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A NOTION OF A-MULTIGENUS FOR CERTAIN
RANK TWO AMPLE VECTOR BUNDLES

ENRIQUE ARRONDO, ANTONIO LANTERI AND CARLA NOVELLI

Abstract

A notion of “delta-genus” for ample vector bundles & of rank two on a smooth
projective threefold X is defined as a couple of integers (d;,02). This extends the
classical definition holding for ample line bundles. Then pairs (X, &) with low 0; and
0, are classified under suitable additional assumptions on &.

Introduction

Let X be a smooth complex projective variety and let % be an ample line
bundle on X. In order to study polarized manifolds (X, %) Fujita [2] intro-
duced the A-genus of (X,%), which is a nonnegative integer defined by the
formula

AX,Z):=dim X +d(X,2) - h'(X,2),

where d(X, %) = #%mX  The theory developed around this invariant has been
a powerful tool in characterizing polarized varieties with A small enough [2]. As
noticed in [2, p. 176] there is not a good vector bundle version of the theory of
A-genus. This sentence motivated our interest in the subject.

Let & be an ample vector bundle of rank r>2 on X. In principle one
could conceive a A-genus for (X, &) either as a single integer (e.g. see [8]), or as
an r-tuple of integers, if one wants to give an invariant related to the geometry
of the Grassmannian to which & maps the variety X. This last point of view
presents several difficulties even for the first non-trivial cases (as explained in
Section 1), so that we will restrict ourselves to a very particular case.

Specifically, in this paper we consider ample vector bundles & of rank 2 on
a smooth threefold X. We define the A-genus of such a pair (X, &) as a couple
of integers (J1,0,). While J is the classical A-genus of the scroll associated to
(X, &), hence d; =0, J, involves the endomorphisms of & (see Definition 1.1).
Its meaning becomes geometrically clear if we assume that & has a section
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vanishing on a smooth curve Z (condition () in the paper). Actually, under this
assumption, J, turns out to be greater than or equal to the classical A-genus of
the surface scroll induced by & on Z, which implies that J, > 0.

We investigate pairs (X, &) with low 0, and d,. Of course, the stronger are
the properties of the vector bundle &, the larger are the values of J; and J, we
can include in our classification. In fact we classify pairs (X, &) with J; <2,
results being complete for ; = 2 only when & is globally generated (Proposition
1.5 and Proposition 1.6). As to the second invariant, under assumption (x) we
classify pairs (X,&) with d, <1 (Corollary 2.2 and Proposition 2.3) and with
0, = 2 when either the vector bundle & has curve genus g = 1 (Theorem 2.5) or
g =2, & being globally generated (Proposition 2.7). Our results are roughly
summarized by the following

THEOREM. Let & be an ample vector bundle of rank 2 on a complex smooth
projective threefold X.
(A) If 61 <1, then 6, =0, =0 and (X, &) = (P>, 0ps(1)®?).
(B) If 6, =2 and in addition & is spanned, then 5, =0 and (X,8)=
(Q%, s (1)),
(C) If 0,=0, 61 =3 and condition (%) holds, then (X,&) is either
(P, 0p3(2) @ Ops(1)) (here 81 =5), or

#)  (Ppi(Op1 @ Upi (1) @ Upi(a2)), £ @ 7" (Op1 (b1) ® Op1 (D2))),

where 7: X — P! is the bundle projection, ¢ is the tautological line
bundle on X, and the integers a;, b; satisfy 0 <a; <ay, 1 <b; < by <
b+ 1 (here 01 =2(a1 + a2) + 3(b1 + b)) — 2 = 4).

(D) If 6, =1 and condition (%) holds, then (X,&) is as in (#) with by =
by + 2.

(E) If 0, =2, 01 = 3 and in addition & is spanned then either (X,&) is as in
(#) with by = by + 3, one of the pairs listed in Theorem 2.5, or a general
section of & vanishes along a smooth hyperelliptic curve of genus > 2 and
& splits on every such curve as L®%, where & is the hyperelliptic line
bundle.

In fact we suspect that J, > 0 even without assumption (*). In connection
with this in Section 3 we discuss the inequality J, > dim(Bs|&|), proving it is true
when & is generically spanned and the rational map from X to an appropriate
Grassmannian of lines defined by & has one-dimensional image (Proposition 3.2).
In Section 4 we discuss some problems that arise in trying to extend our
definition to rank 2 ample vector bundles on projective manifolds of higher
dimension.

1. A-genus for ample vector bundles

Before defining the A-multigenus of an ample vector bundle, let us analyze
closely the definition of the classical A-genus of a polarized manifold (X,.%).
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If ¥ admits a section vanishing along a smooth hypersurface Y we can
easily see that

AX, %) =dim X — 1 +d(Y, %y) — dim Im[H*(Z) — H°(Zy)],

the arrow denoting the restriction homomorphism. Recalling the definition of
A(X,A) for any linear system A on X [2, p. 33], we can consider the linear
system Try|Z|, so that A(X, %) = A(Y,Try|Z|).

It follows that, under suitable assumptions, e.g. the very ampleness of &,
the classical A-genus can be defined recursively starting from that of a curve.
Observe also that this A-genus is related to the minimal degree of the embedding
of X defined by Z.

If we want to imitate this for a pair (X, &), where & is an ample vector
bundle of arbitrary rank, the analogous assumption would be that & defines an
embedding in the Grassmannian. Starting with the case in which X is a curve,
there is only one degree, namely the degree of X in the Pliicker ambient space of
the Grassmannian, which coincides with the degree of the ruled variety Py (&)
embedded by its tautological line bundle £,. Hence if dim X =1 it is natural to
define the A-genus of (X, &) as 0; = A(Px(&),&s). Note that this is equivalent
to o1 =tk &+ c1(8) — h°(&).

In higher dimension the embedding of X in the Grassmannian has now a
multidegree, expressed as the intersection with the corresponding Schubert cycles
of the appropriate dimension. According to a natural ordering of these Schubert
cycles, the first degree is again the degree of the ruled variety Py (&), so that we
can still define 6; as above.

On the other hand, some of these Schubert cycles consist of linear spaces
satisfying, among other conditions, that of being contained in a hyperplane. The
pullback on X of the set of linear spaces contained in a hyperplane is the zero
locus of a section of &. So to define the part of A-genus corresponding to these
particular Schubert cycles it looks natural to use the recursive procedure men-
tioned in the case of line bundles.

So now assume that the ample vector bundle & satisfies the following
condition:

(%) there exists a section whose zero locus is a smooth subvariety Z of the

expected dimension.
For that recursion we need to compute dim Im[H°(&) — H°(&7)]. This dimen-
sion can be computed by using the Koszul’s exact sequence tensored by &. It is
difficult to provide the precise expression in general. However for rk & = 2, the
exact sequence becomes

06" —-6RE —E— 67— 0,

where &V stands for the dual of &. So, since 4°(6Y) =h!'(6Y) =0, from the
Kodaira—Le Potier vanishing theorem, we derive

dim Im[H'(&) — H'(&2)] = 1°(6) = h(6 ® 67).
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This shows the difficulty of that recursive process even for rk & =2. In fact,
if there were a second step in the recursion, we would need to compute
h°((6 ® &Y),), and this should be done from the Koszul’s exact sequence
tensored by & ® &Y. On the other hand, for dim X = 3, Z is a smooth curve,
so that no further step is needed. This motivates to confine our discussion to the
case of ample vector bundles of rank 2 on threefolds and to give the following
definition:

DermvITION 1.1.  Let & be an ample vector bundle of rank 2 on a smooth
complex projective variety X of dimension 3. We define the A-genus of the pair
(X, &) as the pair of numbers

(1.1.1) A(X, &) := (01,02)

defined as follows:
01 :=A(Px(8),é5) =4+ ¢ —2c1¢0 — h°(6) and
O =2+cico—h&) +h(E® &),

where &, is the tautological line bundle of & on Py (&), ¢; denotes the i-th Chern
class of &, and we used the Chern—-Wu formula ff; = 013 —2¢c105.

Remark 1.2.  Let G be the Grassmannian G(1, N), with N = h°(&) — 1, and
denote by Q(N —4,N) and Q(N —3,N —1) the two Schubert cycle classes
generating H%(G,Z). Suppose that & defines an embedding of X into G. Then
¢; —2cica=a and cjc; =b, where a= X -Q(N —4,N) and b= X -Q(N -3,
N —1). Note that the class of X can be written in terms of the dual Schubert
cycle classes as X = aQ(0,4) + hQ(1,3).

Example 1.3. Let & =L® M, L, M being ample line bundles on X.
Then

(1.3.1) 01 =AX,L) +AX, M)+ L*M + LM? -2
and
(1.3.2) Oy =24+ L*M + LM? — h°(L) — hi°(M) + h°(6 ® &Y).

Note that 6 ® &Y = OP* ®[L — M]® [M — L]. Suppose that |L| and |M|
contain irreducible surfaces, say S and 7, respectively. Then (1.3.1) takes the
form 61 =A(X,L) +A(X,M)+d(S,Ms)+d(T,Ly)—2. Moreover, recalling
the definition of A(X,A) for any linear system A on X [2, p. 33|, and taking
into account the exact cohomology sequences induced by

0—-M-L—-M—Mg—0 and 0—[L—M|—L— Ly — 0,

(1.3.2) becomes 9, = A(S, Trs|M|) + A(T, Trr|L)).
In particular, let & = L®?, for any ample line bundle L on X. Then
E®E = 0P*, hence d; =2A(X,L) +2d(X,L)—2 and , = 6 +2L> — 2h°(L)
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=2A(X,L). For instance, for (X,&) = (X,L®?), where (X,L) is a del Pezzo
threefold of any degree d, we have (J;,02) = (2d,2).

Remark 1.4. The classical theory of A-genus implies 0; > 0 [2, Theorem
4.2]. A priori we cannot claim the same for J,. However, assume that &
satisfies (%), so that it has a section whose zero locus is a smooth curve
Z. Define 6 :=A(Pz(62), ((s)p,(s,)- Then 5 =2+ c1(&)ca(&) — h'(62).
According to Definition 1.1, d = A(Pz(67),A), where A =Trp,(,)|Es|, ie
the linear system corresponding to the image of the restriction homomorphism
H(&) — H°(&z). Hence 6, > 65, equality holding when the homomorphism
H(&) — H(&7) is surjective. In particular, J, > 0 under assumption ().

In the following Proposition we give the characterization of pairs (X, &)
whose A-genus is (0,0).

ProposITION 1.5. Let X and & be as in Definition 1.1. Then the following
facts are equivalent:
(1) A(X, &) = (0,02);

2
233 ()(( 5’)) (lg C) (1)®?).

Proof.  Assume that 0, =0, ie. A(Px(&),&s)=0. By [8, Theorem 3.6],
this is equivalent to (X, &) = (P, (Ol,s(l)@Z). Then we conclude by Example 1.3.
O

The previous proposition shows that A(X, &) = (0,0) is equivalent to J; = 0.
Notice that it cannot be J; =1 in view of [8, Lemma 1.4]. Then

A(X,&) #(1,0,) for any 0.

So the next case to analyze is d; =2. The only example we know fitting in
Fujita’s partial classification of polarized manifolds with A-genus 2 [2, Ch. I, §10]
s (X,8) = (Q3,@Q3(1)®2). We will meet this pair in Section 2 again. More-
over, we have

PropPoSITION 1.6. Let X and & be as in Definition 1.1 and assume that & is
spanned. Then the following facts are equivalent:

(1) A(X, &) = (2,02);

(2) A(X, &) = (2,0);

3) (X, )—(Q3(9 (1)),

Proof. Assume that 0, =2, i.e. A(Px(&),&¢)=2. Then [8, §4, pp. 684—
687] implies (X, &) = (Q?, Ogs(1 )®2). Then we conclude by Example 1.3. [

In connection with our goal of classifying pairs (X, &) according to J, in
Section 2, it is useful to spend some words on the A-genus of surface scrolls.
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Let & be an ample vector bundle of rank » > 2 on a smooth curve C of
genus gq. Set Y :=P¢(&) and let L be the tautological line bundle. Note that
L is ample, so being & We say that (Y,L) is the scroll associated with &.
Looking at it as a polarized variety, we have A(Y,L)=r+d —h°(&), where
d=L"=deg&. Hence, recalling the Riemann-Roch theorem, A(Y,L)=
rq —h'(&). In particular,

Remark 1.7. If & is non-special (i.e. h'(&) =0), then A(Y,L) = rq.

Note that if ¢ <1 then any ample vector bundle & is non-special. This is
obvious if ¢ =0 (& is a direct sum of r ample line bundles and /4! = 0 for all of
them) and is due to Atiyah for ¢ =1 (e.g. see [4, Lemma 1.1]). Moreover, we
know that A(Y,L) > 0 with equality characterizing the case ¢ = 0 [2, Theorem
5.10, p. 41]. On the other hand, for ¢ = 1 we have A(Y,L) =r. This allows us
to assume ¢ > 2 in the following. Moreover, for our need in Section 2 from now
on we will confine our discussion to the case r =2, i.e.

(1.7.1) (Y,L) will be a surface scroll of genus ¢ > 2.

According to Remark 1.7, we know that A(Y,L) > 2¢ > 4, provided that & is
non-special. Nevertheless, in general A(Y, L) can be smaller. It cannot be 0 by
what we said, but, in principle it could be 1. However, this is not the case.
This follows from [8, Lemma 1.4], but for surfaces the argument is very easy and
we include it for the convenience of the reader.

ProrosiTiON 1.8. Let C be any smooth curve of genus q > 2. Then
A(Y,L) =2

Proof. As we said, A(Y,L) > 1. Suppose this equality holds. According
to Fujita’s classification of polarized manifolds of A-genus one [2, Ch. I, Section
6], we have the following possibilities: (i) d >3 and Y is a del Pezzo surface
with L = —Ky; (ii) d = 2 and there is a finite morphism p : ¥ — P? of degree 2
with L = p*0p:(1); (iil) d = 1. Cases (i) and (ii) are not compatible with (1.7.1).
This is obvious in case (i) and it follows easily from the ramification formula in
case (ii) (to see this, let D € |Op2(2b)| be the branch locus of p; then 0 > &(1 — g)
=K} = (p*Op>(b — 3))? =2(h —3)* > 0, a contradiction). In case (iii) we have
h°(L) =3 - A(Y,L) =2, hence |L| is a pencil with a single base point, say .
Let fy be the fiber of Y containing y. Since |L| =|L — y| is a pencil, there is
an element D € |L| tangent to fy at y. This implies that D =T + fj, with T’
consisting of a section plus possibly some fibers. We thus get

|=L>=LD=Lf+LT =1+LT.

But this would imply that LI" = 0, which contradicts the ampleness of L. There-
fore case (iii) cannot occur. O



A NOTION OF A-MULTIGENUS 143

Next we focus on the A-genus 2 case, which, as already noted, includes all
elliptic surface scrolls. Here is an interesting example showing that for any ¢ > 2
there are surface scrolls with A = 2.

Example 1.9. Let C be a smooth hyperelliptic curve of genus ¢ and let
& = #92, where & is the hyperelliptic line bundle of C (i.e. | Z]| is the g1 of C).
Then d =2 deg ¥ =4 and h°(&) = 2h°(¥) = 4, so that A(Y,L) =2.

Note that in the example above & is ample and spanned, but not very
ample. In fact, according to [5, Corollary 1], any very ample vector bundle on a
smooth hyperelliptic curve with ¢ > 2 is non-special. Then, for the correspond-
ing surface scroll we have A(Y,L) =2g >4 by Remark 1.7.

Assuming that & is also spanned, we have the following characterization.

PropoSITION 1.10. Let & be an ample and spanned vector bundle of rank 2
on a smooth curve C of genus q >2. If A(Y,L)=2, then (C,&) is as in the
example above.

Proof. L is spanned, since & is so, hence h°(L) > 3. From 2=A(Y,L) =
2+d —h°(L) we thus see that d > 3. If d = 3, then the morphism ¢, : ¥ — P?
defined by L expresses Y as a triple plane. Then by using Miranda’s formula
for triple covers as in [8, Proposition 4.4, proof of case (a)] we see that this is
not compatible with the scroll structure of (Y,L). Let d =4. Then, arguing as
in [8, Theorem 4.3, proof of case d =4| we conclude that (C,&) is as in the
example above. Finally, if d > 5 then L is very ample, by [2, Theorem 3.5,
p- 30]. Hence & itself is very ample, but this is impossible. Otherwise & would
be non-special by [5, Corollary 1], contradicting A(Y,L) =2, as noted before.

]

2. Classification results under condition (*)

In this section we continue the classification of polarized pairs with small
values of the A-genus. We will need for this to assume condition (*). We start
with 05 = 0. We set (Y, L) = (Pz(62), (Es)p,(a,)-

THEOREM 2.1. Let X and & be as in Definition 1.1 and assume that &
satisfies condition (x). If A(Y,L) =0, then one of the following holds:

(1) (X,8) = (P, Cps(1)*?);

(2) (X,6) = (P’ Op:(2) @ Opa(1));

(3) (X, )(Q36”()) ,

@) (X, 6) = (Ppr (1), [ + 0L/ @ (6 +baf)), where 4 = @Y, Opr(a)
w1th 0=a S ay < ay, &y is the tautological line bundle of V", f stands
for a fiber of the scroll projection, by, by are positive integers.
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Moreover, A(X,&) =(0,0) in case (1), A(X,&) = (5,0) in case (2), A(X,&8) =
{(2a+3b 20) lf by =b,
(

2 ] ] A X 0 -
(2,0) in case (3), while A(X, &) 2a+3b—2 by —by—1) if by > b where
a:=ay+a and b:=b; + by in case (4).

Proof. Since A(Y,L) =0 and the Picard number is p(Y) > 1, [2, Theorem
5.10] implies that (Y,L) is a scroll over P'; in particular Z = P! hence
g(X,8) =¢9(Z)=0. Therefore, by [6, Theorem A] we have the following
possibilities for (X, &):
(a) (P*,Cp J(D);
(b) (P?, C”p*( )@2@1)@( )
(©) (Q%,Cps(1)®);
(d) (Ppi(7 ) [Ey +b1f] D [Ey + baf]), where ¥ is a rank-3 vector bundle
on Pl normalized in the form ¥" = Op1 @ Opi(a1) ® Opi(ar) with 0 <
a; < ap, £, 1s the tautological line bundle of ¥, f stands for a fiber of
the scroll projection and by, b, are positive integers, due to the ampleness
of & [1, Lemma 3.2.4].
As to the last assertion, Example 1.3 gives

AP 03 (1%?) = (0,0), AP, 04:(2) ® Cpa(1)) = (5,0),
A(Q?,a @Q3(1)®2) = (2’ 0)7

which proves the assertion in cases (1)—(3) of the statement. Moreover, in case
(d), we get 0, =3b+2a—2, where a=a; +a, =deg ¥ and b=b; +b,. Of
course we can assume that b, > b;, up to exchanging the summands of &.
Then

4 if by = by,

6 ® 6% =241~ b))+ 1= b0N = {5 T

which leads to the value of J, in case (4) of the statement. O
As a corollary we get the characterization of pairs (X, &) with d, = 0.

COROLLARY 2.2. Let X and & be as in Definition 1.1 and assume that &
satisfies condition (x). Then 5, =0 if and only if (X,&) is as in Theorem 2.1,
cases (1)—(3) and case (4) with by =by >1 or b=b1+1>2.

Proof- Assume that J, = 0, consider the smooth curve Z and the polarized
surface (Y,L). It follows from Remark 1.4 that A(Y,L) =0, so we are in the
assumption of Theorem 2.1. Clearly d, = 0 in cases (1)—(3) of that proposition.
Assume now that (X, &) is as in case (4) of Theorem 2.1, then J, = 0 if and only
if by = by or by = by + 1. O

As to the next values of d, we have the following.
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ProOPOSITION 2.3. Let X and & be as in Definition 1.1 and assume that &
satisfies condition (x). If 6, =1 then (X, &) is as in case (4) of Theorem 2.1 with
by =by +2.

Proof. Let 6, =1 and consider the polarized surface (Y,L). According to
the discussion in Remark 1.4, we have 1 =, > J), so that either (X, &) is as in
Theorem 2.1 or A(Y,L) =1. The former case gives the assertion in view of the
second part of Theorem 2.1, and the converse is obvious. The latter case is ruled
out by Remark 1.7 and Proposition 1.8. O

PrOPOSITION 2.4. Let X and & be as in Definition 1.1 and assume that &
satisfies condition (). If 0, =2 then either:

(1) (X,&) is as in case (4) of Theorem 2.1 with by = b; + 3, or

(2) 05 =2.

Proof. Let 6, =2 and consider the polarized surface (Y,L). According to
the discussion in Remark 1.4, we have 2=, =05, so that there are three
possibilities, according to whether &, = 0,1 or 2. The first case leads to (1) in
view of the second part of Theorem 2.1, while the third gives (2). On the other
hand, the second possibility is ruled out by Remark 1.7 and Proposition 1.8.

U

Let g :=g(X,&) be the curve genus of (X,&). Concerning case (2), con-
dition (x) allows us to get a complete classification result for g = 1.

THEOREM 2.5. Let X and & be as in Definition 1.1, assume that & satisfies
condition (x) and let g=1. Then 0, =2 if and only if (X,8) is one of the
following pairs:

(1) (€2

(

( .
(@, CQs( )@BO ( :
(X, H®?) where (X,H) is a del Pezzo threefold;

(P? x P! p*Tp> ® Op2,p1(0,1)), where p stands for the projection onto
the first faclor

(6) (P? X P!, Op2,p1(2,1) ® Cppi(1,1));

(7 (Q3,,¢( )), where & is the spinor bundle on Q (see [11, Definition 1.3]).

Proof. Pairs (X,&) satisfying assumption (x) with g =1 are listed in [7,
Theorem 1]. As n =dim X = 3, we have the following possibilities:
(a) X is a P>-bundle on a smooth curve B isomorphic to Z and & =
Op2(1 )ea for every fiber F of the bundle projection z: X — B;
(b) (X,&) is as in cases (1)—(7) of the statement;
(c) (X &) = (P*,./(2)), where ./ is a null correlation bundle on P (see
[10, p. 76]).
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We have to select those with d, = 2.  As to (b), we can easily see that d, =2
in cases (1)—(4). This follows immediately from what we said at the end of
Example 1.3 in cases (1) and (4), and from a straightforward direct computation
in cases (2) and (3). In the next two cases let F =~ P? be any fiber of the second
projection. In case (5) we get ¢jc; = 15 and h%(&) = 2h°(Typ:) = 16, as we see
with the help of the exact sequence

0— p'Tpr— 6 — & — 0.

Moreover, h’(6 ® &) = h'(p*Tp> ® p*Tyy) = h'(Tp: ® T) = 1, since T2 is
simple [10, p. 74]. Therefore J, =2, by definition. In case (6) we have
c1c; = 13 and the exact sequence

O—-M—-—F—M—Mr—0

applied to each summand M of & shows that 1°(&) = 2(h°(Op>(2)) + h°(Op(1)))

= 18. Finally, 1°(& ® &) = h°(09*) 4+ h°(Ox(1,0)) = 5. All this gives J, = 2.
2

In case (7) [11, Theorem 2.8 (i)] shows that ¢|(¥) = —h, c2(¥) = %, where
3

h is the ample generator of the Picard group. Then ¢;(¥(2))c2(¥(2)) = 15% =

15.  Furthermore, h°(#(2)) =16 (cf. [8, Proof of Theorem 5.1 Case (v)]) and
ERE=S2Q)RQFV(-2)=F®FY. Notice that & is stable [11, Theorem
2.1]. It thus follows from [11, Lemma 2.7] that 4°(6 ® &Y) = 1. Thus, by
definition, we get d, = 2.

Next we rule out case (c). From the exact sequence (e.g. see [10, p. 77])

0— AN (2) = Tps(l) = Op:(3) — 0

one easily gets c¢;(A(2))=4 and c(A(2)) =5. Recalling that A4 =
(det /)" ® 4 = .4, dualizing the above exact sequence and taking into
account that hO(Q]l)s(3)) =20 by Bott’s formula [10, p. 8], we get h%(&) = 16.
Moreover, 6§ @&" = N (2) @ NV (=2) =N @AY, so that I'(e®&EY) =1,
since ./ is simple [10, p. 77]. Then by definition we get J, = 7.

The proof is completed by the following lemma.

LEmMMA 2.6. In case (a) it cannot be 0, = 2.

Proof.  Since n = 3, there exists a vector bundle ¥~ of rank 3 on the smooth
curve B of genus 1 such that X = Pg(7"), and up to a twist we can suppose
that ¥~ is ample. Let & be the tautological line bundle of ¥ on X. Since
Er = @Pz(1)®2, & @ h™! restricts trivially to every fiber F of 7, hence there exists
a vector bundle 4 of rank 2 on B such that § =h® n*%. Notice that the
equality

H(6) = H'(n.6) = H(n.(h®@n*%)) = H' (V" ® 9),

coming from the projection formula, can be interpreted as saying that any
morphism from n*%" — h factorizes as n*9" — n*¥" — h, where the first map
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comes from a morphism %Y — ¥~ and the second one is the surjection of the
relative Euler sequence on Pp(77). In particular, this implies that, if the mor-
phism %Y — 7~ vanishes at some point b € B, then the corresponding morphism
n*%" — h vanishes at the whole fiber 7~!(b). Since & satisfies condition (x),
there is some morphism % — 7" not vanishing at any point of B, so that there is
an exact sequence

(2.6.1) 0—-%9" -9+ —-L—0

where L is a line bundle on B.
Note that ¢; = 2/ + n* det 4 and ¢, = h% + hn* det 4, where ¢; = ¢i(&). As
a consequence,

crea =20 +3h°n" det ¥ =2deg V" + 3 deg ¥ = deg(7" ® 9),

the last equality coming from the splitting principle. Since B has genus 1 we
have (7" ® 9) =deg(¥ ® ¥), by the Riemann-Roch theorem. Hence we
get

(&) —ciey =07V Q%) —deg(v @9) =h' (v @ 9) =h’(v"V @ %),

the last equality coming from Serre’s duality. Finally, h%(&® &) =
W (r. (6 ®6EY)) =h’(% ® %), by the projection formula again. Recalling the
definition of d;, all this gives

Hh=2-r"ee\)+i v 9.

Assume by contradiction that 6, =2, ie. K'YV ®%Y)=hr"(9R9").
Suppose for a while that we also have H°(LY ® 4Y) =0. Then, applying
the functor Hom(_,%4") to (2.6.1) we get that the natural map Hom(7",%")
— Hom(%",%") is an isomorphism because we are assuming that both spaces
have the same dimension and the kernel of this map is zero. In particular the
identity map on %" would lift to a morphism 7" — %V, yielding the splitting of
(2.6.1). But then we would have a natural inclusion Pg(%") = Pg(7#"). This is
absurd, since restricting & to S := P(¥%") we would get a vector bundle &5 with
c1(65)* = e2(65) =0, so that &, hence &, could not be ample.

We thus arrive to the conclusion that HO(LY ® V) # 0. Since deg(?" ® %)
=deg(L® ¥), as we see tensoring (2.6.1) with ¥, it follows that cjc; =
deg(L ® ¥), which is positive because & is ample. Hence [4, Lemma 1.1] im-
plies that L ® ¢4 decomposes, so the same is true for 4. Write ¥ =L, @ L.
Hence & = (h®n*L;) ® (h ® n*L,), so that each 1 ® n*L; must be ample. But
then an easy calculation gives 0 < ¢;(h® 7*L;)*- ¢1(h ® n*L;) = deg(L ® L;) if
i # j, so that each L ® L; is ample and hence H’(LY ® LY) =0. This implies
again H°(LY ® 9¥) =0, which we proved to be false. O

To say more on case (2) of Proposition 2.4, when g > 2, we will assume that
& is spanned. Note that this assumption implies condition (x). This leads to a
very restricted situation.
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ProproSITION 2.7. Let X and & be as in Definition 1.1, assume that & is
spanned and let g > 2. If 0y =2, then the general section of & vanishes along a
smooth hyperelliptic curve of genus g and & splits on every such curve as >, &
being the hyperelliptic line bundle.

Proof. As & is spanned, its general section vanishes along a smooth curve
Z, whose genus is g > 2 by assumption. We know that 2 =75, >3, = A(Y,L)
=2 by Proposition 2.4, because g =0 in case (4) of Theorem 2.1. Then the
assertion follows from Proposition 1.10 since & is spanned. O

An obvious nice pair (X,&) as in the proposition above is given by the
following.

Example 2.8. Let p: X — P* be a double cover branched along a smooth
surface D € |Ops(2b)| with b > 3, and let & = «/®% where .o/ := p*Ops(1). Then
& is ample and spanned and its general section vanishes along a smooth hyper-
elliptic curve Z of genus g = b — 1. Moreover, &7 = %2, ¥ := o/, being the
hyperelliptic line bundle. According to (1.3.2), we have

0y =242 - 200(A) + K (6 ® V) = 2.

Note also that 6; =4 by (1.3.1).

3. An approach without condition (*)

We would like to show that d, >0 without the assumption (). This
is in line with the non-negativity of the A-genus of an ample line bundle
L on a smooth projective variety X. In fact this property follows from the
inequality

(3.0.1) A(X,L) > dim(Bs|L])

[2, Theorem 4.2]. This is obvious if h°(L) = 0, while for h°(L) > 0, Fujita uses
the rational map X -— P? defined by L.

Coming back to our ample vector bundle & of rank 2 on a threefold X we
define the base locus of |&], Bs|&| as the locus of points x € X where & is not
spanned, i.e. where the evaluation homomorphism

(3.0.2) evy: HO(6) ® Ox — &
fails to be surjective. We put the following

QUuEsTION 3.1. Let & be any ample vector bundle of rank 2 on a smooth
projective threefold. Is it true that

(3.1.1) 0, > dim(Bs|&)|)?
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If h%(&) = 0, we have dim(Bs|&|) = 3. On the other hand, by Definition 1.1
we get 6y :=2+cic2 +h%(6 ® &) > 4, due to the positivity of cic; [3, Theorem
I] and of the last summand. Hence (3.1.1) holds in this case.

If & is spanned, then obviously Bs|&| =0 and condition (x) holds. There-
fore (3.1.1) follows from Remark 1.4.

If /°(&) > 0 and & is not spanned the first object we need to adapt Fujita’s
argument to our setting is a rational map

(3.1.2) ¢: X — G(I,N),

from X to the Grassmannian of lines of P(H%(£)"). To have such a map,
which is defined via the evaluation homomorphism (3.0.2), we need to assume
that & is generically spanned, so that dim(Bs|&|) <2. Assuming this, we can
provide a first evidence for (3.1.1) to be true in general.

ProPOSITION 3.2. Let X be a threefold and let & be an ample and generically
spanned vector bundle of rank 2 on X. Assume that the image W of the map ¢ in
(3.1.2) has dimension 1. Then

(i) 6, =2 if dim(Bs|&|) =2, and

(ii) 0 > 1 if dim(Bs|&|) < 1.

Proof. As & is generically spanned, there is a rational map ¢: X -—
G(1,N) as in (3.1.2). Observe that W = ¢(X) is nondegenerate in G(1,N)
in the sense that there is no hyperplane in PV containing all lines parameterized
by W.

Note that B := Bs|&| has a natural scheme structure glven by the inclusion
of the ideal sheaf .#p — Oy factoring the natural map A H(&) ® (det &)"
— Oy.

Let X be the normalization of the blowing-up of X along the scheme B,
and let 0 : X — X be the composed morphism. Then the pull-back of the ideal
sheaf of B is 0*.9p = O3(—E), where E is an effective Cartier divisor such that
og(E) =B as a set.

Consider the following diagram

(3.2.1) pl /;/
)

Let & be the pull-back p*2, where 2 is the universal rank 2 quotlent bundle
Since the sheaf homomorphlsm H(& )® O — & is surJectlve SO is /\ H(&) ®
Oy — deté" which is the pull-back via ¢ of /\ HO &) ® Oy — det (@@ ﬁ’B
Hence ¢l = 61(5) =g*c; — E. Therefore

(3.2.2) cicp =0%cio"cy; = (61 + E)a*cs.
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Note that W = p(X' ) and recall that dim W =1 by assumption. Then, letting F
denote the general fiber of p, we have ¢jo*c; = deg Wo*ca|p. As dim o(F) =2
and & is ample, it follows that c;o(F) > 0 [3, p. 58], so that ¢jo*c; > deg W.
Similarly we get Eo*c, >0, with strict inequality if dim B=2 (note that
dim B < 2, since & is generically spanned).

Denote by W < P¥ the ruled surface corresponding to W. Since it is not
degenerate because W is not degenerate in G(1,N), it follows that

(3.2.3) h°(&) <h(05(1) <2 +deg W =2+ deg W
<2+ ¢6%c; =2+ cic; — Ec”es,

the last equality coming from (3.2.2). As h°(6 ® &¥) > 1, it follows from the
definition of J, that

(32.4) 6 =24c10—h"(E)+h(E®EY) =3+ crcr —h"(&) =1+ Eg’cy.

Hence 6, > 1; moreover d, > 2 if dim B = 2. O

Remark 3.3. Taking into account (3.2.3) and (3.2.4), we observe that in
each case (i) and (ii) of Proposition 3.2 equality implies that 4°(& ® &%) = 1,
so that & is simple, and also that A°(W,05(1)) =2+ deg W, so that W is a
rational normal scroll or a cone.

We would like to understand the actual necessity of & being generically
spanned. This seems difficult even in the decomposable case. In fact the
generic spannedness of & = L@ M implies that both A°(L) >0 and h°(M) >
0; otherwise the homomorphism (3.0.2) could not be surjective at the general
point.  So, one should look at the case h°(L) > 0 and h°(M) = 0, in which, by

(1.3.2),
Oy =4+ LM(L+ M) —h"(L)+ h°(L — M).

4. Final remarks

The question of what happens in dimension #n # 3 is probably in the reader’s
mind. Here are some comments.

Let X be a smooth projective variety of dimension n > 2 and let & be an
ample vector bundle of rank 2 on X satisfying condition ().

For instance, let us look at d,. We would like to define 6, = A(Pz(6%), A),
with A = Trp,(s,)|Es| where g is the tautological line bundle of & on Py(¢&).
Set P:=Pz(&z), {=(ls)p and denote by m be the projection Py(&) — X.
Then dim P =n— 1,

deg(P,0) ="' = (&) - P=(&)" - mZ = (&))" - ea(6) = pler, e2)en,

where p(ci,c2) is a polynomial in ¢; and ¢; thanks to the Chern—Wu relation.
Then 6, =n— 1+ p(cr,c2)ea — (h°(8) — h% (6 ® I2)).
Since r =2, we have the following diagram
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0 — & —— R EY & &z 0

N7

EQR Iz

0 / \0.

It follows that h°(6 ® .#2) =h' (6 ® &Y) — h°(&Y) + o =h"(6 ® &) + o, with
o <h' (&) =h""1(Q} ® &) by Serre duality, which is equal to zero according to
the Kodaira—Le Potier vanishing theorem if n > 3.

So, if n >3, we get 6y =n—1+ p(cr,ca)er — h°(&) +h°(6 @ &Y).

Here is the expression of p(c,¢;) in some instances:

(n=2) | pler,e2) =1

n=3 | plc,c2) =c¢

n=4 | p(c,c :clz—cz
161(0127262)

2 2
—3cica + ¢

3
— 5S¢t CQ—|—6CIC2 -

o4
¢
&5 3 2
¢} —4cjcy +3cic;
6
€
c7
C

—6¢? Per + lOc 46162

For n = 2 we have no control on the term ¢. Mimicking the 3-dimensional
case, one could be tempted to define 6, = 1 + ¢, — h%(&) + h°(6 ® &), while the
other natural choice would be &, =1+ ¢, —h%(&) +h°(E® &)+ h'(6Y). In
either case, for instance when X =P? and & = Tp: (which is even very ample),
we get 0, = —3,—2, respectively. This prevents from expecting a reasonable
positivity result. This is clearly due to the fact that Z is reducible. On the
other hand, the analogue of J; for surfaces would be &, = 1 + ¢»(& ) h°(67) =
1 — ¢2(&72), where Z, the zero set of a section of &, accordmg to (x) is a finite set
consisting of ¢,(&) points.  So, even J; < 0, since the ampleness of & implies that

c2(&) = 1. Moreover, we get equality if and only if cz(@@) = 1. Note that when
& is spanned, this happens if and only if (X,8) = (P, 0p:(1) ®2) by [9].

If X is a curve, the general section s € (&) has no zeroes, i.e. Z = (s), = 0.
Therefore J5 is not defined; however, when X is a curve, we can define A(X,&) =
01(X,8), and this is equal to the definition given in [8]

On the other hand, suppose that dim X =n >3 is odd, say n=2h+ 1,
and & admits % sections s, .. S € 1"(6 ) whose zero loci Z; := (s,)0 satisfy
dim ﬂle Zi=n-—2tand Y, := ﬂ Z; is smooth for every r=1,...,h. Letting
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P, =Py,/(6y,) and {, = ({s)p, then we can define

w1 =APLEG), =1,k
When dim X =5, this says that & admits 2 sections si,s, € I'(§) whose zero
loci Z; := (s;), satisfy dm Z; =5-2=3,dimZ NZ;,=5—-4=1and Y, :=2Z;
Y, := Z,NZ, are smooth; then we can define

i =A(P,{;), and &5 := A(P2, ().
Note that dim P; =4, while dim P, = 2.
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