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MYERS’ THEOREM WITH DENSITY

Frank Morgan

Abstract

We provide generalizations of theorems of Myers and others to Riemannian

manifolds with density and provide a minor correction to Morgan [8].

1. Introduction

A manifold with density (see [8] and references therein) is a Riemannian
manifold with a positive density function CðxÞ used to weight volume, area, and
length. In terms of the underlying Riemannian volume dV0, area dA0, and
length ds0, the new, weighted volume, mD area, and length are given by

dV ¼ C dV0; dA ¼ C dA0; ds ¼ C ds0:

Such a density is not equivalent to scaling the metric conformally by a factor C,
since in that case volume and area would scale by higher powers of C. Previous
treatments (see [8]) weight only volume and ðn� 1ÞD area, but we will be es-
pecially interested in weighting length. Even when only length enters in, as for
Myers’ Theorem, so that the weighting is equivalent to a conformal change of
metric, di¤erent and sometimes stronger estimates appear naturally.

Manifolds with density, the smooth case of Gromov’s ‘‘mm spaces’’ [6] or
the earlier ‘‘spaces of homogeneous type’’ (see [5, pp. 587, 591]), long have arisen
on an ad hoc basis in mathematics. An example of much interest to probabilists
is Gauss space Gn: Euclidean space with Gaussian probability density

C ¼ ð2pÞ�n=2
e�x2=2

(see e.g. [7] or [13]).
The Theorem of (Bonnet and) Myers ([11] or [4, Thm. 2.12]) says that the

diameter of a smooth, connected, complete, nD Riemannian manifold with Ricci

curvature at least a > 0 is at most p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ=a

p
. Our Section 3 provides the

following generalization of Myers’ Theorem:
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Theorem (3.1). Let Mn be a smooth, connected Riemannian manifold with
smooth density ec a b, complete in the weighted metric. If (in the unweighted
metric)

Ric� DcþHess cb a > 0;

then the diameter satisfies

diama d0 ¼ pb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ=a

p
:

The proof is a minor modification of the standard proof of Myers’ Theorem.
The result is sometimes stronger than applying Myers’ Theorem to the con-
formally altered metric, as shown in Section 3.2.

Section 4 provides a minor generalization of Bishop’s Theorem and proof.
Section 5 provides a minor generalization of a theorem of Morgan and Ritoré
[10, Cor. 3.9] on isoperimetric regions in cones. Section 6 provides a minor
correction to Morgan [8].

V. Bayle [1, E.2.1, p. 233] and Z. Qian [12, Thm. 5] provide other general-
izations of the theorems of Myers and Bishop which depend on j‘cj2 and hence
do not apply to Gauss space for example.

Acknowledgments. This work was partially supported by the National
Science Foundation. I thank the referee for important corrections.

2. First and second variation

For use in the proof of our main Theorem 3.1, we state first and second
variation formulas for (weighted) length in a manifold with density. The only
change to the classical formulas [4, Sect. 2.4] are the new terms involving dc=dN ;
cf. [1, Sect. 3.4.6] or [8, Prop. 7].

2.1. Proposition (First and Second Variation Formulas). Let Mn be a
smooth Riemannian manifold with sectional curvature K and smooth density
C ¼ ec. Let g be a smooth curve with classical unit tangent T, let N be a
classical parallel unit normal, and let k denote the classical curvature of g in that
direction. Consider a smooth normal variation vectorfield uN supported on the
interior of g. The first variation of (weighted ) length satisfies

d1ðuÞ ¼ �
ð
g

uðk� dc=dNÞ ds:ð1Þ

For a stationary curve g, k ¼ dc=dN and the second variation satisfies

d2ðuÞ ¼
ð
g

ðdu=ds0Þ2 � u2k2 � u2KðN ;TÞ þ u2ðd 2c=dN 2Þ ds:ð2Þ
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3. Myers’ Theorem with density

The following theorem, an extension of Myers’ Theorem to manifolds with
density, is the main result of this paper.

3.1. Theorem. Let Mn be a smooth, connected Riemannian manifold with
smooth density ec a b, complete in the weighted metric. If (in the unweighted
metric)

Ric� DcþHess cb a > 0;

then the diameter satisfies

diama d0 ¼ pb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ=a

p
:

Proof. Let g be a shortest geodesic of length L between two points. Let
N be a parallel unit normal to g. For a smooth function u vanishing at the
endpoints, the second variation of length 2.1(2) must be nonnegative:

0a d2ðuÞ ¼
ð
g

½ðdu=ds0Þ2 � u2KðN ;TÞ þ u2ðd 2c=dN 2Þ� ds:

Averaging over all choices of N yields:

0a

ð
g

ðdu=ds0Þ2 �
u2

n� 1
ðRicðT;TÞ � Dcþ d 2c=dT 2Þ

� �
ds

a

ð
g

b2ðdu=dsÞ2 � u2

n� 1
a

� �
ds:

0a

ð
g

½ðdu=dsÞ2 � u2p2=d 2
0 � ds:

As in the standard proof of Myers’ Theorem, let u ¼ sinðps=LÞ and conclude that
La d0.

3.2. Comparison with Myers’ Theorem. Another upper bound d1 on the
diameter may be obtained by making the conformal change of metric to ds ¼
ec ds0 and applying the classical Myers Theorem:

diama d1 ¼ sup p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ=gRicRicð ~TT; ~TTÞ

q
where [2, Thm. 1.159]gRicRicð ~TT; ~TTÞ ¼ e�2c½RicðT;TÞ � Dcþ ðn� 2Þð�d 2c=dT 2 � j‘cj2 þ ðdc=dTÞ2Þ�;
T is a unit vector under ds0, and ~TT is its positive multiple of unit length under ds.
For n ¼ 2, gRicRic is just the Gauss curvature

~GG ¼ e�2cðG � DcÞ:
Even for n ¼ 2, sometimes our d0 < d1 and sometimes d0 > d1. Consider

the unit sphere in R3 with density ec with c ¼ ðz� 1Þ=2, varying from e�1 at the
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south pole to 1 at the north pole. Easy computation shows that d 2c=dT 2 ¼
�z=2. In particular, at the south pole ~GG ¼ 0 and d1 ¼ y. Another easy
computation shows that our best d0 ¼ p

ffiffiffi
2

p
A4:4 (realized at the south pole). I

think that the actual diameter is half a circle of longitude, about 2.
On the other hand, if you start with the metric ds ¼ ec ds0 and consider

density e�c, then of course d~ss ¼ ds0, ~GG ¼ 1, and d1 ¼ p (sharp), while an easy

computation shows that d0 ¼ pe=
ffiffiffiffiffiffiffiffi
3=2

p
A7 (at the north pole).

3.3. Gauss space. The most important manifold with density is Gauss
space Gn, defined as Euclidean space Rn with Gaussian probability density

ec ¼ ð2pÞ�n=2
e�r2=2

(see [8]). Unfortunately Theorem 3.1 does not apply immediately to Gauss
space, because it is not complete at infinity. The shortest path between two
points may be two paths to infinity. The analysis applies to each component,
however. Moreover, since the end at infinity is free, the variation u ¼ sinðps=2LÞ
may be used to obtain the improved estimate La d0=2 on each component.
Therefore we still obtain the same bound d0 on the diameter. Since d 2c=dT 2 ¼
�1, taking a ¼ 0þ n� 1 yields

d0 ¼ pð2pÞ�n=2:

The actual diameter, given by the following Proposition 3.4, is ðp=2Þ1=2ð2pÞ�n=2A
1:3ð2pÞ�n=2, about 40% of our upper bound d0. (Similarly the standard Myers

argument gives the useless bound d1 ¼ þy, because gRicRicð ~TT; ~TTÞ is not positive

because j‘cj is unbounded, except that for n ¼ 2, d1 ¼ 1=2
ffiffiffi
2

p
A :35 < d0 ¼ :5.)

The following proposition was proved by Williams undergraduate Ya Xu is
response to a question at a faculty seminar October 21, 2005.

3.4. Proposition (Ya Xu). Gauss space Gn has diameter D0 ¼
ðp=2Þ1=2ð2pÞ�n=2.

Proof. The diameter is at least D0, the distance from the origin to infinity.
But for any two points, the distance between them is at most half the length of
the straight line they lie on (because points near infinity are close together). By
rotational symmetry, we may assume that they lie in G2 on the horizontal line
fy ¼ ag, which has weighted length element

ð2pÞ�n=2
e�x2=2e�a2=2 dx

and weighted length ð2pÞ�n=2ð2pÞ1=2e�a2=2 a 2D0. Therefore the diameter must
equal D0.

4. Bishop’s Theorem with density

The following easy theorem extends Bishop’s Theorem to manifolds with
density. Let Md denote the model space of constant curvature d, Ricci
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curvature ðn� 1Þd, and balls of radius t of volume VdðtÞ and surface area
nans

n�1
d ðtÞ.

4.1. Theorem. Let Mn be a smooth Riemannian manifold with smooth
density C, with classical Ricci curvature bounded below by ðn� 1Þd and
Hess Ca g. Then the weighted volume Vðp; rÞ of a ball about a point p of
unweighted radius r satisfies:

Vðp; rÞa nan

ð r

0

sn�1
d ðtÞ CðpÞ þ 1

2
gt2

� �
dt;ð1Þ

with equality if and only if the ball is isometric to a ball in Md and Cðexp xÞ ¼
CðpÞ þDCpðxÞ þ gjxj2. If Hess Ca 0, then

Vðp; rÞaCðpÞVdðrÞ;
in particular,

VðMÞaCðpÞVðMdÞ;
with equality if and only if M ¼ Md and CðxÞ is constant.

Proof. Since Hess Ca g, therefore Cðexp xÞaCðpÞ þDCpðxÞ þ gjxj2.
The result now follows immediately from the classical Bishop theorem (the case
C ¼ 1; [3, p. 256, Cor. 4], [4, Thm. 3.8]), since the contributions of DCpðxÞ and
DCpð�xÞ to the estimate cancel out.

5. Isoperimetric regions in cones with density

A theorem of Morgan and Ritoré [10, Cor. 3.9] on isoperimetric regions in
cones has the following generalization to manifolds with density:

Theorem 5.1. Let Mn ðnb 2Þ be a smooth, connected submanifold of the
sphere SN with smooth density ec b a > 0 and (weighted) volume satisfying

vol M < a vol S n:ð1Þ
Suppose that the Ricci curvature satisfies

Ric�Hess c > n� 1:ð2Þ
Then in the cone C over M with the inherited density, geodesic spheres about the
vertex uniquely minimize perimeter for given volume.

Remarks. The quantity in (2) is the generalized Ricci curvature (see [8]).
If the opposite inequality holds in (1), then a ball about a point near infinity of
density nearly a has smaller perimeter than the ball about the vertex.

Proof. The proof is a relatively minor generalization of the proof in [10]
and employs the standard, unweighted metric. The generalization of [10, Thm.
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2.1], an isoperimetric inequality after Bérard and Meyer, assumes that the density
is uniformly continuous and bounded below by a > 0. Then in the conclusion
[10, (2.1)] there is an additional factor of a on the right-hand side, because the
local application of the Euclidean isoperimetric inequality has an additional
factor of a.

The generalization of [10, Thm. 2.2] on the existence of an isoperimetric
region U assumes that the density is smooth and bounded below by a > 0 and
that (1) holds. [10] omits the proof that U is bounded, which follows for the
classical case of density 1 by monotonicity because the mean curvature H is
constant and hence bounded in RN . For general density, the generalized mean
curvature H � ð1=nÞ dc=dn is constant, and hence H is bounded as you go to
infinity, so the monotonicity argument still applies. Generalization of the stan-
dard regularity to manifolds with density was observed by [9, 3.10].

The Minkowski formulae [10, 3.4] still hold with mean curvature replaced by
the generalized mean curvature and Ricci curvature replaced by the generalized
Ricci curvature Ric�Hess c.

The rest of the proof follows the proof of [10, Thm. 3.6]. The generalized
Ricci curvature of the minimizer in the normal direction vanishes, which means
that the normal direction is always radial, which means that the isoperimetric
surface is a geodesic sphere.

6. A minor correction of Morgan

Theorem 2 of Morgan [8] gives a generalization of the Heinze-Karcher
volume bound to manifolds with density. The final statement of Theorem 2 of
Morgan [8] should be:

If equality holds, then S is totally geodesic, the region is a metric product, and
inside the region, along geodesics normal to S, �d 2c=dt2 ¼ g.

Proof. If equality holds, the parallel hypersurfaces are disjoint and totally
geodesic ðII2 ¼ 0Þ, so that the normal geodesics stay equidistant, which means
that the region is a metric product.

The following Remark should say that ‘‘Theorem 2 is sharp for hyperplanes
in Gauss space for example.’’

In the last line of Theorem 5, ‘‘ðn� 1ÞD Euclidean space’’ should be
‘‘manifold.’’

In the last line of Corollary 9, ‘‘flat’’ should be ‘‘totally umbilic.’’
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