating the [easily resolved] submonic aspects of these difficulties
from the [more subtle!| non-submonic aspects of these difficulties.

Acknowledgements. This paper owes its existence to the discovery by
Chikara Nakayama and Yuichiro Hoshi of various errors [cf. Example 0.3;
Remark 1.4.1] in the arguments of [4], §2. The author wishes to express his
gratitude to Nakayama and Hoshi for their careful reading of [4].
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Section 0: Notations and conventions

Numbers:

We will denote by N the set of natural numbers, by which we mean the set
of integers n > 0, and by Z the ring of rational integers. By a slight abuse of
notation, we shall also use the notation N, Z to denote the corresponding
monoids. We shall denote by Q. the additive monoid of nomnegative rational
numbers.

Generalities on monoids:

We shall refer to a finitely generated, saturated [cf. [2], §1.1] monoid that has
no nonzero invertible elements as an fs monoid. Thus, if P is an fs monoid, then
the natural homomorphism of monoids P — P from P to its groupification PSP
is injective, and P*®P is a finitely generated free abelian group. We shall refer to
the rank of P®P as the rank tk(P) of the fs monoid P.

A homomorphism of monoids ¢ : P — Q between monoids P, Q will be
called positive if ¢ maps every nonzero element of P to a nonzero element of
Q. A nonzero element a € P of a monoid P will be called a sum-dominator
if there exists a positive integer n such that n-a may be written as the sum of
a finite collection of generators of P. Thus, if ¢: P — Q is a nonzero homo-
morphism [i.e., a homomorphism that maps any collection of generators of P to
a subset of Q that contains at least one nonzero element!| from an arbitrary
monoid P to an fs monoid Q, and a € P is a sum-dominator, then ¢(a) # 0. We
shall say that a homomorphism of monoids ¢ : P — Q is sum-dominating if it
maps every nonzero element of P to a sum-dominator of Q. Thus, a sum-
dominating homomorphism is necessarily positive.

Let P be an fs monoid. Thus, in the terminology of the discussion entitled
“Monoids” of [6], §0, P is sharp, integral, and saturated. In particular, it makes
sense to speak of the perfection PP of P, as well as of the set of primes Prime(P)
of P—cf. the discussion entitled “Monoids” of [6], §0, for more details.

Rank two fs monoids:
Now let us suppose that P is an fs monoid of rank two. Then we recall that
there exists an isomorphism of monoids

P 5 QLo @ Qxy

[cf. [3], Proposition 1.7]. In particular, one verifies immediately that the set of
primes Prime(P) = Prime(P™) is of cardinality two. Write Prime(P) = Prime(PP")
={p;,p,}. Thus, for each i=1,2, p; may be regarded as a collection of
elementsdoff PP’ which generates a submonoid Pgl_f < PP, For simplicity, let us
write P = Pfl,f. Then one verifies immediately that the rwo direct summands of
the codomain of the isomorphism of the above display correspond precisely to
Py, P, ie., we have a natural isomorphism

PL®P, > P
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and noncanonical isomorphisms of abstract monoids P; =~ P, =~ Q.. In par-
ticular, these two direct summands are preserved, up to possible permutation, by
any automorphism of the monoid PP'. Note that [since the monoid Q. has
no nontrivial automorphisms of finite order] these observations imply that

any finite subgroup of Aut(PP")—or, indeed, of Aut(P) (— Aut(PP"))—
is of order < 2.

Next, let
def
¢o: P—Jo =N
be a positive homomorphism that induces a surjection on groupifications @5 :
P& — J5* =Z. Thus, Ker(¢§") =~ Z. Fix a nonzero element a e Ker(45") =
PE. For i =1,2, write

(Pc)Jic P®

for the saturation [cf. [4], Lemma 2.5, (ii)] of the submonoid of PP generated by
P and a if i =1 (respectively, —a if i =2) and

¢I-IP‘—>JZ‘

for the natural inclusion. Thus, P& = J® for i=1,2. One verifies immedi-
ately that, up to a possible permutation of the indices “1” and ““2”, the submonoids
J1 and J, of P®P are independent of the choice of a. Moreover, we observe that
it follows immediately from the definition of J; and J, that

if i=0 (respectively, i=1, i=2), then a positive homomorphism
¢: P— N factors, via ¢,: P — J;, through a positive homomorphism
J; — N if and only if the homomorphism induced on groupifications
@ . P& — Z satisfies the condition ¢*(a) = 0 (respectively, ¢&P(a) > 0;

$%(a) < 0).

In this situation, we shall refer to J; and J, as bisecting monoids of P at ¢,.
Before proceeding, we observe the following ““continuity property” of bisect-
ing monoids:

Suppose that P* = P& is a rank two fs monoid that arises as a submonoid
of P®P that contains P. For i =1,2, suppose that there exists a homo-
morphism W, : P* — N whose restriction to P factors, via ¢,: P — J;,
through a positive homomorphism J; — N. Then ¢, : P — N extends to
a positive homomorphism 1, : P* — N.

Indeed, if ¢, does not admit such an extension ,, then it follows that there
exist nonzero elements be P, ¢ € P* such that a+ b+ ¢ =0 for some element
a e Ker(¢i’) = P. Then it follows from the above discussion of bisecting
monoids that, for some i € {1,2}, y(a) > 0. Since the restriction of y; to P is
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a positive homomorphism, we thus conclude that 0 = Y (a) + ¢ (b) + P (c) >
0eN, a contradiction. This completes the proof of this “continuity property”.

Bisecting monoids may be understood more explicitly if one passes to
perfections. Indeed, by restricting our attention to perfections, one verifies
immediately that we may assume without loss of generality that

M =Q.0®Qsp, PI=Q.0®0, P,=0® Qs

and that q%’f : PPf — Q. is the homomorphism determined by sending (1,0) and
(O 1) to 1. Then one computes easily that, if one takes a (1,—1), then J; P
is equal to the perfection of the submonoid of (PP )% = Q ® Q generated by
(0,1) and (1,-1), while J, Pl is equal to the perfection of the submonoid of
(PP — Q @ Q generated by (1,0) and (—1,1). Thus, if ¢* maps

(L,0) —o; (0,1)—p

for o, € Q-, then one verifies immediately that ¢pf . PPl Q. factors, via
gP . PPf — JP' through a positive homomorphism JP — Q.

for i =0 (respectively, i = 1; i = 2) < o = f (respectively, a > f§; a < f3).

In the present paper, we shall often consider certain sequences of submonoids
satisfying certain special properties, as in the following examples.

Example 0.1 (Submonoids converging from one side). Let P be an fs
monoid of rank two, P < P& a bisecting monoid of P at some positive homo-
morphism ¢ : P — N. Then there exists an infinite descending sequence

Pc*Pc...c"Pc-..c'pcp

—where n € N—of submonoids of P®P such that every positive homomorphism
¢ : ©P — N factors through a positive homomorphism "P — N for some n [which
may depend on ¢], and, moreover, for each m e N, "P is a bisecting monoid of
P [hence, in particular, an fs monoid of rank two] whose image *¢*°(™P) via
CHEP . PEP — 7, contains both positive and negative elements. Indeed, by rea-
soning as in the above discussion, one reduces immediately to the verification—
say, in the case where PP = Q. ® Q. “¢™ is the homomorphism PP =
Q.o ®Q-¢ — Q- given by («,f) — a+f, and “PP" is the perfection of the
submonoid of Q @ Q generated by (—1,1) and (1,0)—of the existence of an
infinite descending sequence

prgooppfg_..gnppfg . ]pr Opr

—where n e N—of submonoids of (PP')® such that every positive homomor-
phism  : * PPl — Q. factors through a positive homomorphism "PP' — Q.
for some n [which may depend on ], and, moreover, for each m € N, " PP’ is the
perfection of a finitely generated submonoid of Q @ Q such that P = &l mpof
P [so ™PP" may be identified with the perfection of "P, as the notation
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suggests!| is a bisecting monoid of P whose image * ¢ (™ P) contains both positive
and negative elements. Such an infinite descending sequence may be obtained,
for instance, by taking "PP' to be the perfection of the submonoid of Q @ Q

1
generated by (—1, 1 _n—i—2> and (1,0).

Example 0.2 (Submonoids converging from the center). Let P be an f§
monoid of rank two. Then there exists an infinite descending sequence

Pc...c"Pc...c'PcpP

—where n € N—of submonoids of P®P such that every positive homomorphism
¢ : P — N factors through a positive homomorphism "P — N for some n [which
may depend on ¢], and, moreover, for each m € N, the inclusion P <— "™P is a
sum-dominating homomorphism of fs monoids. Indeed, by reasoning as in the
above discussion, one reduces immediately to the verification, in the case where
PP = Q., ® Q-, of the existence of an infinite descending sequence

prg...gnppfg...gIPPfEOPPf

—where n € N—of perfections of finitely generated submonoids of (PP")%" such
that every positive homomorphism  : PP — Q. factors through a positive
homomorphism "PPf — Q. for some n [which may depend on ], and, more-
over, for each meN, the inclusion P "P % mprfper [so PP may be
identified with the perfection of ™P, as the notation suggests!] induced by the
inclusion PPl — " PP is a sum-dominating homomorphism of fs monoids. Such
an infinite descending sequence may be obtained, for instance, by taking "PPf to

. . 1
be the perfection of the submonoid of Q @ Q generated by (1,—m) and

1 . . .. :
(_n—i-2’1>' Finally, we observe that this explicit construction shows that

the "P may be chosen so as to be preserved by any finite group of automorphisms
of P.

Log schemes:
If X is a scheme, then we shall write

Xred cX

for the closed subscheme determined by equipping the underlying topological
space of the scheme X with the reduced induced scheme structure. If X is the
underlying scheme of a log scheme X'°¢ [cf. [1], §1.2], then we shall write Xrle%g for
the log scheme determined by restricting the log structure of X'°2 to X4 < X.

We shall use the terms log étale (respectively, log smooth) to refer to
morphisms between log schemes which are “étale” (respectively, “‘smooth™) in the
sense of [1], §3.3 (respectively, [1], §3.3; [2], §8.1).

We use the term “‘fs log scheme” to refer to a log scheme which is fine [cf.
[1], §2.3] and saturated [cf. [the evident étale generalization of] [2], §1.5]. We
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shall refer to a log scheme as noetherian (respectively, locally noetherian) if its
underlying scheme is noetherian (respectively, locally noetherian). We shall say
that a morphism of log schemes is of finite type if its underlying morphism of
schemes is of finite type. We shall say that a morphism of log schemes is an
open immersion if its underlying morphism of schemes is an open immersion, and,
moreover, the log structure on its domain is obtained as the pull-back of the log
structure on its codomain. We shall say that a morphism of log schemes is
dominant if its underlying morphism of schemes is dominant.

We recall from [4], Lemma 2.6, (i), (ii), (iii), that the natural morphism from
the underlying scheme of any fiber product in the category of locally noetherian
fs log schemes to the corresponding fiber product of underlying schemes is
finite. On the other hand, this natural morphism is not necessarily surjective!
That is to say, the isomorphism asserted [unfortunately, without an explicit proof"|
in [4], Lemma 2.6, (ii), is false. Indeed, the following example constitutes a
counterexample to this isomorphism.

Example 0.3 (Empty fiber products of log schemes). Consider the fiber
product determined by the diagram of log schemes

Xlog — Zlog - Ylog

obtained by equipping the diagram of schemes

x4 Spec(k) — Z &ef Spec(k) — Y &f Spec(k)
—where k is a field, and the arrows are the identity morphisms—with the log
structures determined by the diagram of monoids

Py (1,0 (~1,1)> 2 P, EN@N < Py = ((1,-1);(0,1))
—where the notation “{—)" denotes the submonoid of P5 = N& @ N*& =
Z ® Z generated by the element(s) in brackets—and the morphisms of monoids
Py — k, Py — k, Pz — k that map 0+— 1€k and all nonzero elements of the
domain to 0 € k. Then one verifies immediately that this fiber product is, in fact,
empty, despite the fact that X xy Z = Spec(k) # 0.

Section 1: Generalities on monomorphisms and minimal points

In the present §1, we discuss various definitions and generalities related to
monomorphisms and “minimal points” in categories of log schemes.

We suppose that we are in the situation of [4], §2. That is to say, let X'°2
be a locally noetherian fs log scheme [cf. the discussion entitled “Log schemes’ in
§0]. Then we denote by

Sch'og(x1og)

the category whose objects are morphisms of log schemes of finite type Y'°¢ —
X2 where Y'°¢ is a noetherian fs log scheme, and whose morphisms [from
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an object Y°! — X'°¢ to an object Y,°% — X'°¢] are morphisms of finite type
Y11°g — Y2log lying over X'°2. To simplify the exposition, we shall often refer to
the domain Y'°¢ of an arrow Y'°2 — X'°2 which is an object of Sch'¢(X¢) as an
“object of Sch'°¢(xlog)”,

Recall the category Sch(X) of [4], §1, i.e., the category whose objects are
morphisms of finite type Y — X, where Y is a noetherian scheme, and whose
morphisms [from an object ¥} — X to an object Y, — X] are morphisms of finite
type Y1 — Y, lying over X. Note that by associating to an object ¥ — X of
Sch(X) the object Y2 — X0 of Sch'°¢(Xx'°2) obtained by equipping Y with the
log structure obtained by pulling back the log structure on X'°¢ via ¥ — X, we
obtain a natural embedding

Sch(X) < Sch'°g(x°¢)

—which thus allows us to regard Sch(X) as a full subcategory of Sch'(X'°g).

Let Y'°2 be an fs log scheme. Then we shall denote its underlying scheme
(respectively, the morphism of monoids that constitutes its log structure) by Y
(respectively, expy : My — (Oy). Thus, we have an exact sequence of étale
sheaves of monoids on Y

0—- 0y - My — Py—0

—where the “characteristic sheaf” Py is defined so as to make the sequence
exact. It follows immediately from the fact that Y!°¢ is an fs log scheme that
the fibers of Py (respectively, the groupification P¥ of Py) at geometric points
of Y are fs monoids [cf. the discussion entitled “Generalities on monoids™ in §0]
(respectively, are finitely generated free abelian groups). In particular, we have
natural injections

Py‘—>P§,p; My‘—>M)g,p

—where the superscript “gp” denotes the groupification associated to a sheaf of
monoids. In the following, we shall use similar notation for objects associated
to arbitrary fs log schemes “(—)log”.

In this situation, we shall apply the terminology introduced in [4], §2:

DermNiTION 1.1.  In the notation of the above discussion:

(i) If Y is reduced (respectively, one-pointed—cf. [4], Proposition 1.1), then
we shall say that Y'°2 is reduced (respectively, one-pointed). If Y'°¢ is reduced
and one-pointed, i.e., Y is equal to the spectrum of a field k, then one may think
of Py as consisting of a [discrete] monoid equipped with a continuous action of
the absolute Galois group Gy of k; when this action is trivial, we shall say that
Y'o¢ is split and, by a slight abuse of notation, denote I'(Y,Py) by Py.

(ii) An object Y'°r — Xlog of Schl°¢(x'o2) will be called minimal if it is
non-initial and satisfies the property that any monomorphism Z!°¢ > Yo¢ in
Sch'°¢(x2)  where Z'¢ is non-initial, is necessarily an isomorphism [cf. [4],
Proposition 2.4].
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(iti) Suppose that Y'°2 is a one-pointed object of the category Sch'°g(X'og).
Then a monomorphism H'°¢ »» Y'°2 in Sch'®¢(X'°2) will be called a hull for Y2
if every morphism $'°¢ — Y2 in Sch!°¢(X'°2) from a minimal object S'°¢ to Y'og
factors [necessarily uniquely!] through the given monomorphism H'°2 > Ylog
[cf. [4], Proposition 2.7]. A hull H">> Y'°2 will be called a minimal hull if
every monomorphism H,° »— H'%¢ in Sch'(X'£) for which the composite
H % > H' > Y'"¢ is a hull is necessarily an isomorphism [cf. [4], Proposition
2.7]. A one-pointed object H™¢ of Sch'¢(X'°¢) will be called a minimal hull if
the identity morphism H'°¢ — H'°¢ is a minimal hull for H'°¢. [The notions of
“hull”’/“minimal hull” will not be used in the present paper, but are reviewed here
for the sake of comparison with the notions of “point-hull”/“minimal point-hull”,
which do play an important role in the present paper—cf. Definition 2.9, (iii).]

(iv) Suppose that f'og: zog — ylog js a morphism of Sch'°¢(X'°2). Then
[cf. [4], Definition 2.11, (i), (ii)]: f'°¢ will be called log-like if the underlying
morphism of schemes f : Z — Y is an isomorphism; f'°¢ will be called scheme-
like if the log structure on Z'°¢ is the pull-back of the log structure on Y°¢ via
the underlying morphism of schemes f : Z — Y [i.e., in the terminology of many
authors, if f1°¢ is strict]. Write

Sch'*%(X1%)| g, S Sch“®(x %)

for the full subcategory of objects of Sch'°®(X'°f) determined by scheme-like
morphisms Y'°¢ — X'°2 Thus, one verifies immediately that the natural embed-
ding Sch(X) < Sch'&(x'°2) discussed above admits a natural factorization as the
composite of a natural equivalence of categories

Sch(X) = SChlog(X 10g)|sch-lk

with the natural inclusion Sch'®®(X'¢)| , ;. < Sch'&(x'og),
Also, we introduce some new terminology as follows:

DrermNiTION 1.2, In the notation of the above discussion:
(i) Let ne N. Then we shall say that Y'°¢ is of rank < n (respectively, of
rank n) and write

tk(Y™8) <n (respectively, rk(Y'°¢) = n)

if every fiber of Py at a geometric point of Y is of rank < n (respectively, rank )
[cf. the discussion entitled ““Generalities on monoids” in §0]. We shall say that
Y'°2 is submonic if it is of rank < 1. If Y'°2 is locally noetherian, then we define
the submonic dimension of Y'°2 to be the supremum

dimsm(YIOg)d;f sup dim(Z) e NU{—o0,+0}

Zlog, , ylog

—where Z'°2 »» Y2 ranges over the monomorphisms of Sch'°(Y'2) such that
Z'" e is submonic, and ““‘dim(Z)” denotes the scheme-theoretic dimension of the
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underlying locally noetherian scheme Z of Z°2. Thus, the submonic dimension
is equal to —oo if and only if it holds that the underlying scheme of every “Z°s”
that appears in the supremum of the above display is the empty scheme. We
shall say that Y'°¢ is log-nodal if it is reduced, one-pointed, split, and of rank two.

(i) Suppose that Y'°¢ arises from an object Y2 — X'lof of Sch'o¢(xlog),
Then a minimal point Z'°% »» Y02 of Y'°2 is defined to be a monomorphism
Zoz ., ylog of Sch!°®(Xx'°2) such that Z'°2 is a minimal object of Sch'°%(Xxog),
Thus, a minimal point of Y'°¢ may be thought of as an object of Schlog(Ylog).
We shall write

MinPt( Y°¢)

for the set of isomorphism classes [i.e., as objects of Sch'°¢(Y'°£)] of minimal
points of Y°g,

ProrosiTION 1.3 (Empty and connected underlying schemes). Suppose that
Y'2 is an object of Sch'®¢(X'°¢).  Then:

(i) The underlying scheme Y of Y'°% is empty if and only if Y'°¢ is an initial
object in the category Sch'®®(Xx°g).

(i) The underlying scheme Y of Y'°¢ is connected if and only if the object
Yo of Sch'°¢(X'°2) js non-initial and, moreover, does not admit a representation
as a coproduct of two non-initial objects of Sch'°®(Xx'°g).

Proof. Assertions (i) and (ii) follow immediately from the definitions. O

ProposITION 1.4 (First properties of monomorphisms). Suppose that f'°2 :
Zoz . ylog s g morphism of Sch'®(X'°%).  Thus, the underlying morphism
f:Z—Y of f° may be regarded as a morphism of Sch(X). Then:

(i) The property of being a monomorphism in the category of fs log schemes
(respectively, in the category Sch'°®(X'°%)) is stable under base-change in the
category of fs log schemes (respectively, in the category Sch'®(X'0%)).

(i) Let M — N be a morphism of finitely generated, saturated monoids such
that the induced morphism M® — N¥P js surjective. Then the induced morphism
of fs log schemes

Spec(Z[N])'°¢ — Spec(Z[M])'®

—where we use the superscript “log” to denote the log structures determined by the
tautological charts M — Z[M], N — Z[N]|—is a monomorphism in the category
of fs log schemes.

(iti) If £'°¢ is @ monomorphism in Sch'®(X'°¢), then the induced morphism of
sheaves of abelian groups P¥|, — PZ is surjective.

(iv) Suppose that Y'°¢ is submonic, and that the morphism P$|, — PSP
induced by f'°¢ is surjective. Then Z'°¢ is submonic, and f'°¢ is scheme-like.

(v) Suppose that f'°¢ is scheme-like. Then f'°¢ is a monomorphism in
Sch!°¢(X'°2) if and only if f is a monomorphism in Sch(X).

(vi) Suppose that Y'°¢ is submonic, and that f'°¢ is a monomorphism in
Sch'®¢(X'°¢). Then the morphism P¥|, — P2 induced by f'°¢ is surjective; Z'°¢
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is submonic; f1°¢ is scheme-like [which, in fact, implies the surjectivity of the
morphism P¥|, — PF]; and f is a monomorphism in Sch(X).

(vii) Suppose that f is a monomorphism in Sch(X), and that the morphism
P2\, — PS induced by f'°¢ is surjective. Then f'°¢ is a monomorphism in

Sch'°¢(xoe).

Proof. Assertions (i) and (v) follow immediately from the definitions.
Next, before proceeding, let us recall that, for instance in the case of the log
scheme Y'°og

(*sys) the sheaf of monoids that defines the log structure of Y!°¢ may
be thought of as the restriction to Py < P§ of a certain system
of line bundles [i.e., a system of Gp-torsors| parametrized by the
sheaf of abelian groups P¥.

Now assertion (ii) follows immediately from (xs). Assertion (iii) follows from
the argument given in the proof of [4], Proposition 2.3 [but cf. Remark 1.4.1
below!]: That is to say, one reduces immediately to the case where Z and Y are
equal to Spec(k) for some field k; then, under the assumption that the asserted
surjectivity fails to hold, one constructs scheme-like morphisms W'¢ — Zlg,
where W'°2 is an fs log scheme whose underlying scheme is an artinian k-algebra,
whose existence contradicts the assumption that f1°¢ is a monomorphism in
Sch!*¢(x'og)  Assertion (iv) follows immediately from the simple and well-
understood structure of the monoid N. Assertion (vi) follows formally from
assertions (iii), (iv), and (v). Finally, assertion (vii) follows from the definitions,
together with the observation (xs) discussed above. O

Remark 1.4.1. Suppose that we are in the situation of Proposition 1.4.
Then in general,

it is not necessarlly the case that the assumption that f'°¢ is a mono-
morphism in Sch'®¢(X'°2) implies that [ is a monomorphism in Sch(X).

That is to say, the corresponding portion of the necessity asserted in [4],
Proposition 2.3, is false as stated. Such an example may be obtained by
considering the monomorphism constructed in Proposition 1.4, (ii), in the case
where the morphism of monoids M — N is taken to be the morphism

MdefN@N NdetN@N

that maps M > (1,0) — (1,1) e N and M 3 (0,1) — (0,1) € N, i.e., in which case
the resulting morphism of schemes is a “blow-up morphism” that has fibers of
dimension one.

LemMa 1.5 (Well-known generalities concerning fs m0n01ds and associated
log schemes). Let k be a field; k%P a separable closure of k; G & Gal(kSep /k); P
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an fs monoid [c¢f. the discussion entitled *Generalities on monoids” in §0] equipped
with a continuous action by Gy [i.e., relative to the discrete topology on P); MEP an
extension, in the category of topological abelian groups equipped with continuous
G-actions, of P by (k*P)* [ie., the mullzpllcatlve group of nonzero elements
of k%P, equipped with the discrete topology); M = &l ppen pw P. Write T'¢ for
the reduced, one-pointed fs log scheme whose underlying scheme is equal to T =
Spec(k*P), and whose log structure is given by the homomorphism of monoids
M — kP that restricts to the natural inclusion (k*P)™ — k*P on (k*P)* < M and
maps non-invertible elements of M to 0 e k. Thus, the associated characteristic
sheaf P is the constant sheaf on T determined by P; the log scheme T'°% admits
a natural Gy-action, which may be regarded as a collection of | pro-|finite étale
descent data that gives rise to a reduced, one-pointed fs log scheme S'°¢ whose
underlying scheme is S = Spec(k). Then:

(i) Suppose that the action of Gy on P is trivial. Then the extension of G-
modules 1 — (kP)* — M — P& — | splits.

(i) Suppose that tk(P) = 1. Then there exists a positive [c¢f. the discussion
entitled ““Generalities on monoids” in §0], Gy-equivariant [i.e., with respect to the
trivial action of Gy on N| homomorphism ¢ : P — N that induces a surjection on
groupifications ¢ : P® — N®¥_ Now fix such a homomorphism ¢ : P — N, and
assume, moreover, that tk(P) > 2. Then there exists a positive homomorphism
Y : P — N that induces a surjection on groupifications Y : P& —s N®P such that
Ker(¢®) # Ker(y*P).

(iii) Suppose that tk(P) > 2. Then there exist an fs monoid Q of rank two
and a positive homomorphism & : P — Q that induces a surjection on groupifications
EEP . peP s O and, moreover, satisfies the following property:

Let {: Q — R be a positive homomorphism of fs monoids of rank > 1 and
o € Gy such that the composite homomorphism {o&oag: P — R factors
as the composite {;0¢& of &: P — Q with some positive homomorphism
(,:Q— R Then o stabilizes the subquotient P® — Q% 2 Q and
induces the identity on Q.

In particular, if © € Gy stabilizes the subquotient P — Q% 2 Q, then t induces
the identity on Q.

(iv) Let £: P — Q be a positive homomorphism of fs monoids that induces
a surjection on groupifications ¥ . P& — Q. Write Z°P for the subfunctor
of the contravariant functor determined by the terminal object [i.e., T'%] of
Sch!°¢(T°2) that consists of objects Z'°¢ — T'°¢ of Sch'(T'°2) such that the
composite homomorphism P& — T (T, P¥) — ['(Z, PT) induces, via &, a homo-
morphism Q — T(Z, Pz); write 1Y < E*P for the subfunctor corresponding to the
condition that, for each fiber Py : of Pz at a geometric point zZ of Z, the resulting
homomorphism Q — Py > is positive. Then Z°P may be represented by the object
of Sch'®¢(T%2) determined by a log étale monomorphism

Tlog [é] NN Tlog
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of Sch'®¢(T'°%). If, moreover, Q coincides with the saturation of the image of &
in Q% then the following properties hold: ZI* =Z*P; the closed subscheme
T[)eq E TIE] [¢f the discussion entitled “Log schemes” in §0] of the underly-
ing scheme T[E] of T'2[¢] is a torus over kP of dimension rk(P) —rk(Q); the
characteristic sheaf Pri is isomorphic to the constant sheaf on T[] determined

by Q; if we write M[¢] L Ve X pew Ker(E8P), then the group of invertible functions

on the torus T[E|..q may be naturally identified with MIE).

(v) Suppose that we are in the situation of (iv). Write H = Gy for the open
subgroup of elements that stabilize the subquotient P® — Q% 2 Q determined
by & S};g for the reduced, one-pointed fs log scheme obtained by descending T'°¢
via H < Gy; Z for the subfunctor of the contravariant functor determined by the
terminal object [i.e., SE%] of Sch'®€(SE%) that consists of objects Z't — SR% of
Schlog(S}})g) such that the object Z'°% X g0 T8 — T°¢ of Sch'°¢(T°¢) determined
by base-changing from S};’g to T'¢ determines an element of BSP(Zloe X glos T'o2);

—

E, for the subfunctor of E determined by the subfunctor EYF of ZP. Then
E may be represented by the object of Schlog(S;})g) determined by a log étale
monomorphism

S > Sy

of Schlog(S}?g) which may be obtained, via |pro-|finite étale descent, from the
natural H-action on the monomorphism T[] = T'°¢ of (iv).

(vi) Suppose that we are in the situation of (v). Let ng [é] = S™°¢[¢] be some
monomorphism of Schlog(S}fg) that determines an element of Z.(—) < E(-).
[That is say, we do not make any assumption to the effect that Slfg (€] admits some
sort of “special functorial interpretation™] Then if either tk(Q) =1 or & is as in
(iii), then the composite

SYL[E] s S1OE[E] s Sl0E , glox

—where the second arrow is the monomorphism of the final display of (v); the third
arrow is the natural morphism Si® — S'°¢is a monomorphism in Sch'°¢(S°g).

(vil) Suppose that tk(P) =2, and that we have been given a positive homo-
morphism ¢, : P — Jy = N that induces a surjection on groupifications ¢§p B e
J§¥ =Z. Then, in the notation of the discussion entitled “Rank two fs monoids”
in §0, for i=0,1,2, let us write ¢;: P — J; for the associated positive homo-
morphism of fs monoids |which is well-defined, up to possible permutation of the
indices “1” and “2”).  For i =0,1,2, write ®; for the subfunctor of the contra-
variant functor determined by the terminal object [i.e., T'°%] of Schlog(Tlog) that
consists of objects Z'°¢ — T'°¢ of Sch'§(T'°¢) such that, for each fiber Py : of Py
at a geometric point z of Z, the composite homomorphism P® — T'(T,P¥) —
[(z,PY) — PJ. induces, via ¢, : P — J;, a positive homomorphism J; — Pz =. If
E < {0,1,2} is a subset, then write ®3" for the subfunctor of the contravariant
functor determined by the terminal object [i.e., T'¢] of Schl"g(TlOg) that consists
of the [disjoint!] union of the ®;F, for i€ E. Then, for any E ={0,1,2} such
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that 0 € E, ®3P may be represented by the object of Sch'%(T'°%) determined by
a log étale monomorphism

The(g ] o T

of Sch!®¢(T™°¢) which satisfies the following properties: T'¢[¢,] is connected
[hence nonempty]. If E = {0}, then T'°¢[pz] = T'°% may be identified with the
morphism T'°%[¢,] = T'°% of (iv); in particular, in this case, the closed subscheme
T(¢g)ea S Tlor| of the underlying scheme T|$y] of T'°¢[¢] is a one-dimensional
torus over k*P.  Finally, if 0 E < E* < {0, 1,2}, then the resulting morphism of
log schemes T'°¢[¢g| — T'°®[p.] is a dominant open immersion [cf. the discussion
entitled “Log schemes” in §0].

(viil) Suppose that we are in the situation of (vii). Write H < Gy for the
open subgroup of elements that stabilize the subquotient P® — Ji¥ 2 J, deter-
mined by ¢q; S Og for the reduced, one-pointed fs log scheme obtalned by descending
T'°¢ pia H < Gk Thus, H acts naturally on Prime(P), hence also on the set of
indices {0,1,2} [where we regard the index “0” as being stabilized by the action
of Hl. Let E<{0,1,2} be a subset that is stabilized by this natural action of
H. Write ®g for the subfunctor of the contravariant functor determined by the

terminal object [i.e., Sp] of Sch'®¢(S©®) that consists of objects Z'¢ — Si¢ of
Sch'°g(s lOg) such lhat the object Z'°% x sl T2 — T2 of Sch!°¢(T°¢) determined
by base-changing from Si¢ to T'°8 delermznes an element of ®;P(Z"°8 x 5 T'og),

Suppose that 0 € E.  Then ®g may be represented by the object of Schlog(Slog)
determined by a log étale monomorphism

S E(gg] > Sjp*

of Schlog(Slog) which may be obtained, via |pro-|finite étale descent, from the
natural H-action on the monomorphism T'%[¢.] > T'¢ of (vii).

(ix) Suppose that we are in the situation of (viii). Suppose further that
@y : P — Jo satisfies the following property:

Let {:P— N be a positive homomorphism of fs monoids, &€ Gy;
io,i1 € {0,1}.  Suppose that, for me {0,1}, (o™ : P — N factors, via
¢, P —J,, through a positive homomorphism J; — N. Then o acts

trivially on P.

Then [one verifies immediately, by taking “(” to be ¢, that] H fixes the index
“1”. Moreover, the composite S'°¢ [(/5{0 1}] — Sy log - Slog of the monomorphism of
the final display of (viii) with the natural morphzsm S — S js @ monomorphism
in Sch'°¢(sleg),

Proof. Since P is a finitely generated free abelian group, assertion (i)
follows immediately from the assumption that the action of Gy on P is trivial,
together with the well-known fact from elementary Galois theory [i.e., Hilbert’s
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“Theorem 90| that H'(G, (k*P)*) = 0. Next, we consider assertion (ii). The
existence of ¢ follows immediately from [4], Lemma 2.5, (iii), i.e., by considering
the [ finite!] sum of the Gy-conjugates of a positive homomorphism P — N of the
sort discussed in [4], Lemma 2.5, (iii); the existence of y then follows by applying
[4], Lemma 2.5, (iii), to two distinct elements of P that map, via ¢, to the same
nonzero element of N. This completes the proof of assertion (ii).

Next, we consider assertion (iii). First, we observe that the final portion of
assertion (iii) concerning 7 € Gy follows immediately from the property in the
display of assertion (iii) by taking {: Q — R to be the identity automorphism of
Q. Next, we observe that the homomorphisms ¢ and s of assertion (ii) determine
a positive homomorphism (¢,1) : P — N @ N whose image I = N @ N generates
a rank two subgroup I8 of N @ N® = Z @ Z. Thus, for some positive integer
n, it holds that n-N® @n- N < I8 In particular, we have n-N@®n-N <=
0 IPN(N®ON)SN@ON; 1S Q; Q0P =% [since [% = Q¥ < [®]. One
verifies immediately that this implies that this monoid Q = N@N is an fs
monoid of rank two. Write &: P — Q for the resulting positive homomorphism
of monoids. Note that ¢ induces a surjection on groupifications &% : P& —s
QP (= I%),

Now suppose that {: Q — R is a positive homomorphism of fs monoids of
rank > 1 and o € G, such that the composite homomorphism {oéog: P — R
factors as the composite {, o0& of &: P — Q with some positive homomorphism
{,: 0 — R; in the following, we shall show that ¢ stabilizes the subquotient
P& — Q0% o @ and induces the identity on Q. Here, we note that, by applying
assertion (ii) in the case where we take “P”, “k”, and “M®” to be R, k5P,
and RE x (k*P)”, respectively, we may assume without loss of generality that
R =N. Also, by replacing R by a suitable submonoid of R, we may assume
without loss of generality that {, {, induce surjections (®° (5P : Q¥ —» RSP =
N& = 7. Next, let us observe that, by restricting the first projection N @ N —
N to Q =€ N@® N, one may regard ¢ : P — N as the composite yoé of £: P — Q
with a homomorphism of monoids 7 : Q — N. Since # vanishes on 0 ®n-N < Q,
it follows that # is not positive, and hence that Ker(n%) # Ker({®?), Ker(y®) #

Ker(¢%). Since &% is surjective, we thus conclude that, if we write OdéfC o¢,

0,2 ¢, 08 then Ker(¢®) # Ker(0%), Ker(¢®) # Ker(0%"), and hence that

both Ker(¢®) N Ker(6*) = P and Ker(¢*) NKer(05") = P are submodules
of rank rk(P®&) — 2 that contain Ker(£®). Since Ker(¢®) is also a submodule
of P& of rank rk(P®)—2, we thus conclude [since P& /Ker(¢%) = Q% is
torsion-free] that Ker(¢®) N Ker(0%") = Ker(¢®) N Ker(0") = Ker(&P).  But,
since ¢ is Gy-equivariant, this implies that Ker(£®) is stabilized by o, i.e.,
that ¢ induces an automorphism of the quotient £ : P& —s Q% as well as of
the quotient #& : Q% —» N® =7, and maps the quotient (P : Q& — N2 =7Z
to the quotient (P : Q% — N® = Z.

Now to complete the proof of assertion (iii), it suffices to verify that o
induces the identity on Q%. Thus, we suppose that ¢ does not induce the
identity on Q®. Then since o clearly stabilizes the fs monoid of rank two
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obtained by forming the saturation of the image of £: P— Q in Q [cf. [4],
Lemma 2.5, (ii)], it follows [cf. the discussion entitled “Rank two fs monoids”
in §0] that ¢ acts on Qf as an automorphism of order 2, and hence that o
permutes the quotients determined by (®F, (2. In particular, o stabilizes the
kernel of the homomorphism on groupifications ({ : Q% — Z determined by the
positive homomorphism {, : Q — N obtained by forming the sum of {, {,. Since
o acts nontrivially on Q%, this implies that Ker({{’) = Ker(#**). Thus, the
positivity of {, contradicts the non-positivity of . This completes the proof of
assertion (iii).

Next, we observe that assertions (iv), (v), (vii), and (viii) are immediate
consequences of the well-known correspondence between the theory of log schemes
and the classical theory of toric varieties. Next, we consider assertion (vi). First
of all, given an object Z'°¢ of Sch'°¢(5%2) and two S'-morphisms « : Z'°¢ —
SYLE) B Zlos — SI%E] to verify that o = f8, it suffices to verify that o and
f coincide after base-change from k to k5P. Moreover, since the morphism
Sy — S is finite étale, and the morphism S'%¢[¢] — SI9¢ is already known to be
a monomorphism, one verifies immediately that we may assume without loss of
generality that Z'°2 is reduced and one-pointed—an assumption which reduces
the assertion under consideration to an assertion concerning fs monoids, 1.e.,
the assertion that if, for some o € Gy, there exist positive homomorphisms of
fs monoids {: 0 — Rand {,: Q — R such that (o oo ={_,0,: P — R, then ¢
stabilizes the subquotient P& —» Q% 2 Q determined by £, But this assertion
concerning fs monoids follows immediately, i.e., if one assumes either that
rk(Q) =1 or that & satisfies the properties stated in (iii). This completes the
proof of assertion (vi). Finally, we observe that assertion (ix) may be verified by
a similar argument to the argument applied in the proof of assertion (vi). O

PROPOSITION 1.6 (Minimal objects). Suppose that Y'°2 is an object of
Sch!*¢(x'°2).  Then:

(i) Suppose that Y'¢ is a nonempty object of Sch'°¥(X'°2).  Then there
exists a minimal point Z'°¢ — Y!°¢ such that Z'°¢ is submonic. Now fix such a
minimal point Z'°¢ — Y'°¢ and assume, moreover, that Y'°¢ is not submonic.
Then there exists a minimal point W2 — Y92 where W'°¢ js submonic, that is
not isomorphic ro Z'9¢ — Ylog,

(ii) Y™ is ¢ minimal object of Sch'(X'°2) if and only if Y'¢ is reduced,
one-pointed, and submonic. Put another way, Y'°¢ is a minimal object of
Sch!°®(X'°2) if and only if, for some field k, Y'¢ is either equal to Spec(k)
equipped with the trivial log structure or equal to Spec(k) equipped with the log
structure N3 1— 0 € k.

(iti) Suppose that Y'°¢ and Z'¢ are minimal objects of Sch'°®(X'eg). If
flog: Zlog , ylog is q morphism in Sch'$(X'°%), then let us write

MinLg(f'°¢) e NU {+0}
def

for the “minimal length” of f'°%: that is to say, we set MinLg(f'8) = 0 if flo2
is an isomorphism; if' f'°¢ is not an isomorphism, then we take MinLg(f'°¢) to
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be the supremum of the set of positive integers n such that f°% admits a
factorization

def 1 1 log def
Z}llog del Zlog N Znof1 SN Zlog N Zoog md Ylog

as a composite of morphisms of Schlog(X lo2) “yyhich are mot isomorphisms such
that, for each i=1,...,n, Z\°® is a minimal object of Sch'®(X'¢).  Then Y'o¢
is of rank ome if and only if MinLg(f'°¢) is finite for every morphism f1°% in
Sch'*¢(X'°2) with codomain equal to Y'°¢ [and domain given by some minimal
object].

Proof. First, we consider assertion (i). Observe that we may assume
without loss of generality that Y'°2 is reduced and one-pointed [cf. [4], Proposition
1.1, ()], and hence that the underlying scheme Y of Y!°¢ may be written in
the form Spec(ky), for a suitable field ky. Next, let us consider the situation
discussed in Lemma 1.5, (v), in the case where

- one takes the data that gives rise to “S'°2” to be the data that arises
from Y'°2 [so “k” corresponds to kyl;

* if rk(Y'°¢) = 0, then one takes the positive homomorphism “&” to be
the identity morphism;

« if rk(Y'°¢) > 1, then one takes the positive homomorphism “&” to be
the homomorphism “¢: P — N” of Lemma 1.5, (ii).

Then one verifies immediately from the description of the torus “T7[&]..” in
Lemma 1.5, (iv), that any splitting as in Lemma 1.5, (i), over a suitable finite
separable extension of k—which, in the terminology of [3], Definition 1.3, may
be regarded as a “Galois-equivariant clean chart”—determines a closed point
of S[¢]. In particular, by restricting the log structure of the submonic log
scheme S™°¢[¢] to this closed point, we obtain, by Proposition 1.4, (vii); Lemma
1.5, (vi), a monomorphism f1°¢ : Z'°¢ — ylog in Sch'°¢(x'°2) for some submonic
Z ¢ Since, by [4], Proposition 2.4, (ii), (i), Z'°¢ is necessarily minimal, we
thus conclude that the morphism f'°¢ determines a minimal point of Y'°2 as
desired. In a similar vein, if Y'°% is not submonic [i.e., is of rank n > 2|, then we
consider the situation discussed in Lemma 1.5, (v), in the case where one takes
the data that gives rise to “S'°2” to be the data that arises from Y'°¢ [so “k”
corresponds to ky], and one takes the positive homomorphism “&” to be the
homomorphism “y : P — N of Lemma 1.5, (ii). Then a splitting as in Lemma
1.5, (i), over a suitable finite separable extension of k determines a closed point of
S[¢€] whose residue field ky is a finite separable extension field of ky. Now, by
restricting the log structure of the submonic log scheme S'°¢[¢] to this closed
point, we obtain, by Proposition 1.4, (vii); Lemma 1.5, (vi), a monomorphism
whog _ ylog in Sch'°¢(xg)  for some submonic W'°¢ whose underlying scheme
W is equal to Spec(ky ), which determines, by [4], Proposition 2.4, (iii), a minimal
point of Y'°2 that is not isomorphic to f'°2 : Z°¢ — Y'°2  This completes the
proof of assertion (i).
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Next, we consider assertion (ii). The sufficiency portion of assertion (ii)
follows immediately from [4], Proposition 2.4, (ii), (iii). Thus, to complete the
proof of assertion (ii), it suffices to verify the necessity portion of assertion (ii).
To this end, suppose that Y'°2 is minimal. Then it follows from [4], Proposition
2.4, (i), that Y'°2 is reduced and one-pointed, i.e., that ¥ = Spec(ky), for some
field ky, and hence, from assertion (i), that there exists a minimal point
flog . zlog _, ylog in Schl*¢(x'e2) for some submonic Z't. If Y'2 is not
submonic, then it follows that f1°2 is not an isomorphism, i.e., in contradiction
to the assumed minimality of Y'°2. This completes the proof of assertion (ii).

Finally, we consider assertion (iii). First, let us observe that it follows from
assertion (ii) that the underlying scheme Y (respectively, Z) of Y'°¢ (respectively,
Z'°%) may be written in the form Spec(ky) (respectively, Spec(kz)), for a
suitable field ky (respectively, k7). Then if Y'°¢ is of rank onme, then the
finiteness of MinLg( f1°¢) follows immediately by considering the finiteness of the
extension degree [k : ky], together with the simple, well-understood structure of
the monoid N. On the other hand, if Y'°¢ is of rank zero, but Z'°¢ is of rank
one, then the fact that MinLg(f!°¢) = 4-c0 follows by considering the infinite
descending sequence of submonoids N22-N2-..22"-N2..-, for ] <neN.
This completes the proof of assertion (iii). O

ProposITION 1.7 (Monomorphisms from log-nodal objects into non-submonic
objects).  Suppose that Y'°¢ is a non-submonic object of Sch'°¢(X'°¢).  Then there
exists a log-nodal object Z'¢ of Sch'®(X'°%) that admits a monomorphism
Zlog NN Ylog_

Proof. As in the proof of Proposition 1.6, (i), one verifies immediately that
we may assume without loss of generality that Y'°2 is reduced and one-pointed,
i.e.,, that Y = Spec(ky), for some field ky. Now we consider the situation
discussed in Lemma 1.5, (v), in the case where one takes the data that gives rise
to “S'°2” to be the data that arises from Y'°2 [so “k” corresponds to ky], and
one takes the positive homomorphism “&” to be the homomorphism “¢: P — Q”
of Lemma 1.5, (iii). Then one verifies immediately that any splitting as in
Lemma 1.5, (i), over a suitable finite separable extension of k determines a closed
point of S[£] whose residue field k; is a finite separable extension field of ky
such that the log scheme Z'°¢ obtained by restricting the log structure of the log
scheme S'°2[¢] to this closed point determines an element of Z,(—) < E(-).
Thus, we obtain, by Proposition 1.4, (vii); Lemma 1.5, (vi), a monomorphism
Z'9¢ — ylog in Sch'¢(X'°¢) for some reduced, one-pointed, split [cf. the final
portion of Lemma 1.5, (iii)] Z'°¢ of rank two [cf. Lemma 1.5, (iii)] whose
underlying scheme Z is equal to Spec(kz), as desired. O

PROPOSITION 1.8 (Submonic one-pointed log schemes). Suppose that Y'°2 is
an object of Schlog(X log)  Then Y'°¢ is submonic and one-pointed if and only if
MinPt(Y'°8) is of cardinality one.
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Proof. First, we verify necesszty Suppose that Y'°2 is submonic and one-
poznted Then it follows that Y Og [cf. the discussion entitled “Log schemes”
§0] is reduced, one-pointed, and submomc hence, by Proposition 1.6, (i), that Yr:dg
is minimal. Since any morphism from a [necessarlly reduced, by Propos1t10n 1 6,
(ii)!] minimal object of Sch'®¢(X'°2) to Y'°2 clearly factors uniquely through Yed,
we thus conclude that MmPt(YlOg) is of cardinality one, and that the unique
element of MinPt(Y'°¢) arises from the natural inclusion Yreof < Y'°2  This
completes the proof of mecessity. Next, we verify sufficiency. Suppose that
MinPt(Y!°%) is of cardinality one. Then by applying the initial portion of
Proposition 1.6, (i), to the objects “Z™8” of Sch!°¢(X'°2) obtained by consider-
ing scheme-like monomorphisms Z'°¢ > Y'°2 that arise from monomorphisms
Z Y in Sch(X) for reduced, one-pointed Z [cf. Proposition 1.4, (vii); [4],
Proposition 1.1, (iii)], we conclude that Y'°% is one-pointed. Thus, by applying
the final portion of Proposition 1.6, (i), to Y% we conclude that Y2 is
submonic. This completes the proof of sufficiency. O

Before proceeding, we review a well-known consequence of the general
theory of fs log schemes.

Lemma 1.9 (Specialization morphisms associated to characteristic sheaves).
Suppose that the underlying scheme Y of Y'°2 is the spectrum of a strict henselian
domain 4. Write § for the tautological geometric point of Y associated to the
unique closed point of Y. Let ij be a geometric point of Y whose image in Y is
the unique generic point of Y. In the following, we shall use subscripted *‘5’s” and
“n’s” to denote the respective fibers at 3, 7 of sheaves on the étale site of Y. Then
the natural “specialization morphism”

Pys;— Py;

is surjective. In particular, this specialization morphism is an isomorphism if’
and only if tk(Py;) =1k(Pyj). Finally, if tk(Pyj;)>1, and ae Py; is a
sum-dominator [cf. the discussion entitled *“Generalities on monoids” in §0] such
that, for elements a* € My ; and f € A, it holds that a* — a, a* — f, then f = 0.

Proof. The asserted surjectivity follows immediately from the existence,
étale locally, of charts that give rise to the log structure of Y'°2. If tk(Py ;) =
tk(Py 5), then we thus obtain a surjection P§p5 —»Pgl[’,7 between free abelian
groups of the same rank; since such a surJectlon is necessarily an isomorphism,
we thus conclude from the inclusion Py — P{, that the specialization mor-
phism Py ; — Py j; is an isomorphism, as des1red Finally, we observe that if
tk(Py ;) =1, and My;sa* — f e A, where a* lifts a sum-dominator a € Py ;,
then, in light of the surjectivity of the specialization morphism Py ; — Py j, it
follows immediately from the discussion of sum-dominators in §0 that a maps to
a nonzero element b € Py ;. On the other hand, if we write K for the quotient
field of A, then it follows immediately from the definition of the notion of a
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log structure that the image f € 4 = K of any lifting b* € My ; of the element
be Py in K is noninvertible, hence 0, as desired. This completes the proof of
Lemma 1.9. @)

ProposiTION 1.10 (Lower bounds on the submonic dimension). Suppose that
Y'°2 is an object of Sch'¥(X'°%), and that Z'°% »— Y'°¢ is a monomorphism of
Scthg(X o8 such that, for suitable n,d e N, the log scheme Z'°¢ is of rank n, and
the underlying scheme Z of Z'°% is of dimension d. Then if n > 1 (respectively,
n=0), then the submonic dimensions dim®"(Y'°2) dim®"(Z!°2) of ylog Zloe
satisfy the inequality

dim*™(Y'8) > dim*™(Z'¢) = d + n — 1
(respectively, dim™(Y'8) > dim™(Z"°¢) = d).

Proof. First, let us observe that it follows immediately from the definition
of submonic dimension [cf. Definition 1.2, (i)] that dim*™(Y'°2) > dim*™(Z'"°¢).
In particular, we may assume without loss of generality that Z'°2 = Y'°2_ Thus,
it follows immediately from Lemma 1.9 that the characteristic sheaf Py is locally
constant. Next, by replacing Y'°¢ by the log scheme determined by a suitable
subscheme of Y, one verifies immediately we may assume without loss of
generality that the scheme Y is integral. Now the case where n = 0 is immediate
[cf. Proposition 1.4, (vi)], so we may assume without loss of generality that
n>1. Thus, we may apply the theory reviewed in Lemma 1.5 to the generic
point of Y. Moreover, one verifies immediately from the fact that Py is locally
constant that the objects [and properties of these objects] discussed in this theory
extend to objects [and properties of these objects] over the entire scheme Y [i.e.,
not just the generic point of Y]. In particular, by applying Lemma 1.5, (iv), (v),
(vi), where we take the fs monoid “Q” to be N, we conclude that given any
monomorphism W% = Y12 where W'2 is a submonic object of Sch'°¢(X'oz)
whose underlying scheme W is integral, there exists a monomorphism V1°2 >
Yz where V'°¢ is a submonic object of Sch'®®(X'°¢) whose underlying scheme
V is a family of (n — 1)-dimensional tori [cf. Lemma 1.5, (iv)] over Y, such that
the monomorphism W25 Y12 fuctors as a composite of monomorphisms
woe »s plog »y ylog In particular, dim(W) < dim(¥)=d +n—1 [cf. Propo-
sition 1.4, (vi)], so we conclude that dim**(Y!°¢) =d 4+ n — 1, as desired. @)

The following generalities on log-like and scheme-like morphisms will be of
use in the remainder of the present paper.

ProposITION 1.11 (Generalities on log-like and scheme-like morphisms). Let
flog . Zlog _, ylog be g morphism of Sch'¢(X'°%).  Then:

(i) Write U for the log scheme whose underlying scheme is equal to
the underlying scheme Z of Z'“% and whose log structure is the pull-back of
the log structure of Y'°% via the underlying morphism of schemes f:Z =U — Y



MONOMORPHISMS IN CATEGORIES OF LOG SCHEMES 387

associated to f'°2.  Then U'® may be regarded, in a natural way, as an object of
Sch!°2(X'°2) and there exists a natural factorization

Zlog Ulog Ylog

. 1 log - . log - .
of f°¢ in Sch'*¢(X'°¢), where f{}:g is l(/)‘%;hke and f,® is scheme-like.
(i) The factorization Z'°¢ —— U'oe 2,

a unique isomorphism, via the following universal property: The morphism f,
scheme-like, and, moreover, if

Y'°¢ of (i) may be characterized, up to
log is

hlog llog
Zlog Vlog Ylog
is a factorization of f'°% in Scthg(X 12) such that h, log g scheme-like, then there
exists a unique scheme-like morphism g'°¢ : U'°2 — Vlog such that hlog =gl¢o f, log
log log _ log

hz °9 f2 lo :

(ili) Base-change via the morphism f,° : Z'°¢ — U2 of (i) determines an
equivalence of categories

SChlog( Ulog) |sch-1k = SChlog (ZIOg) ‘SCh‘lk

[¢f. the notational conventions of Definition 1.1, (iv)]. The morphism flog Uloe —
Y'°¢ of (i)—which may be regarded as an ob]ect of Sch'g(ylog)| . . —determines
an equivalence of categories

Sch 10g( U log) lschak — {SChlog( Ylog) lseh1k }f e

of Sch'®8(U'e) with the category {Sch'°®(Y'g)| . lk}flog of objects of the cate-

gory Sch'¢(Y log)| ik equipped with a structure morphism to the object f of
Sch'°¢(ylog)| . . and morphisms of the category Sch'(Y'e2)| . . that are com-
patible with the structure morphisms to the object f,°*

Proof. Assertions (i), (ii), and (iii) follow immediately from the various
definitions involved. O

Section 2: The scheme structure of submonic log schemes

In the present §2, we give a category-theoretic reconstruction of the under-
lying scheme structure of submonic objects of the categories of log schemes defined
in §1.

We maintain the notation of §I.

DEFINITION 2.1, Let f'o£: Zlg — ylog be a morphism of Sch!°¢(X'og).
Then we shall say that the morphism f'°2 is SLEM [i.e., a “submonically log étale

monomorphism™) if f1°2 is a monomorphism in Scthg(X log) " and, moreover, for
any commutative diagram
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Vlog Zlog

Wlog Ylog

—where V'°¢ and W'°¢ are one-pointed and submonic, and the left-hand verti-
cal arrow is a monomorphism in Sch'°®(X'°2)—of objects and morphisms in
Sch'°¢(x°2)  there exists a unique [“/ifting”] morphism W'°¢ — Z'°¢ that renders
the two resulting triangles in the above diagram commutative.

PROPOSITION 2.2 (SLEM morphisms and open immersions). Let f1°¢: Z102
— Y'°¢ be a morphism of Schlog(X lo8) " Thus, the underlying morphism f : Z —
Y of f'°¢ may be regarded as a morphism of Sch(X). Then:

(i) If f'°¢ is an open immersion [cf. the discussion entitled ““Log schemes” in
§0], then f'°¢ is SLEM.

(ii) If Y'°2 is submonic, and f'°¢ is SLEM, then f'°¢ is an open immersion.

Proof. First, let us observe that any monomorphism between one-pointed
objects in Sch(X) is necessarily a closed immersion between spectra of artinian
rings [cf., e.g., the proof of [4], Corollary 1.2]. In particular, it follows from
Proposition 1.4, (vi), that any monomorphism V'°¢ — W¢ as in Definition 2.1 is
necessarily scheme-like, and, moreover, that the underlying morphism of schemes
associated to any monomorphism V1°¢ — W2 a5 in Definition 2.1 is necessarily
a closed immersion between spectra of artinian rings. Thus, it is immediate that
if £1°2 is an open immersion, then f1°2 is SLEM. This completes the proof of
assertion (i). Now suppose that Y'°2 is submonic, and f'°¢ is SLEM. Thus, it
follows from Proposition 1.4, (vi), that £1°¢ is scheme-like, and, moreover, that f
is a monomorphism in Sch(X). In particular, the existence of unique liftings as
stipulated in Definition 2.1 implies that f is an étale monomorphism in Sch(X),
hence [cf., e.g., [4], Corollary 1.3] an open immersion. This completes the proof
of assertion (ii). O

ProposITION 2.3 (Connectedness with respect to SLEM localizations).

(i) Let S be a connected [hence nonempty] object of Sch'°®(X'°g) [cf.
Proposition 1.3]; U, {V!°5},  nonempty objects of Sch'®¢(x'og); ylog , glog,
{V 8 s Slog}_ SLEM morphisms of Sch'¢(X1°2) such that, for each i€ N, the
morphism V%% = S'°¢ admits a [necessarily unique] factorization V°% — Vllff
— S°¢ through the morphism Vl.lfffHSlog, and, moreover, the fiber product
U X gip V] [in Sch'8(X'°2)] is empty. Then the natural map

MinPt(U'¢) ] { U MinPt(Vilog)} — MinPt(5'°¢)
ieN

is injective.
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(i) In the situation of (i), suppose further that S'°¢ is submonic. Then the
natural map of (i) is never surjective.

(iii) Suppose that S'¢ is a log-nodal object of Sch'°¢(X'°2). Then, for
suitable choices of U™ > S and {V°% > S'e} _ as in (i), the natural
map of (i) is surjective.

(iv) Let T'% be an object of Sch'®®(X'°¢).  Then T'°¢ is non-submonic if and
only if there exist morphisms U'¢ > S and {V°% > S8} as in (i), together
with a monomorphism S'°¢ — T'°¢ in Schlog(X lo2) " such that the natural map of
(i) is surjective.

Proof. First, we consider assertion (i). Let i e N. Then the injectivity of
each of the natural maps MinPt(U'°¢) — MinPt(S'¢), MinPt(V,°®) — MinPt(S°¢)
follows immediately from the definition of “MinPt(—)”. The fact that the
images of these two maps are disjoint follows immediately from the definition
of “MinPt(—)”, together with the assumption that the fiber product U'°2 x g,
V/°® is empty. This completes the proof of assertion (i).

Next, we consider assertion (ii). Since S'°% is submonic, it follows from
Proposition 2.2, (ii), that the morphisms U™ > Slog {p/°¢ ., Slog} N are open
immersions. Since [the underlying scheme of | S1°g is connected, it thus follows
from the assumption that the ob]ects U'ee, {Vog},eN are nonempty, whereas
the fiber products {U'"°2 x g V 81N are empty, that the open subscheme of
Slog determined by the union of the images of the morphisms U'"2 > Slog
{V°8 s slog}._ does not coincide with S, and hence [cf. Proposition 1.6, ()]
that the natural map of (i) is mot surjective. This completes the proof of
assertion (ii).

Next, we consider assertion (iii). First, let us observe that, in light of the
various assumptions imposed on S°¢, one verifies immediately that S'°¢ may
be regarded as the “S'°¢” that appears in Lemma 1.5, (viii). Here, the positive
homomorphism ¢, : P — Jy =N of Lemma 1.5, (viii), may be taken to be the
positive homomorphism “¢” of Lemma 1.5, (ii). In particular, we also obtain
homomorphisms ¢, : P — J; and ¢,: P — J,. Now we apply Example 0.1,
where we take “P” to be P and “*P” to be J,. This yields an infinite
descending sequence

Pchc---c'Pc...clpcip
—where i € N—of submonoids of P*® satisfying various properties as described
in Example 0.1. Suppose that, for i e N, ‘P is obtained as the bisecting monoid

of P at a positive homomorphism ", : P — N that is assigned the index “2”.
Thus, for i e N, the log étale monomorphism

Slog[iw{oyz}] s Slog

of Lemma 1.5, (vii), (viii) [where we take “@,” to be ] factors through the
log étale monomorphism

Slog[i+llp{0 2}] NN Slog
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of Lemma 1.5, (vii), (viii) [where we take “g,” to be “*y], as well as through
the log étale monomorphism

Sloe [‘/5{0,2}] — 5l

of Lemma 1.5, (vii), (viii) [where we take “¢,” to be ¢;]. In particular, it follows
from the fact that S'£[g 1] Xgie S'E[Pg 2] = S'[ypy] [cf. Lemma 1.5, (vii),
(viii)] together with the discussion of Example 0.1, that the fiber product
S0 1y] X sioe STE[Wr g 5] is empty.

Thus, in summary, if we take U'°¢ > §'°¢ to be the morphism

s' g[¢{0,1}] — Sl
and, for ieN, Vilog — S1°2 to be the morphism
S8 ) > 57

discussed above, then we obtain data as in assertion (i). Note, moreover, that it
follows immediately from the discussion of Example 0.1 that the natural map of
assertion (i) is surjective, as desired. This completes the proof of assertion (iii).

Finally, we observe that the sufficiency (respectively, necessity) portion of
assertion (iv) follows formally from assertion (ii) (respectively, (iii)), together
with Proposition 1.4, (vi) (respectively, together with Proposition 1.7, applied to
T'¢). This completes the proof of assertion (iv). O

PropoSITION 2.4 (Characterization of scheme-like morphisms between min-
imal objects). Let h'°2: T'°¢ — S'¢ pe a morphism between minimal objects of
Schl°g(xlog)  Ser rdifrk(Slog) € {0,1} [¢f Proposition 1.6, (ii)]. Then h'°¢ is
scheme-like if and only if there exists a connected, submonic object Z'°¢ of
Schlog(Xlog) such that the domain of every minimal point of Z'°¢ is of rank r, and,

moreover, h'°¢ admits a factorization
TIOgHZlOgHSIOg

as the composite of a minimal point T'°¢ > Z19¢ of Z°¢ with a morphism
Zle  S¢ that admits a section S'°¢ — Z'¢ [ie., such that the composite
Slog _, zlog _, glog s the identity morphism).

Proof. First, we observe that since the underlying morphism of schemes
T — S necessarily arises from [i.e., by applying “Spec(—)” to] a ﬁnlte extension of
fields, the asserted necessity follows immediately by taking Z'°¢ & A xz S'o¢
[i.e., N-dimensional affine space over S'°¢ for a suitable positive 1nteger N].
Here, we note that the fact that “the domain of every minimal point of this Z'°¢
is of rank r” follows immediately from Proposition 1.4, (vi). Thus, it remains
to verify sufficiency. First, let us observe that it follows from the manifestly
constructible nature of the characteristic sheaf P, [cf. also Propositions 1.4, (vi);
1.6, (i), (ii)] that the assumption that “the domain of every minimal point of Z°¢
is of rank r” implies that Z'°¢ itself is of rank r, and hence [cf. Lemma 1.9]
that the characteristic sheaf Pz is locally constant. Since the monoids 0 and N
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have no nontrivial automorphisms, we thus conclude that the characteristic sheaf
P is constant, with fibers isomorphic to the monoid 0 (respectively, N) if r =0
(respectively, r = 1). The existence of the section S'°¢ — Z'°¢ thus implies that
the morphism Z!°¢ — S'°¢ is scheme-like. Since the monomorphism 7°¢ » Z°2
is also scheme-like [cf. Proposition 1.4, (vi)], we thus conclude that Ah'¢ is
scheme-like, as desired. This completes the proof of sufficiency and hence of
Proposition 2.4. O

ProposITION 2.5 (Characterization of scheme-like morphisms between sub-
monic objects). Let f1°2: Z'%¢ — Y'°¢ pe a morphism between submonic objects
of Sch'®¢(X18) Then f'°¢ is scheme-like if and only if, for every minimal point
T8 »s 7192 of 7192 there exists a minimal point $'°¢ — Y102 of Y192 gnd a scheme-
like morphism T'°¢ — S92 of Sch!°®(X'°2) that fit into a commutative diagram

Tlog Zlog

G

Slog NN Ylog

of objects of Sch'°®(xog),

Proof. The asserted necessity is immediate from the definitions and Prop-
ositions 1.4, (vi), (vii); 1.6, (ii). The asserted sufficiency follows immediately, in
light of the manifestly constructible nature of the characteristic sheaves Pz, Py,
from the definitions and Propositions 1.4, (vi); 1.6, (i), (ii). O

THEOREM 2.6 (Reconstruction of the scheme structure of submonic objects).
For i=1,2, let X, ¢ pe g locally noetherian fs log scheme [cf- the discussion
entitled “Log schemes” in §0. For i=1,2, we shall write Sch'®(X, Og) for the
category defined at the beginning of §l. Lez‘

D - SCh]og( log) Schlog( log)

be an [arbitrary!] equivalence of categories. Then:
(i) @ preserves the following:
(i a) monomorphisms;
i-b) empty objects;
i-c) connected objects;
i-d) minimal objects;
i-¢) minimal points;
i-f) submonic one-pointed objects;
i-g) ranks of minimal objects;
h) SLEM morphisms;
i-1) submonic objects;
i-j) scheme-like morphisms between minimal objects;
i-k) scheme-like morphisms between submonic objects;
i-1) the submonic dimension of objects.
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(i) For i=1,2, let Y/ be an object of Sch'®(X'%); write Y; for the
underlying scheme of Y%, Suppose Surther that ®(Y. log) Yzlog Thus, [cf. the

pomon of (i) concerning (i-1)] Y, 1°¢ j¢ submonic if and only if Y, log js Suppose that
Y/°¢ s submonic for i=1,2. Then ® induces an equ1valence of categories

(Sch(Y1) =) SCthg( ]Og)|sch K~ SChlog( log)‘seh i (— Sch(Y2))

—where the equivalences in parentheses are the natural equivalences of Deﬁnmon
1.1, (iv)—that is functorial [in the evident sense!| with respect to Y Y210g
Finally, the composite of the equivalences of categories in the above dlsplay lnduces,
by applying [4], Theorem 1.7, (ii), an isomorphism of schemes
Y1 = Y,

that is functorial [in the evident sense!] with respect to Y,\°%, Y,

Proof.  First, we consider assertion (i). The preservation of (i-a) is a matter
of general nonsense. The preservation of (i-b) follows from Proposition 1.3, (i).
The preservation of (i-c) follows from Proposition 1.3, (ii). The preservation
of (i-d) and (i-e) follows immediately from the preservation of (i-a). The
preservation of (i-f) follows immediately, in light of Proposition 1.8, from the
preservation of (i-e). The preservation of (i-g) follows immediately, in light of
Proposition 1.6, (iii), from the preservation of (i-d). The preservation of (i-h)
follows immediately from the preservation of (i-a) and (i-f). The preservation of
(i-1) follows immediately, in light of Proposition 2.3, (iv), from the preservation of
(i-a), (i-b), (i-c), (i-e), and (i-h). The preservation of (i-j) follows immediately, in
light of Proposition 2.4, from the preservation of (i-c), (i-d), (i-e), (i-g), and (i-i).
The preservation of (i-k) follows immediately, in light of Proposition 2.5, from
the preservation of (i-e), (i-i), and (i-j). This completes the proof of assertion (i),
except for the verification of the preservation of (i-1). Assertion (ii) follows
immediately [i.e., in the spirit of [4], Corollary 2.15] from the portion of assertion
(i) concerning the preservation of (i-k). Here, we note that the functoriality
of the isomorphism of schemes in the final display in the statement of assertion
(ii) follows immediately from the characterization given in Proposition 1.11, (ii),
of the factorization discussed in Proposition 1.11, (i), together with the natural
equivalences of categories discussed in Proposition 1.11, (iii). Finally, the portion
of assertion (i) concerning the preservation of (i-l) follows from the portion of
assertion (i) concerning the preservation of (i-a), (i-i), together with the isomor-
phisms of schemes obtained in assertion (ii). @)

Lemma 2.7 (Characterization of isomorphisms among positive homomor-
phisms). Let &: P — Q be a positive homomorphism between fs monoids such
that tk(P) > rk(Q), and, moreover, the following condition is satisfied.

Every positive homomorphism ¢ : P — N admits a factorization P — Q —
N as a composite of & with a positive homomorphism  : Q — N.

Then & is an isomorphism.
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Proof. First, let us observe that, by Lemma 1.5, (ii), there exists a positive

homomorphism ¢': P — N. Next, let us observe that if p is a prime number,
then given a surjective homomorphism (: P* — F,, there exists a homomor-
phism (: P® — Z whose composite with the natural surjection Z — F, is
equal to {. [Indeed, this follows immediately from the fact that P2 is a finitely
generated free abelian group—cf. the discussion entitled “Generalities on mono-
ids” in §0.] In particular, it follows from the fact that P is a finitely generated
monoid that, for sufficiently large ne N, the homomorphism ({ + p” - (¢1)%) :
P& — 7 coincides with { when composed with the natural surjection Z — F,
and, moreover, determines a positive homomorphism ¢ : P — N. In particular,
it follows from the hypotheses imposed on ¢ that ¢ admits a factorization
P — Q— N as a composite of & with a positive homomorphism 1 : Q@ — N.
Since the resulting composite P — Q® — Z — F, coincides with ¢, we thus
conclude, by allowing p and { to vary, that the reduction of the homomorphism
of finitely generated free abelian groups &#P: P& — Q% modulo any prime
number is injective, and, hence, since rk(P) > rk(Q), that &% : P& — Q% is an
isomorphism. That is to say, P and Q may be regarded as finitely generated
saturated monoids within a single Z-module P& = Q¢%. In particular, it follows
from well-known properties of fs monoids [cf., e.g., [4], Lemma 2.5, (iv)] that the
hypotheses imposed on ¢ imply that & is an isomorphism, as desired. O

ProposITION 2.8 (Characterization of scheme-like morphisms between re-
duced, one-pointed, non-minimal objects). Let f1°¢: Z°¢ — Y2 pe a morphism
between reduced, one-pointed, non-minimal objects of Sch'°®(X'°2).  Then flo¢ js
scheme-like if and only if dim*™(Z'°¢) < dim*™(Y°¢), and, moreover, the following
condition is satisfied:

Let S be g minimal object of Sch'°®(xg) plog . glog _, ylog 4 yyop-
phism of Schlog(X 1o2) " Then there exists a commutative diagram of
morphisms of Sch'°¢(Xg)

Tlog Zlog

Slog h'ee ylog

in which the left-hand vertical arrow T'°¢ — S'°¢ js a scheme-like mor-
phism between minimal objects of Sch'(Xog).

Proof. First of all, we observe that the asserted necessity follows imme-
diately from Proposition 1.10, together with the definition of the term ‘‘scheme-
like”. Thus, it suffices to verify the sufficiency of the condition that appears
in the statement of Proposition 2.8. To this end, let us first observe that it
follows [cf. Proposition 1.6, (ii)] from the assumption that Z'°¢ and Y'°¢ are non-
minimal that rk(Z'°¢) > 2, rk(Y'°2) > 2. Thus, it follows from Proposition 1.10
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that rk(Z'°2) = dim®™(Z'°2) + 1 < dim®™(Y'°%) + 1 = rk(Y'°%). Next, let us ob-
serve—i.e., by applying Lemma 1.5, (v), as in the proof of Proposition 1.6, (i)—
that the condition under consideration implies that the restriction to a geometric
point of Z'°¢ of the morphism of characteristic sheaves Py|, — Pz induced by
f1o¢ satisfies the condition discussed in Lemma 2.7. In particular, we conclude
from Lemma 2.7 that this morphism Py|, — P is, in fact, an isomorphism, and
hence that f1°2 is scheme-like, as desired. O

DErFINITION 2.9. (i) Let Z be a scheme. Then we shall refer to a point z of
the underlying topological space of Z as a locally closed point if z determines a
closed point of some open subscheme of Z. Write

LCPt(Z)

for the set of locally closed points of Z.

(ii) Let Z'¢ be an object of Sch'¢(X™g). For i=1,2, let U be a
minimal object of Sch'(X'°) and f°%: U*® — Z'% an arrow of Sch'°¢(X°g).
Then we shall say that f,°® and £,° are point-equivalent if there exist a morphism
fioe . wloe , zlog and, for each i = 1,2, a morphism 4% : V°% — U/°® between
minimal objects of Sch'°¢(X'°2) such that W'°¢ is log-nodal, and, moreover, for
each i =1,2, the composite morphism £ o 4% : 18 —, Zlog admits a facto-
rization V\°8 — W' — Z¢ through f,0%: Wloe — Zlog,

(ili) Let Z'°¢ be an object of Sch'°®(X'°¢) whose underlying scheme we
denote by Z, ze LCPt(Z'°¢) & LCP(Z). Then a monomorphism H'¢ »» Z°¢
in Sch'¢(x'2) will be called a point-hull at z if H'2 is one-pointed, and,
moreover, every morphism $'°¢ — Z'°¢ in Sch'°¢(X'°2) from a minimal object S'°¢
to Z'°¢ that maps the unique point of the underlying scheme S of S'°¢ to z factors
[necessarily uniquely!] through the given monomorphism H'°2 »» Z'°¢ A point-
hull H'°2 > Z'°2 at z will be called a minimal point-hull at z if every mono-
morphism H,°® >»> H'°¢ in Sch'¢(X'°¢) for which the composite H,°¢ — H'"¢ —
Z'°2 is a point-hull at z is necessarily an isomorphism. An arrow of Sch!°¢(Xog)
which is a minimal point-hull at some element of LCPt(—) of the codomain of
the arrow will be referred to as a minimal point-hull. Thus, if Z'°¢ is one-pointed,
and one restricts one’s attention to monomorphisms with one-pointed domains,
then the notion of a point-hull (respectively, minimal point-hull) at z is identical
to the notion of a hull (respectively, minimal hull) [cf. Definition 1.1, (iii)].

PrROPOSITION 2.10 (Point-classes and minimal point-hulls). Let Z'°¢ be an
object of Sch'$(X™°8).  For i =1,2, let U® be a minimal object of Sch'¢(X'°¢)
and f;-l"g : Ul.log — Z'°¢ an arrow of Sch'¢(X'°%).  For i = 1,2, write Z, U; for the
underlying schemes of Z'°¢, U/, respectively. Then:

(i) Z'°¢ is one-pointed if and only if the set LCPt(Z'°¢) = LCPt(Z) is of
cardinality one.

(i) Let z be a point of the underlying topological space of Z. Then the
following conditions are equivalent: (ii-a) z is locally closed; (ii-b) z appears as
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the image of a morphism U — Z of Sch(X) for some minimal object U [cf. [4],
Proposition 1.1, (ii)] of Sch(X); (ii-c) z appears as the image of a morphism
U'es — zloz of Sch!®¢(X'°2) for some minimal object U'¢ of Sch'°®(Xxlog).

(i) Write z; for the image in Z via [the underlying morphism of schemes
associated 10] fl.log of the unique point of U, Then the arrows fllog and leog
are point-equivalent if and only if z; = z,. In particular, the notion of point-
equivalence determines an equivalence relation on the collection [i.e., which, strictly
speaking, is not necessarily a set!] of arrows in Sch'(X'°¢) from minimal objects
of Sch'®¢(Xx'og) 10 Z'ot.  Write

PtCl(Z'¢)

for the set of equivalence classes of such arrows. We shall refer to an element of
PtC1(Z'%) as a point-class of Z'°¢.

(iv) If flog. Ut — Z¢ js an arrow that determines a point-class of Z'°%,
then let us write Im(f'°%) for the image in Z via (the underlying morphism of
schemes associated to] f'°¢ of the unique point of the underlying scheme U of
U™ Then the assignment f'°% — Im(f°¢) determines a bijection of sets

PtCl(Z'°¢) = LCPt(Z"°%) = LCPt(Z)

that is functorial [in the evident sense] with respect to Z'°&.

(v) Let zeLCPt(Z). Write z'°¢ for the reduced, one-pointed object of
Sch'°8(X12) obtained by restricting the log structure of Z'% to z. Then a
monomorphism h'°¢ : H'%¢ »» Z'°2 jp Sch'°¢(X'°2) is ¢ minimal point-hull at z if
and only if h'°® induces an isomorphism H'°¢ = zlog,

Proof. First, we observe that assertion (i) follows immediately from the
various definitions involved [cf. also [4], Proposition 1.1, (i)]. Next, we consider
assertion (ii). First, we recall from [4], Proposition 1.1, (ii), that an object of
Sch(X) is minimal if and only if it is reduced and one-pointed. Next, we recall
from Proposition 1.6, (i), that a minimal object of Sch'°®(X'°2) is necessarily
reduced and one-pointed. Now the implication (ii-a) = (ii-b) follows immedi-
ately. In a similar vein, the implication (ii-a) = (ii-c) follows immediately, by
applying Proposition 1.6, (i). To verify the implications (ii-b) = (ii-a), (ii-c) =
(ii-a), it suffices to verify that if U is a one-pointed object of Sch(X), then the
image via any morphism U — Z of Sch(X) of the unique point of U is a locally
closed point of Z. Note that, by considering the schematic closure of such a
morphism in a suitable affine open of Z, we may assume without loss of
generality that U and Z are affine, and that the morphism [of finite type!| U — Z
has dense image. Since this image [which consists of a single point!] is neces-
sarily constructible, hence contains a dense open subset of the underlying topo-
logical space of Z, we thus conclude that we may assume, after replacing Z by a
suitable affine open of Z, that the morphism U — Z is surjective, i.e., that Z is
one-pointed. This completes the proof of assertion (ii).
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Next, we consider assertion (iii). Since minimal objects of Sch'°¢(X°¢) are
necessarily one-pointed [cf. Proposition 1.6, (ii)], the necessity portion of the
asserted equivalence follows immediately from the various definitions involved.
Thus, it suffices to verify the sufficiency portion of the asserted equivalence. To
this end, let us first observe that, since minimal objects of Sch'°¥(X'°f) are
necessarily reduced [cf. Proposition 1.6, (ii)], we may assume without loss of
generality that Z'°¢ is reduced and one-pointed. Also, by base-changing to a
suitable finite extension of the field whose spectrum is Z we conclude that we
may assume without loss of generality that flog and f, og 4 re log-like, and that
Z' ¢ is split. Thus, by considering a suitable splitting as in Lemma 1.5, (i), one
verifies immediately that, to complete the proof of sufficiency, it suffices to verify
the following assertion concerning fs monoids:

Let P be an fs monoid. For i=1,2, let ¢,: P— N be a positive
homomorphism of fs monoids. Then there exist an fs monoid Q of
rank two and a positive homomorphism iy : P — Q of fs monoids such
that, for i = 1,2, the homomorphism 2- ¢, : P — N [i.e., the composite
of ¢; with the positive homomorphism N — N given by multiplication
by 2] admits a factorization P — Q — N as the composite of y with
some positive homomorphism ; : Q0 — N.

This assertion concerning fs monoids may be verified as follows. For i=1,2,
write NP = P for the kernel of the morphism ¢ : P& — Z. If N&P = N;P,
then one verifies immediately that one obtains data as desired by considering
the factorization N — N@® N — N [i.e., determined by the assignments N> 1 —
(L1)eN®N and N® N> (a,b) — a+beN] of the homomorphism N — N
given by multiplication by 2. Thus, we may assume without loss of generality
that N{¥ % NP, Write Q for the saturation [cf. [4], Lemma 2.5, (ii)] of the
image of P in (P®/N) @ (P¥®/N;") (X Z@Z). Thus, we obtain a natural
positive homomorphism of monoids ¥ : P — Q such that, for i =1,2, ¢,: P - N
admits a factorization P — Q — N as the composite of {y with some positive
homomorphism ; : Q — N. Here, we note that the positivity of i, follows
immediately from the positivity of ¢;. Also, we observe that the positivity of v,
implies that the monoid Q has no nonzero invertible elements. We thus conclude
that Q is an fs monoid of rank two, as desired. This completes the proof of
assertion (iii). Assertion (iv) follows immediately from assertion (iii), together
with the equivalence (ii-a) < (ii-c) of assertion (ii).

Finally, we consider assertion (v). First, we consider the sufficiency portion
of the asserted equivalence. To verify this sufficiency, it suffices to verify that the
natural monomorphism /!°¢ : z1°2 . Z1o¢ [cf. Proposition 1.4, (vii)] is a minimal
point-hull at z. The fact “that hl°g is a point-hull at z follows 1mmed1ately from

1
the various definitions involved. Now suppose that /, log : H\°® »> z1°¢ is a mono-

morphism such that the composite /18 ohlog H, log , , Zlog is a point-hull at z

[so both z'°¢ and H °% are one-pointed). Then one verifies immediately that, by
applying Lemma 1. 5 (v), as in the proof of Proposition 1.6, (i), it follows from
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Proposition 1.4, (iii), and Lemma 2.7 that hog is scheme like, and hence, by
Proposition 1.4, (v); [4], Proposition 1.1, (ii), that 4°% is an isomorphism, as
desired. Thus, to complete the proof of assertion (v), it suffices to verify the
necessity portion of the asserted equivalence. First, let us observe that it
follows from the existence of the natural monomorphism H Og — H'°2 together
with the definition of the notion of a minimal point-hull, that H'og 1s reduced
and one-pointed. Thus, it follows immediately from Proposition 1.6, (i), that
h'°¢ induces a monomorphism H'@¢ > z'°¢_ Since we have already verified that
hl°¢ is a minimal point-hull at z, we thus conclude that this monomorphism
H'"02 5 192 is an isomorphism, as desired. This completes the proof of assertion
(). O

ProposITION 2.11 (Characterization of scheme-like morphisms between ar-
bitrary objects). Let f'°¢: Z'%¢ — Y2 be a morphism between arbitrary objects
of Sch!°¢(X'°2) Then f'°¢ js scheme-like if and only if, for every minimal point-
hull plog: Tl¢ 5 Zlog  there exists a commutative diagram of morphisms of
Schlog(Xlog)

lo h'es lo
Thoe M, Zlog

L

Slog Ylog

in which the lower horizontal arrow §'°¢ — Y'°¢ js q minimal point-hull, and the
left-hand vertical arrow T'°¢ — S'°¢ js q scheme-like morphism between reduced,
one-pointed objects of Sch'¢(Xx'°g).

Proof. The asserted equivalence follows immediately, in light of the mani-
festly constructible nature of the characteristic sheaves P, Py, from Proposition
2.10, (v), together with the definition of the term ‘“scheme-like”. O

COROLLARY 2.12 (Conditional reconstruction of the scheme structure of
arbitrary objects). Suppose that we are in the situation of Theorem 2.6, and that
@ satisfies the following condition:

(*nod) an object of Schlog(Xllog) is log-nodal if and only if its image via ®
is a log-nodal object of Schlog(leOg).

b preserves the following:

i-a) point-equivalent pairs of arrows;

) the set-valued functor LCPt(—) [up to natural equivalencel;
) arrows which are minimal point-hulls;
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(i) For i =1,2, let Y/°% be an object of Sch'®(X/°%); write Y; for the under-
lying scheme of Y\°%.  Suppose further that ®(Y. llog) = Y,°!. Then ® induces an
equivalence of categories

(Sch(¥1) =) Sch™™%(¥}°%)| .y = Sch™%(¥,%)| .y (= Sch(Y2))

—where the equivalences in parentheses are the natural equivalences of Definition
1.1, (iv)—that is functorial [in the evident sense!] with respect to Y\°%, Y,
Finally, the composite of the equivalences of categories in the above display induces,
by applying [4], Theorem 1.7, (ii), an isomorphism of schemes

Y, > Y

that is functorial [in the evident sense!] with respect to Y%, Y,

Proof. First, we consider assertion (i). The preservation of (i-a) follows
immediately, in light of the preservation of (i-d) asserted in Theorem 2.6, (i), from
the condition (*p0q4), together with the definition of the term “‘point-equivalent”.
The prservation of (i-b) now follows from the preservation of (i-a), together
with the bijection of Proposition 2.10, (iv). The preservation of (i-c) then follows
from the preservation of (i-b) [cf. also the preservation of (i-a), (i-d) asserted in
Theorem 2.6, (i)], together with the equivalence of Proposition 2.10, (i). The
preservation of (i-d) follows, in light of the preservation of (i-c), from Propo-
sitions 2.8; 2.10, (v); 2.11 [cf. also the preservation of (i-d), (i-j), (i-) asserted in
Theorem 2.6, (i)]. This completes the proof of assertion (i). Now assertion (ii)
follows immediately [i.e., in the spirit of Theorem 2.6, (ii); [4], Corollary 2.15]
from the portion of assertion (i) concerning the preservation of (i-d). Here, we
note that the functoriality of the isomorphism of schemes in the final display
in the statement of assertion (ii) follows immediately from the characterization
given in Proposition 1.11, (ii), of the factorization discussed in Proposition 1.11,
(i), together with the natural equivalences of categories discussed in Proposition

111, (ii). O

Section 3: Seamless partitions of orientable log schemes

In the present §3, we discuss the notion of a seamless partition of an orientable
log scheme. This notion leads naturally to a category-theoretic characterization
of log-nodal objects, which we apply to eliminate the dependence on the condition
“(#nod)”” in Corollary 2.12.

We maintain the notation of §2.

DerINITION 3.1, (i) Suppose that Y2 is an object of Sch'°®(X'°g). Then
we shall say that Y'°¢ is log-Dedekind if it satisfies the following conditions:

(i-a) dim™™(Y'?) < 1;
(i-b) if Z'°¢ is a minimal object of Sch'®(X'°2) such that there exists a
morphism Z'°¢ — ¥1°¢ in Sch'°¢(X°¢) then Z'°¢ is of rank one;
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(i-c) if Z'°¢ is a nonempty submonic object of Sch'®(X'°2) with un-
derlying scheme Z, such that there exists a SLEM morphism
Z'9¢ > Y2 in Sch'*¢(X'°¢), then the closed subscheme Z,.q < Z is
regular and of positive dimension.

If y is a point of the underlying scheme Y of a log-Dedekind object Y'°2, and the
fiber of Py at some geometric point of Y that maps to y is of rank two, then we
shall say that y is a nodal point of Y'°¢,

(i) Suppose that Y'°2 is a Jog-Dedekind object of Sch'°¢(X™8). Fori=1,2,
let Z°¢ be a connected [hence nonempty], submonic object of Sch'°¢(X'°£) and

log . —~log log
Ji o Z 7t Y

a SLEM morphism. We shall say that fllog and leog are submonically equivalent
if the fiber product Z3 &ef Z\% X yie ZIE determined by f°® and £ is

nonempty. [Here, we note that, for i=1,2, the projection Z;3 — Z/%, is

SLEM, hence, by Proposition 2.2, (ii), an open immersion, whose image is,
by condition (i-c), dense whenever it is nonempty.] One verifies immediately
that the notion of submonic equivalence determines an equivalence relation on the
collection [i.e., which, strictly speaking, is not necessarily a set!] of arrows of
Sch'°¢(x'og) which are SLEM morphisms from connected, submonic objects of
Schl°¢(x'og) to yloz.  Write

SmCp(Y'°8)

for the set of equivalence classes of such arrows. We shall refer to an element of
SmCp(Y'°®) as a submonic component of Y02,

(iii) Suppose that Y'2 is a log-Dedekind object of Sch'°®(Xleg). TIf plog:
H'"2 > Y2 is a monomorphism of Sch'°¢(X'°¢) then we shall write

Chn(h'°¢) = SmCp( Y'°¢)

for the subset of submonic components for which there exists a representative
arrow Z'°¢ > Y'°2 that admits a factorization Z'°¢ = H'° »» Y'°¢ through A'°¢ :
H'"%2 s Ylo¢ If C < SmCp(Y°%) is a nonempty subset, then we shall refer to C
as a chain if there exists a SLEM morphism A'°¢ : H'92 » Ylog of Schl°g(xlog)
such that H'92 is connected [hence nonempty!], and C = Chn(h'®%). If C <
SmCp(Y'°2) is a subset, then we shall refer to C as an N-chain if there exists
a collection {C;};.y of chains C; = SmCp(Y'°¢) such that C =|J,_\ C;, and
C; < Ciy for all ieN.

ieN

ProrosiTiION 3.2 (First properties of log-Dedekind objects). Suppose that
Y'2 is a log-Dedekind object of Sch'¢(X'°2).  Then:

(i) Y'°2 js of rank < 2.

(ii) The non-nodal points of the underlying scheme Y of Y'°¢ form an open
subset of the underlying topological space of Y. Write Y S Y for the corre-
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sponding open subscheme and YX¢ for the log scheme obtained by restricting
the log structure of Y'°% to Yy, Then the complement of Yy in Y is a closed
subscheme of Y of dimension zero, and Y1°¢ is submonic. We shall refer to Y%
as the submonic locus of Y'°2.

(iii) Let Z'°¢ be a nonempty submonic object of Sch'(X'°2) and 7' — y'oz
a SLEM morphism. Then the closed subscheme Z..q = Z of the underlying
scheme Z of Z'¢ is regular and of dimension one, and Z'°¢ is of rank one. In
particular, [cf. Proposition 2.2, (1)] (Yem),eq IS regular and of dimension one, and
Yloe is of rank one.

(iv) Let f'°¢: 7' > Y12 pe @ SLEM morphism from a connected, submonic
object Z'°2 of Sch'®¢(X'°¢) 1o Y2 Then f'°2 ecither admits a factorization
Zlog » Yslrflg — Y102 qg the composite of an open immersion Z'1°8 »— Yslrgg with the
natural monomorphism Yslrfqg — Y% or maps the entire underlying scheme Z of
Z'2 to some nodal point y of Y2 In the former case, we shall say that f'°¢
is non-nodal; in the latter case, we shall say that f'°¢ is nodal and lies over y.
We shall also apply this terminology ‘“non-nodal”[“nodal” to the element of
SmCp( Y8 determined by f°¢.

(v) Let y be a nodal point of Y'°¢. Then the subset

SmCp( Ylog)y < SmCp( Y'°¢)

of nodal elements that lie over y forms an N-chain. Moreover, every morphism
H'" — Y2 jp Sch'¢(X'°2) from a minimal object H'*¢ to Y'2 that maps the
unique point of the underlying scheme of H% to y factors through some repre-
sentative of an element of Sme(Yl"g)y.

(vi) Every element y € SmCp(Y'°%) admits a “maximal” representative arrow
flog . zlog s, yloe je a representative arrow such that every arrow U2 > Y8
of Sch'®&(X°2) that is submonically equivalent to f'°¢ admits a factorization

Ulog NN Zlog s Ylog

as the composite of some open immersion U'°2 > Z1°¢ with f1°¢  [If. moreover, y
is non-nodal, then such a maximal representative f'°% : Z'9¢ > YI°¢ qrises from an
isomorphism of Z'°¢ onto some connected component of Y%

Proof. First, let us observe that the inequality dim®"(Y'°¢) <1 of Defini-
tion 3.1, (i-a), together with the restriction imposed by Definition 3.1, (i-b)
[cf. also Propositions 1.4, (iv); 1.6, (i)], imply that the integers “d”” and “n” in
Proposition 1.10 satisfy the following conditions:

(x1) ne{l,2};
(k) n=2=d=0;
(x3) n=1=d=<1.

Assertion (i) thus follows from (x;) [cf. also Lemma 1.9]. Assertion (ii) follows
from (1), (x2) [cf. also Lemma 1.9]. Assertion (iii) follows from (x;), (x3),
together with Definition 3.1, (i-c) [cf. also Proposition 2.2, (i)].
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Next, we consider assertion (iv). If y is a nodal point of Y'°¢ then write
y'°2 for the log scheme obtained by restricting the log structure of Y'°2 to the
closed subscheme, equipped with the reduced induced scheme structure, of Y
determined by y. Write Z°®= &l Zlog » e 192 Thus, the underlying scheme
Zy, of Z; o2 may be 1dent1ﬁed with the scheme-theoretic fiber of Z over y. Note
that if Zy = 0 for every nodal point y of Y'°2 then f!°¢ admits a factorization
Z'%2 > Ylog ., ylog a5 the composite of a monomorphism Z'°¢ = Y!°¢ with the
natural monomorphism Y[°% »» Y!°¢; moreover, since f°¢ is SLEM, it follows
immediately that the morphism Z'°¢ »» Y1°¢ is SLEM and hence, by assertion (ii)
and Proposition 2.2, (ii), an open immersion. Thus, since, by assertion (iii), Zeq
is regular and of dimension one, it follows immediately—i.e., by possibly replacing
Z'%2 by the log scheme determined by a suitable dense open subscheme of Z—
that, to complete the proof of assertion (iv), it suffices to verify, under the
additional assumption that Z10g is connected [hence nonempty] for some fixed

nodal point y of Y'°¢ that dlm( y) =1. To this end, let us first observe that
the natural morphism Z°® — yl"g is SLEM. Since Z|°® is connected and [by

assertion (iii)] of rank one, it follows from Lemma 1.5, (v) [where we take “S'°¢”
to be y'°f|, that the monomorphism Z\°® — y'°¢ admits a factorization as a
composite of monomorphisms

Z18 yoE 5 ylog

—where ylzog is, in the notation of Lemma 1.5, (v), a log scheme of rank one of
the form ““S'°g[¢]”; y;’g > yl°¢ is the composite monomorphism of Lemma 1.5,
(vi) [where we take “S'°%[¢]— S™2[¢]” to be the identity morphlsm] Since
Zlog — y°¢ is SLEM, it follows immediately that Zlog — yog is SLEM and
hence by Proposition 2.2, (ii), an open immersion. Since the underlying scheme
of yg’g is of dimension one [cf. Lemma 1.5, (iv), (v)], we thus conclude that
dim(Z,) = 1, as desired. This completes the proof of assertion (iv).

Next, we consider assertion (v). Write k for the residue field of Y at y,
log & ylog Spec(k) [where the morphism implicit in the right-hand factor
of the fiber product is the tautological morphism Spec(k) — Y associated to y].
Thus, S'°¢ is a log scheme of the sort that appears in Lemma 1.5, so, in the
following discussion, we shall apply the notational conventions introduced at
the beginning of Lemma 1.5. Write Oy for the complete noetherzan local ring
obtained by completing ¥ along y, ¥ poet Spec(0y), Yoe & ylog 5 ¥, § for
the unique closed point of Y. erte Oy for the completzon of the strict
henselization of O determined by k*°P, oep & Spec( D) [5O YsP is equipped

with a natural action by Gy, (Ysp)ls < def Y'og sy Y5 55 for the unique closed
point of Y5P, X

Next, let us fix a chart P— Oy, of (Ysep)log that determines a “clean
chart” in the sense of [3], Definition 1.3. This chart thus determines a natural
zsomorphzsm of the fiber at > of the monoid M., that defines the log structure
of (Y*P)¢ with the product P x 0%« In particular, the natural action of Gy

on this fiber determines an action of Gy on P x 07, [i.e., which is compatible
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with the factor {0} x O, but not necessarily compatible with the factor
P x {1}, of this product decomposition!], hence also on the groupification
P& x 03, of Px (03, Note that since Y'°e is a log-Dedekind object of
Sch'og(xog) it follows immediately from assertion (ii) that the support of the
closed subscheme Y P < Y*P determined by the ideal generated by the image via
the chart under consideration of P\{0} is equal to {j*P}.

Next, let
Q c ng

be a finitely generated, saturated submonoid such that P < Q # P®. Write
Go < G, for the open subgroup of elements that preserve Q [i.e., relative to
the natural action of Gy on the quotient (P® x O3 )/0%., — P# determined,
as discussed above, by the chart under consideration!|. Thus, the action of Gy
on P x 07, determines an action of Gg < Gx on the submonoid Q x (7., <=

PE x O%.,. Moreover, we assume further that one of the following [mutually

exclusive!] conditions holds:

(v-a) Gg = Gy, and, moreover, the natural inclusion P < Q is a sum-
dominating homomorphism of fs monoids [cf. the discussion
entitled “Generalities on monoids” in §0].

(v-b) There exists a positive homomorphism & : P — N which induces a
surjection on groupifications &8 : P& — 7, such that Q coincides
with the saturation [cf. [4], Lemma 2.5, (ii)] of the submonoid of
PeP generated by P and Ker(&8P).

Thus, even when Gg # Gy [which implies that condition (v-b) holds|, one verifies
immediately that the natural inclusion P = Q is a sum-dominating homomor-
phism. That is to say, the natural inclusion P = Q is a sum-dominating homo-
morphism, no matter which of the two conditions (v-a), (v-b) one assumes.

Next, let us observe that the inclusion P — Q determines a log étale mono-
morphism

def

<l Spec((.[0]) 8 — Z'°¢[p] &

ALY = Spec(U . [P])'*®

[cf. the construction discussed in Proposition 1.4, (ii), as well as [1], Proposition
3.4]. Thus, one verifies immediately that the actions [determined, as discussed
above, by the chart under consideration!] of Gy on P x 07, and of Gp on
Q x 03, determine, respectively, actions of Gy on Z'"°¢[P] and Gy on Z'¢[Q).
Moreover, the chart P — (., under consideration determines a tautological G-
equivariant morphism (Y*?)'%¢ — Z'2[P| and hence a fiber product [of fs log

schemes]
Zsepy log def ysep log 7 log
( )= ( ) X Zlog[p] (O]

equipped with a natural action by Gp. This natural Gp-action in turn deter-
mines descent data for the projection morphism (Z5)'%¢ — (¥P)1°¢ which may
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be used to descend this projection morphism to a log étale monomorphism
Zle Ygg, where we write YQ — Y for the ﬁmte étale covering corresponding
to the open subgroup Gp < Gy, YIQOg def yriog o YQ

Next, let us observe that since Y'°2 is a log Dedekind object of Sch'®®(x°g)
[or, equivalently, of Sch'&(Y'°g)] it follows immediately from assertions (ii) and
(iti) that any minimal object of Sch'°¢(Z'°¢) is of rank one. Thus, since the
inclusion P = Q is sum-dominating, it follows from the final portion of Lemma
1.9 that any regular function on the underlying scheme Z*P of (ZAS"F’)log that
arises [i.e., via the various charts implicit in the above discussion] from an
element € P\{0} necessarily vanishes at every point of Z*P  hence [since Z*P is
noetherian) 1is necessarily nilpolent Since, as observed above, the support of
the closed subscheme Y3 = ¥Y*P is equal to {7*P}, we thus conclude that
the natural morphlsm Z e _, Y factors through a closed subscheme of ¥P
whose support is equal to { p*P}.  This in turn implies that, if we write Z for the
underlying scheme of Z'°¢, then the composite morphzsm Z— YQ — Y factors
through a closed subscheme of Y whose support is equal to {j}.

Next, I claim that the composite morphism

Zlog_) ?1Q0g_) f;log

is a log étale monomorphism. Indeed, in light of what has already been verified,
it suffices to prove, in the case where Gy # Gy [which implies that condition (v-b)
holds], that this composite morphism is a monomorphism. Since the morphism
Zlog —, Y€ is already known to be a monomorphism, and the morphism Y
Y'¢ is a scheme-like morphism whose underlying morphism of schemes is ﬁmle
étale, one verifies immediately that to complete the proof of the claim, it suffices
to verify [cf. the argument applied in the proof of Lemma 1.5, (vi); the fact that
the composite morphzsm Z — Yo — Y factors through a closed subscheme of Y
whose support is equal to {y}] that the base-change of the morphism Z'°¢ — yloz
via the natural morphism S'°¢ — Y1°¢ is a monomorphism. On the other hand,
one verifies immediately that this base-changed morphism Z'°¢ x 5, S'°¢ — Slo
may be identified with the morphism “S'°¢[¢] — S'°2” of Lemma 1.5, (vi) [where
the objects “¢”, “H” of Lemma 1.5, (vi), correspond, respectively, to ¢ and Gg
in the present discussion; we observe that it follows immediately from condition
(v-b) that “”+ = Z”]. Thus, the fact that this base-changed morphism Z'¢ x o
Slog — Sl is a monomorphism follows from Lemma 1.5, (vi). This completes
the proof of the claim. A A

Thus, in summary, the composite morphism Z'°¢ — Y'°2 — Y°2 may be re-
garded as a log étale monomorphism of Sch'®(Y™°¢) or, indeed, of Sch'°2(Xxog),
In the following, we shall use the notation

flog . Zlog N Ylog

to denote this composite morphism. Moreover, one computes easily that, if we
write Z for the underlying scheme of Z'°¢, then Z.q X%, Y*? may be identified
with the reduced closed subscheme of Spec(k*P[Q]) determined by forming the
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zero locus of the set of functions P\{0} = Q. Thus, if condition (v-a) holds, then
one verifies immediately, by applying an isomorphism 0" = Q.o ® Q- as in the
discussion entitled “Rank two fs monoids™ in §0 [cf. also Lemma 1.5, (iv)], that
Zred X7, VP may be regarded as the codomain of a finite surjective morphism

whose domaln consists of two copies of the affine line over k%P glued together at
a single point, hence, in particular, is connected. On the other hand, if condition
(v-b) holds, then one verifies immediately that Zeq Xy, Y*P is a one-dimensional
torus [cf. the situation discussed in Lemma 1.5, (iv)], hence, in particular, is
connected.

Thus, in summary, the morphism f'°2: Z°¢ _ ylog is a Jog étale mono-
morphism with connected domain such that the resulting chain

Chn(f°8) = SmCp(Y'°®)

i8S contained in Sme(YlOg)y. Now we consider the monoids constructed in
Example 0.2, where we allow n e N to vary. Then it follows immediately from
the discussion of Example 0.2 that given any element y € Sme(Ylog) , it holds
that y e Chn(f'°2), if, in the notation of Example 0.2, we take Qdef np—
submonoid which, as discussed in Example 0.2, may be constructed in such a way
that condition (v-a) holds—for n sufficiently large.

Finally, let H'¢ — Y'2 be a morphism in Sch'°¢(X'°2) from a minimal
object H'°¢ to Y'°¢ that maps the unique point of the underlying scheme H of
H™¢ to y. Thus, if we regard H as the spectrum of a finite subextension of k in
the perfection of k%P, then the morphism H'°¢ — Y'°2 determines, by considering
the induced morphism on log structures, a positive homomorphism & : P — N and
submonoid Q < P*®P that satisfy condition (v-b). Moreover, it follows immedi-
ately from the construction of f1°¢ that Z'°2 is submonic [so f'°¢ may be regarded
as a representative of an element of Sme(Ylog)y], and that the morphism
H'"*2 — Y™°¢ factors through f1°¢. This completes the proof of assertion (v).

Finally, we consider assertion (vi). If y is nom-nodal, then assertion (vi)
follows immediately from assertions (iii) and (iv). Thus, we may assume without
loss of generality that y is nodal. Then assertion (V1) follows 1mn1ed1ately by
gluing, in the notation of Definition 3.1, (ii), the various Z; log ,, ylog that
constitute an element of SmCp(Y'°2) along the open immersions Z,5 e, zl°8,
Here, we note that it follows immediately from the fact that the log scheme ylOg
that appeared in the proof of assertion (iv) is noetherian that this gluing process
terminates after a finite number of steps. This completes the proof of assertion

Wi). O

DerINITION 3.3, Suppose that Y2 is a connected, non-submonic, log-
Dedekind object of Sch'®®(X'°2). Let y e SmCp(Y'°¢). Write
Mono( Y'°¢)

for the full subcategory of Sch'°¢(Y'°£) determined by the arrows H'°¢ — Y'°¢ of
Sch'°8(x°2) which are monomorphisms in Sch'®®(Xx'°g).
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(i) Let C1,Cy < SmCp(Y'°2) be chains. Then we shall say that the pair of
chains {C, C»} forms a partition at y if the chains Cj, C, satisfy the following
conditions:

(i-a) C;UC, =SmCp(Y'8), C1NC, = {y};

(i-b) for i = 1,2, the subset C;\{y} = SmCp(Y'°2) is an N-chain [hence
nonempty;

(i-c) the N-chains of (i-b) are “maximal” in the sense that every N-chain
C = SmCp(Y'*¢) such that y¢ C is contained in C; for some
ie{l,2};

(i-d) if, for i = 1,2, we write P; for the subfunctor of the contravariant
functor determined by the terminal object [i.e., Y!°¢] of Mono(Y°2)
that consists of objects /¢ : H'°¢ »» Y1°¢ of Mono(Y'°2) such that
every composite morphism H"°% — H'°2 »» Yo where H!°¢ »» H'°¢
is a minimal point of H'°¢, factors through some representative of
an elemente C; (= SmCp(Y'©?)), then ¥; is representable by an
object /%% : log = Y'°¢ of Mono(Y'®).

We shall say that Y'°2 is orientable if Y'°¢ admits a partition at every element of
SmCp(Y'o2).

(i) Let {Cy, Gy} be a partition at y. Suppose that /,°¢, h® are as in (i-d).
Then we shall say that the partition {C,C,} is seamless if the following
condition is satisfied:

a monomorphism h'°¢ : H'¢ »» y'o¢ in Sch!°¢(x 10g) is an isomorphism if
and only if, for i = 1,2, the projection H'°¢ X i Yl °¢ _, Y°% associated
to the fiber product determined by A% and A% is an lsomorphzsm

We shall say that Y'°¢ is homogeneous if Y'°¢ is orientable, and, moreover, no
partition at an element € SmCp(Y'°2) is seamless.

Remark 3.3.1. 1In the situation of Definition 3.3, (i-d), we observe that it
follows immediately from Proposition 3.2, (v), (vi), that [the underlying morphism
of schemes of] the morphism

ROETTAYE v/ o2 I1 v,°8 — y'oe

is surjective.

PROPOSITION 3.4 (First properties of partitions). (i) Suppose that Y'°¢ is an
orientable object of Sch'°®(X'°2). Let {Cy,Cy} be a partition ar an element
7€ SmCp(Y'°®).  Then, up to a possible permutation of the indices “17, “27,
every partition ar y coincides with {Cy, C>}.

(i) Suppose that Y'°¢ is an orientable object of Sch'*¢(X'°%).  Let {C, Cy}
be a partition ar a non-nodal element y € SmCp(Y'°8); 1% : Y% > Yoz, 8.
YZlog Y'°¢  monomorphisms as in Definition 3.3, (i- d) Then for 1—1 2,
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Bt . ylos Ylog is an open immersion, and the fiber product Y1 Xy Y,
delermzned by h % and h is a maximal representative for y, ie., in the sense of
Proposition 3.2, ( i). In particular [cf. Remark 3.3.1], the partition {C1,C} is
seamless.

(iii) Suppose that Y'°% is a homogeneous object of Schlog(X log) " Then Y2 is
one-pointed, and Y[°¢ is empty.

(iv) Suppose that Y'2 is a log-nodal object of Sch'®(X'°%). Then Y'°£ js
homogeneous, hence, in particular, orientable. Moreover, relative to the nota-
tional conventions introduced in Definition 1.1, (i), Sme(Ylog) may be naturally
identified with the set of positive homomorphzsms &: Py — N such that & induces
a surjection on groupifications &% : P — Z.

(v) Suppose that Y'°% is a reduced, one-pointed, non-split object of rank two
of Sch'¢(X'2) Then Y'2 js log-Dedekind, hut not orientable. In particular,

Y'¢ is not homogeneous. If, moreover, Y = Spec(ky) for some field ky, and k,

is a finite Galois extension of ky such that Z'°¢ = &l ylog ky kz is log-nodal, then
SmCp(Y'°8) may be naturally identified with the set of Gal(kz/ky)-orbits of the
set SmCp(Z'°¢) [i.e., which was described explicitly in (iv)].

Proof. Assertion (i) follows, by applying entirely formal set-theoretic con-
siderations, from Definition 3.3, (i-a), (i-b), (i-c). Next, we consider assertion (ii).

If one restricts the morphisms hlog Y% > Y2 to the open subscheme Yoy < Y
[cf. Proposition 3.2, (ii)], then one verifies immediately that the corresponding
“restrictions” [in the evident sense| to Yy, of the properties asserted in assertion
(i) follow immediately from Proposition 3.2, (vi). Next, let y be a nodal point of
Y'°2 Then, since y is non-nodal, it follows immediately from Propositions 1.6,
(i); 3.2, (iv), (v); Definition 3.3, (i-a), (i-c), (i-d), that there exists a je {1,2}
such that, if i=j (respectively, i # j), then Sme(YlOg), < C; (respectively,
Sme(YlOg) N C; = 0), and, moreover, the restriction of h)°¢ to the formal scheme
obtained by completing Y along y is an isomorphism (respectlvely, has empty
domain). Thus, it follows immediately [cf. Proposition 3.2, (ii)] that there exists a
Zariski open nelghborhood U of y in Y such that, for i = 1,2, the restriction
h°%|, of hl°® to U is scheme like, and, moreover, the underlymg morphism of
schemes associated to h 8|, is an étale monomorphism [cf. Proposmon 1.4, (v)],
hence, by clementary scheme theory, an open immersion, whose image contains y
if i = j. The seamlessness of the partition {C, C»} thus follows from elementary
scheme theory [i.e., an easy case of “Zariski descent”]. This completes the proof
of assertion (ii).

Next, we consider assertion (iii). First, let us observe that it follows for-
mally from assertion (ii) that every submonic component of a homogeneous object
of Sch!°®(X'°2) is necessarily nodal. It thus follows formally [cf. Proposition 3.2,
(vi)] that Y[°2 is empry and hence, by Proposition 3.2, (ii), that Y is of dimension
zero. Slnce homogeneous objects of Sch'og(X lo2) are, by definition, connected
[hence nonempty], we thus conclude that Y'°¢ is one-pointed. This completes the
proof of assertion (iii).
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Next, we consider assertion (iv). First, let us observe that Y'°¢ satisfies the
hypotheses imposed on the log scheme “S'°¢” of Lemma 1.5. Thus, Lemma 1.5,
(iv), (v), which we apply in the case where, in the notation of loc. cit., “Q” is of
rank one, yields a log étale monomorphism ““S'°2[¢] = S'°¢” whose domain is
connected and submonic. In particular, it follows immediately from the existence
and functorial interpretation [cf. Lemma 1.5, (iv), (v)] of such monomorphisms
“Slog[¢] »» Sl that Y'°¢ is log-Dedekind [cf. Propositions 1.4, (vi); 2.2, (ii)].
Next, for simplicity, let us write P & Py. Then observe that, since Y'°2 is split,
it follows immediately from the various definitions involved that any element
7 € SmCp(Y'°¢) determines—i.e., by considering the morphism induced on log
structures by a representative of y [cf. Proposition 1.4, (iii)]—a positive homo-
morphism ¢, : P — N such that ¢, induces a surjection on groupifications
é;‘?’p:PgP — Z. Moreover, it follows immediately from Proposition 3.2, (vi),
together with the various properties of the monomorphisms ‘“S'°8[¢] > Slog”
discussed in Lemma 1.5, (v), that the assignment

VAnES'

just discussed determines a natural bijection between SmCp(Y'°¢) and the set of
positive homomorphisms ¢ : P — N such that ¢ induces a surjection on group-
ifications &8P : P& — Z. 1In the following, we shall apply this natural bijection
to identify these two sets.

Next, let y e SmCp(Y'°2). Write ¢, : P — Jy N for the element ¢, dis-
cussed above. In the notation of the discussion entitled ‘““Rank two fs monoids”
in §0, for i =1,2, let us write ¢; : P — J; for the associated positive homo-
morphism of fs monoids [which is well-defined, up to possible permutation of
the indices “1” and “2”] and C; < SmCp(Y'°¢) for the subset of elements
0 € SmCp(Y'°¢) such that & : P — N factors through either ¢, or ¢;. Then I
claim that

{C1, Gy} is a partition at y which is not seamless.

Indeed, let us first observe that condition (i-a) of Definition 3.3 follows imme-
diately from the discussion of bisecting monoids in §0. Next, let us observe that,
if we take the log scheme “S°2” in Lemma 1.5 to be Y'°2, then it follows, by
applying Lemma 1.5, (vii), (viii), to ¢,, that, for i=1,2, the log étale mono-
morphism “S'%[$ o 4] = S™°¢” yields an object /%% : ¥;°¢ > Y'°¢ as in condition
(i-d) of Definition 3.3. Next, we verify condition (i-c) of Definition 3.3. To this
end, suppose that C = SmCp(Y'°¢)\{y} is a chain that intersects both Ci\{y} and
G \{y}. Then it follows immediately from the connectedness assumption in the
definition of a chain [cf. Definition 3.1, (iii)], together with Proposition 1.4, (iii);
Lemma 1.9, that there exists a rank two fs monoid P* that arises as a submonoid
of P®P that contains P and, moreover, for i= 1,2, admits a homomorphism
V; : P* — N whose restriction to P determines an element of C;\{y}. Moreover,
it follows immediately from the description given above of SmCp(Y™®) [i.e., by
considering suitable minimal points—cf. also Proposition 2.2, (ii)] that P* may
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be chosen so that any positive homomorphism P* — N that induces a surjection
on groupifications determines an element of C. On the other hand, it follows
immediately from the “‘continuity property” of bisecting monoids discussed in
§0 that ¢, extends to a positive homomorphism P* — N and hence that ye C, a
contradiction. This completes the verification of condition (i-c) of Definition
3.3. Next, we observe that condition (i-b) of Definition 3.3—i.e., the fact
that, for i = 1,2, C\{y} is an N-chain—follows immediately by considering the
log étale monomorphisms ““S'[¢y, ] — S'°¢” that arise by applying Lemma 1.5,
(vii), (viii) [for an appropriate choice of the indices “1”” and “2”’], to a sequence of
bisecting monoids as in Example 0.1, where we take “P = ® P” to be the inclusion
of monoids P < J; that appears in the present discussion. This completes the
proof of the fact that {Cy, Co} is a partition at y. The fact that this partition
is not seamless follows immediately from the existence of the log étale mono-
morphism “Sl"g[qb{o’l‘z}] > §'°2” that arises by applying Lemma 1.5, (vii), (viii),
to ¢y. This completes the proof of the claim. Now it follows formally that
Ylo¢ is homogeneous. This completes the proof of assertion (iv).

Finally, we consider assertion (v). First, we observe that the fact that Y'°¢
is log-Dedekind follows immediately from assertion (iv), via a routine éfale de-
scent argument; the description given in the statement of assertion (v) of the
set SmCp(Y'"°2) also follows immediately, in light of the various definitions
involved, via a routine étale descent argument [cf. also Proposition 3.2, (vi)]. Now
let 5 € SmCp(Y'°8) be an element that arises from a Gal(kz/ky)-invariant ele-
ment y e SmCp(Z'°¢). Here, we note that the existence of such an element of
SmCp(Z'°2) follows immediately from the description of SmCp(Z!°¢) given in
assertion (iv), together with Lemma 1.5, (ii), which implies the existence of a
suitable positive homomorphism &, : PdéfPZ — N. Then to complete the proof
that Y'°¢ is not orientable, it suffices to verify that Y'°¢ does not admit a partition
at . Moreover, to verify that Y'°¢ does not admit a partition at ¢, it suffices, in
light of conditions (i-b), (i-c) of Definition 3.3, to show that SmCp(Y'°2)\ {5} is
an N-chain.

To this end, we consider the sequence of bisecting monoids {"P}, n of
Example 0.1, where we take “P < ®P” to be one of the two bisecting monoids of
P at ¢,. Thus, the homomorphism “*¢” of Example 0.1 corresponds to ¢, in
the present discussion. Now let us consider the log étale monomorphisms

uslog [¢{0 1}] —> S]Og’»

that arise by applying Lemma 1.5, (vii), (viii), (ix), where we take the log scheme
“Slo2” of loc. cit. to be Y'°¢, and we take “¢, : P — J;” to be the inclusion
Pc"P, for ne N. Here, we observe that if {: P — N and ¢ are as in the
condition of the display of Lemma 1.5, (ix), and ¢ acts nontrivially on P, then it
follows immediately from the Gal(kz/ky)-invariance of ¢, [i.e., “*¢”] that o acts
nontrivially on Ker(&®) (= Z), and hence [since both { and (o g are assumed to
factor through J; and hence through “*P”] that (® vanishes on Ker(f,f’p); but
this implies that we may assume without loss of generality that { = ¢,, which in
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turn implies [cf. Example 0.1] that {*°(J;) = &P(J1) € Z contains both positive
and negative elements, in contradiction to the assumptions imposed on {. That is
to say, the condition of the display of Lemma 1.5, (ix), is satisfied.

Thus, in summary, we obtain a collection

{Zrllog — Ylog}neN

of log étale monomorphisms with connected domains [cf. Lemma 1.5, (vii), (viii)]
such that [cf. the discussion of Example 0.1] 6 ¢ Chn(Z!°¢ »» Y°¢) = SmCp(Y'°?),
and, moreover, | ), _ Chn(Z)°¢ — Y'°¢) = SmCp(Y'¢)\{6}. This completes the
proof of the fact that Sme(Y‘Og)\{é} is an N-chain and hence of assertion (v).

O

ProposITION 3.5 (Characterization of log-nodal objects).
(i) Suppose that Y'°2 is nonempty object of Sch'°¢(X'°¢).  Then Y'°¢ js one-
pointed if and only if the following condition is satisfied:

For i=1,2, let U be a minimal object of Sch'®¢(X'°%) and f¢:
,log — Y10g an arrow of Sch'¢(X™°2). Then there exist a morphzsm

S8 Woe Yl and, for each i = 1,2, a morphism h)°¢ : V¢ — U
between minimal objects of Sch'®¢(X log) such that W'e i homogeneous

and, moreover, for each i=1,2, the composite morphism f; Ogohc'g

V8 — Yt udmits a factorization V%% — W°e — ylor through f,%F
Wlog _ Ylog

(ii) Suppose that Y'°¢ is an object of Sch'®¢(X'°2). Then Y'°¢ js log-nodal
if and only if Y'°¢ is homogeneous, and the identity morphism Y'°¢ — Y'°¢ j5 q
minimal point-hull in Sch'°¢(Xx°g).

Proof. First, we consider assertion (i). Since, by Proposition 3.4, (iii),
homogeneous objects are one-pointed, one verifies immediately from the sufficency
portion of Proposition 2.10, (iii), that the condition under consideration implies
that PtCI( Y'°2) is of cardinality one, and hence, by Proposition 2.10, (i), (iv), that
Y'°2 is one-pointed, as desired. Now suppose that Y'°¢ is one-pointed. Then, by
Proposition 2.10, (i), (iv), it follows that PtCI(Y'°2) is of cardinality one. Since,
by Proposition 3.4, (iv), log-nodal objects are homogeneous, we thus conclude
from the definition of the notion of “point-equivalence” that the condition under
consideration is satisfied. This completes the proof of assertion (i).

Next, we consider assertion (ii). The necessity portion of assertion (ii)
follows immediately from Propositions 2.10, (v); 3.4, (iv). The sufficiency portion
of assertion (ii) follows immediately, in light of the definition of the term
“homogeneous”, from Propositions 2.10, (v); 3.2, (i); 3.4, (v). This completes the
proof of assertion (ii). O

THEOREM 3.6 (Reconstruction of the scheme structure of arbitrary objects).
For i=1,2, let X}°® be a locally noetherian fs log scheme [cf. the discussion
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entitled “Log schemes” in §0]. For i =1,2, we shall write Sch™¢(X°%) for the
category defined at the beginning of §l. Lel

D : SChlog( log) SCthg( log)

be an [arbitrary!] equivalence of categories. Then:

(i) @ preserves the following:

(i-a) log-Dedekind objects;

b) the set SmCp(—) associated to a log-Dedekind object;
) the subsets of the set SmCp(—) of (i-b) which are [N-]chains;
) partitions at elements of the set SmCp(—) of (i-b);
) orientable objects;
)
)
)

one-pointed objects;

point-hulls with one-pointed codomains;

1) minimal point-hulls with one-pointed codomains;

-j) log-nodal ob]ects

(ii) For i = 1,2, let Y;°% be an object of Sch'®(X/°%); write Y; for the under-

1

lying scheme of Yilog. Suppose further that ®(Y\°) = Y,°%. Then ® induces an
equivalence of categories

(Sch(¥1) =) Sch'™%(¥}°%)| .y = Sch™#(¥,%)| .y (= Sch(Y2))

(i-
(i-c
(i-d
(i-e
(i-f) homogeneous objects;
(i-g
(i-h
(1
(i

1-
1-
1-
1-
1-
1-
1-
1

—where the equivalences in parentheses are the natural equivalences of Deﬁmtlon
1.1, (iv)—that is functorial [in the evident sense!] with respect to Y1 Y21°g
Finally, the composite of the equivalences of categories in the above display mduces,
by applying [4], Theorem 1.7, (ii), an isomorphism of schemes

Y, S Y,

that is functorial [in the evident sense!] with respect to Y,\°%, Y,

Proof. First, we consider assertion (i). The preservation of (i-a) follows
immediately from the preservation of (i-b), (i-d), (i-g), (i-h), (i-i), (i-1) asserted in
Theorem 2.6, (i), together with the isomorphisms of schemes obtained in Theorem
2.6, (ii). The preservation of (i-b) follows immediately from the preservation
of (i-b), (i-c), (i-h), (i-i) asserted in Theorem 2.6, (i). The preservation of (i-c)
follows immediately, in light of the preservation of (i-b), from the preservation
of (i-c), (i-h) asserted in Theorem 2.6, (i). The preservation of (i-d) follows
immediately, in light of the preservation of (i-a), (i-b), (i-c), from the preservation
of (i-a), (i-c), (i-e), (i-i) asserted in Theorem 2.6, (i). The preservation of (i-e)
follows formally from the preservation of (i-b), (i-d). The preservation of (i-f)
follows formally from the preservation of (i-b), (i-d), (i-e), together with the
preservation of (i-a) asserted in Theorem 2.6, (i). The preservation of (i-g)
follows immediately, in light of the preservation of (i-f) and the characteriza-
tion given in Proposition 3.5, (i), from the preservation of (i-b), (i-d) asserted in
Theorem 2.6, (i). The preservation of (i-h), (i-i) follows immediately, in light of
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the preservation of (i-g), from the preservation of (i-a), (i-d) asserted in Theorem
2.6, (). The preservation of (i-j) follows immediately from the preservation
of (i-f), (i-i), together with the characterization given in Proposition 3.5, (ii).
Finally, assertion (ii) follows formally, in light of the portion of assertion (i)
concerning the preservation of (i-j), from Corollary 2.12, (ii). O

It remains to reconstruct, in a category-theoretic fashion, the log structures of
the various log schemes under consideration. The approach taken in the present
paper is essentially similar to the approach taken in [4], but is formulated in a
slightly different way. We begin by introducing notation as in the discussion
preceding [4], Lemma 2.16: Write A} = Spec(Z[f]) [where ¢ is an indeterminate]
for the affine line over Z, A;’g for the affine line Aé over Z equipped with the log
structure determined by the divisor V (f) [i.e., “‘the origin”]; exp, : A;’g — Ay for
the natural morphism determined by “forgetting the log structure™;

. Alog
expylog . AY“’B — AYlog

for the “exponentiation morphism™ obtained by base-changing exp, via the natural
morphism Y'°¢ — Spec(Z);

X
AY]og — Aylog

for the open immersion determined by the complement of the origin of Ayie; A7,
Ay for the underlying schemes of Ajie, Ay

Oy:Y—>Ay, lin—>AY

for the sections determined by the assignments ¢+ 0, ¢+— 1. Thus, the map
induced by expyi: on Y'°-valued points may be naturally identified with expy :
My — Oy. Moreover, one verifies easily that the morphism Az xz Az — Ag
that defines the multiplication operation on the ring scheme Az — Spec(Z)
determines a morphism of log schemes over Y'°2

log log log
Aylog X ylog Aylog - Aylog

that induces, i.e., on Y'°¢-valued points, the monoid operation on My. In the
following,

we shall always regard Ayw.. as being equipped with the “ring log
scheme” structure—i.e., the ring object structure in the category of log
schemes—determined by the ring scheme structure of Az — Spec(Z).

One verifies immediately that any automorphism of the log scheme Ay that
lies over the identity automorphism of Y'°¢ and is compatible with the ring
log scheme structure of Ay is necessarily equal to the identity automorphism.
Finally, if Y'°¢ is an object of Sch'°®(X'°¢)  then we observe that expyi :
Al;’g — Ay may be regarded, in a natural way, as an arrow between objects of

log

Schi°¢(xlez),
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ProposiTION 3.7 (Categories of quasi-exponentiation morphisms). We main-
tain the notation of the above discussion. Suppose that Y% is an object of
Schlog(Xl"g). Thus, Ay may be regarded, in a natural way, as an object of
Schl*¢(x'og) Write

QExp(Y'°¢) = Sch'%(A y o)

for the full subcategory of SChlog(Aylog) consisting of objects f1°% : Z1%% — Ay
[i.e., “quasi-exponentiation morphisms”] that satisfy the following conditions:

(a) the morphism Z'%¢ — Y'°¢ determined by f'°¢ is log smooth;

(b) f°¢ is log-like, i.c., induces an isomorphism f : Z = Ay between the
underlying schemes of Z'°%, A yi;

(c) the base-change of f'°¢ via the open immersion A%y, — Ay is an
isomorphism,;

(d) if

flog
Tloe ., zloe L AL,

-

Slog Ylog

is a commutative diagram of morphisms of Schk’g(X o2) " jn which
the horizontal arrows of the square are minimal point-hulls, and
the resulting fiber product T'°¢ x A Jios A is the empty object of
Sch'®2(X1°¢), then g'°¢ is not an isomorphism, and, moreover, if S'°¢
is mot a minimal object of rank zero, then, for some reduced, one-
pointed ob]ect whe of Schlog(X 102) " there exist two distinct mor-
phisms h; log plog. pylog _, Tlog sych that the two resulting composite
morphzsms glog o hlog log o % . gyl —, Tl _, §lo8 coincide and are
scheme-like;

(e) there exists a Y't-morphism Z'°% x yiox 218 — Z19¢ i Sch!o®(xlog)
for which the induced morphism on underlying schemes coincides,
relative to the isomorphism [ :Z = Ay of condition (b), with the
morphism Ay Xy Ay — Ay determined by the multiplication opera-
tion arising from the ring log scheme structure of Ayie.

[Thus, expyio : Ayig Ayie may be regarded as an object of QExp(Y'®).]
Then every object f1°2: 7% — Ay of QExp(Y'°®) is isomorphic to the object
of QExp(Y'°2) determined by expylog:Al;,)log_’Aylog Finally, the morphism
718 %y Z1°¢ — Z198 of condition (e) is, in fact, uniquely determined by the

hypotheses imposed in condition (e).

Proof. Proposition 3.7 follows formally from [4], Lemma 2.16. Indeed,
one verifies immediately that property (i) (respectively, (ii); (iii) [cf. Remark 3.7.1
below]; (iv)) of [4], Lemma 2.16, follows, in light of condition (b) in the statement
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of Proposition 3.7, from condition (c) (respectively, (d); (a); (e)) in the statement
of Proposition 3.7. Here, we note in passing that the argument applied in the
final paragraph of the proof of [4], Lemma 2.16, may be simplified considerably:
that is to say, in the notation of loc. cit., the fact that “the morphism of monoids
Q — P may be identified with the natural inclusion Q — Q x N” may be con-
cluded directly from the isomorphism of rings “k[[Q]][[T]] = k[[P]]” obtained in
the second to last paragraph of the proof of [4], Lemma 2.16, by considering
an element ¢ € P such that, if we apply this isomorphism to identify the rings
k[[O]][[T])] and k[[P]], then the set QU {&} generates the maximal ideal of the
local ring k[[P]]. O

Remark 3.7.1. In the context of Proposition 3.7, we take the opportunity to
correct a misprint in the statement of [4], Lemma 2.16: In [4], Lemma 2.16, (iii),
the phrase “a monomorphism” should read “a scheme-like monomorphism”.

The following result may be regarded as the culmination of the theory
developed in the present paper and corresponds to Theorem B [or, more precisely,
Theorem 2.19, (ii)] of [4], the proof of which [i.e., as given in [4]] is, unfortunately,
incomplete.

THEOREM 3.8 (Reconstruction of the log scheme structure of arbitrary
objects). For i=1,2, let X/°® be a locally noetherian fs log scheme [cf. the
discussion entitled ““Log schemes” in §0]. For i = 1,2, we shall write Schlog(Xl-]og)

for the category defined at the beginning of §1. Let
@ : Sch'®¢(X /%) = Schlo®(x)°)

be an [arbitrary!] equivalence of categories. Then:
(i) @ preserves the following constructions [i.e., up to, in the case of (i-a), (i-c),
a unique isomorphism| associated to an object “(—)":
(i-a) the ring object A _);
(i-b) the full subcategory QExp((—)) < Schlog(A(_));
(i-c) the exponentiation morphism exp_, :Aéfg) — ALy
(i-d) the monoid object structure on the object Aéig) of (i-c).
(ii) For i =1,2, let Y,°¢ be an object of Schlog(Xilog); write Y; for the under-
= Yzlog. Then © induces an

lying scheme of Yilog. Suppose further that ®( Yllog)
isomorphism of log schemes

1 ~ 1
Yl 0g ~, Y20g

that is functorial [in the evident sense!] with respect to Y\°%, Y)°* and compatible
with the isomorphism of schemes of Theorem 3.6, (ii).
(i) There exists a unique isomorphism of log schemes
X[°8 2 x)ot
such that ® is isomorphic to the equivalence of categories induced by this iso-
morphism of log schemes Xllog = leog.
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Proof. First, we consider assertion (i). The preservation of (i-a) follows
immediately from Theorem 3.6, (ii); [4], Proposition 1.6, (iii). To verify the
preservation of (i-b), it suffices to verify the preservation of the conditions (a), (b),
(c), (d), (e) in the statement of Proposition 3.7. The preservation of condition (a)
follows immediately, in light of the functorial definition of log smoothness [i.e., in
terms of scheme-like closed immersions, as in [2], §8.1, (i)], from Theorem 3.6, (ii).
The preservation of condition (b) follows formally from Theorem 3.6, (ii). The
preservation of conditions (c) and (e) follows immediately from the preservation of
(i-a) [i.e., which has already been verified], together with Theorem 3.6, (ii). The
preservation of condition (d) follows immediately from the preservation of (i-c)
[cf. also Proposition 2.10, (v)], (i-d) asserted in Corollary 2.12, (i) [which is
applicable in light of the preservation of (i-j) asserted in Theorem 3.6, (i)],
together with the preservation of (i-b), (i-d), (i-g) asserted in Theorem 2.6, (i).
This completes the proof of the preservation of (i-b). The preservation of (i-c)
and (i-d) follows formally from Proposition 3.7, together with the preservation of
(i-b). This completes the proof of assertion (i).

Since the map induced by the exponentiation morphism exp_, on (—)-valued
points may be naturally identified with the morphism between sheaves of monoids
that defines the log structure of “(—)” [cf. the discussion preceding Proposition
3.7], assertion (ii) follows immediately from assertion (i); Theorem 3.6, (ii).
Finally, assertion (iii) follows immediately from the existence of the functorial
isomorphisms of log schemes discussed in assertion (ii), by considering, for i = 1,2,
a suitable ind-object of Sch'°¢(X;°%)

2%yl
{7}

—where the transition morphisms [notation for which was omitted for the sake
of simplicity!] are assumed to be open immersions—that “represents X°®” in
Sch'®(X/°%). " [Here, we recall that if X;°% fails to be quasi-compact, then X%

does not determine an object of Schl"g(Xik’g) in the usual sense.] O

o €A;

Section 4: Category-theoretic representation of archimedean structures

In the present §4, we explain the relatively minor modifications to the theory
developed in the present paper for log schemes that are necessary in order to
accommodate categories of log schemes equipped with archimedean structures as
discussed in [5]. At a more concrete level, we observe that

+ Theorem 3.1;
* Proposition 4.3;
* Proposition 4.4

of [5] depend on the portions of the theory of [4] that [cf. Example 0.3; Remark
1.4.1] are in error. Thus, in the present §4, we explain how these results, as well
as the main theorem of [5] [i.e., [5], Theorem 5.1], may be repaired by applying
the theory developed thus far in the present paper.
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We begin by reviewing [and slightly modifying] the notation introduced at
the beginning of [5], §4. Write

SCH
for the category of arithmetic schemes,
SCH ¢

for the category of arithmetic log schemes [cf. [5], Definition 4.2, and the follow-
ing discussion]|, and

SCH = SCH; SCH™¢ < SCH'"*®

for the full subcategories determined by the purely nonarchimedean objects [cf. [5],
Definition 4.3, (i)]. Let X' be an object of SCH'. Thus, X'¢ determines
underlying objects X'°¢, X, and X of the categories SCH'*, SCH, and SCH,

respectively. Write
SCH's(X'2) & (SCH"®),,,;  SCH":(x1°%) & (SCHY®) 1,
def G ~17 def

SCH(X) & SCH;; SCH(X) & SCHy

for the respective categories of ‘“objects over the subscripted objects” [cf. the
notational conventions introduced in the discussion entitled “Categories” in [5],
§2] and

def (

Sch'g(Xx'°¢) = SCH™(X'°¢); Sch'°¢(x'°¢) = SCH'"*¢(x°¢);
Sch(X) = SCH(X); Sch(X) < SCH(X)

for the full subcategories determined by the noetherian objects. To simplify the
exposition, we shall often refer to the domain of an arrow which is an object of
any of the categories of the preceding display as an “object” of the category.

Note that the notation just introduced is consistent with the notational
conventions introduced at the beginning of §1 of the present paper for
“Sch'°¢(x'°2)” and “Sch(X)”. Indeed, if X'°¢ is any locally noetherian fs log
scheme, then one may define [in a fashion consistent with the notation introduced
abovel!]

SCHlog (Xlog)

to be the category whose objects are morphisms of log schemes of locally finite
type Y'°¢ — X2 where Ylog 1s a locally noetherian fv log scheme, and whose
morphisms [from an object Y[°% — X'°¢ to an object ¥,°¢ — X'°%] are morphisms
of locally finite type Y, log _, Y, °¢ ying over X'°¢. In a similar vein, if X is any
locally noetherian scheme, then one may define [in a fashion consistent with the
notation introduced above!]

SCH(X)

to be the category whose objects are morphisms of schemes of locally finite type
Y — X, where Y is a locally noetherian scheme, and whose morphisms [from an
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object Y1 — X to an object Y, — X] are morphisms of locally finite type Y| — Y>
lying over X.

DeriNiTION 4.1. (1) We shall apply similar terminology to data [i.e., such
as collections of objects and collections of morphisms] associated to any of the
categories

ﬁlog(ylog)’ SCHIOg(z\_/IOg), SCthg(XIOg), SCHIOg(XIOg),
Sch(X), SCH(X), Sch(X), SCH(X)

to the terminology that has already been established earlier in the present paper
for “Sch'®¢(X'°£)” or in [4], §1, for “Sch(X)” whenever this terminology may
be defined in an evidently analogous fashion for the category of the above
display under consideration. When it is necessary, in order to avoid confusion,
to specify the category of the above display with respect to which the terminology
is to be understood, we shall append an appropriate prefix such as

Sch'°s-, SCH'":-, Sch'°®-, SCH™2-, Sch-, SCH-, Sch-, SCH-

to the terminology in question. This convention concerning prefixes will be
applied, in particular, when the terminology is to be understood as being applied
to the underlying object in one of the categories of the first display that is
determined by another of the categories of the first display.

(i) Let %'° € {Sch'°¢, SCH'"*¢}, X'°¢ an arithmetic log scheme, Y'°¢ an
object of @'°¢(X'°¢). Then we shall say that Y'°¢ is submonically nonarchime-
dean if it holds that every submonic one-pointed object Z'°¢ of %'°¢(X'°¢) that
admits a morphism to Y'°¢ is purely nonarchimedean.

THEOREM 4.2 (Equivalences of categories of schemes). Let % € {Sch, SCH}.
For i = 1,2, let X; be a locally noetherian scheme. Then, relative to the notation
introduced at the beginning of the present §4, any equivalence of categories

oD : (g(Xl) 5 (g(Xz)

arises from a unique isomorphism of schemes X; = X,.

Proof. When & = Sch, Theorem 4.2 is precisely the content of [4], The-
orem 1.7, (ii). When % = SCH, Theorem 4.2 follows from an entirely similar
argument. O

_ TueoreM 4.3 (Equivalences of categories of arithmetic schemes). Ler % e
{Sch,SCH}. For i=1,2, let X; be an arithmetic scheme [cf. [5], Definition 4.2,
().  Then, relative to the notation introduced at the beginning of the present §4,
any equivalence of categories

arises from a unique isomorphism of arithmetic schemes X| = X).
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Proof. If @ =Sch, then set %% Sch; if @ = SCH, then set ¥ % SCH.

Then Theorem 4.3 follows, in effect, by combining the theory of [4], §1, with the
non-logarithmic portion of the theory developed in [5], §4, §5. [That is to say, the
errors in [5] discussed at the beginning of the present §4 concern subtleties that
arise from the log structures of the log schemes involved and hence have no effect
on the non-logarithmic portion of the theory.] Indeed, let i € {1,2}; write X; for
the underlying scheme of X;. Then one verifies immediately that the €-minimal
objects of %(X;) are the purely nonarchimedean objects that arise from the
%-minimal objects of €(X;). Thus, the one-pointed objects of €(X;) are precisely
the objects Y such that MinPt(Y) = MinPt(Y) [where we write ¥ for the object
of €(X;) determined by the underlying scheme of Y] is of cardinality one. This
characterization of one-pointed objects of € (X;) allows one to circumvent the
application of [5], Proposition 4.3, in the theory of [5], §4. In particular, we
obtain a category-theoretic characterization of %-minimal point-hulls as in [5],
Proposition 4.4, (iii). One thus obtains—i.e., by considering epimorphisms as
in [5], Proposition 4.5—a category-theoretic characterization of the purely non-
archimedean one-pointed objects of %(X;) as in [5], Corollary 4.1, (i), and of
the purely archimedean morphisms [cf. [5], Definition 4.3, (ii)] of €(X;) as in [5],
Corollary 4.1, (ii). In particular, we obtain a category-theoretic characterization,
as in [5], Corollary 4.2, of the purely nonarchimedean objects of %(X;) and hence,
by applying Theorem 4.2, a category-theoretic reconstruction of the underlying
scheme of an object of %(X;), as in [5], Corollary 4.3. Now, to complete the
proof of Theorem 4.3 [cf. the proof of [5], Theorem 5.1], it suffices to apply the
“non-logarithmic global compatibility” established in [5], Lemma 5.1. O

Next, we consider analogues of Theorem 2.6 for SCH™®, Sch'°¢, and SCH"e.

THEOREM 4.4 (Reconstructlon of the scheme structure of submonic objects for
SCH'"®). For i=1,2, let X/ be a locally noetherian fs log scheme [cf the
discussion entitled “Log schemes” in §0].  We shall apply the notation introduced

at the beginning of the present §4. Let
D - SCHlog( log) SCHlog( log)

be an [arbitrary!] equivalence of categories. Then:
(i) @ preserves the following:

(i-a) monomorphisms;

(i-b) empty objects;

(i-c) connected objects;

(i-d) minimal objects;

(i-e) minimal points;
(i-f) submonic one-pointed objects;
(i-g) ranks of minimal objects;
(i-h) SLEM morphisms,
(i-i) submonic objects;
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(i-j) scheme-like morphisms between minimal objects;
(i-k) scheme-like morphisms between submonic objects;
(i-1) the submonic d1mens10n of objects.
(il) For i=1,2, lt Yl °¢ be an object of SCH'(X!°%); write Y; for the
underlying scheme of Yl . Suppose Sfurther that ®(Y log) Yzlog. Thus, [cf. the
portion of (i) concerning (i-1)] Yl |8 is submonic if and only if Y2 % js.  Suppose that

Y;°® is submonic for i =1,2. Then ® induces an equivalence of categories

(SCH(Y1) =) SCH"8(Y,%)| .y — SCH%(Y,%)|yc (= SCH(Y2))

—where the equivalences in parentheses are the evident analogues for SCH, SCH!"°
of the natural equivalences of Definition 1.1, (iv)—that is functorial [in the evident
sense!] with respect to Ylog Yzlog. Finally, the composite of the equivalences of
categories in the above dzsplay induces, by applying Theorem 4.2, an isomorphism
of schemes

Y1 = Y,
that is functorial [in the evident sense!] with respect to Yllog Yzlog.

Proof. The proof is entirely similar to the proof of Theorem 2.6. O

THEOREM 4.5 (Reconstruction of the scheme structure of submonic objects for
Sch°e, SCH™?). Let €'°% € {Sch'°¢, SCH™¢}. If €'°¢ = Sch'°¢, lhen set ¢'o8
Scht. 4 % Sch: if' '€ — SCH". then set "¢ L SCH"E, ¢ SCH. For
i=1,2, let X°® be an arithmetic log scheme [cf. [5], Deﬁmtzon 4.2, (i)]. We
shall apply the notation introduced at the beginning of the present §4. Let

D (glog( ]og) (glog( log)

be an [arbitrary!] equivalence of categories. Then:

(i) @ preserves the following:

(i-a) monomorphisms;

b) empty objects;
i-c) connected objects;
i-d) minimal objects;
i-¢) minimal points;
i-f) submonic one-pointed objects;
i-f"°") purely nonarchimedean submonic one-pointed objects;
i-g) ranks of minimal objects;
i-h) ¢'°¢-SLEM morphisms;
i-i) submonic objects;
i-i"") purely nonarchimedean submonic objects;
i-j) €'°2-scheme-like morphisms between minimal objects;
i-k) @'°2-scheme-like morphisms between submonic objects;
i-1) the submonic dimension of objects.

1
1
-

(i-
(1
(
(
(i
(
(
(i
(1
(1
(i
(
(i
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(i) For i=1,2, let Y% be an object of @"¢(X%); write Y% for the
underlying log seheme of Ylog, Y; for the underlying scheme of Y'%. Suppose
further that ®(Y %) = Y% Thus [cf the portion of (i) concerning (i-1), (i-1"")]
Yi"g is submonic zf and only if Y is Ylog is purely nonarchimedean submonic if
and only if Y, log 5. Suppose lhat 7}°g is submonic for i = 1,2. Then @ induces
an equlvalence of categories

(€(Y1) =) €)% — €2 (Y2%) e (& (Y1)

—where the equivalences in parentheses are the evident analogues for €, €'°¢ of the
natural equivalences of Definition 1.1, (iv)—that is functorial [in the evident sense!]
with respect to Ylog Yéog. Finally, the composite of the equivalences of cate-
gories in the above dlsplay induces, by applying Theorem 4.2, an isomorphism of
schemes

Y, > Y,

that is functorial [in the evident sense!] with respect to Y\°%, Y%

Proof. First, we consider assertion (i). The preservation of (i-a), (i-b), (i-c),
(i-d), (i-e), (i-f), and (i-g) follows from an entirely similar argument to the
argument applied in the proof of the preservation of the corresponding properties
in Theorem 2.6, (i). Here, we observe that one verifies immediately, by arguing
as in [5], Proposition 4.2, that

the minimal objects of €'°¢(X X°%) are precisely the purely nonarchime-
dean ob]ects of @los(X %) that arise from the minimal objects of
‘glog( °%), where we write X; °¢ for the underlying log scheme of X

The preservation of (i-f"°") now follows, in light of the preservation of (i-f), from
an entirely similar argument—i.e., by considering epimorphisms as in [5], Prop-
osition 4.5—to the argument applied to verify the category-theoretic character-
ization of purely nonarchimedean one-pointed objects given in [5], Corollary 4.1,
(i). 1In light of the preservation of (i-f"°"), the preservation of (i-h) follows from
an entirely similar argument to the argument applied in the proof of the pre-
servation of (i-h) in Theorem 2.6, (i). In light of the preservation of (i-h), the
preservation of (i-i) follows from an entirely similar argument to the argument
applied in the proof of the preservation of (i-i) in Theorem 2.6, (i). The
preservation of (i- -i"") now follows from the preservation of (i-f), (i-f™"), (i-i),
since [one verifies immediately that] the purely nonarchimedean submonic objects
Yloe of @'°5(X°%) may be characterized as the submonically nonarchimedean
submonic objects Y'°f of @'°2(X ). In light of the preservation of (i-i), the
preservation of (i), (i-k) follows from an entirely similar argument to the
argument applied in the proof of the preservation of (ij), (i-k) in Theorem 2.6,
(i). This completes the proof of assertion (i), except for the verification of the
preservation of (i-1).
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Next, we consider assertion (ii). Suppose that Y is submonic for i =1, 2.
Let Z\° — Y°¢ be a purely archimedean morphism of @'og(X %) such that Z,°®
is purely nonarchzmedean submonic. Here, one verifies immediately that such a
morphism Z,% — Y% exists, and, moreover, that Z,°¢ may be characterized up to
isomorphism as an object over Y\°¢ by the property that any arrow 7'°¢ — Y °¢
in ¢l°¢(X log) such that 7'°¢ is purely nonarchimedean submonic admits a unique
Jactorization Tlog —, 71 _ Y1°! Thus, it follows from the portion of assertion
(i) concerning the preservatlon of (i- lnon) that we may assume without loss of
generality that ®(Z|°%) = Z\°®.  Moreover, since Z,°¢ is purely nonarchimedean,
one verifies immediately from the various definitions involved that the full
subcategory

(glog( 10g)c(glog( 10%)

admits a natural equivalence of categories €'°%(Y}°%) = @'(Z°%) [cf. the state-
ment of [5], Corollary 4.3]. Thus, by applying the portion of assertion (i) con-
cerning the preservation of (i-k), one verifies immediately that assertion (ii)
follows immediately follows from an entirely similar argument to the argument
applied to verify Theorem 2.6, (ii). Finally, the portion of assertion (i) con-
cerning the preservation of (i-1) follows from an entirely similar argument to the
argument applied in the proof of the preservation of (i-l) in Theorem 2.6, (i).

O

ll\Iext, we consider the analogue of Corollary 2.12 and Theorems 3.6, 3.8 for
SCH &,

THEOREM 4.6 (Reconstructlon of the log scheme structure of arbitrary objects
for SCH™®). For i = 1,2, let X/°® be a locally noetherian fs log scheme [cf the
discussion entitled ““Log schemes” in §0].  We shall apply the notation introduced
at the beginning of the present §4. Let

D - SCH]Og( log) SCHlog( log)

be an [arbitrary!] equivalence of categories. Then:

(i) @ preserves the following:

(i a) log-Dedekind objects;

i-b) the set SmCp(—) associated to a log-Dedekind object;
i-c) the subsets of the set SmCp(—) of (i-b) which are [N-]chains;
i-d) partitions ar elements of the set SmCp(—) of (i-b);
i-) orientable objects;
i-f) homogeneous objects;
i-g) one-pointed objects;
i-h) point-hulls with one-pointed codomains;
i-i) minimal point-hulls with one-pointed codomains;
i-j) log-nodal objects.
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1 preserves the following:
ii) @ he followi
(ii-a) point-equivalent pairs of arrows;
(ii-b) the set-valued functor LCPt(—) [up to natural equivalencel;
(11 c) arrows which are minimal point-hulls;
ii-d) scheme-like morphisms etween arbitrary objects.
-d) sch lik hi b bit b
(ili) For i=1,2, let Y% be an object of SCH'8(X/°%); write Y; for the

I
underlying scheme of Y.°%. Suppose further that (D(Ylog) Y21°g. Then @
induces an equivalence of categories

(SCH(Y1) =) SCH"%(¥,*®)| .y = SCH"%(¥,%®)| .y (= SCH(Y2))

—where the equivalences in parentheses are the evident analogues for SCH, SCH!"°
of the natural equivalences of Definition 1.1, (iv)—that is functorial [in the evident
sense!] with respect to Ylog Y21°g. Finally, the composite of the equivalences of
categories in the above dzsplay induces, by applying Theorem 4.2, an isomorphism
of schemes

Y1 =Y,

that is functorial [in the evident sense!] with respect to Y|, Y,°%.
(iv) There exists a unique isomorphism of log schemes

1 ~ 1
X] 0g ~, XZOg

such that ® is isomorphic to the equivalence of categories induced by this
isomorphism of log schemes Xllo’g = leog.

Proof. 1In light of Theorem 4.4, the proof of assertion (i) (respectively,
assertion (ii)) is entirely similar to the proof of Theorem 3.6, (i) (respectively,
Corollary 2.12, (i)). Now assertion (iii) follows from the portion of assertion (ii)
concerning the preservation of (ii-d) by applying an entirely similar argument to
the argument applied to verify Corollary 2.12, (ii). Finally, it follows imme-
diately from assertion (iii) that @ preserves objects whose underlying scheme is
noetherian [i.e., quasi-compact], and hence that ® induces an equivalence of
categories

Sch]og( log) —>SCthg( log)

[i.e., as in Theorem 3.8]. Thus, assertion (iv) follows immediately from Theorem

38, (ii). O

Finally, we consider analogues of Theorems 3.6, 3.8 for Sch'°¢, SCH'"*2. In
order to formulate and prove these analogues, it will be necessary to introduce
some new terminology [patterned after the terminology introduced in Definition
3.3], as follows.

DEFINITION 4.7. Let %'°2 ¢ {Schlog, SCHl°g}df If '°¢ =Sch'¢, then set
%'°t = Sch'°2; if @'t = SCH'"2, then set %'°¢ <= SCH'®. Let X' be an
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arithmetic log scheme. We shall apply the notation introduced at the beginning
of the present §4. Let Y'°2 be a connected, non-submonic, %'°%-log-Dedekind,
submonically nonarchimedean [cf. Remark 4.7.1 below] object of @'°¢(X°2); write
Y for the underlying log scheme of Y™ Let ye@°e-SmCp(Yloe) L

SmCp(Y'°%). Write
Mono(Y°¢)

for the full subcategory of %'°¢(Y'°2) determined by the arrows H'°¢ — Y°¢ of
@'°¢(X'°8) which are monomorphisms in %'°2(X'0¢2).

(i) Let Cj,C, < €'°%-SmCp(Y'*¢) be %'°%-chains. Then we shall say that
the pair of '°¢-chains {C|, C,} forms a €'°%-partition at y if the %'°®-chains C|,
C, satisfy the following conditions:

(i-a) CUGC, = €"-SmCp(Y'2), C\NC, = {y};

(i-b) for i = 1,2, the subset C;\{y} < #'°¢-SmCp(Y'°?) is a %'°¢-N-chain
[hence nonempty];

(i-c) the %'°*-N-chains of (i-b) are “maximal” in the sense that every
%'°¢.N-chain C = %'°2-SmCp(Y'°¢) such that y ¢ C is contained in
C; for some i€ {1,2};

(i-d) if, for i = 1,2, we write P; for the subfunctor of the contravariant
functor determined by the terminal object [i.e., ¥'°¢] of Mono(Y°2)
that consists of objects /'°¢ : H'°¢ > Y!°¢ of Mono(Y'°2) such that
every composite morphism H'¢ »» H'¢ »» Y1°¢ where H!°2 »» H'¢
is a minimal point of H'¢ determines an underlying morphism
in #°%(Y'°2) that factors through some representative of an
element € C; (S %'°5-SmCp(Y'°?)), then ¥; is representable by
an object /%% : Y% »» Y10 of Mono(Y'"%).

We shall say that Y'°2 is @°¢-orientable if Y'°¢ admits a #'°¢-partition at every
element of %'°¢-SmCp(¥'"°¢). o

(i) Let {C),Cy} be a €'"e-partition at y. Suppose that 1%, hy® are as in
(i-d). Then we shall say that the %'¢-partition {Cy, G} is €'°%-seamless if the
following condition is satisfied:

a monomorphism h'¢ : H'°¢ > Y02 in @log(xlog) lis an islomorphism if
and only if, for i = 1,2, the projection H'¢ x 5, ¥;* — ¥, associated

to the fiber product determined by /'°¢ and fz}og is an isomorphism.

We shall say that Y'°¢ is @'°¢-homogeneous if Y'%¢ is @'°t-orientable, and,
moreover, no '°%-partition at an element € ¢'°6-SmCp(¥Y'°2) is %'°¢-seamless.

Remark 4.7.1. Let Y2 be as in Definition 4.7, ie., a connected, non-
submonic, €'°%-log-Dedekind, submonically nonarchimedean object of @'oz(Xoe),
Write Y'°¢ for the underlying log scheme of Y'°¢; Y for the underlying arithmetic



MONOMORPHISMS IN CATEGORIES OF LOG SCHEMES 423

scheme of Y'°2; Y for the underlying scheme of Y; K'°¢ for the compact set that
determines the archimedean structure of Y'°¢ [i.e., the set “H” of [5], Definition
4.2, (ii)]; K for the compact set that determines the archimedean structure of Y
[i.e., the set “H” of [5], Definition 4.2, (i)]. Thus, it follows immediately from
the various definitions involved that we have a natural surjection K'° — K whose
fibers are compact [cf. the discussion of such compact subsets in the proof of
[5], Lemma 4.1]. Now observe that the assumption that Y'°¢ is submonically
nonarchimedean implies [cf. Proposition 3.2, (i), (ii)] that

K is a finite compact set which is supported over the nodal points of Y'°¢.

Since the finiteness of K implies that any [e.g., open!] subset of K is compact
[i.e., relative to the topology induced by K], we thus conclude that

any subset of K'°¢ that arises as the inverse image via the natural
surjection K'°¢ — K of a subset of K is compact [i.e., relative to the
topology induced by K'°¢].

In particular, it follows that any open subscheme Z < Y determines, in a natural

way, not only a log scheme Z'°¢ & ylog s\ 7 ‘but also an arithmetic scheme Z

and an arithmetic log scheme Z'¢ [i.e., by considering the subsets of K, K'°¢
consisting of points that map to points of Z (< Y)]. Moreover, one verifies
immediately that

Z'°¢ (respectively, Z) represents the covariant subfunctor of the functor
represented by Y!°¢ (respectively, Y) on the category of arithmetic log
schemes (respectively, arithmetic schemes) determined by the condition
on a morphism to Y'°2 (respectively, Y) that the associated underlying

morphism of schemes maps into Z < Y.

These observations may be applied, for instance, to open subschemes of Y that
arise as images of open immersions of the sort discussed in Proposition 3.4, (ii).

THEOREM 4.8 (Reconstruction of the arithmetic log scheme structure of
arbitrary objects for Sch'¢, SCH'2). Let €'°¢ e {Sch!°¢, SCH"*2}. If @'°t =
Sch'ee, then set €'°¢ % Sch'°g; jf @'t — SCH" 2, then set €'°¢ ¥ SCHE.  For
i=1,2, let X°* be an arithmetic log scheme [cf. [5], Definition 4.2, (ii). We shall
apply the notation introduced at the beginning of the present §4. Let

d - (glog(yiog) = (EIOg(A_"?g)

be an [arbitrary!] equivalence of categories. Then:

(i) Let Y& Z°2 pe objects of ‘Zlog(/\_’}()g), for some ie{l,2}, that are
connected, non-submonic, %'°2-log-Dedekind, and submonically nonarchime-dean;
write ' Y'°¢ Z°t for the underlying log schemes of Y'%¢, Z'°¢  respectively.
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Suppose further that Z'°¢ is purely nonarchimedean. Then the following properties
hold:

(i-ay) every @'°s-partition at an element y € €'°2-SmCp(Y'°%) determines
a €'°®-partition ar y; )

(i-az) there is a natural Dbijective correspondence between €'°2-
partitions ar elements € €'°2-SmCp(Z'°%) and %'°%-partitions at
elements € €'°2-SmCp(Z'°2);

(i-by) if Y'°2 is %'°%-orientable, then Y'°¢ is %'°%-orientable;

(i-bz) Z'¢ is @'°t-orientable if and only if Z'°¢ is %'°t-orientable;

(i-cz) a €'2-partition at an element € €'°2-SmCp(Z'°%) is %'°¢-seamless
if and only if it corresponds to a €'°%-partition [cf. (i-az)] that is
@12 _seamless;

(i-dy) if Y'°¢ is €'°¢-homogeneous, then it is one-pointed, and Y2 is
empty;

(i-dz) Z't is €'°t-homogeneous if and only if Z'°¢ is %'°¢-homogeneous.

(i) @ preserves the following:

(ii-a) %'°t-log-Dedekind objects;

(ii-b) the set €'°-SmCp(—) associated to a %'°®-log-Dedekind object;

(ii-c) the subsets of the set €'°8-SmCp(—) of (ii-b) which are €'°¢-[N-|chains;

(ii-d) %'°s-partitions at elements of the set €'°%-SmCp(—) of (ii-b);
(ii-e) %'°¢-orientable objects;

(ii-f) %'°t-homogeneous objects;

(ii-g) one-pointed objects;

(ii-h) point-hulls with one-pointed codomains;

(ii-1) minimal point-hulls with one-pointed codomains.

(iii) For i=1,2, let Yllog be an object of €'°¢(X log), write Y% for the
underlying log scheme of Y°!. Suppose furt/lier that CI)( °8) = Y;Og Then Ylog
is purely nonarchimedean if and only if Y,* is. In partzcular, @ induces an
equivalence of categories

(glog( log) (glog( log)
that is functorial [in the evident sense!] with respect to Y\, YX%.  Finally, the
equivalence of categories in the above display induces, by applying Theorems 3.8,
(iii); 4.6, (iv), an isomorphism of log schemes
Ylog T Ylog
that is functorial [in the evident sense!] with respect to Y%, Y%,
(iv) There exists a unique isomorphism of arithmetic log schemes

vl ~ vl
XOg_)XOE

such that ® is isomorphic to the equwalence of categories induced by this
isomorphism of arithmetic log schemes X log =, X, log
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Proof. First, we consider assertion (i). Properties (i-ay), (i-az), (i-by),
(i-bz), (i-cz), and (i-dz) follow formally from the definitions [cf. also the first
display in the proof of Theorem 4.5]. Property (i-dy) then follows, in light of
properties (i-ay) and (i-by) [cf. also the first display in the proof of Theorem 4.5],
by applying a similar argument to the argument [i.e., involving Proposition 3.4,
(if)] applied in the proof of Proposition 3.4, (iii). Here, we note that one
must apply the assumption [cf. the beginning of Definition 4.7] that any %'°¢-
homogeneous object is submonically nonarchimedean in order to conclude that
any €'°¢-partition that determines a %'°%-seamless € 1"g-partjtion as in [the evident
analogue for %'°¢ of] Proposition 3.4, (ii), is necessarily €'°¢-seamless. That is
to say, this assumption that any %'°¢-homogeneous object is submonically non-
archimedean implies [cf. the discussion of Remark 4.7.1] that the discrepancy
between %'°8-/%'°%-seamless €'°%-/%"°%-partitions may—at least in the case of
%'°¢_seamless €'°%-partitions as in [the evident analogue for %'°¢ of] Proposition
3.4, (ii)—be ignored. This completes the proof of assertion (i).

Next, we observe that, in light of Theorem 4.5, (i), (ii), assertion (ii) follows
by applying a similar argument to the argument applied to verify Theorem 3.6,
(i). Here, we observe that the preservation of the crucial property of being
submonically nonarchimedean [cf. the beginning of Definition 4.7] follows formally
from the portion of Theorem 4.5, (i), concerning the preservation of (i-f), (i-f"").
Also, we observe, with regard to the preservation of (ii-g), that, by applying

+ the property (i-dy) of assertion (i) in place of Proposition 3.4, (iii), and
+ the property (i-dz) of assertion (i), together with the evident analogue
for %'°¢ of Proposition 3.4, (iv), in place of Proposition 3.4, (iv),

one obtains a suitable analogue for €'°¢—i.e., by considering %'°¢-homogeneous
objects—of the characterization of one-pointed objects given in Proposition 3.5,
(i). This completes the proof of assertion (ii).

Next, we consider assertion (iii). First, let us observe that the portion of
assertion (ii) concerning the preservation of (ii-g), (ii-i) allows one to circum-
vent the application of [5], Propositions 4.3, 4.4, in the theory of [5], §4. One
thus obtains—i.e., by considering epimorphisms as in [5], Proposition 4.5—
category-theoretic characterizations of the purely nonarchimedean one-pointed
objects of €'°¢(X }og) as in [5], Corollary 4.1, (i), and of the purely archimedean
morphisms of %'°¢(X ,!Og) as in [5], Corollary 4.1, (ii) [cf. also Proposition 1.4, (iii),
(v), of the present paper]. In particular, we obtain a category-theoretic char-
acterization, as in [5], Corollary 4.2, of the purely nonarchimedean objects of
%'ot(X %) and hence, by applying Theorems 3.8, (iii); 4.6, (iv), a category-
theoretic reconstruction of the underlying log scheme of an object of '°2(X }Og),
as in [5], Corollary 4.3. This completes the proof of assertion (iii). Finally,
assertion (iv) follows from assertion (iii) [cf. the proof of [5], Theorem 5.1], by
applying the ““logarithmic global compatibility” established in [5], Lemma 5.2.

O
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Appendix

In the present Appendix, we discuss in more detail, at the level of individual
propositions, lemmas, corollaries, theorems, and examples, the validity of the
theory developed in [4] and [5].

First, we recall that the errors discussed in the Introduction of the present
paper have no effect on [4], §1. The effect of these errors on the validity of the
statements [second column)], as well as on the validity of the proofs [third column],
of the individual propositions, lemmas, corollaries, and theorems of [4], §2, is
summarized in Fig. 1 below. Here, the symbol “Q” indicates no effect on the
validity in question; the symbol “x” indicates some effect on the validity in
question. Certain results that concern equivalences are divided into sufficiency
and necessity portions. Moreover, the necessity portion of [4], Proposition 2.3, is
divided into

+ a portion concerning whether or not the underlying morphism of
schemes is a monomorphism in the case where the given morphism
of log schemes is scheme-like,

+ a portion concerning whether or not the induced morphism of group-
ifications of characteristics is surjective, and

+ a portion concerning whether or not the underlying morphism of
schemes is a monomorphism in the case where the given morphism
of log schemes is not scheme-like.

Individual propositions/lemmas/ Validity of | Validity | Explicit logical
corollaries/theorems statement of proof | application in
the present paper

2.3 (surjectivity portion of necessity); 2.5; 2.6, O @) @)
(i), (iii); 2.6, (ii) (closed immersion, [final]
surjectivity portions); 2.16 [cf. Remark 3.7.1]

2.1; 2.2; 2.3 (sufficiency); 2.3 (monomorphism O O X
portion of necessity: scheme-like case); 2.7,
(i), (i); 2.8; 2.12, (i) (necessity); 2.12, (ii);
2.17; 2.18; 2.19, (i); 2.20

24 O X A
2.14; 2.15; 2.19, (ii); 2.13 @) X X
2.3 (monomorphism portion of necessity: non- X X X

scheme-like case); 2.6, (ii) (isomorphism portion);
2.7, (iii); 2.9; 2.10; 2.12, (i) (sufficiency)

FiGURE 1. Validity of individual propositions/lemmas/corollaries/theorems of [4]



MONOMORPHISMS IN CATEGORIES OF LOG SCHEMES 427

The statement of [4], Lemma 2.6, (ii), is also divided into a closed immersion
portion, an isomorphism portion, and a [ final]| surjectivity portion. We also
indicate, in the fourth column of Fig. 1, whether [“O”] or not [“x”] the result
in question is applied, in an explicit [i.e., via a direct reference] logical sense, in
the present paper. The data of this fourth column does not include references
for the statements of definitions/conditions or references made for the sake of
pointing out content that is related in an expository sense [i.e., but not in a
logical sense!]. The unique “A” in this fourth column in the case of [4],
Proposition 2.4, indicates that although we apply this result in an explicit logical
sense in the present paper [i.e., despite the fact that the proof given in [4] is in
error!], this does not result in any logical gaps, since the proof of [4], Proposition
2.4, given in [4] may be repaired if, instead of applying [4], Proposition 2.3,
one applies Proposition 1.4, (vi), of the present paper [i.e., which corresponds
to the necessity portion of [4], Proposition 2.3, in the case of submonic log
schemes].

Next, we consider the effect of the errors discussed in the Introduction of
the present paper on [5]. Here, we recall that [5], §1, consists of an expository
introduction to the theory of [5], while [5], §2, is devoted to a discussion of the
notations and conventions applied in [5]. Thus, it suffices to consider the effect
of the errors discussed in the Introduction of the present paper on [5], §3, §4,
§5. The effect of these errors on the validity of the statements [second column],
as well as on the validity of the proofs [third column], of the individual proposi-
tions [“P”’], lemmas [“L”], corollaries [“C”], theorems [“T”’], and examples [“E”]
of [5], §3, §4, §5, is summarized in Fig. 2 below. Here, the symbol “QO” indicates
no effect on the validity in question; the symbol “x”* indicates some effect on the
validity in question; the numbers in parentheses indicate, for ease of reference,
the corresponding result in the preprint version [available on the homepage
http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html] of [5]. We also
indicate, in the fourth column of Fig. 2, whether [“O”] or not [“x”] the result
in question is applied, in an explicit [i.e., via a direct reference] logical sense, in
the present paper. The data of this fourth column does not include references
for the statements of definitions/conditions or references made for the sake of
pointing out content that is related in an expository sense [i.e., but not in a logical
sense!]. The three “A’s” in this fourth column indicate the following state of
affairs:

+ The results marked with a “A” are indeed applied in an explicit logical
sense in the present paper in the proofs of Theorems 4.3, 4.5, 4.8—i.e.,
despite the fact that the proofs given in [5] of these results are in error!

+ The explicit logical application of these results in the present paper
does not, however, result in any logical gaps for the following reason:
In the case of the first and third (respectively, case of the second) “A”,
the only problem with the proofs given in [5] is that they rely on
the reconstruction of one-pointed objects given in [5], Proposition 4.3
[i.e., which is in error!] (respectively, on [5], Corollaries 4.2, 4.3 [i.e.,
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whose proofs are in error!]). On the other hand, these results are
only applied in the present paper in situations in which the one-
pointed objects have already been reconstructed (respectively, in which
results corresponding to [5], Corollaries 4.2, 4.3, have already been
proven).

Put another way, one may think of the application in the present
paper of the results marked with a “A” as consisting of a “‘similar
argument” to the argument given in [5]—i.e., a “similar argument”
which does not suffer from the logical gaps of [5], since, in the case of
the first and third (respectively, case of the second) “/\”, this “similar
argument” is only applied in situations in which the one-pointed objects
have already been reconstructed (respectively, in which results corre-
sponding to [5], Corollaries 4.2, 4.3, have already been proven).

Individual propositions/lemmas/corollaries/ Validity of Validity Explicit logical
theorems/examples statement of proof application in
the present paper
L4.1 (2.5); P42 (2.6); C4.1 (2.10), (ii) O O O
P4.1 (2.4); P44 (2.8), (i), (ii); E5.1 (3.5) O O X
P4.4 (2.8), (iii); C4.2 (2.11) O X A
L5.1 (3.2); L5.2 (3.3) O X A
T3.1 (1.1); T5.1 (3.4); C4.3 (2.12) O X X
P4.5 (2.9); C4.1 (2.10), (i) X X A
P4.3 (2.7) X X X

FIGURE 2. Validity of individual propositions/lemmas/corollaries/theorems/examples of [5]
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