D.E. BLAIR, G.D. LUDDEN AND K. YANO
KODAI MATH. SEM. REP.
27 (1976), 313—319

SEMI-INVARIANT IMMERSIONS

By Davip E. BLAIR*, GERALD D. LUDDEN* AND KENTARO YANO

§1. Introduction.

Let M be a differentiable manifold and let F be a tensor field of type (1, 1)
defined on M. If M is a submanifold immersed in A7I M is said to be an in-
variant submanifold if the _tangent space to M at each point of M is invariant
under the endomorph1sm F 1f Misa complex manifold and F xs the almost
complex structure on M then the invariant submanifolds of M are just the
complex submanifolds. (See, Schouten and Yano [4]). If M is a normal contact
(or Sasakian) manifold with (F &, %) as the almost contact structure on M, then
there does not exist an invariant submanifold M with € normal to M. (See §4).
Invariant submanifolds have been studied by many people. (See, Kubo [2],
Schouten and Yano [4], Yano and Okumura [9], [10]). N

The purpose of this paper is to study submanifolds M of M for which there
is a distribution D that is nowhere tangent to M and such that the subspace
spanned by D and the tangent space to M is invariant under F and FD is
tangent to M at each point of M. (See, Tashiro [6]).

§2. Preliminaries.

Let M be a differentiable manifold. A tensor field F of type (1,1) on M
defines an almost complex structure if

Fi=—1,

in which case M is of even dimension. This almost complex structure is inte-
grable, i.e., M is complex, if [F, F]=0, where [F, F'] is the Nijenhuis tensor
of F defined by

[F, FI(X, Y)=[FX, FY1—-F[FX,Y]—F[X, FY]+F[X, Y].

Here X and Y are vector fields on M. A Riemannian metric g is a Hermitian

metric for F if
g(FX, FY)=g(X,Y).
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An almost contact structure on M is defined by
P=—I+7R¢, ¢6=0, 9op=0, p(&)=1,

where ¢ is a tensor field of type (1,1), £ is a vector field and 7 is a 1-form on
M. (See, Sasaki [3]). M is of odd dimension and this almost contact structure
is said to be normal if [P, ¢1+dnp®E=0. A Riemannian metric & on M is as-
sociated with the almost contact structure on M if

8(¢X, ¢Y)=g(X, Y)—n(X)p(Y), n(X)=g(§ X).

In this case we say that M has an almost contact metric structure.
We say M has an (f,U, V, u,v, A)-structure if

fi=—I1+u@R@QU+rvQV,
fU=—2V, fV=iU, uof=2v, vof=—Au,
w(U)=v(V)=1—4%, w(V)=v(U)=0,

where f is a tensor field of type (1, 1), U and V are vector fields, # and v are
1-forms and 4 is a function on M. M is of even dimension and this (f,U,V,
u, v, A)-structure is normal if [f, f1+du@U+dv@V=0. A Riemannian metric
g on M is associated with this structure if

g(fX, f¥)=g(X, Y)—u(X)u(Y)—v(X)u(Y),
wX)=¢g(U, X), v(X)=g(V,X)

and we say that M has a (f, g, u, v, A)-structure. (See, Blair, Ludden and Yano
[1], Yano and Okumura [7], [8]).

§ 3. Semi-invariant submanifolds of almost complex manifolds.

Let M be an almost complex manifold with almost complex structure F and
let U be a non-vanishing vector field on M. Let ¢: M—M be an immersion such
that

Fo X=0, fX—9(X)U ,
(3.1) FO=ce,
U is never tangent to ¢«(M)

for all vector fields X on M, where ¢4 is the differential of the immersion. Then
we say that M is a semi-invariant submanifold of M with respect to U. Thus
f,&,m are a tensor field of type (1, 1), a vector field and a 1-form on M respec-
tively. A straightforward calculation shows that

(3-2) f2:_1+77®$ ’ f‘E:() ’ 1)Of:0 ’ 7](5):1 )
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that is, (f, &, %) is an almost contact structure on M. Thus we have the follow-
ing theorem.

THEOREM 3.1. If M is an almost complex manifold and U 1s a non-vamshing
vector field on M, then a semi-invariant submanifold M of M with respect to U
possesses an induced almost contact structure.

If M is complex, then we have that
0=[F, FI(tsX, exY)
= {Lf, FIX, Y)+dn(X, Y)é
— (L (Y)—(Lppn) X} U
— (X)L Y + 7Y N LTF)er X,
where L denotes Lie differentiation and hence the following

THEOREM 3.2. Under the hypothesis of Theorem 3.1, if in addition M s
complex and U 1s analytic (i. e. L5F=0), then the almost contact structure on M
is normal.

If §is a Hermitian metric on M and U is a unit normal to ¢(M), then we
have
g(X, Y)=8(cx X, t4Y)

=3(Fee X, FriY)
=§tx S X—9(X)U, 6 fY —9(Y)O)
=g(fX, fY)+n(X)(Y).

That is, the induced metric on M is an associated metric and thus M possesses
an almost contact metric structure.

Example. The Calabi-Eckmann manifold, S**'XS??*!, is a complex manifold.
If we denote by (@, & 7) the Sasakian structure of S**' and by (¢, &’,7') that
of S%¢*! then the complex structure F of S+ S%+ g given by

F(X, X =(pX+7/(X"§, ¢'X'—n(X)&"),
where X and X’ are arbitrary vector fields of S?**' and S*?*' respectively.
Thus we have
F(X, 0)=(pX, —n(X)&")

=(pX, 0)—n(X)XO0, &)
and

F, &)=(¢, 0).
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U=(0, &) being never tangent to S??*!, we have that S***! and S?**! are semi-
invariant submanifolds with respect to the distinguished direction of the contact
structure of the opposite factor.

§4. Semi-invariant submanifolds of almost contact manifolds.

Let M be an almosNt contact manifold with (ﬁ. 5, 7) as the almost contact
structure. Let ¢: M—M be an immersion such that

FroX=t  fX+0(X)E,
4.1) .
¢ is never tangent to ¢(M),

for all vector fields X on M. Then we say that M is a semi-invariant sub-
manifold of M.

Applying F to the equation in (4.1) we see that f2=—1 and w(fX)=7(cxX)
for all X. Thus f is an almost complex structure on M. If the almost contact
structure is normal, then

0=[F FU(tsX, txY)+d7(t5 X, 0 Y )E
=/, fIX, Y)+ {do(fX, Y)+do(X, [Y ),

where we have used the fact that for a normal almost contact structure -LeF=0.
Thus we see that the almost complex structure f is integrable and do is of
bidegree (1, 1), i.e., do(fX, Y)+dw(X, fY)=0 for all X,Y. We state this as the

following theorem.

THEOREM 4.1. If M is an almost contact manifold, then a semi-invariant
submanifold M possesses an induced almost complex structure. If, in addition,
the almost contact structure on M is normal, then the almost complex structure
on M is integrable.

Now let & be a metric on M associated with the almost contact structure
and g the induced metric on M. Then we have that

E(Fu X, FrY )= 30X, 6 Y )= 7(exX)7(exY )
" g(fX, fY)—o(X)o(Y)=g(X, Y)—o(fX)o(fY).
Thus, if we define Z by
(4.2) X, Y)=g(X, Y)—o(fX)o(fY),
we see that 2 is a Hermitian metric for f. Here we have used the fact that
7+ X)=w(fX) and ¢ is not tangent to M.

Suppose that & is normal to M, that is, B(t4X, €)=0 for all X. Then from
(4.1) we see that w(X)=0 for all X. That is, M is an invariant submanifold of
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M, which cannot happen if M is Sasakian, since for an invariant submanifold,
we have

FroX=t,fX.
On the other hand, é being a unit normal to the submanifold, we have
(4.3) ﬁz,xé—_——f*HX+V§‘§ ’

where 7 is the operator of covariant differentiation with respect to g, H is the
Weingarten map corresponding to € and V' is the connection in the normal
bundle. However for a Sasakian manifold, we have V ,,Xé::ﬁz*Xzz* fX and con-
sequently from (4.3) we have

fX=—HX,
which is a contradiction since f is skew-symmetric and H is symmetric.

Remark. We can consider S*XS%*' as a hypersurface in S*P+!1xS?%1,
Now S?P*1x S?*! carries an almost complex structure and hence, by a result of
Tashiro [5], S* X S%*! pogsesses an almost contact structure. If S?? is a semi-
invariant submanifold of S*? X S%?*! then S?” would be almost complex, which is
not the case unless p=1 or 3. Of course, S*¢*' cannot be a semi-invariant sub-
manifold.

§5. Semi-invariant submanifolds of manifolds with
(F, U, V, 1, 0, 2)-structure.

Let M possess an (F, U, V, 4,5, 2)-structure with {F, U, ¥,1,5, 2 being the
tensor fields of the structure. Let ¢: M—M be an immersion such that A(1—2%)
+0 on ¢(M) and

FoX=tfX+o(X)U,
(GAY) V=0,

(e X)=0,
for all vector fields X on M. Here f, o, & are respectively a tensor field of type
(1, 1), a 1-form and a vector field on M. Then we say that M is a semi-invariant

submanifold of M with respect to U.
If we apply # to the first equation in (5.1) we have

(5.2) A0(24 X)=(1—2)a(X).

At a point p in M suppose that ﬁz:*U. Then we have l—lzzﬁ(ﬁ)z
#(exU)=0. Thus the condition 1—4°#0 on M implies that U is nowhere tangent
to M.

Applying F to the first equation in (5.1) we obtain

— 15 X+t X) V=t 2 X+ 0(fX)T—20(X) V.
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Using (5.2) and the second equation in (5.1) this becomes

fiX=—X+-+w(X),
(5.3)
o(fX)=0.

Letting X=¢& in the first equation of (5.1) we obtain

Fré=cife+0(&)U,
that is,

f6=0,
(5.4)

o®=1.
If we let vz—i—w then (5.3) and (5.4) prove the following theorem.

THEOREM 5.1. If M 1s a manifold with an (F U, V, &, 2)-structure, then a
semi-invariant submanifold of M with respect to U possesses an induced almost
contact structure.

If the (ﬁ‘, O,V a0, A)-structure is normal, then after some calculation similar
to that in the previous section, we have that if A=constant on M,

0=CF Fl(tx X, 0 Y)+dii(t5 X, t5Y YO +di (e X, e Y)V
=S, FIX, Y)+dn(X, Y)E)
(XN LTF)ex Y —0(Y N LTF)e X
F{(Lrx0)(YV)—(Lyo) XN T .
Hence we have the following theorem.

THEOREM 5.2. If M is a manifold with a normal (F, U, V, i, 2)-structure
satisfying LFF=0, then the almost contact structure induced on a semi-invariant
submanifold with respect to U on which A=constant is normal.

Let Z be a metric on M associated with the (F, 0, V, 4,9, A)-structure. If g
is the metric induced on the semi-invariant submanifold M then using (5.1), (5.2)

and the fact that —112—w=77, we have
g(fX, fY)=8(sfX, txfY)
=FFeu X—a(X)0, Ft,Y —(YV)D)
=5(Fee X, Fr V) —o(X)g(Fe Y, 0)
—o(Y)g(Fer X, ) +1—2)a(X)a(Y)
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=8(tx X, 5 Y )=l X )it Y )—0%(e5x X)0(e4Y)
—2A(X)0(ex Y ) —20(Y )i(ex X ) (1 —2)0(X)o(Y)
=8(X, Y)—(1—=2m(X)n(Y).

If we let ngéﬁg then we see that g is a metric associated with the

almost contact structure on M.

Remark 1: In the metric case (¢4 X)=0 implies that U is normal to M.

Remark 2: We can consider S?”XS?? as a submanifold of condimension 2
in E?P*20*2 Now E?P*29%2 jg 3 Kaehler manifold and so S?*”XS?? carries a
(F.0, V, 4,5, 2)-structure [1]. However S? or S*¢ cannot be semi-invariant
submanifolds since they are even-dimensional.
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