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§1. Introduction.

In this paper, we consider homogeneous and nonhomogeneous fourth order
ordinary differential equations of the form

d*u

(L1) A A )
a a

(1.2) @ (2252 )=n(),

where u and v are unknown functions of z, z is the complex independent vari-
able, 4 is a constant and b(z) is a known function of z. These equations are
related to the Orr-Sommerfeld and its adjoint equations, we call them together
Orr-Sommerfeld type equations that play the fundamental role in the theory of
hydrodynamic stability of viscous fluids. The Orr-Sommerfeld type equations
are of the form

(1.3) ez%;";— —{pulx, s)—ﬁxl;+pz(x, e)—gf— +(x, )p}=0,

where ¢ is a small positive parameter and p;(x, ¢) (:=1,2,3) can be expanded
asymptotically in power series of ¢ with holomorphic coefficients. Except for
a small neighborhood of turning point x where py(x, 0)=0, asymptotic solutions
of (1.3) were obtained by the W-K-B type approximation, Nishimoto [1]. On
the other hand, asymptotic expansions in the direct neighborhood of a turning
point are constructed by either the related equation method or the matching
procedure. If we apply the matching method to the equation (1.3) in the neigh-
borhood of its simple turning point which is assumed to be at the origin, ac-
cording to Nishimoto [2], page 238-239 with n=4, m=2 and ¢=1, it becomes
necessary to study the equations
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FOURTH ORDER DIFFERENTIAL EQUATIONS 129

in the large as the first and the higher terms of the inner asymptotic expansion.
By putting z=a"*x, the above equations take the form (1.1) and (1.2) with 1=b/a.
Then the results of this paper are intended to use for construction of the inner
solution of (1.3), by which one of the lackness of the previous paper [1] will be
covered.

Instead of the equation (1.1) we analyze the equation for y=du/dz

3
(1.4) Zzyg _ z%——l—ly):o

in the large by the Laplace integral method. The convergent expression of
solutions in the neighborhood of z=0, the asymptotic expression at z=oo and
their Stokes phenomenon are considered. Our method is quite standard and
there are many contributions to the general theory of the Laplace integral
method and its applications. Therefore the results may not be new in theory,
but there is no complete representation applicable to the solutions of (1.4) for
arbitrarily constant 2. Moreover a rigorous treatment of the matching method
requires the asymptotic behavior of solutions of nonhomogeneous equation (1.2)
for large value of 2z, which is studied in section 3.

§2. Solutions of the homogeneous equation.

2.1. The solutions of the equation (1.4) are, as is easily verified, expressed
by the Laplace contour integrals

Fig. 1.
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@1) 3@)= g, £ exp (st—+)at  (j=1,2,3,4,5,6),

271:1
where the integral paths C, are as indicated in Fig. 1. The angles written at
the end of curves mean that the curves extend to infinity at these directions.
The constant A is assumed not to be an integer avoiding the complexity of the
descriptions of the results obtained. The value of #*~! is determined by cutting
the complex ¢-plane along the half line of argument (4/3)r for C, (j=1,2,3,4),
0 for C; and (2/3)r for C, respectively.
The solutions y,(z) are connected by the identities

2.2) Y1(2)+5(2)+4(2)=V,(2)

and for w=exp 2ri/3,
2.3) (=" (w2)=0*y,(0’z) ,
(24) V(D=0 (w2)=w*'y(0z).

It is easy to calculate from (2.1) the convergent power series for ¥,(z) about
z=0, that is, by expanding exp zf into power series of zf, integrating term by
term and evaluating the definite integrals in the coefficients of the powers of z.

From (2.1), we have for

(25) @)= B a2,

where af is given by

1 thta-1 1,3

aP=—5—=| —5—e ® dt
BT 2mi)e, R

2 4 oo 1
(eT(IH-Dm_ e?(k-f-])ln)f r,ﬂ_l_le—-?rsdr

0

1
T 2mi-k!

_ 1 Ltdm_ Agrdmy ot o1 o k42
= gy (@ e P (R,

when Re(1+%£)>0, and if Re(1+£k)<0, the integration by parts gives the same
formula. Similarly we have for v,(z)

(2.6) Y(2)= 2 aPz*
with

-LG+Dm ——k+z m Ay R+

ap= Zmlk'(ea( b3t ¢ >) l"( + )

The convergent power series expressions for other y;(z) are obtained by using
(2.3) and (2.4). The above constructed power series converge for all finite 2
since the differential equation (1.4) has a singularity only at z=infinity. The
problem is thus to determine the asymptotic expansions of ¥;(2) in the neigh-
borhood of infinity.
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2.2. At first, we obtain the asymptotic expansions of ¥,(z) for large positive
values of z by using a simpler method of Olver [3] rather than the methods of
steepest descent, and then consider the extension of regions of their validity in
later.

By the transformation /= +/zs, the integral expression (2.1) becomes

3
2

1 4 - 3 1l s _2
(2.7) (@) =5 =2" f”is exp {—2—$<s——3——s )}ds, §=—5-27
where we can assume the integral path C{ consists of two rays of arguments
(2/3)r and (4/3)r starting from s=—1.
Let J.(§) be

~1+00g27i/3

L@=[ " 5 exp5-6(s—5-5')ds,
]_(E):j“_ll+we4”ilssz‘l exp __:;_E(s_%s*?)ds,
then
(2.8) @)= et L& —T )} -

Following to [3],
]+(E)=emf 1+°°e_ﬁms"1 exp {—%é(S—%ﬁ)}ds

1

— pAmip-E Lﬂwe_masz'l exp {E(%(S— 1)2+—%—(s— 1)3)}ds .

Reverting the expression

v (5= 1) =g (s— 1),

and constructing s*~'ds/dv in power series of v, we have
oo k—1
R—I_ds = bkv 2 3y

S =
dv k=0

(2.9)
_ly7 2Nk, 271 1, _J(A=1A=3) , 51/ 2V%
b= (—3)% bi=g(§—g (D), be={— g (- 3)7, ete,
in general b, has a form b,(—2/3)**Y* with constant b, Here we use the

branch (—2/3)2=(2/3)"%I. Then we obtain the asymptotic expansion of J.(§)
such that

F@~emet Sr(EELY e s gtoo.

By the same method, /-(£) can be expanded asymptotically in the form
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F@remet SI(EELYE5 s g

with Ek:(—l)k+lbk.
On substituting these results in (2.8), we have

4 = —(e+1
(210) (@~ et S (kg g D

3 A_3 >
:\/—%— . 4e""e“5k§0]"(k+—%—)b2k$"’, as &—+oo.

Tl

2.3. Next, we calculate the asymptotic expansion of y,(z) as z tends to
infinity. For positive z, putting t=+/zs, ¥,(z) becomes

2.11) 3= [ 5 exp {2 (s—-5)) s,
4

211

where we can suppose that the integral path C{ consists of a circle C® of
radius » (0<7<1), and segments C® starting from the points P with coordinate
rexp4ni/3 and P’ with coordinate 7exp(—27i/3) and extending to infinity of
directions 47i/3 and —2xi/3 respectively (Fig. 2). We consider the contributions
to the integral (2.11) from the part C™ and the part C® of C; respectively.
The latter is estimated by

A e (s Eo))a

_ Z%(e'%lm__e%‘“)j;u’l'l exp {Z—%(ue—%m_%_us)}dul

(2.12)

T
uRe" ~!exp (— )du

3

Kexp (— 2?2

) (Re 2>0),

A

Re A-1

Kz ? (Re 2=0),

for some constant K depending on 7 and A

Next, the contribution from C is studied. To do so, we consider a mapping
u=s—s%/3. By this, a neighborhood of s=0 is transformed onto a neighborhood
of u=0, in partlcular, the points P and P’ to P, and P respectlvely, and C®
to some curve C in the u- plane. We can suppose that the curve C is a circle
starting from P; and ending at P{ clockwise, and accordingly the cut in the
u-plane can be a segment connecting the origin and P{ (Fig. 3). Thus we have

—ZlTilefcm s*lexp {z (s———s )}ds— 27 2 élfgs(u)’l‘l exp (z%u )%du .
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Fig. 3.

From the expression u=s—s%/3, we can find the convergent power series of u
for s=s(u) and then for s(u)*~'ds/du such that

(2.13) s(u)*‘l%j—:ul“{éoduu“} ;

where d,, are constants, in particular dy=1, d,=(24+2)/3, d,=(21+4)(2+5)/15, etc.
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Since the coordinate of P, is rexp4ni/3—r®/3, this can be written as p exp i«
with 0<p<1, n<a<3r/2. Let C. be a circle around the origin of radius ¢, and
P,, P}, and Q be points with coordinates ¢expia, c¢expi(a—2r) and pexpmwi
respectively (Fig. 3).

By the Cauchy’s integral formula,

(2.14) ‘f s(u)*texp(z? 2 u)—du

~{fP1P2 fce f }s(u)l ! exp (Z 2 u)——du

Let n be a positive integer such that Re (41+2n+1)>—1 and

(215) S G =i (S o+ 0}
Then we have

f~u1+2n+1 exp (z%u)du
4
={(1—e‘“"i)j +j'~ }u“?"“ exp (z%u)du
P1Pg Ce

. 3
=(1—e‘2"”)f wAtH exn (270 du
P30

since
3
11179 fﬁ uttentt exp (22 u)du|
2r . 3
=lim gh*tom+2 j exp {(A+2n+1)i6+2z2 e} |d6=0 .

&—0 0

Furthermore we have
2 3
(2.16) UP 0u11+2'n+1 exp (z7u)du l — ! oA+ +Dai foprj+2n+1 exp (ZTre“")drl
1

o 3
< Kj‘ rRed+intl oxp (227 cos a)dr

['(Re A+2n+2) ——(Rex+2n+2)
(cos a)Re Aen+2 z

Let m be the smallest positive integer such that Re A4+m>—1. Then by
integration by parts, we have for 2k<m

3
f~u2k“‘1 exp (z%u)du
C

u=pei(a—2r) jl

— 1 z%u““ exp (z%u)du
& 2k+2

3
U exp (22 u)]

1
=[ 2k+2

u=pera

3 3 3
=_~2k1+2 ‘fazg u*+ exp (z2 u)du+0[exp (23 pcos a)].
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Repeating this process for m—2k-+1 times
38
fNuzk““ exp (z?u)du
C

z%(m—2k+l)

)
=(—1)m-2kt R DCEFATD) D fﬁu"‘“ exp (z2u)du

3

+0[z?

_ 3
™2 exp (22 p cos )] .

Since Re 24+m>—1, the above integral becomes as before
3 3
m+i Ty (1 — p—2Am m+A 2
fﬁ u™ exp (22 u)du=(l—e )L’lou exp (z2u)du
i 3
.—_—(l—e"“’“)fQou"‘“ exp (z?u)du+O[exp(z2pcosa)],

3 o 3

fQoum+‘ exp (z? u)du:e""“”“f rmtiexp(—z2?r)dr  (u=re™)

0

oo 3 oo 3
:e‘"‘“”“{j rmtiexp (—2z2 r)dr—f rmthexp (—z2 r)dr}
0 e

—%(m+/2+1)

_3 3
=™ (4 2+1)z +0[z ? exp(—2z%p)],

by using the asymptotic property of incomplete Gamma function. Thus
3 3
(2‘17) j~u2k+l-1 exp (z7u)du=e<‘+1)’"’(1——e‘2‘”i)1“(2k+2)z g (2k+2)
c

3 3
+0[zT" P exp (27 p cos a)] .
Combining the results from (2.11) to (2.17) we obtain

(2-18) y4(2)= %Z%{knzo d2 ke()d-l)m'(l_e—z]ui)r(2k+l)z—%(2k+2)

: : S eden
+0[z7"*P exp (27 p cos a)]+0[z = Aamingy
with 7 <a <3x/2.

2.4. We consider here z as the complex variable and extend regions of
validity of the asymptotic expansions obtained in the previous paragraph.
Firstly, the solution y,(z) has the asymptotic expansion (2.10) in the sector
|larg z| <m as z tends to infinity, by the same reasonings for the Airy functions,
and so limit our considerations to the solution y,(z).

We consider the integral representation (2.11). If —n/2<argz¥?<=/6, the
integral converges and the contribution from the part C® is exponentially small,
then for —7/3<arg z<z/9, the asymptotic expansion (2.18) is valid. To extend
the region of validity still further, the integral path C; in Fig. 2 is deformed to

{ by rotating it around the origin through an angle —j3/3, as indicated in Fig. 4.



136 TOSHIHIKO NISHIMOTO

cy

S

Fig. 4.

The branch of s*! in the integrand is to be determined by analytic continuation
in an obvious way along the integral path. By the Cauchy’s theorem we can
prove that the integral

A 3
(2.19) 271” Z? fci’ s*lexp z? (s——%—sf‘)ds

converges uniformly when
(2.20) ——72r—+,8+5§—”;’— arg zé—’é—ﬁ-ﬁ-ﬁ,

where 0 is an arbitrarily small positive number, and represents the analytic
continuation of ¥,(z) in this sector.

The analysis in the preceding paragraph shows that the function defined by
(2.19) has the same asymptotic expansion as (2.18) if Re z¥*(s—s*/3)<0 along
the straight segment of C{, that is if (2.20) and

(2.21) ——2—ﬂ+%+5§% argzé—’é——l——g—é

are both satisfied.
The range of values of arg z for which 8 can be chosen to fulfil the con-
ditions (2.20) and (2.21) is thus obtained by eliminating 8 from these inequalities.

This gives
(2.22 4 T 4
.22) —ﬂ+—3—5§ arg z§—3~—75 (0>0).
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Combining the results obtained in the paragraphs 2.1-2.4, we have established
the following theorem

THEOREM. The solutions y,(z) (j=1,4) of the differential equation (1.4)
defined by the ntegral (2.1) are expressed by convergent power series wn the
neighborhood of the origin such that

1 tk+/1—1

S 0 ; 1
— Nk (P — —_ 3
yj(z)—;:)oak’z ) af = 2mi) o, E) exp( 3 t)dt.

For large absolute values of z, y;(z) can be expanded asymptotically wn the form

/2

N o U S

for larg z| <m, [z|=R>0,

(= 3 P2k Dy
y4 Z) 27“ r4 = 2k Jk’
for —n<argz<%, |z|=R>0

where R 1s a large positive number, and the coefficients b,, and d,, are determined
by the equations (2.9) and (2.13) respectively.

2.5. From the relations (2.3) and (2.4), we can deduce the formulas of the
functions ¥,(2), ¥5(2), ¥s(z) and ¥,(z). Since we have

yz(z):w_ﬂyl(w_zz) ) ya<z)=w_ly.1<w-lz) ,
ys(2)=w"y (0 %2), Y(2)=0"h (0 '2),

then the asymptotic expansions of these functions are as follows.

yz(z)N—«/—%——e—;—A?—z%—%e'f{g‘,ol”(k—{-—%—)bzkg-k}, 5___%2 ,

for —g—<argz<1§, |z|=R>0,

[ A_3 o 1 ~ 2 2

y&(Z)N _g_ —7]7:._22 48_51{§OF(k+—7>b2k51 k}y 61:—722 ’
for ——g—<argz<%—n, |z|=R>0,

ATti oo
ys(z)N%l_(e-m— 1)z{ kE:OF(Zk—l—l)dzkz'”} ,

for —737—<argz<%ﬂ—, |z|ZR>0,
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9 (z)N emi (e_glm-_l)z—l{i F(Zk—l—l)d Z- 3k
6 2L = 2k ’
for —%<argz<n, |z|=ZR>0.

2.6. From the functions constructed in the preceding paragraphs, we can
obtain the fundamental systems of solutions of the equation (1.1).
Let u;(z) be a function defined by

u(2)=C+[ y()dz

for some constant C, then u;(2) is a solution of (1.1). Since

2mj‘ j - 1exp( t—wts)dt dz
2mf 42 exp (zt———t )dt———f porg dt,

then by choosing the constant C as

1

3
L pw
o C]t e 3dt,

we have

u;(2)= me 42 exp (zt———ﬁ)dt
The convergent expression, asymptotic expansion and its Stokes phenomenon
of u;(z) can be analyzed by the same way as in the preceding paragraphs with

A—1 in place of A. Also, the derivatives y¥(z) (k=1, 2) are defined by
y(’”(z)——— f -1+ exp (zt——ts)dt

Thus we have obtained the solutions of (1.1) and their derivatives. The
fundamental system of solutions is given, for example, by [1, us(2), u,(2), us(2)]
since its Wronskian becomes

1 ugz) uy(2) uy(2) 0 0 0
0 W wd) W ug(0)  u;(0) u0)
det =det| uZ(0) u{(0) u¥(0)
0 ui(z) uf(z) uj(z)
u(O) u©) (o)

0 uf@) u(z) w()

e (G



FOURTH ORDER DIFFERENTIAL EQUATIONS 139

The system [1, us(2), uy(2), u,(2)] is one of the fundamental systems of
solutions of (1.1) whose asymptotic behavior as z tends to infinity is known in

the range of argument ——§—<argz<n. Another fundamental systems are

[1, us(2), uy(2), us(2)] for n/3<arg z<5r/3, and [1, u,(z), u,(z), u(2)] for —w<argz
<rm/3.
Let
[1, us(2), us(2), u(2)1=[1, us(2), us(2), uy(2)111,,

(1, us(2), us(2), ux(2)1=[1, u(2), u,(2), ux(z)] 1,,
[1, uy(2), uy(2), uy(2)]="[1, u(2), us(2), u(2)1 1,

then we have

1 0 o0 0 1 0 0 0
0 1 0 ¥ 0 w®* 0 1
Hl— » H2: y
0 0 0 —a* 0 0 0 —1
L0 1—w® 1 —1 | 01— 1 —1

(0 0 0
o 1 0 1
0 0 0 -1

L0 1—w3 1 —w™ ]

where w=exp 27i/3.
From these relations we can get precise asymptotic expansions of solutions
in the whole z-plane.

§3. Solutions of nonhomogeneous equations.

3.1. To solve the nonhomogeneous equation (1.2) it is convenient to write
it by an equivalent vectorial form

dv
UE—ZAU +B ,
3.1)

0 1 0 0 0
0 0 1 0 0

A= , B=
0 0 0 1 0
0 2 z 0 b(z)
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Here v denotes the fourth column vector. By the method of variations of
constant, the solutions of (3.1) are expressed by

(3.2) u2)=W(R){C+] "W(s)"B(s)ds} »

where C is some constant vector and W(z) is a fundamental system of solutions
of homogeneous equation

dw __
—d?'—Aw .

W(z) can be a matrix of the form

wy(z) wy(z) wyz)

wi(z) wy(z) wi(z)
W(z)=
wi(z) wi(z) wi(z)

S O O =

wi(z) wy(z) wi(z)

such that each w;(2) is equal to some u,(z) constructed in section 2 and the
functions [1, w,(z), w,(2), ws(2)] constitute a fundamental system of solutions of
(1.1). From the formula of inverse matrix, we can write

W i(s)
(3.3) W(s)"*B(s)=>b(s) Wasls)
W a(s)
W.(s)
where
Cw, w, w, | (1 w, w, ]
W, (s)=—Wstdet| w{ wj; wji |, Wo(s)=Wildet| 0 wj wj |,
Lwi’ wi wi] L0 wi wi]
(1w, w, ) (1 w, w, )
W(s)=—Wstdet| 0 w; wj |, W (s)=Wildet| 0 w] wj
L0 w! wy] L0 wi wi]

Here W, denotes the constant det W(z). Since w;(z) is a solution of (1.1) the
determinant W,,(z) satisfies the following third order differential equation and
initial condition :

(3.4) d'w

d
G —F g H-duf=—1,
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(w, w, w;) w, W, W,
w0)=—Witdet| w, w) w,| , w(O=—Wsdet| w, w, w}| ,
Lwi wi wf ) wy wy wi =

-

W, Wy Wy

w’(0)=—Wstdet| w{ wy wy| ,

[ wi' wi' Wi
and W,;(2) (=2, 3, 4) satisfy the homogeneous equation

(3.5) Z‘*Zw {ZTE-—F(I Dw}=0,

with the anologous initial conditions.

3.2. The differential equation (3.5) has the same form as (1.4) and then it
can be solved globally as in section 2. The solution of (3.5) with prescribed
initial values is written as a linear conbination of the functions ¥,(z) constructed
in section 2 with (1—2) in place of 4. Furthermore, since a particular solution
of (3.4) is w(z)=1/(1—2), then the solution of (3.4) satisfying the initial conditions
is also determined.

For example, assume that

(3.6) wi(2)=ug(z), w2)=us(2), wi(2)=uy2).
Then the initial values of W,(2) (1=1, 2, 3, 4) at z=0 are

WaO=1t7,  Wa0)=Wh(0)=0,

Wil 0)= Wi - 334405 1) (1— ) (L— i)t (- )T (AL

(27f )

Wi (0)=Ws'

o )3<2AT2>/3 Y0 —1)(1—wt)(1— wx+2)wx['( )['( A+2

7(0)=W;? 32812 — ) (1— **1) (1 — w“z)wxr( A+1 )F( A+2

(2w l)
Wis(0)=—W5s!

T )3(2/1+1>/3 (w—w?)(1— a)“)]j( )F( A+l

3.7

15(0)=— W;? (271) 3B 2 — ) (1— wax)[( )I—v( A+2

321/3 1(w w2>(1 wsx)['< '2+1 )['( 2+2

(0)—_ 0 (27”)2

WoW(0) =W 7 3@DA-2(] — ) (1— w“)a)‘“f( )['( A+1

(2
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WL (0)=W;5! o )3(2/1+2)/3—2(1 0*)(1— wu)w—zl["( )['( A+2

WiO)=Wi (30—t (- oD (AL )P (442

Corresponding to (3.6) we take as the fundamental system of solutions of
the equation (3.5) the system [v4(2), v5(2), v,(2)], where v;(z) (j=6, 3, 1) are the
solutions of (3.5) obtained by replacing A2 with (1—2) in the definition of ¥;(2).
By this choice, both of the systems have the same regions of validity of asympto-
tic expansions. The solutions of the equations (3.4) and (3.5) with initial con-
ditions (3.7) are then expressed as follow ;

Wau(z)=1—2)?,
Wm(z):271'1:(1—(03‘)'10)3”21},5(2) ,
W (2)=2mi**v,(2),

W (2)=—2niw*y(2).

(3.8)

3.3. Suppose that the function 0(z) in the equation (3.1) has the form
b(2)=b,(2)u [(2)+by(2)ui(2)+by(2)uf(2)+b(2)uj(z),  (j=0,1,3,6),

where b;(z) are polynomials of z and u,(z)=1.
Then from (3.2), (3.3) and (3.8), the solution of (3.1) are expressed by linear

combinations of the integrals of the following form of functions

1=0,1,2,3

(3.9) b(s)uP(s)vals), < ) >
J, k=0,1,3,6

with coefficients cu{(z).

For applications, we want to obtain particular solutions whose asymptotic
expansions at z=co do not begin with constant terms. When j=0 or £=0, the
problem is simple since if 2=0 for example

f b(s)u(”(s)dszj zb(s)f tl—2+iest—%tsdt
0 c,

z _1
=[ {[ b(syertdshirrigs dr,
¢, Vo
If the integral of the inner bracket of the above expression is performed, then
the above function of z is clearly expressed by the sum
Elclzlyj(zy le) s
where ¢, are constants and y,(z, 4,) are functions defined in the section 2 with

appropriate 4, in place of 4. Thus in this case all of the global properties of
this function become apparent.
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3.4. Next, we consider the asymptotic behavior of an integral
(3.10) P(2)=C+ [ "b(s)u(s)vi(s)ds
0

From the results of the section 2 the functions u,(s) and v,(s) have asymptotic
expansions as s tends to infinity in the sector —w <arg s<w

e(l—l)ni A-1

A-1 3 3
uy(s)~ S s 2 ¢ exp(——%—sz),

e(l—l)m _1;_/1_% 2 %
V4 S —$ —5S .
1(s)~ ovr exp 3

Then we have

1 3 4 2
(3.11) b(s)ul(s)vl(s)w—ﬁ—b(s)s 3 exp(——~3—32) .
Thus we can rewrite the integral (3.10) as

P(z):C+j0mmb(s)ul(s)vl(s)ds —meb(s)ul(s)vl(s)ds

oot
with —7/3<a<xm/3, where the integral sign f *" means that the integral is
x

taken along a path starting x and tending to the infinity of the direction e
Clearly the first integral of the above expression exists from (3.11), and also
the integration by parts gives

wa(s)ul(s)vl(s)dSNLN%s—%b(S) exp (——g—s%>ds
= w—LS—%b(S)(—ZS%)"(~2s%) exp — 4 )gs
. 4w 3

=gee W@ exp (—5 H1+0( )}
Here if we choose the constant C in (3.10) as
C=—j:b(s)u1(s)v1(s)ds R
we have
(3.12) P(z)fv—%_;—b(z) exp (——% 23’2) s —r<larg z<w.
3.5. The asymptotic behavior of the function defined above when z tends

to infinity on the negative real axis will be considered in this paragraph. From
the paragraph 2.6, the following identities are valid:

uy() = uy(s)— 0™ uy(s)—uy(s)
(3.13)
V()= Hv5(s)— 0 vy(5) —v4(s) .
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We know the asymptotic expansions of the functions appeared on the right
sides of the above identities on the range of the argument x/3<args<5w/3.
Then by using (3.13), P(z) is written as

P(2)=C+ [ b(s) i s)0s)— el uu()— @ u((s)
—Uy(S)U5(8) +Ua($)Vo(8) + @ uy(5)Vs(s)
— 0™ uy($)05(5)+ 0™ uy(5)va(s) +us(s)vs(s)} ds

and if we evaluate each integral by the same method as in the previous para-
graph, then the asymptotic behavior of P(z) for large absolute values of z,
w/3<arg z<5r /3, becomes

P(Z)N—f:emlb(s)ul(s)vl(s)ds+ (COS 2/27[“1)5;:(2]_‘1)1—,<1—1) j:b(s)ds

_f:ewzb(s)us(s)vz(s)ds—i— (l_e:’:%z(l—l) b(z)z_%H% exp ( ——%2%>

3

ogld3 e/lm(ez,zm_l)[’(;l__l) 341 2
=7 @ b(sulsyu(s)ds e @ W exp (g2

11 3

(e —1NI"'(1—2) b(z)z%i_T exp(———g—zT)

dr /T

_ fomwzb(s)uz(s)vs(s)ds%

c0g?@ 3
+j0 2b(s)uz(s)vg(s)ds——8172'%(2:) exp (——;‘——z 2

z 227 _ 3
+f0 ‘jm. s Thy(s)ds
e—hn(e-zzm_a['(l_z)

EEp 2 3
PV b(2)z ¥ exp (527)

— f :ewsw'“b(s)us(s)vs(s)ds

z p-2Amr  _ 3
-l-fo e4m s 2bhy(s)ds

c0gt® 3
—I—L sb(s)u},(s)vs(s)ds—8—171_.2"%(2) exp (—g—z 2) ,

where b,(s) is a polynomial whose terms come from b(s) so that the integral

f s™%2py(s)ds exists, and the quantities a,, a,, a, satisfy
0
T T 5 T
T3NS FSmSTE, grSar

Thus we have obtained the asymptotic expansion of P(z) on the negative
real axis:
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(cos 22z— D' A—D(1—2) [ “bs)ds

2

P(z2)~

1_e—21m. _i“_L

61+ e Fora-07 ) exp (—22)

1 _e—zlm

+ dr 7w

If we compare this asymptotic form with that of (3.12), we can understand
the Stokes phenomenon of the function P(z). We take up one more example
from the terms in (3.9).

Let Q(2) be a function of the form

{e"’"l’(l—l)z%z_%—e“’”F(Z—l)z_%H_‘i'}b(z) exp (—g—z—s“’_)

Q@)=C+{ b(su9v(e)ds.

By choosing a constant C appropriately, the asymptotic expansion of Q(z)
becomes

Q) cos22m=DE = DA 17

for large absolute values of z and —n/3<argz<w. The same procedure as for
P(2) gives us

Q(z)~ (cos ZM_I);(QZ —DI'A-2) f :b(s)ds

+ OS2 (114 -2 b exp (—-24)

1—cos 24x - 4 3
=g b2z exp (———3—2 2) )

for —wr<arg z<=—=/3, and

(cos 22%—1)5;(22*1)F U=4 ( :b(s)ds

Q2)~

(1=c08227) ( amprrq 1y oAt i camgy oy ar=iL 2 5
+ Py {e ['(A—1)z " T e[ (1—2)z2 " ¢ }b(z)exp(—g,—z‘é’),
for arg z=m.

The integral of the other terms in (3.9) can be analyzed analogously and
from these the asymptotic behavior of the solution v(z) of the nonhomogeneous
differential equation can be obtained.
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