ON ANALYTIC FUNCTIONS IN A NEIGHBOURHOOD OF BOUNDARY POINTS OF RIEMANN SURFACES

Dedicated to Professor Yûsaku Komatu on his 60th Birthday

By Zenjiro Kuramochi

Theorem 1^{11}. Let $R \notin O_{g}$ be a Riemann surface and let p be a singular point relatuve to Martin topology (..e. p is minimal and $\sup K(z, p)<\infty)$. Then $G \in O_{A B}$ for a domain G such that $C G$ is thin at p.

Analogous theorems ${ }^{1)}$ are obtained relative to N-Martin topology.
Theorem $2^{2)}$. Let G be an end (domain G of R with compact relative boundary $\partial G)$ of $R \in O_{g}$. Let \mathfrak{p} be an rdeal boundary component of G. Let $f(t): t \in G$ be an analytic functıon. If $|f(t)| \leqq M<\infty$ in G, then $f(t) \rightarrow a$ limit as $t \rightarrow \mathfrak{p}, f(G)$ is a covering surface over the w-plane of a finite number N sheets and the harmonic dimension of \mathfrak{p} is $\leqq N$.

Theorem $2^{\prime 3}$. Let \mathfrak{p} be a one in Theorem 2. Let F be a completely thin set at \mathfrak{p}. If $G-F$ is represented as a covering surface of N number of sheets, the harmonic dimention of $\mathfrak{p} \leqq N$.

These theorems mean a singular point p (or boundary component of harmonic dimension ∞) is so much complicated as $G-F \in O_{A B}$ (or $O_{A F}$) and the complicacy of p (or \mathfrak{p}) is not disturbed by extracting a small set F from G, where F is thin at p (or F is completely thin at \mathfrak{p}) and $O_{A F}$ means a class of Riemann surface R on which there exists no non constant analytic function $f(t)$ such that $f(R)$ is at most a finite number of sheets. From these points of view we propose the following

Problem 1. About Theorem 1, is there a non singular point p such that $v(p)-F \in O_{A B}$? In other words, is the existence of a singular point necessary for $v(p)-F \in O_{A B}$? where $v(p)$ is a neighbourhood of p and F is thin at p.

Problem 2. About Theorem 2 and 2^{\prime}, is it true that there exists a boundary point p, instead of \mathfrak{p} such that $G-F \in O_{A B}$? where F is thin at p.

But these problems are difficult and in this paper we can only show examples as follows: Example 1. There exists a point p of a Riemann surface $R \in O_{g}$ such that $v(p) \in O_{A B}$. Example 2 and 3. There exists a boundary point p of $R \in O_{g}$

Received Feb. 15, 1974.
such that $v(p)-F \in O_{A D F}$ or $O_{A B F}$, where F is a small set in a sense and $O_{A D F}\left(O_{A B F}\right)$ means a class of Riemann surface on which there exists no non constant Druchlet bounded (bounded) analytic function such that $f(R)$ is a covering surface of a finite number of sheets. Clearly $O_{A B F} \subset O_{A D F}$. Example 4. There exists a non singular point p of a Riemann surface $\oplus O_{g}$ such that $v(p)-F \in O_{A B F}$, where F is a small set. At first we shall construct an example using P.J. Myrberg's idea ${ }^{4)}$.

Example 1. Let \mathfrak{F}_{0} be a unit disc: $|z|<1$ with slits $J_{n}: n=1,2, \cdots$ and $I_{n}^{i}: n=1,2, \cdots, i=1,2, \cdots$ as follow

$$
J_{n}=\left\{a_{2 n+2} \leqq \operatorname{Re} z \leqq a_{2 n+1}, \operatorname{Im} z=0\right\},
$$

where $1>a_{1}>a_{2} \cdots \downarrow 0$ and $\sum_{n=1}^{\infty} \frac{1}{n+1} \log \frac{a_{2 n+1}}{a_{2 n+2}}=\infty$.

$$
I_{n}^{i}=\left\{\arg z=\frac{\pi}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{n-1}}\right), b_{n, 2 \imath+1} \leqq|z| \leqq b_{n, 2 \imath-1}\right\},
$$

where $a_{2 n+2}>b_{n, 1}>b_{n, 2} \cdots \downarrow 0, \sum_{i=1}^{\infty}\left(b_{n, 2}\right)^{2 n}=\infty$ for any n and $\sum_{n} \sum_{i} I_{n}^{i} \cap \sum R_{z}\left(a_{2 n+1}\right.$, $\left.a_{2 n+2}\right)=0$, where $R_{z}\left(a_{2 n+1}, a_{2 n+2}\right)=\left\{a_{2 n+2} \leqq|z| \leqq a_{2 n+1}\right\}$. Let $\widetilde{F}_{n}: n \geqq 1$ be a leaf of the whole z-plane with slits $\sum_{m=n}^{\infty} J_{m}+\sum_{i=1}^{\infty} I_{n}^{i}$. Connect \mathfrak{F}_{0} with $\mathfrak{F}_{n}: n=1,2, \cdots$ crosswise on $\sum_{i=1}^{\infty} I_{n}^{i}$ so that endpoints of I_{n}^{i} are branch points of order 1 . Connect $\Im_{0}, \widetilde{\vartheta}_{1}, \cdots, \widetilde{\vartheta}_{n}$ on $J_{n}: n=1,2, \cdots$ so that endpoints of J_{n} are branch points of order n. Then we have a Riemann surface \Re over the z-plane with compact relative boundary $\partial \Re=\left\{|z|=1\right.$ of $\left.\mathfrak{F}_{0}\right\}$. It is evident \Re has only one boundary component \mathfrak{p}. Let $R\left(a_{2 n+1}, a_{2 n+2}\right)$ be the part of $\mathfrak{F}_{0}+\mathfrak{F}_{1}+\cdots+\mathfrak{F}_{n}$ over $R_{z}\left(a_{2 n+1}, a_{2 n+2}\right)$. Then $R\left(a_{2 n+1}, a_{2 n+2}\right)$ is a ring domain with two boundary components over $|z|=a_{2 n+1}$ and $|z|=a_{2 n+2}$ with module $=\frac{1}{n+1} \log \frac{a_{2 n+1}}{a_{2 n+2}}$ and $R\left(a_{2 n+1}, a_{2 n+2}\right)$ separates \mathfrak{p} from $\partial \Re$. By $\sum_{n}^{\infty} \bmod R\left(a_{2 n+1}, a_{2 n+2}\right)=\infty \Re$ is an end of another Riemann surface $\in O_{g}$ and \mathfrak{p} is of harmonic dimension ${ }^{5)}=1$. Therefore there exists only one Martin point p on \mathfrak{p}. Clearly p is minimal. Let C_{n} be the boundary component lying over $|z|=a_{2 n+2}$ of $R\left(a_{2 n+1}, a_{2 n+2}\right)$ and let G_{n} be the domain of \Re divided by C_{n} such that G_{n} is a neighbourhood of \mathfrak{p}. Put $\Re_{n}=\Re-G_{n}$. Then \Re_{n} is an $(n+1)$ sheeted covering surface and $\mathfrak{R}=\sum_{n=1}^{\infty} \Re_{n}$. Let $v(p)$ be a neighbourhood of p relative to Martin topology. Then there exists a number n_{0} such that $v(p) \supset$ $\Re-\Re_{n_{0}}$. Assume there exists a bounded analytic function $f(t): t \in v(p)$. Let $A_{n}=\left\{0<|z|<r, \theta_{1, n}<\arg z<\theta_{2, n}\right\}: r=a_{2 n 0+2}, \theta_{1, n}=\frac{\pi}{2}\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}}-\frac{1}{2^{n}}\right)$, $\theta_{2, n}=\frac{\pi}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^{n}}\right)$. Let Δ_{n} be the part of $\mathfrak{F}_{0}+\mathfrak{F}_{n}$ over A_{n}. Map A_{n} by $\zeta=\left(\frac{z e^{-i \theta_{1}, n}}{r}\right)^{2 n}$ onto $A_{n}^{\zeta}=\{0<|\zeta|<1,0<\arg \zeta<\pi\}$. Then $I_{n}^{j} \rightarrow \zeta I_{n}^{j}, b_{n, j} \rightarrow b_{n, j}$
$=\left(\frac{b_{n, j}}{r}\right)^{2^{n}}$. Let ${ }^{\zeta} \Delta_{n}$ be the surface consisting of two leaves (which are the same as $A_{n, \zeta}$) connected crosswise on $\sum_{j}^{\zeta} I_{n}^{j}$. Then Δ_{n} and ${ }^{\zeta} \Delta_{n}$ are conformally equivalent. Hence $f(t)$ in Δ_{n} is transformed to $f(s)$ in ${ }^{\zeta} \Delta_{n}$. Let s_{1} and s_{2} be two points in ${ }^{\zeta} \Delta_{n}$ such that $s_{1} \neq s_{2}$ (except branch points) with proj. $s_{1}=$ proj. $s_{2}=\zeta$. Then $\left(f\left(s_{1}\right)-f\left(s_{2}\right)\right)^{2}$ is a bounded analytic function $g(\zeta)$ and $g(\zeta)=0$ at $\sum_{\zeta} b_{n, j}^{\zeta}$. Let $G\left(\zeta, b_{n, j}^{\varsigma}\right)$ be a Green's function of A_{n}^{ζ}. Then by brief computation $G\left(\zeta, b_{n, j}^{\zeta}\right)$ $\geqq A(\zeta)\left(b_{n, j}^{\zeta}\right)^{2^{n}}: A(\zeta)>0$. Hence $g(\zeta)=0$ by $\sum_{j} G\left(\zeta, b_{n, j}^{\zeta}\right)=\infty$, whence $f\left(s_{1}\right)=f\left(s_{2}\right)$ and $f(t)=f(z): z=$ proj. t in Δ_{n}. By identity theorem $f\left(t_{1}\right)=f\left(t_{2}\right)$ so far as $f\left(t_{1}\right)$ and $f\left(t_{2}\right)$ can be continued analytically, where proj. $t_{1}=$ proj. t_{2}. We denote by $f_{n}(z)$: $n=0,1,2, \cdots$ the branch of $f(t)$ in \mathfrak{F}_{n}. Then $f_{0}(z)=f_{n}(z)$ in A_{n} for any n and $f_{0}(z)$ is analytic in $\{0<|z|<r\}-\sum_{n}^{\infty} J_{n}$. On the other hand, \mathfrak{F}_{n} has no branch points for $|z|>a_{2 n+1}$ and $f_{n}(z)$ is analytic in a neighbourhood of $J_{m}: m<n$. Hence $f_{0}(z)\left(=f_{n}(z)\right)$ is analytic on $\sum_{n_{0}}^{\infty} J_{n}$ and $f_{0}(z)$ is analytic in $0<|z|<a_{2 n_{0}+1}=r$ and in $|z|>a_{4 n_{0}+1}$ (by putting $f_{0}(z)=f_{2 n_{0}}(z)$). Thus $f_{0}(z)$ is analytic in $0<|z| \leqq \infty$. This implies $f(z)=$ const. and $v(p) \in O_{A B}$.

Remark 1. By the method of the proof we see at once following. Let F be a closed set in \Re such that $F \cap \Sigma \Delta_{n}=0$ and proj. $(\Re-F)$ covers the z-plane except a set $\in N_{A B}$, then $v(p)-F \in O_{A B}$, where $N_{A B}$ means a class of set F such that $\{0<|z| \leqq \infty\}-F \in O_{A B}$.

Remark 2. Suppose F contains branch points on $z=b_{n, 2}: n=1,2, \cdots, i=$ $1,2,3, \cdots$, Then we cannot prove $v(p)-F \in O_{A B}$, however thinly F may be distributed. On the other hand, we shall show examples of a point p such that there exists no analytic functions of some class in $v(p)-F$, if F is small in a sense. We proved

Lemma 1^{6}. Let G be a ring domain with radial slits s_{i} such that $\partial G=$ $\Gamma_{1}+\Gamma_{2}+\sum_{i=1}^{i_{0}} s_{i}: \Gamma_{1}=\{|z|=1\}, \Gamma_{2}=\{|z|=\exp \mathfrak{M}\}$ and s_{i} is a radial slit in $1 \leqq|z| \leqq$ $\exp \mathfrak{M}$ and s_{i} may touch $\Gamma_{1}+\Gamma_{2}$. Let $U(z)$ be a harmonic function in G with continuous value. Then

$$
D(U(z)) \geqq \frac{1}{\mathfrak{M}} \int_{0}^{2 \pi}\left|U\left(e^{i \theta}\right)-U\left(e^{\mathfrak{M}+i \theta}\right)\right|^{2} d \theta
$$

By the same method we have at once
Lemma 1^{\prime}. Let G be a circular trapezoid $1<|z|<e^{m}, \theta_{1}<\arg z<\theta_{2}$ with a finite number of radial slits. Then

$$
D(U(z)) \geqq \frac{1}{\mathfrak{M}} \int_{\theta_{1}}^{\theta_{2}}\left|U\left(e^{i \theta}\right)-U\left(e^{\mathfrak{M}+i \theta}\right)\right|^{2} d \theta
$$

Lemma 2. Let G be a rectangle with vertices $-a, a, a+i h,-a+i h$ and $U(z)$
be H.M. (harmonic measure) of vertical sides. Then for any $0<\delta<a$ and for any $\varepsilon>0$, there exists an h such that

$$
U(z)<\varepsilon \quad \text { for } \quad|\operatorname{Re} z|<a-\delta
$$

Proof. Let G_{s} be a rectangle with vertices, $s+\delta, s+\delta+i h, s-\delta+i h, s-\delta$. Then $G_{s} \subset G:|s|<a-\delta$. Let $U_{s}(z)$ be H. M. of vertical sides of G_{s}. Then $U(z)$ $\leqq U_{s}(z)$. Now $\max _{\operatorname{Re} z=s} U_{s}(z)=\alpha(h, \delta) \rightarrow 0$ as $h \rightarrow 0^{7}$. Hence

$$
\underset{|\operatorname{Re} z|<a-\delta}{U(z)}<\alpha(h, \delta),
$$

and we have Lemma 2.
Lemma 3. Let G_{n} be a domain with $\partial G_{n}=\Gamma_{1}+\Gamma_{2}+\sum_{2} I_{n}^{i}: \Gamma_{1}=\{|z|=1\}, \Gamma_{2}=$ $\{|z|=\exp (\mathfrak{M}+\alpha)\} . \quad I_{n}^{i}=\left\{\arg z=\frac{2 \pi \imath}{n}, e^{\mathfrak{M}} \leqq|z| \leqq e^{\mathfrak{M}+\alpha}\right\}: \alpha>0, \mathfrak{M}>0$. Let J_{n}^{i} be an arc on $\Gamma_{2}: J_{n}^{i}=\left\{\frac{2 \pi i}{n} \leqq \arg z \leqq \frac{2 \pi(1+i)}{n},|z|=e^{\mathfrak{m}+\alpha}\right\}$. Map G_{n} by $\zeta=f_{n}(z)$ onto a domain G_{n}^{ζ} so that $\Gamma_{1} \rightarrow \Gamma_{1}^{\zeta}=\{|\zeta|=1\}, I_{n}^{i} \rightarrow$ an arc on $|\zeta|=e^{\mathfrak{m n}^{n}}$ and $J_{n}^{i} \rightarrow a$ radial slit $=\left\{\arg \zeta=\frac{2 \pi i}{n}\right.$, $\left.e^{\mathfrak{P}_{n^{\prime}}} \leqq|\zeta| \leqq e^{\mathfrak{M}_{n^{n}}}\right\}$, where $\mathfrak{M}_{n}^{\prime}$ and $\mathfrak{M}_{n}^{\prime \prime}$ are suitable constants. Let $n \rightarrow \infty$. Then $\mathfrak{M} \mathcal{M}_{n}^{\prime \prime} \rightarrow \mathfrak{M}$ and $f_{n}(z) \rightarrow z$. Let $U_{n}(z)$ be a harmonic function in G_{n}, continuous on $G_{n}+\Gamma_{1}+\Gamma_{2}+\sum_{i} I_{n}^{i}$ such that $U_{n}(z)=0$ on $\sum_{i} I_{n}^{i}$ and $D\left(U_{n}(z)\right) \leqq 1$. Then there exists a number n_{0} such that

$$
\int_{\Gamma_{1}} U_{n}(z)^{2} d \theta \leqq 2 \mathfrak{M} \quad \text { for } \quad n \geqq n_{0} .
$$

Proof. Let $\omega_{n}(z)$ be a harmonic function in G_{n} such that $\omega_{n}(z)=0$ on $\Gamma_{1}, \omega_{n}(z)=1$ on $\sum_{2} I_{n}^{i}$ and $\frac{\partial}{\partial n} \omega_{n}(z)=0$ on $\sum_{i} J_{n}^{i}$. Then

$$
f_{n}(z)=\exp \left(\gamma_{n}\left(\omega_{n}(z)+\imath \widetilde{\omega}_{n}(z)\right)\right),
$$

where $\gamma_{n}=2 \pi / \int_{\Gamma_{1}} \frac{\partial}{\partial n} \omega_{n}(z) d s, \tilde{\omega}_{n}(z)$ is the conjugate of $\omega_{n}(z)$ and $\mathfrak{M}_{n}^{\prime \prime}=\gamma_{n}$. Consider $\omega_{n}(z)$ in a circular trapezoid $=\left\{\frac{2 \pi i}{n}<\arg z<\frac{2 \pi(i+1)}{n}, e^{\mathfrak{m}}<|z|<e^{\mathfrak{M}+\alpha}\right\}$. Since $\omega_{n}(z)>0$ and $\omega_{n}(z)=1$ on $\arg z=\frac{2 \pi i}{n}$ and $=\frac{2 \pi(1+i)}{n}$, there exists a number n^{\prime} by Lemma 2 such that $\omega_{n}(z) \geqq 1-\varepsilon$ on $|z|=e^{\mathfrak{M}+\varepsilon}$ for $n \geqq n^{\prime}$ for any given $\varepsilon>0$. Hence by the maximum principle $\omega_{n}(z) \geqq(1-\varepsilon) \frac{\log |z|}{\mathfrak{M}+\varepsilon}$ on $1<|z|$ $<e^{\mathfrak{M}+\varepsilon}$. On the other hand, clearly $\omega_{n}(z) \leqq \frac{\log |z|}{\mathfrak{M}}$ in $1<|z|<e^{\mathfrak{M}}$, whence $\mathfrak{M}<\mathfrak{M}_{n}^{\prime \prime}<\frac{\mathfrak{M}+\varepsilon}{1-\varepsilon}$ and $\omega_{n}(z) \rightarrow \frac{\log |z|}{\mathfrak{M}}$ as $n \rightarrow \infty$. Since $\omega_{n}(z)=0$ on $\Gamma_{1}, \omega_{n}(z) \rightarrow$ $\frac{\log |z|}{\mathfrak{M}}$ implies $\frac{\partial}{\partial n} \omega_{n}(z) \rightarrow \frac{\partial}{\partial n}\left(\frac{\log |z|}{\mathfrak{M} \mathfrak{C}}\right)$ on $\Gamma_{1}, \mathfrak{M} \ell_{n}^{\prime \prime} \rightarrow \mathfrak{M}, f_{n}(z) \rightarrow z$ and $f_{n}^{\prime}(z) \rightarrow 1$
on Γ_{1} uniformly as $n \rightarrow \infty$. Consider $U_{n}(z)$ in the ζ-plane. Then by for Lemma 1

$$
D\left(U_{n}(z)\right)=D\left(U_{n}\left(f_{n}^{-1}(z)\right)\right) \geqq \frac{1}{\mathfrak{M}_{n}^{\prime \prime \prime}} \int_{\Gamma_{1}} U_{n}\left(f_{n}^{-1}(z)\right)^{2} d \theta
$$

By $f_{n}^{\prime}(z) \rightarrow 1$ and $\mathfrak{M}_{n}^{\prime \prime} \rightarrow \mathfrak{M}$ as $n \rightarrow \infty$, there exists a number n_{0} such that

$$
D\left(U_{n}(z)\right) \geqq \frac{1}{2 \mathfrak{M}} \int_{\Gamma_{1}} U_{n}(z)^{2} d \theta \quad \text { for } \quad n \geqq n_{0}
$$

Lemma 4. Let G_{n} be a domain with $\partial G_{n}={ }_{-} \Gamma+{ }_{+} \Gamma+\sum_{i=1}^{n}\left(I_{n}^{i}+{ }_{+} I_{n}^{i}\right):{ }_{-} \Gamma=$ $\left\{|z|=e^{-a}\right\},{ }_{+} \Gamma=\left\{|z|=e^{a}\right\},-I_{n}^{i}=\left\{\arg z=\frac{2 \pi \imath}{n}, e^{-a} \leqq|z| \leqq e^{-\frac{5 a}{6}}\right\},+I_{n}^{i}=\left\{\arg z=\frac{2 \pi i}{n}\right.$, $\left.e^{-\frac{5 a}{6}} \leqq|z| \leqq e^{a}\right\}$. Let $U_{n}(z)$ be a harmonic function in G_{n} contınuous on \bar{G}_{n} such that $U_{n}(z)=0$ on $\Sigma\left({ }_{+} I_{n}^{i}+I_{n}^{i}\right)$ and $D\left(U_{n}(z)\right) \leqq 1$. Then for any $\varepsilon>0$ there exists a number n_{0} such that

$$
\left|\operatorname{grad} U_{n}(z)\right|<\varepsilon \quad \text { in } \quad\left\{e^{-\frac{a}{2}}<|z|<e^{\frac{a}{2}}\right\} .
$$

We call such G_{n} a ring with deviation ε.
Proof. Let $G_{c}=\left\{e^{-c}<|z|<e^{c}\right\}: \frac{2 a}{3} \leqq c \leqq \frac{5 a}{3}$. Let $G_{c}\left(z, z_{0}\right)$ be a Green's function of G_{c}. Since $\operatorname{grad}_{z_{0}} \frac{\partial}{\partial n} G_{c}\left(z, z_{0}\right)$ is finite and continuous relative to z, z_{0} and c for $e^{-\frac{a}{2}} \leqq\left|z_{0}\right| \leqq e^{\frac{a}{2}}, z \in \partial G_{c}$ and $\frac{2 a}{3} \leqq c \leqq \frac{5 a}{6}$, there exists a const. M such that $\left|\operatorname{grad}_{2_{0}} \frac{\partial}{\partial n_{z}} G\left(z, z_{0}\right)\right| \leqq M$. Let $\delta=\min \left(\frac{a}{6}, \frac{\varepsilon^{2}}{4 \pi M^{2} e^{\frac{10 a}{6}}}\right)$ and consider $U_{n}(z)$ in $e^{\frac{5 a}{6}-\delta}<|z|<e^{a}\left(\frac{2 a}{3}<\frac{5 a}{6}-\delta<a\right)$. Then by Lemma 3, there exists a number n_{0} such that

$$
\int U\left(e^{\frac{5 a}{6}-\delta+i \theta}\right)^{2} d \theta \leqq 2 \delta \leqq \frac{\varepsilon^{2}}{2 \pi M^{2} e^{\frac{100}{6}}} \text { for } n \geqq n_{0} .
$$

 $\leqq \frac{\varepsilon}{M e^{\frac{5 a}{6}}}$. Consider $U_{n}(z)$ in $\left\{e^{-\frac{5 a}{6}+\delta}<|z|<e^{\frac{5 a}{6}+\delta}\right\}$. Then

$$
\begin{aligned}
\left|\operatorname{grad} U_{n}(z)\right| \leqq & \left.\frac{1}{2 \pi} \int_{-\Gamma_{c}} U_{n}(t)| | \operatorname{grad} \frac{\partial}{\partial n} G(t, z) \right\rvert\, e^{-\frac{5 a}{6}+\delta} d \theta \\
& +\frac{1}{2 \pi} \int_{+\Gamma_{c}}\left|U_{n}(t)\right|\left|\operatorname{grad} \frac{\partial}{\partial n} G(t, z)\right| e^{\frac{5 a}{6}-\delta} d \theta<\frac{\varepsilon}{\pi},
\end{aligned}
$$

for $z \in G_{\frac{a}{2}}$, where

$$
-\Gamma_{c}=\left\{|z|=e^{-c}\right\}, \quad+\Gamma_{c}=\left\{|z|=e^{c}\right\}: \quad c=\frac{5 a}{6}-\delta, \quad \frac{2 a}{3} \leqq c \leqq \frac{5 a}{6} .
$$

Lemma 5. Let G_{n} be the domain in Lemma 4 with $n \geqq n_{0}$. Let \hat{G}_{n} be the same leaf as G_{n} (with $-I_{n}^{i}+{ }_{+} I_{n}^{i}$) of G_{n}. We identify each side of $-I_{n}^{i}\left({ }_{+} I_{n}^{i}\right)$ on G_{n} with the same side of $-I_{n}^{i}\left(+I_{n}^{i}\right)$ of \hat{G}_{n}. Then we have a Riemann surface \widetilde{G}_{n} of planar character with connectivity $2 n_{0}-1$. Let $f(t): t \in \tilde{G}_{n}$ be an analytic function in \tilde{G}_{n} with $D(f(t)) \leqq \frac{1}{4}$. Then $\left|\frac{d f(t)}{d t}\right|<2 \sqrt{2} \varepsilon$ in the part of \tilde{G}_{n} over $e^{-\frac{a}{2}}<|z|<e^{\frac{a}{2}}$. We call such \tilde{G}_{n} a ring surface with deviation $2 \sqrt{2} \varepsilon$.

Proof. Let t and \hat{t} be points in G_{n} and \hat{G}_{n} respectively such that proj. $t=$ proj. $\hat{t}=z$. Let $\hat{t}=\hat{x}+i \hat{y}$ and $t=x+i y$. Put for simplicity $U(\hat{t})=\hat{U}(z), V(\hat{t})=\hat{V}(z)$: $t \in \hat{G}, U(t)=U(z), V(t)=V(z): t \in G$. Then by C. R. equality

$$
\begin{equation*}
U_{x}=V_{y}, \quad U_{y}=-V_{x}, \quad \hat{U}_{x}=-\hat{V}_{y}, \quad \hat{U}_{y}=\hat{V}_{x} . \tag{1}
\end{equation*}
$$

Now $D(U(z))=D(V(z)) \leqq \frac{1}{4}, \quad D(U(z)-\hat{U}(z)) \leqq 1$ and $U(z)-\hat{U}(z)=0$ on $+I_{n}^{i}+I_{n}^{i}$. We have by Lemma

$$
\begin{equation*}
\left|U_{x}-\hat{U}_{x}\right|<\varepsilon, \quad\left|V_{y}-\hat{V}_{y}\right|<\varepsilon \tag{2}
\end{equation*}
$$

By (1) and (2)

$$
\left|\frac{d}{d t} f(t)\right|<2 \sqrt{2} \varepsilon \quad \text { for } \quad e^{-\frac{a}{2}}<|\operatorname{proj} t|<e^{\frac{a}{2}}
$$

Let D be a domain and let F be a compact set in D. Let $\omega(F, z, D)$ be H.M. of F, i. e. $\omega(F, z, D)=0$ on $\partial D,=1$ on F we defind $\operatorname{Cap}(F)$ by $\int_{\partial D} \frac{\partial}{\partial n} \omega(F, z, D) d s / 2 \pi$ and denote it by $\gamma(F)$. Then it is clear $\gamma(F)=0$ if and only if F is a set of logarithmic capacity zero.

Lemma 6. 1) (An upper bound for Dirichlet bounded harmonic functions). Let D be a domain of finite connectivity and let F be a compact set in the interior of a compact set $A \subset D$. Let $H(z)$ be a harmonic function in $D-F$ such that $H(z)=0$ on ∂D and $D(H(z)) \leqq 1$. Then $|H(z)| \leqq C(z) \sqrt{\gamma(F)}$ in $D-A$, where $C(z)$ is a constant depending only on A, D and z.
2) Let D_{0} be a compact set in $D-A$. Let F_{n} be a sequence of compact sets such that $F_{n} \subset A$ and $\gamma\left(F_{n}\right) \downarrow 0$. Let $U(z)$ and $U_{n}(z)$ be a harmonic functions in D and $D-F_{n}$ respectively such that $U(z)=U_{n}(z)$ on $\partial D, D(U(z)) \leqq 1$ and $D\left(U_{n}(z)\right)$ $\leqq 1$. Then
$\operatorname{grad} U_{n}(z) \rightarrow \operatorname{grad} U(z)$ in D_{0} uniformly as $n \rightarrow \infty$.
3) Let F^{*} be a compact set in D with $\gamma\left(F^{*}\right)=0$. Then for any $\varepsilon>0$ and for any compact set D_{0} in $D-F^{*}$ we can find a compact set $F \supset F^{*}$ such that

$$
\left|\operatorname{grad} U(z)-\operatorname{grad} U^{F}(z)\right|<\varepsilon \text { on } D_{0}
$$

where $U(z)$ is a harmonic function in (2) and $U^{F}(z)$ is a harmonic function in $D-F$ such that $U(z)=U^{F}(z)$ on ∂D and $D\left(U^{F}(z)\right) \leqq 1$.

Proof of 1) Let F_{m} be a decreasing sequence of compact sets such that $F_{m} \downarrow F, F_{m} \subset A^{0}$, the conncetivity of $D-F_{m}$ is finite, every point of ∂F_{m} is regular with respect to Dirichlet problem in $D-F_{m}$ and $H(z)$ is continuous on ∂F_{m}. Let $\omega(z)=\frac{\omega\left(F_{m}, z, D\right)}{\gamma\left(F_{m}\right)}$ and $\tilde{\omega}(z)$ be the conjugate of $\omega(z)$. Put $\zeta(z)=\exp (\omega(z)+i \widetilde{\omega}(z))$ $=r e^{i \theta}$. Then $\zeta(z)$ maps $D-F_{m}$ onto a ring $R_{\zeta}=\left\{1<|\zeta|<\exp \left(\frac{1}{\gamma\left(F_{m}\right)}\right)\right\}$ with a finite number of radial slits. Consider $H(\zeta)=H(\zeta(z))$ in R_{ζ}. Then by Lemma 1 and Schwarz's inequality

$$
\int_{|\zeta|=\exp \left(1 / \gamma\left(F_{m}\right)\right)}|H(z)| d \theta \leqq \sqrt{\frac{2 \pi}{\gamma\left(F_{m}\right)}} .
$$

Let $V_{m}(z)$ be a harmonic function in $D-F_{m}$ such that $V_{m}(z)=|H(z)|$ on ∂F_{m}, $V_{m}(z)=0$ on ∂D. Then since $|H(z)|$ is subharmonic $V_{m}(z) \leqq V_{m+1}(z)$ and $|H(z)|$ $\leqq V_{m}(z) . \int_{\partial F_{m}} \frac{\partial}{\partial n} V_{m}(z) \omega(z) d s=\int_{\partial F_{m}} V_{m}(z) \frac{\partial}{\partial n} \omega(z) d s$, let $d s=r d \theta$ and $\partial n=\partial r$ on $\partial D+\partial F_{m}$. Then $\frac{1}{\gamma\left(F_{m}\right)} \int_{\partial D} \frac{\partial}{\partial n} V_{m}(z) d s=\frac{1}{\gamma\left(F_{m}\right)} \int_{\partial F_{m}} \frac{\partial}{\partial n} V_{m}(z) d s=\int_{\partial F_{m}} V_{m}(z) d \theta \leqq$ $\sqrt{\frac{2 \pi}{\gamma\left(F_{m}\right)}}$. Hence

$$
\int_{\partial D} \frac{\partial}{\partial n} V_{m}(z) d s \leqq \sqrt{2 \pi \gamma\left(F_{m}\right)} .
$$

We can find a compact set $A^{\prime} \supset A$ with dist $\left(\partial A^{\prime}, A\right)>0$. By Harnack's theorem there exists a constant K depending on A^{\prime}, z, D such that $V_{m}(t) \geqq \frac{V(z)}{K}$, whence $V_{m}(t) \geqq \frac{V_{m}(t)}{K} \omega\left(A^{\prime}, t, D\right)$ on ∂A^{\prime}. Hence by $\int_{\partial D} \frac{\partial}{\partial n} V_{m}(t) d s \geqq \frac{V_{m}(z)}{K}$ $\geqq \int_{\partial D} \frac{\partial \omega}{\partial n}(A, t, D) d s$ we have $V_{m}(z) \leqq \frac{K \sqrt{r\left(F_{n}\right)}}{\sqrt{2 \pi r}\left(A^{\prime}\right)}$. Let $m \rightarrow \infty$. Then $|H(z)|$ $\leqq \lim _{m} V_{m}(z) \leqq \frac{K \sqrt{\gamma(F)}}{\sqrt{2 \pi r}\left(A^{\prime}\right)}$ and $\frac{K}{\sqrt{2 \pi \gamma}\left(A^{\prime}\right)}$ is a required constant.

Proof of 2) Let $H_{n}(z)=U(z)-U_{n}(z)$. Then $D\left(\frac{H_{n}(z)}{2}\right) \leqq 1$. By (1) $\left|H_{n}(z)\right|$ $\leqq 2 C(z) \sqrt{\gamma\left(F_{n}\right)}$ in $D-A$. Let D_{0}^{*} be a closed domain in $D-A$ such that $D_{0}^{*} \supset D_{0}$, $\operatorname{dist}\left(\partial D_{0}^{*}, D_{0}\right)>0$. Let $G(z, q)$ be a Green's function of D_{0}^{*}. Then since there exists a constant $M<\infty$ such that $\operatorname{grad} \frac{\partial}{\partial n} G(z, q)<M: q \in D_{0}, z \in \partial D_{0}^{*}$. Now $\max _{z \in D_{0}^{*}}\left|H_{n}(z)\right| \rightarrow 0$ uniformly as $n \rightarrow \infty$. We have $\left|\operatorname{grad} U(z)-\operatorname{grad} U_{n}(z)\right| \leqq$ $\int_{\partial D_{0}^{*}} 2 M\left|H_{n}(\zeta)\right|\left|\operatorname{grad} \frac{\partial}{\partial n} G(\zeta, z)\right| d s \rightarrow 0$ as $n \rightarrow \infty$. 3) is obtained at once.

Let \tilde{G}_{n} be a surface in Lemma 5 with $n \geqq n_{0}$. Suppose a sufficiently small closed set F in \widetilde{G}_{n}. Then we see by Lemma 6 the property of \widetilde{G}_{n} does not change so much by extracting F from \tilde{G}_{n}.
α, β-thin set. Let F be a closed set in \tilde{G}_{n} in Lemma 5 with deviation $2 \sqrt{2} \varepsilon$.

If we can find a closed Jordan curve Γ in $G_{n}-F$ (and in $\hat{G}_{n}-F$) such that proj Γ separates $|z|=e^{-a}$ from $|z|=e^{a}$, length of $\Gamma \leqq \alpha e^{-a}$ and $\left|\frac{d f(t)}{d t}\right|<\beta \varepsilon$ for any analytic function $f(t)$ in $\tilde{G}_{n}-F$ with $D(F(t)) \leqq \frac{1}{4}$, we call F an α, β-thin set in \tilde{G}_{n}.

Example 2. Let

$$
\begin{equation*}
1>a_{1}>a_{2}, \cdots \downarrow 0 \quad \text { and } \quad \sum_{n}^{\infty} \log \frac{a_{2 n+1}}{a_{2 n+2}}=\infty \tag{3}
\end{equation*}
$$

Let J_{n} be a slit: $J_{n}=\left\{\arg z=\pi, a_{2 n+2} \leqq|z| \leqq a_{2 n+1}\right\}: n=1,2,3, \cdots$. Let

$$
\begin{align*}
& 1>b_{1}>b_{1}^{\prime}>b_{2}>b_{2}^{\prime}, \cdots \downarrow 0, \quad \lim _{n} \frac{\log b_{n}^{\prime}}{\log b_{n}}=1, \\
& \sum_{n}\left\{a_{2 n+2} \leqq|z| \leqq a_{2 n+1}\right\} \cap \sum_{n}^{\infty}\left\{b_{n}^{\prime} \leqq|z| \leqq b_{n}\right\}=0 .
\end{align*}
$$

Let $-I_{n}^{i}$ and $+I_{n}^{i}$ are slits: $n=1,2,3, \cdots, \imath=1,2, \cdots, j(n)$ as follow :

$$
\begin{aligned}
& -I_{n}^{i}=\left\{\arg z=\frac{2 \pi i}{j(n)}, b_{n}^{\prime} \leqq|z| \leqq b_{n}^{\prime} e^{\frac{d_{n}}{6}}\right\} \\
& +I_{n}^{i}=\left\{\arg z=\frac{2 \pi i}{j(n)}, b_{n} e^{-\frac{d_{n}}{6}} \leqq|z| \leqq b_{n}\right\}
\end{aligned}
$$

where the number $j(n)$ of slits I_{n}^{i} (or ${ }_{+} I_{n}^{i}$) is so large that we can obtain a ring surface \widetilde{G}_{n} (from two leaves by identifying slits of the leaves) with deviation c_{n} over $\left\{b_{n}^{\prime} \leqq|z| \leqq b_{n}\right\}$, where

$$
\lim _{n} \frac{\log c_{n}}{\log b_{n}}=\infty
$$

Let \mathscr{F} be a unit circle $|z|<1$ with slits $\sum_{n} J_{n}+\sum_{n} \sum_{2}\left(I_{n}^{i}+I_{n}^{i}\right)$ and $\hat{\mathfrak{F}}$ be the same leaf as \mathfrak{F}. We identify $\sum_{n} J_{n}+\sum_{n} \sum_{l}\left(-I_{n}^{i}+{ }_{+} I_{n}^{i}\right)$ of \mathfrak{F} and $\hat{\mathscr{F}}$. Then we have a Riemann surface $\tilde{\mathfrak{F}}$ with compact relative boundary $\partial \widetilde{\mathfrak{F}}$ consisting of two components over $|z|=1$ and has one ideal boundary component \mathfrak{p}. The part of $\tilde{\mathfrak{F}}$ over $\left\{a_{2 n+1}<|z|<a_{2 n+2}\right\}$ is a ring with two boundary components of module $=\frac{1}{2} \log \frac{a_{2 n+1}}{a_{2 n+2}}$ separating \mathfrak{p} from $\partial \widetilde{\mathfrak{F}}$. Hence by (3) $\widetilde{\mathfrak{F}}$ is an end of another Riemann surface $\in O_{g}$ and \mathfrak{p} is of harmonic dimension 1 . There exists only one Martin point p on \mathfrak{p}. Let $v(p)$ be a neighbourhood. Then $\partial v(p)$ is compact.

Proposition. Let F_{1} be set of radial slits in $\tilde{\mathscr{F}}$ such that $F_{1} \cap \sum_{n} \tilde{G}_{n}=0$.

1) Let F_{2} be a closed set in $\tilde{\mathfrak{F}}$ such that F_{2} is α, β-thin set in every \tilde{G}_{n} and $v(p)-F_{2}$ is connected.
2) Let $U_{n}(z)$ be a harmonic function in $\tilde{\mathfrak{F}}-F_{1}-F_{2}$ or $\hat{\mathfrak{V}}-F_{1}=F_{2}$ over $\left\{\theta_{1}<\arg z<\theta_{2}, b_{n}<|z|<1\right\}$ such that $U_{n}(z)=0$ on $|z|=1$ and $U_{n}(z)=1$ on $|z|=b_{n}$ and $U_{n}(z)$ has M.D.I. (minimal Dirichlet integral). Then $D\left(U_{n}(z)\right) \geqq \frac{\gamma\left(\theta_{2}-\theta_{1}\right)}{-\log b_{n}^{\prime}}$: $\gamma>0$ for any θ_{1} and θ_{2} and $b_{n}^{\prime}\left(\right.$ if $\left.F_{2}=0, D\left(U_{n}(z)\right)=\frac{\theta_{2}-\theta_{1}}{-\log b_{n}^{\prime}}\right)$. If F_{2} is so thinly distributed in $\tilde{\mathfrak{F}}$ that F_{2} may satisfy condition 1) and 2),

$$
v(p)-F_{1}-F_{2} \in O_{A D F} .
$$

Proof. Assume $w=f(t): t \in v(p)-F_{1}-F_{2}$ is non const and $D(f(t))<\infty$ and $f\left(v(p)-F_{1}-F_{2}\right)$ is an L number of sheets over the w-plane. We can suppose without loss of generality $D(f(t)) \leqq \frac{1}{4}$. By condition 2) there exists a Jordan curve Γ_{n} in $\mathfrak{F} \cap G_{n}$ such that $\left|\frac{d f(t)}{d t}\right|<\beta c_{n}$ on Γ_{n} and length of $\Gamma_{n}<\alpha b_{n}$. Hence we can find a subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$ such that $f\left(\Gamma_{n^{\prime}}\right) \rightarrow w_{0}$ as $n^{\prime} \rightarrow \infty$. By choosing suitable $v_{l}(p) \subset v(p)$ we can suppose $\partial v_{l}(p) \cap\left(\widetilde{\left.\vartheta^{\prime}-F_{1}-F_{2}\right) \text { has an arc } \lambda, ~}\right.$ such that $\operatorname{dist}\left(f(\lambda), w_{0}\right)=d_{0}>0$, proj λ is contained in $\theta_{1} \Delta_{\theta_{2}}=\left\{\theta_{1}<\arg z<\theta_{2}\right\}$ and $\operatorname{proj} \lambda$ is connecting $e^{a+i \theta_{1}}$ with $e^{a^{\prime}+i \theta_{2}}$. Let $\lambda_{\Gamma n^{\prime}}$ be the part of $\mathscr{F}-F_{1}-F_{2}$ over $\theta_{\theta_{1}} \Delta_{\theta_{2}}$ bounded by $\lambda, F_{1}, F_{2}, \Gamma_{n^{\prime}}^{\prime}$ and two segments $\arg z=\theta_{1}$ and θ_{2}, where $\Gamma_{n^{\prime}}^{\prime}$ is the part of $\Gamma_{n^{\prime}}$ lying over $\theta_{1} \Delta_{\theta_{2}}$. Let $U_{n}(z)$ be a harmonic function in $\lambda_{\Gamma n^{\prime}}$ such that $U_{n^{\prime}}(z)=0$ on $\lambda, U_{n^{\prime}}(z)=1$ on $\Gamma_{n^{\prime}}^{\prime}$ and $U_{n^{\prime}}(z)$ has M. D. I (has minimal Dirichlet integral among all functions with the same value as $U_{n^{\prime}}(z)$ on $\left.\lambda+\Gamma_{n^{\prime}}^{\prime}\right)$. Then by the Dirichlet principle and by condition 2)

$$
\begin{equation*}
D\left(U_{n^{\prime}}(z)\right) \geqq D\left(U_{n^{\prime}}^{\prime}(z)\right) \geqq \frac{r\left(\theta_{2}-\theta_{1}\right)}{-\log b_{n^{\prime}}^{\prime}}, \tag{4}
\end{equation*}
$$

where $U_{n^{\prime}}^{\prime}(z)$ is a harmonic function in $\mathscr{F}-F_{1}-F_{2}$ over $\left\{b_{n^{\prime}}^{\prime}<|z|<1, \theta_{1}<\arg z<\theta_{2}\right\}$ such that $U_{n^{\prime}}^{\prime}(z)=0$ on $|z|=1, \quad U_{n^{\prime}}^{\prime}(z)=1$ on $|z|=b_{n^{\prime}}^{\prime}$ and $U_{n^{\prime}}^{\prime}(z)$ has M.D. I. Consider $f\left(\Gamma_{n^{\prime}}\right)$. Then by $\left|\frac{d f(t)}{d t}\right| \leqq \beta c_{n^{\prime}}$, diameter of $f\left(\Gamma_{n^{\prime}}\right) \leqq 2 \pi b_{n^{\prime}} c_{n^{\prime}} \alpha \beta$. Since diameter $\left(w_{0}+f\left(\Gamma_{n^{\prime}}\right)\right) \rightarrow 0$ as $n^{\prime} \rightarrow \infty$, we can find a number n_{0} and a point $p_{n^{\prime}}$: $n^{\prime} \geqq n_{0}$ in $f\left(\Gamma_{n^{\prime}}\right)$ such that $\left|p_{n^{\prime}}-w_{0}\right|<\frac{d_{0}}{4}: d_{0}<1, \quad\left\{\left|w-p_{n^{\prime}}\right|<4 \pi b_{n^{\prime}} c_{n^{\prime}} \alpha \beta\right\} \supset f\left(\Gamma_{n^{\prime}}\right)$ and $\left\{\left|w-p_{n^{\prime}}\right|>\frac{d_{0}}{2}\right\} \supset f(\lambda)$ for $n^{\prime} \geqq n_{0}$. Let $V_{n^{\prime}}(w)$ be a continuous function in the w-plane such that $V_{n^{\prime}}(w)=1$ in $\left|w-p_{n^{\prime}}\right|<4 \pi b_{n^{\prime}} c_{n^{\prime}} \alpha \beta, V_{n^{\prime}}(w)$ is harmonic in $\left\{4 \pi b_{n^{\prime}} c_{n^{\prime}} \alpha \beta<\left|w-p_{n^{\prime}}\right|<\frac{d_{0}}{2}\right\}$ and $=0$ in $\left|w-p_{n^{\prime}}\right| \geqq \frac{d_{0}}{2}$. Then $f^{-1}\left(V_{n^{\prime}}(w)\right) \geqq 1$ on $\Gamma_{n^{\prime}}$ and $=0$ on λ and

$$
\begin{equation*}
D\left(f^{-1}\left(V_{n^{\prime}}(w)\right)\right) \leqq \frac{2 \pi L}{\log \frac{\frac{d_{0}}{2}}{4 \pi b_{n}^{\prime} c_{n}^{\prime} \alpha \beta}} . \tag{5}
\end{equation*}
$$

Clearly $D\left(U_{n^{\prime}}(z)\right) \leqq D\left(V_{n}\left(f^{-1}(w)\right)\right)$. By $\lim _{n} \frac{\log c_{n}}{\log b_{n}}=\infty, \lim _{n} \frac{\log b_{n}^{\prime}}{\log b_{n}}=1$ we have by
(4) and (5) a contradiction. Hence $v(p)-F_{1}-F_{2} \in O_{A D F}$.

Lemma 7. Let T be a circular trapezoid with radial slits $I_{n}^{i}: i=1,2, \cdots, n-1$ such that $T=\left\{1<|z|<e^{\mathfrak{M}+\alpha}, 0<\arg z<\theta\right\}-\Sigma I_{n}^{i}: I_{n}^{i}=\left\{\arg z=\frac{\imath \theta}{n}, e^{m} \leqq|z| \leqq e^{\mathfrak{M}+\alpha}\right\}$. Map T onto a circular trapezoid T_{ζ} with slits by $\zeta=f_{n}(z)$ so that $\{0<\arg z<\theta$, $|z|=1\} \rightarrow\{0<\arg z<\theta,|\zeta|=1\} . \quad\left\{\arg z=\theta, \quad 1 \leqq|z| \leqq e^{\mathfrak{M}+\alpha}\right\}+\left\{\left(\frac{n-1}{n}\right) \theta \leqq \arg z \leqq \theta\right.$, $\left.|z|=e^{\mathfrak{m}+\alpha}\right\}=\Lambda_{1} \rightarrow\left\{\arg \zeta=\theta, 0 \leqq|\zeta| \leqq e^{\mathfrak{M}_{n}^{\prime}}\right\}$. $\quad I_{n}^{i} \rightarrow$ an arc on $|\zeta|=e^{\mathfrak{M}_{n}^{\prime}}: \imath=1,3, \cdots, n-1$. A circular arc $J_{n}^{i}=\left\{\frac{2 \theta}{n} \leqq \arg z \leqq \frac{(2+1) \theta}{n}\right\} \rightarrow a$ radial slit in T_{ζ} connecting $|\zeta|=$ $e^{\mathfrak{M r}_{n}^{\prime}}: i=1,2,3, \cdots, n-2 . \quad\left\{\arg z=0,0 \leqq|z| \leqq e^{\mathfrak{M}+5}\right\}+\left\{0 \leqq \arg z \leqq \frac{\theta}{n},|z|=e^{\mathfrak{M}+\alpha}\right\}=\Lambda_{2}$ $\rightarrow\left\{\arg \zeta=0,0 \leqq|\zeta| \leqq e^{\mathfrak{M}_{n}^{\prime}}\right\}$, where $\mathfrak{M}_{n}^{\prime}$ is a suitable const. Let $n \rightarrow \infty$. Then $\mathfrak{M}_{n}^{\prime} \rightarrow \mathfrak{M}$ and $f_{n}(z) \rightarrow z$. Let $U_{n}(z)$ be a harmonic function in T such that $U_{n}(z)=0$ on ΣI_{n}^{\prime} and $D\left(U_{n}(z)\right) \leqq 1$. Then

$$
\int_{|z|=1} U^{2}(z) d \theta \leqq 2 \mathfrak{M} \quad \text { for } \quad n \geqq n_{0}
$$

Proof. Let $\omega_{n}(z)$ be a harmonic function in $T-\sum_{2} I_{n}^{i}$ such that $\omega_{n}(z)=0$ on $|z|=1, \frac{\partial}{\partial n} \omega_{n}(z)=0$ on $\Lambda_{1}+\Lambda_{2}+\sum_{\imath} J_{n}^{i}, \omega_{n}(z)=1$ on $\sum_{\imath} I_{n}^{i}$. Then

$$
f_{n}(z)=\exp \left(\gamma_{n}\left(\omega_{n}\left(z_{n}\right)+\imath \widetilde{\omega}_{n}(z)\right)\right),
$$

where $\gamma_{n}=\theta / \int_{|z|=1} \frac{\partial}{\partial n} \omega_{n}(z) d s$ and $\widetilde{\omega}_{n}(z)$ is the conjugate of $\omega_{n}(z)$. Consider $\omega_{n}(z)$ in $\left\{0<\arg z<\frac{\theta}{n}, e^{\mathfrak{m}}<|z|<e^{\mathfrak{M}+\alpha}\right\}$. Then $\omega_{n}(z)=1$ on $\left\{\arg z=\frac{\theta}{n}, e^{\mathfrak{m}}<|z|<\right.$ $\left.e^{\mathfrak{M}+\alpha}\right\}, \frac{\partial}{\partial n} \omega_{n}(z)=0$ on $\left\{\arg z=0, e^{\mathfrak{M}}<|z|<e^{\mathfrak{M}+\alpha}\right\}$. By putting $\omega_{n}(\hat{z})=\omega_{n}(z), \omega_{n}(z)$ can be continued harmonically into $\left\{-\frac{\theta}{n}<\arg z<\frac{\theta}{n}, e^{m}<|z|<e^{m+\alpha}\right\}$, where \hat{z} is the symmetric point of z with respect to $0=\arg z$. Hence by Lemma 2, for any $\varepsilon>0$, there exists a number n_{0} such that $\omega_{n}(z)>1-\varepsilon$ on $|z|=e^{m+\varepsilon}$ in T for $n>n_{0}$. Clearly for the same number $\omega_{n}(z)>1-\varepsilon$ on $|z|=e^{\mathfrak{M}+\varepsilon}$ in T. Hence we have Lemma 7 similarly as Lemma 3.

In the following we investigate the behaviour of a ring (or a rectangle) as its module $\mathfrak{M} \rightarrow 0$. Let $0<k<1$. The upper half plane: $\operatorname{Im} z>0$ is mapped onto a rectangle $\left\{-K<\operatorname{Re} \zeta<K, 0<\operatorname{Im} \zeta<K^{\prime}\right\}$ by

$$
\eta(z)=\int_{0}^{z} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}
$$

so that $-\frac{1}{k},-1,1,-\frac{1}{k} \rightarrow-K+i K^{\prime},-K, K, K+\imath K^{\prime}$ respectively, where K and K^{\prime} are given by $K=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}, K^{\prime}=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{\prime 2} t^{2}\right)}}: k^{\prime 2}=1-k^{2}$.

We denote the above rectangle in the η-plane by $R\left(K, K^{\prime}, \eta\right)$. Since we investigate the case k is near to 1 , we put $k=1-\varepsilon^{2}$ and suppose $k>\frac{5}{6}$. Then the properties of $R\left(K, K^{\prime}, \eta\right)$ depends mostly on ε. We shall prove

Lemma 8. 1) Put $k=1-\varepsilon^{2}\left(>\frac{5}{6}\right)$. Then K and K^{\prime} are given as follows

$$
\begin{align*}
& \left|\frac{2}{k} \log \sqrt{\frac{5 \delta}{6}}\right|+\frac{-2}{\sqrt{(2-\delta)(1-k-k \delta)}} \log \frac{\sqrt{1-k}}{1+\sqrt{k}} \geqq K \\
& \\
& \geqq \frac{-2}{\sqrt{2(1+k) k}} \log \frac{\sqrt{1-k}}{1+\sqrt{k}} \tag{6}\\
& \quad=\frac{-2}{\sqrt{2(1+k) k}}\left(\log \frac{\varepsilon}{2}-\frac{\varepsilon^{2}}{8}+0\left(\varepsilon^{3}\right)\right), \quad 0<\delta<\frac{1}{6} . \tag{7}\\
& \frac{\pi}{2} \leqq K^{\prime} \leqq \frac{\pi}{2 \sqrt{1-\varepsilon^{2}}} .
\end{align*}
$$

2) Let $\omega(\eta)$ be the H. M. of vertical sıdes of $R\left(K, K^{\prime}, \eta\right)$. Then

$$
\omega\left(\frac{\imath K^{\prime}}{2}\right)=\frac{1}{\pi}\left(\varepsilon^{2}+\frac{\varepsilon^{4}}{2}+O\left(\varepsilon^{6}\right)\right)
$$

3) On the behavzour of the mapping $\eta(z)$. Let ${ }_{\epsilon} V(1)=\{\operatorname{Im} z>0,|z-1|<\varepsilon\}$. Then the image of ${ }_{\epsilon} V(1)$ falls in $\{|\eta-K|<L\}$, where

$$
L \leqq \frac{1}{\sqrt{k(2-k)(2-2 \varepsilon)}}\left(-\log \varepsilon+\pi+\log 2+\frac{5 \varepsilon^{2}}{16}+0\left(\varepsilon^{3}\right)\right)
$$

and $\frac{L}{K} \rightarrow c<\frac{1}{2-\delta^{\prime}}$ as $\varepsilon \rightarrow 0$ for any $\delta^{\prime} \rightarrow 0$. Hence there exists a const. ε^{*} such that the inverse image of the subrectangle $R\left(\frac{K}{3}, K^{\prime}, \eta\right)$ does not touch ${ }_{\sigma} V(1)+$ ${ }_{\varepsilon} V(-1)$ for $\varepsilon<\varepsilon^{*}$.
4) $\operatorname{Map} R\left(K, K^{\prime}, \eta\right)$ by $\zeta=\frac{K}{\eta}$ onto a rectangle $R\left(1, \frac{K^{\prime}}{K}, \zeta\right)$. Then $R\left(\frac{K}{3}, K^{\prime}, \eta\right) \rightarrow R\left(\frac{1}{3}, \frac{K^{\prime}}{K}, \zeta\right)$. Let $U(\zeta)$ be a harmonic function in $R\left(1, \frac{K^{\prime}}{K}, \zeta\right)$ such that $|U(\zeta)| \leqq M$ on the vertical sides and $U(\zeta)=0$ on the horizontal sides. Then

$$
|\operatorname{grad} U(\zeta)| \leqq M K C \varepsilon \text { in } R\left(\frac{1}{3}, \frac{K^{\prime}}{K}, \eta\right) \quad \text { for } \varepsilon<\varepsilon^{*}: C=\frac{6 \sqrt[4]{19}}{\pi}
$$

By noting $K \varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$, we see for any given $\gamma>0$ there exists a const. ε_{0} such that $|\operatorname{grad} U(\zeta)|<\gamma$ in $R\left(\frac{1}{3}, \frac{K^{\prime}}{K}, \zeta\right)$ for $\varepsilon<\varepsilon_{0}$.

Proof of 1)

$$
\begin{aligned}
\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \leqq & \int_{0}^{1-\delta} \frac{d t}{\sqrt{(1-t)(1-k t)}} \\
& +\frac{1}{\sqrt{(2-\delta)(1+k-k \delta)}} \int_{1-\delta}^{1} \frac{d t}{\sqrt{(1-t)(1-k t)}} .
\end{aligned}
$$

Now by $(\sqrt{k \delta}+\sqrt{1-k \delta+k})<1$, we have

$$
\frac{-2}{k} \log (\sqrt{k \delta}+\sqrt{1+k \delta-k}) \leqq\left|\frac{2}{k} \log \sqrt{\frac{5 \delta}{6}}\right| .
$$

Hence

$$
K \leqq \frac{2}{k}\left|\log \frac{5 \delta}{6}\right|+\frac{-2}{\sqrt{(2-\delta)(1+k-k \delta) k}} \log \frac{\sqrt{1-k}}{1+\sqrt{k}} .
$$

On the other hand,

$$
\begin{aligned}
K & =\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \geqq \frac{1}{\sqrt{2(1+k)}} \int_{0}^{1} \frac{d t}{\sqrt{(1-t)(1-k t)}} \\
& =\frac{-2}{\sqrt{2 k(1+k)}} \log \frac{\sqrt{1-k}}{1+\sqrt{k}} .
\end{aligned}
$$

Put $k=1-\varepsilon^{2}$. Then

$$
\log \frac{\sqrt{1-k}}{1+\sqrt{k}}=\log \varepsilon-\log (1+\sqrt{k})=\log \frac{\varepsilon}{2}-\frac{\varepsilon^{2}}{8}+O\left(\varepsilon^{4}\right)
$$

Hence we have (6). Clearly $\frac{\pi}{2} \leqq K^{\prime} \leqq \frac{\pi}{2 \sqrt{1-\varepsilon^{2}}}$. Thus we have 1).
Proof of 2) Map the upper half z-plane by $\xi=i\left(\frac{z-\frac{i}{\sqrt{k}}}{z+\frac{i}{\sqrt{k}}}\right)$ to $|\xi|<1$. Then by the mapping $\eta \rightarrow z \rightarrow \xi, \eta=\frac{K^{\prime} \imath}{2} \rightarrow z=\frac{2}{\sqrt{k}} \rightarrow \xi=0$ and the vertical sides of $R\left(K, K^{\prime}, \eta\right)$ are mapped onto arcs on $|\xi|=1$ with length $=4 \tan ^{-1} \frac{1-k}{1+k}=$ $\frac{1}{\pi}\left(\varepsilon^{2}+\frac{\varepsilon^{4}}{2}+O\left(\varepsilon^{6}\right)\right)$. Hence we have 2$)$.

Proof of 3) Let $z \in V_{\varepsilon}(1)$. Then $z=1+r e^{i \theta}, r<\varepsilon$. Since $\int_{0}^{z} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}$ does not depend on the integration path, we can suppose it is a straight connecting 1 with $1+r e^{i \theta}$. We estimate the integration. Let $t=1+r e^{i \theta}$. Then

$$
\sqrt{1+t} \geqq \sqrt{2-r} \geqq \sqrt{2-\varepsilon} \quad \text { and } \quad|\sqrt{1+k t}| \geqq \sqrt{1+k-k r} \geqq \sqrt{2-2 \varepsilon} .
$$

Now $|(1-t)(1-k t)|=r\left|\left(1-k r e^{i \theta}-k\right)\right| \geqq r|1-k-k r|$ and $|1-k-k r| \geqq 1-k-k r$ or $\geqq k r+k-1$ according as $r \leqq \frac{1-k}{k}$ or $r \geqq \frac{1-k}{k}$. Hence by $\frac{1-k}{k}=\frac{\varepsilon^{2}}{1-\varepsilon^{2}}$ we have

$$
\begin{aligned}
& \int_{0}^{s e^{i \theta}} \frac{d r}{\sqrt{r e^{i \theta}\left(1-k-k r e^{i \theta}\right)}} \\
& \quad \leqq \int_{0}^{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}} \frac{d r}{\sqrt{r(1-k r-k)}}+\int_{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}}^{\varepsilon} \frac{d r}{\sqrt{r(k r-1+k)}} \\
& \quad=\frac{-2}{\sqrt{1-\varepsilon^{2}}} \tan ^{-1}\left[\frac{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}-r}{r}\right]_{0}^{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}}+\frac{2}{\sqrt{1-\varepsilon^{2}}}\left[\log \left(\sqrt{r}+\sqrt{r-\frac{\varepsilon^{2}}{1-\varepsilon^{2}}}\right]_{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}}^{\varepsilon}\right. \\
& \quad=\frac{\pi}{k}+\frac{2}{k}\left(\log \frac{1}{\sqrt{\varepsilon}}+\frac{1}{2} \log \left(1-\varepsilon-\varepsilon^{2}\right)\right) \\
& \quad=\frac{\pi}{\sqrt{k}}+\frac{-\log \varepsilon}{\sqrt{k}}+\frac{1}{\sqrt{k}}\left(\log 2+\frac{5 \varepsilon^{2}}{16}-\frac{3 \varepsilon^{3}}{8}+O\left(\varepsilon^{4}\right)\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left|\int_{0}^{1+r e^{i \theta}} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}\right| \leqq \frac{1}{\sqrt{(2-\varepsilon)(2-2 \varepsilon) k}} \\
& \left(-\log \varepsilon+\pi+\log 2+\frac{5 \varepsilon^{2}}{16}+O(\varepsilon)^{3}\right)=L: r<\varepsilon .
\end{aligned}
$$

The same fact occurs for $V_{\varepsilon}(-1)$. By (6) we have

$$
\lim \frac{L}{K}=c<\frac{1}{2-\delta^{\prime}} \quad \text { for any } \quad \delta^{\prime}>0 \text { as } \varepsilon \rightarrow 0 .
$$

Hence we have 3).
Proof of 4). The mapping $z \rightarrow \eta \rightarrow \zeta$ is denoted by $\zeta=f(z)$, where $\zeta=\frac{\eta}{K}$. Then by 3) there exists a const. ε^{*} such that $R\left(\frac{1}{3}, \frac{K^{\prime}}{K}, \zeta\right)$ is mapped onto a domain G in $\{\operatorname{Im} z>0\}$ such that G does not touch $V_{\varepsilon}(1)+V_{\varepsilon}(-1)$ for $\varepsilon<\varepsilon^{*}$. In the following we suppose $\varepsilon<\varepsilon^{*}<\frac{1}{4}$. A harmonic function $U(\zeta)$ in $R\left(1, \frac{K^{\prime}}{K}, \zeta\right)$ is transformed to $U(z)$ such that $U(z)=0$ on $\left\{\operatorname{Im} z=0,-\infty<\operatorname{Re} z<-\frac{1}{k}\right\}$ $\left\{\operatorname{Im} z=0, \frac{1}{k} \leqq \operatorname{Re} z<\infty\right\}$ and $|U(z)| \leqq M$ on ${ }_{-} I+_{+} I$, where $-I=\left\{\operatorname{Im} z=0,-\frac{1}{k}\right.$ $\leqq \operatorname{Re} z \leqq 1\}$ and $+I=\left\{\operatorname{Im} z=0,1 \leqq \operatorname{Re} z \leqq \frac{1}{k}\right\}$. Then

$$
U(z)=\frac{1}{\pi} \int_{-I++I} U(t) K(z, t) d t
$$

where

$$
K(z, t)=\frac{y}{(x-t)^{2}+y^{2}} \quad \text { and } \quad \operatorname{grad} K(z, t)=\frac{1}{\left(x-t^{2}\right)+y^{2}} .
$$

We estimate $\underset{z}{\operatorname{grad}} K(z, t)$ for $t \in \epsilon_{+} I$ and $z \in G$. Put $t=1+\varepsilon^{\prime}$ and $z=1+r e^{i \theta}$. Then
by $t \in_{+} I, 1+\varepsilon^{\prime} \leqq \frac{1}{k}=\frac{1}{1-\varepsilon^{2}}$ and $r>\varepsilon$ for $z \in G$. Hence by $\varepsilon<\varepsilon^{*}<\frac{1}{4}$ and $\varepsilon<r$ we have

$$
\begin{equation*}
\varepsilon^{\prime} \leqq \varepsilon^{2}<\frac{\varepsilon}{4}<\frac{r}{4} \tag{8}
\end{equation*}
$$

By (8) $(x-t)^{2}+y^{2} \geqq r^{2}-2 r \varepsilon^{\prime} \cos \theta+\varepsilon^{\prime 2} \geqq r^{2}-2 r \varepsilon^{\prime} \geqq \frac{r^{2}}{2}: t \in_{+} I, z \in G$ and

$$
\begin{equation*}
|\underset{z}{\operatorname{grad}} K(z, y)| \leqq \frac{2}{r^{2}} \tag{9}
\end{equation*}
$$

We have also

$$
\begin{equation*}
\sqrt{1-z^{2}} \leqq r^{\frac{1}{2}}(r+2)^{\frac{1}{2}} \quad \text { and } \quad \sqrt{1+k z} \leqq(r+2)^{\frac{1}{2}} ; \quad t \in \in_{+} I, \quad z \in G . \tag{10}
\end{equation*}
$$

By $\varepsilon^{2}<\frac{\varepsilon}{4}<\frac{r}{4}, \varepsilon^{4}<\frac{r^{2}}{16}$

$$
\begin{equation*}
\sqrt{1-k z} \leqq r^{\frac{1}{2}} \sqrt[4]{19}, \quad t \in \epsilon_{+} I, \quad z \in G \tag{11}
\end{equation*}
$$

For $t \in E_{-} I$ we have the same estimation for $z \in G$. Hence by (9), (10), (11) we have

$$
\begin{aligned}
|\operatorname{grad} U(\zeta)| & \leqq \frac{M}{2 \pi} \int_{-I++I} \operatorname{grad} K(z, t)\left|\frac{d z}{d \xi}\right|\left|\frac{d \xi}{d t}\right| d t \\
& \leqq \frac{M}{2 \pi} \int_{-I++I} \frac{2}{r^{2}} \sqrt{1-z^{2}} \sqrt{1-k^{2} z^{2}} K d t \\
& \leqq \frac{2 M(2+r) \sqrt[4]{19}}{\pi r} \varepsilon^{2} K .
\end{aligned}
$$

Whence $\operatorname{grad} U(\zeta) \leqq \frac{6 \sqrt[4]{19} M \varepsilon^{2} K}{\pi}: r \leqq 1$ and $\underset{\zeta}{\operatorname{grad}} U(\zeta) \leqq \frac{6 \sqrt[4]{19} M \varepsilon K}{\pi}: r \leqq 1$. Thus $|\operatorname{grad} U(\zeta)| \leqq 6 \sqrt[4]{19} M \varepsilon K$.
Now by (6) $K \varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$. Hence for any $\gamma>0$ there exists $\varepsilon_{0}<\varepsilon^{*}$ such that

$$
|\operatorname{grad} U(\zeta)|<\gamma \quad \text { in } \quad R\left(\frac{1}{3}, \frac{K^{\prime}}{K}, \zeta\right) \quad \text { for } \quad \varepsilon<\varepsilon_{0} .
$$

Lemma 9. Let R be a rectangle $\{-\theta \leqq \operatorname{Re} \zeta \leqq \theta, 0 \leqq \operatorname{Im} \zeta \leqq 2 \mathbb{M} \theta\}$. Let $\delta_{\delta}^{U} I_{n}^{i}\left(\frac{L}{\delta} I_{n}^{i}\right)$ be a slit: $0<\delta<\frac{1}{2}$ as follow

$$
\begin{aligned}
& { }_{\delta}^{\amalg} I_{n}^{i}=\left\{\operatorname{Re} \zeta=\frac{2 i \theta}{n}-\theta,\left(\frac{3+\delta}{2}\right) \mathfrak{M} \theta \leqq \operatorname{Im} \zeta \leqq \mathfrak{M}: \theta\right\}, \quad i=1,2, \cdots, n-1 \\
& { }_{\delta}^{\chi} I_{n}^{i}=\left\{\operatorname{Re} \zeta=\frac{2 \imath \theta}{n}-\theta, 0 \leqq \operatorname{Im} \zeta \leqq\left(\frac{1}{2}-\delta\right) \mathfrak{M} \theta\right\} .
\end{aligned}
$$

We denote this rectangle with the slits by $R(\theta, \mathfrak{M} \theta, \delta, n)$. Let R^{\prime} be a rectangle
in $R(\theta, \mathfrak{M} \theta, \delta, n)$ such that $-\frac{\theta}{3} \leqq \operatorname{Re} \leqq \frac{\theta}{3}, \frac{3 \mathfrak{M} \theta}{4} \leqq \operatorname{Im} \zeta \leqq \frac{\operatorname{si} \theta}{4}$. Then for any given $\varepsilon>0$, there exist numbers \mathfrak{M}, n, δ such that

$$
\left|\operatorname{grad}_{\zeta} U(\zeta)\right|<\varepsilon \text { in } \quad R^{\prime},
$$

for any harmonic function $U(\zeta)$ in $R(\theta, \mathfrak{M} \hat{\theta}, \delta, n)$ such that $|U(\zeta)| \leqq 1, U(\zeta)=0$ on $\sum_{\imath}\left({ }_{\delta}^{U} I_{n}^{i}+{ }_{\delta}^{L} I_{n}^{i}\right)$ and $D(U(\zeta)) \leqq 1$.

Proof. At first we determine \mathfrak{M}. By 4) of lemma 8, for any $\varepsilon>0$ there exists a number \mathfrak{M} (this is equivalent to the existence of $k=1-\varepsilon^{2}$) such that $|\operatorname{grad} U(\zeta)|<\varepsilon$ in $R\left(\frac{\theta}{3}, \frac{\mathfrak{M} \theta}{2}\right)=\left\{-\frac{\theta}{3} \leqq \operatorname{Re} \zeta \leqq \frac{\theta}{3}, \frac{\mathfrak{M} \theta}{2} \leqq \operatorname{Im} \zeta \leqq \frac{3 \mathfrak{M}: \theta}{2}\right\}$ for any harmonic function $U(\zeta)$ in $R\left(\theta, \frac{\mathfrak{M} i \theta}{2}\right)=\left\{-\theta \leqq \operatorname{Re} \zeta \leqq \theta, \frac{\mathfrak{M} i \theta}{2} \leqq \operatorname{Im} \zeta \leqq \frac{3 \mathfrak{M} i \theta}{2}\right\}$ vanishing on the horizontal sides and $|U(\zeta)| \leqq 1$ on vertical sides. Fix \mathfrak{M} and denote it by $\mathfrak{M}_{i_{0}}$. Secondly we determine δ. Let $G(\zeta, p)$ be a Green's function of $R\left(\theta, \frac{\mathfrak{M} i \theta}{2}\right)$. Then there exists a const. M such that $\left|\operatorname{grad} \frac{\partial}{\partial n} G(\zeta, p)\right| \leqq M$ for $\zeta \in \partial R\left(\theta, \frac{\mathfrak{M}_{i} \theta}{2}\right)$ and $p \in R\left(\frac{\theta}{3}, \frac{\mathfrak{M}_{i} \theta}{4}\right)=\left\{-\frac{\theta}{3} \leqq \operatorname{Re} \zeta \leqq \frac{\theta}{3}, \frac{3 \mathfrak{M}_{i} \theta}{4} \leqq \operatorname{Im} \zeta \leqq \frac{5 \mathfrak{M}_{i} \theta}{4}\right\}$. A rectangle with vertical slits is mapped by $z=e^{i \zeta}$ onto a circular trapezoid with circular slits. Hence Lemma 1^{\prime} is applicable to a rectangle. Let $R_{\dot{\delta}}=$ $\left\{-\theta \leqq \operatorname{Re} \zeta \leqq \theta, 0 \leqq \operatorname{Im} \zeta \leqq \frac{\mathfrak{W} i \theta}{2}\right\}$ with vertical slits $\left\{{ }_{\delta}^{L} I_{n}^{i}\right\}$. Let δ_{0} be the number and fix it, where

$$
\begin{equation*}
\delta_{0} \leqq \frac{\varepsilon^{2} \pi^{2}}{16 M^{2} \theta} . \tag{12}
\end{equation*}
$$

Let $U_{n}(\zeta)$ be a harmonic function in $R_{\grave{o}}$ such that $D\left(U_{n}(\zeta)\right) \leqq 1$ vanishing on $\left\{{ }_{0}^{L} I_{n}^{i}\right\}$. Then by Lemma $7 \lim _{n} D\left(U_{n}(\zeta)\right) \geqq \frac{1}{\delta_{0}} \int_{\operatorname{Im} \zeta=\frac{\mathfrak{m} \theta}{2}} U(\zeta)^{2} d \theta$. Hence there exists a number n_{0} such that

$$
\begin{equation*}
\int_{\operatorname{Im} \zeta=\frac{m \theta}{2}} U_{n}^{2}(\zeta) d \theta \leqq 2 \delta_{0}=\frac{\varepsilon^{2} \pi^{2}}{8 M^{2} \theta} \quad \text { for } \quad n \geqq n_{0} . \tag{13}
\end{equation*}
$$

Fix such n_{0}. Then such numbers $\mathfrak{M}_{0}, \delta_{0}, n_{0}$ are required numbers. Similar fact occurs in $\left\{-\theta<\operatorname{Re} \zeta<\theta, \frac{3 \mathfrak{N} \theta}{2} \leqq \operatorname{Im} \zeta \leqq 2 \mathfrak{M} \theta\right\}$. Let $U(\zeta)$ be a harmonic function in $R\left(\theta, \mathfrak{M}_{0} \theta, \delta_{0}, n_{0}\right)$ satisfying the condition of Lemma 9. Put $U_{1}(\zeta)=$ $\frac{1}{2 \pi} \int_{A} U(t) \frac{\partial}{\partial n} G(t, \zeta) d s$ and $U_{2}(\zeta)=\int_{B} U(t) \frac{\partial}{\partial n} G(t, \zeta) d s$, where $G(t, \zeta)$ is a Green's function of $R\left(\theta, \frac{\mathfrak{m} t \theta}{2}\right), A$ and B are vertical and horizontal sides. Then $\left|U_{1}(\zeta)\right|$ $\leqq 1$ on A and $=0$ on B. Hence $\left|\operatorname{grad} U_{1}(\zeta)\right|<\frac{\varepsilon}{2}$ in $R\left(\frac{\theta}{3}, \frac{\mathfrak{M} i \theta}{2}\right)$. By Schwarz's
inequality $U_{2}(\zeta)$ satisfies by (13) $\int_{B}\left|U_{2}(\zeta)\right| d \theta<\frac{\pi \varepsilon}{2 M}$ and $\left|\operatorname{grad} U_{2}(\zeta)\right|<\frac{\varepsilon}{2}$ in $R\left(\frac{\theta}{3}, \frac{\mathfrak{M} \theta}{4}\right)=\left\{-\frac{\theta}{3} \leqq \operatorname{Re} \zeta \leqq \frac{3 \theta}{4}, \frac{3 \mathfrak{M} \theta}{4} \leqq \operatorname{Im} \zeta \leqq \frac{5 \mathfrak{M} \cdot \theta}{4}\right\}$. Thus $|\operatorname{grad} U(\zeta)|<\varepsilon$ in $R\left(\frac{\theta}{3}, \frac{\mathfrak{M} \boldsymbol{\imath} \theta}{4}\right)$ for any harmonic function $U(\zeta)$ in $R\left(\theta, \mathfrak{M}_{0} \theta, \delta_{0}, n_{0}\right)$ satisfying the condition of Lemma 9.

Strong surface with exception δ and deviation ε. Let R be the same leaf of $R\left(\theta, \mathfrak{M}_{0} \theta, \delta_{0}, n_{0}\right)$ of Lemma 9. Identify $\left\{{ }_{\delta} I_{n}^{2}+{ }_{\delta}^{L} I_{n}^{i}\right\}$ of \hat{R} and $R\left(\theta, \mathfrak{M}_{0} \theta, \delta_{0}, n_{0}\right)$. Then we have a surface \tilde{R}. As case of Lemma $5\left|\frac{d}{d t} f(t)\right| \leqq 2 \sqrt{2 \varepsilon}$: proj. $t \in$ $R\left(\frac{\theta}{3}, \frac{\mathfrak{R}_{0} \theta}{4}\right)$ in Lemma 9 for any analytic function $f(t): t \in \tilde{R}$ with $|f(t)| \leqq \frac{1}{2}$ and $D(f(t)) \leqq \frac{1}{4}$. Let l be an integer and put $\theta=\frac{\pi}{l}$ and let $\mathfrak{N}_{0}, \delta_{0}, n_{0}$ be numbers in Lemma 9 corresponding to θ. Let $-I^{i}$ and ${ }_{+} I^{2}\left(i=1,2,3, \cdots, l n_{0}\right)$ in $\left\{a \leqq|w| \leqq a e^{\mathfrak{M}^{0}}\right\}: \mathfrak{M}^{0}=\frac{\pi \mathfrak{M}_{0}}{l}$ such that

$$
\begin{aligned}
& I^{2}=\left\{\arg w=\frac{2 \imath \theta}{n_{0}}: a \leqq|w| \leqq a e^{\mathfrak{M}_{0}\left(\frac{1}{2}-\delta_{0}\right)}\right\}, \\
& +I^{2}=\left\{\arg w=\frac{2 \imath \theta}{n_{0}}, a e^{\left(\frac{3}{4}+\delta_{0}\right) \mathfrak{M}^{0}} \leqq|w| \leqq a e^{2 \mathfrak{M}^{0}}\right\} .
\end{aligned}
$$

Let $R^{W}=\left\{a \leqq|w| \leqq a e^{2 \pi n 0}\right\}-\sum_{2}\left(-I^{i}+{ }_{+} I^{i}\right)$ and let \hat{R} be the same leaf as R^{W}. Identify $\left\{-I^{i}+_{+} I^{i}\right\}$. Then we have a surface \tilde{R}^{W}. Let $A\left(\theta_{1}, \theta_{2}\right) \cap \tilde{R}^{W}$ be the part of \tilde{R}^{W} over $\theta_{1}<\arg w<\theta_{2}$. Then $A\left(\frac{2 j_{0} \theta}{n_{0}}, \frac{2 \jmath_{0} \theta+2 n_{0} \theta}{n_{0}}\right) \cap R^{W}$ is mapped conformally onto $R\left(\theta, \mathfrak{M}_{0}, \delta_{0}, n_{0}\right)$ in Lemma 9 by $w=a e^{-i z+\frac{2 \jmath_{0} \theta}{n_{0}}}$ where \jmath_{0} is an integer. Hence we have at once
a) Let \jmath_{1} and j_{2} be integers such that $\jmath_{2}-\jmath_{1} \geqq n_{0}$. Then since $A\left(\frac{2 \jmath_{1} \theta}{n_{0}}, \frac{2 \jmath_{2} \theta}{n_{0}}\right)$ $\supset A\left(\frac{2 j_{3} \theta}{n_{0}}, \frac{2 j_{3} \theta+2 n_{0} \theta}{n_{0}}\right)$ for $j_{1} \leqq J_{3} \leqq J_{2}-n_{0},\left|\frac{d}{d t} f(t)\right| \leqq 2 \sqrt{2} \varepsilon$ in $A\left(\frac{2 j_{1} \theta}{n_{0}}+\frac{2 \theta}{3}, \frac{2 j_{2} \theta}{n_{0}}\right.$ $\left.-\frac{2 \theta}{3}\right) \cap \tilde{R}^{W}$ over $a e^{\frac{3}{4} \mathfrak{m}^{0}}<|w|<e e^{\frac{5}{4} \mathfrak{m}^{0}}$ for and $f(t)$ which is analytic in $A\left(\frac{2 j_{1} \theta}{n_{0}}\right.$, $\left.\frac{2 j_{2} \theta}{n_{0}}\right) \cap \tilde{R}^{W}$ with $|f(t)| \leqq \frac{1}{2}$ and $D(f(t)) \leqq \frac{1}{4}$.
b) Let $\delta=\frac{2 \theta}{3}+\frac{2 \theta}{n_{0}}$. Then $\left|\frac{d}{d t} f(t)\right| \leqq 2 \sqrt{2} \varepsilon$ in $A\left(\theta_{1}+\delta, \theta_{2}-\delta\right) \cap \tilde{R}^{W}$ over $a e^{\frac{3}{4} \mathfrak{m}^{0}}<|w|<a e^{\frac{5}{4} \mathfrak{m}^{0}}$ for any $f(t)$ in $A\left(\theta_{1}, \theta_{2}\right) \cap \tilde{R}^{W}$ for $\theta_{2}-\theta_{1} \geqq 4 \delta$ with $|f(t)|<\frac{1}{2}$, $D(f(t)) \leqq \frac{1}{4}$.

In fact, $\theta_{2}-\theta_{1} \geqq 4 \delta \geqq 2 \theta+\frac{8 \theta}{n_{0}}$. We can find $\theta_{1} \leqq \theta_{1}^{\prime}<\theta_{2}^{\prime} \leqq \theta_{2}$ such that $0 \leqq \theta_{2}-\theta_{1}$
$\leqq \frac{2 \theta}{n_{0}}, 0 \leqq \theta_{1}^{\prime}-\theta_{1} \leqq \frac{2 \theta}{n_{0}}$ and $\theta_{1}^{\prime}=\frac{2 j_{1} \theta}{n_{0}}, \quad \theta_{2}^{\prime}=\frac{2 j_{2} \theta}{n_{0}}$, where j_{1} and j_{2} are integers. Now $j_{2}-\jmath_{1} \geqq n_{0}$, hence by a) $\left|\frac{d}{d t} f(t)\right| \leqq 2 \sqrt{2 \varepsilon}$ in $A\left(\frac{2 j_{1} \theta}{n_{0}}+\frac{2 \theta}{3}, \frac{2 j_{2} \theta}{n_{0}}-\frac{2 \theta}{3}\right) \cap \tilde{R}^{W}$ over $a e^{\frac{3}{4} 2 \mathbb{m}^{0}}<|w|<a e^{\frac{5}{4} m^{0}}$. Now $A\left(\frac{2 j_{1} \theta}{n_{0}}+\frac{2 \theta}{3}, \frac{2 j_{2} \theta}{n_{0}}-\frac{2 \theta}{3}\right) \supset A\left(\theta_{1}+\delta, \theta_{2}-\delta\right)$ by $\frac{2 j_{1} \theta}{n_{0}}+\frac{2 \theta}{3}-\theta_{1}<\frac{2 \theta}{3}+\frac{2 \theta}{n_{0}}<\delta$ and $\theta_{2}-\left(\frac{2 j_{2} \theta}{n_{0}}-\frac{2 \theta}{3}\right) \leqq \frac{2 \theta}{3}+\frac{2 \theta}{n_{0}}<\delta$ and we have b).

In general, let R be a ring surface consisting of two leaves obtained by identifying radial slits over $a<|w| a e^{\mathfrak{m}}$. If $\left|\frac{d}{d t} f(t)\right|<\varepsilon$ over $\left\{a e^{\frac{3}{4} \mathbb{M}}<|w|<a e^{-\frac{5}{4} \mathbb{M}}\right\}$ $\cap A\left(\theta_{1}+\delta, \theta_{2}-\delta\right) \cap \widetilde{R}$ for any analytic function $f(t)$ in $A\left(\theta_{1}, \theta_{2}\right) \cap \widetilde{R}$ with $|f(t)|<\frac{1}{2}$ and $D(f(t)) \leqq \frac{1}{4}: \theta_{2}-\theta_{1}>4 \delta$, we call \tilde{R} a strong surface with exception δ and deviation ε. In fact the surface \tilde{R}^{W} discussed above is a strong surface with exception $\frac{2 \theta}{3}+\frac{2 \theta}{n_{0}}$ and deviation $2 \sqrt{2 \varepsilon}$.
α, β-thin set. Let \tilde{G} be a strong surface with exception δ and with deviation ε over $a<|z|<a e^{m}$. Let F be a closed set in \widetilde{G}. We say F is α, β-thin set in G, if F is so thinly distributed that there exists a Jordan curve Γ in $G-F$ and $\hat{G}-F$ such that 1) proj Γ separates $|z|=a$ from $|z|=a e^{\mathfrak{M}}$, 2) length of $\Gamma \leqq \alpha a$. 3) $\left|\frac{d}{d t} f(t)\right|<\beta \varepsilon$ on $\Gamma \cap A^{\widetilde{G}}\left(\theta_{1}+\delta, \theta_{2}-\delta\right)$ for any analytic function $f(t)$ in $(\tilde{G}-F)$ $\cap A^{\widetilde{G}}\left(\theta_{1}, \theta_{2}\right): \theta_{2}-\theta_{1} \geqq 4 \delta$ with $|f(t)| \leqq \frac{1}{2}$ and $D(f(t)) \leqq \frac{1}{4}$, where $A^{\widetilde{G}}\left(\theta_{1}, \theta_{2}\right)$ means the part of \tilde{G} over $\theta_{1} \leqq \arg z \leqq \theta_{2}$.

Example 3. Let $U=|z|<1$ and $1>a_{1}>a_{2} \cdots \downarrow 0$ and

$$
\begin{equation*}
\sum_{n} \log \frac{a_{2 n+1}}{a_{2 n+2}}=\infty \tag{14}
\end{equation*}
$$

Let $J_{n}=\left\{\arg z=\pi, a_{2 n+2} \leqq|z| \leqq a_{2 n+1}\right\}$ be a slit and $R\left(a_{2 n+2}, a_{2 n+1}\right)=\left\{a_{2 n+2} \leqq|z| \leqq\right.$ $\left.a_{2 n+1}\right\}$. Let $1>b_{1}^{\prime}>b_{1}>b_{2}^{\prime}>b_{2} \cdots \downarrow 0 \quad G_{n}$ be a ring $b_{n} \leqq|z| \leqq b_{n}^{\prime}$ with slits $\sum_{\imath=1}^{j(n)} I_{j(n)}^{i}$ such that we can construct a strong surface \tilde{G}_{n} with exception $\delta=\frac{1}{n}$ with deviation c_{n}, where $\lim _{n=\infty} \frac{\log c_{n}}{\log b_{n}}=\infty, \sum_{n}^{\infty} R\left(b_{n}, b_{n}^{\prime}\right) \cap \sum_{n}^{\infty} R\left(a_{2 n+2}, a_{2 n+1}\right)=0$ and

$$
\begin{equation*}
\lim _{n=\infty} \frac{\log b_{n}}{\log b_{n}^{\prime}}=1 \tag{15}
\end{equation*}
$$

Let \mathfrak{F} be a unit circle wtih slits $\sum^{\infty} J_{n}+\sum_{n=1}^{\infty} \sum_{\imath=1}^{j(n)} I_{j(n)}^{i}$ and $\hat{\mathfrak{F}}$ be the same leaf as \mathfrak{F}. Identify $J_{n}+I_{n}^{i}$ of \mathfrak{F} and $\hat{\mathfrak{F}}$. Then we have a Riemann surface $\hat{\mathfrak{F}}$. Evidently $\tilde{\mathfrak{F}}$ has one boundary component \mathfrak{p}. The part of $\widetilde{\mathfrak{F}}$ over $R\left(a_{2 n+1}, a_{2 n+2}\right)$ is a ring
with module $=\frac{1}{2} \log \frac{a_{2 n+1}}{a_{2 n+2}}$ and separates $\partial \mathscr{F}$ from \mathfrak{p}, hence $\tilde{\mathscr{F}}$ is an end of another Riemann surface $\in O_{g}$ and \mathfrak{p} is of harmonic dimension $=1$ and there exists only one Martin point p over \mathfrak{p}.
a) Let F_{1} be a set of radial slits in $\tilde{\mathscr{F}}-\sum_{n} \tilde{G}_{n}$.
b) $F_{2} \cap \tilde{G}_{n}$ is an α, β-thin set for $n=1,2, \cdots$.
c) Let $A\left(\theta_{1}, \theta_{2}\right)=\left\{\theta_{1}<\arg z<\theta_{2}\right\}$. Let $A^{\mathfrak{F}}\left(\theta_{1}, \theta_{2}, b_{n}^{\prime}\right)($ or $\hat{\mathfrak{F}})$ be the part of \mathfrak{F} over $A\left(\theta_{1}, \theta_{2}\right)$ bounded by $|z|=1,|z|=b_{n}^{\prime}, \arg z=\theta_{1}$ and $\arg z=\theta_{2}$. Let $U_{n}(z)$ be a harmonic function in $A^{\mathfrak{\delta}}\left(\theta_{1}, \theta_{2}, b_{n}^{\prime}\right)-F_{1}-F_{2}$ such that $U_{n}(z)=0$ on $|z|=1,=1$ on $|z|=b_{n}^{\prime}$ and has M.D.I. Then

$$
\begin{equation*}
D\left(U_{n}(z)\right) \geqq \frac{\gamma\left(\theta_{2}-\theta_{1}\right)}{-\log b_{n}^{\prime}}: \quad \gamma>0 . \tag{16}
\end{equation*}
$$

d) $v(p) \cap A^{\Re}\left(\theta_{1}, \theta_{2}, b\right)-F_{1}-F_{2}$ is connected for $\theta_{2}>\theta_{1}$. If F_{1} and F_{2} satısfy the above conditions, then the part of $\left(v(p)-F_{1}-F_{2}\right)$ over $A\left(\theta_{1}, \theta_{2}\right) \in O_{A B F}$ for any $\theta_{2}>\theta_{1}$.

Proof. Assume there exists a non const. analytic fuuction $f(t)$ in the part $v(p)-F_{1}-F_{2}$ over $A\left(\theta_{1}, \theta_{2}\right)$. Then $f(t)$ is a finite number of sheets covering. $\sup |f(t)|<\infty$ implies $D(f(t))<\infty$. Hence we can suppose $|f(t)|<\frac{1}{2}, D(f(t)) \leqq \frac{1}{4}$. Let n_{0} be the number such that $4 \delta_{n_{0}}<\frac{\theta_{2}-\theta_{1}}{4}$. Let $\theta_{1}^{\prime}=\frac{3 \theta_{1}+\theta_{2}}{4}, \theta_{2}^{\prime}=\frac{\theta_{1}+3 \theta_{2}}{4}$. Then $\theta_{1}<\theta_{1}^{\prime}<\theta_{2}^{\prime}<\theta_{2}$. Let $\left(v(p)-F_{1}-F_{2}\right) \cap A\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)$ be the part of $v(p)-F_{1}-F_{2}$ over $A\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)$. The existence of $f(t)$ in $\left(v(p)-F_{1}-F_{2}\right) \cap A\left(\theta_{1}, \theta_{2}\right)$ implies there exists a Jordan curve Γ_{n} such that $\left|\frac{d}{d t} f(t)\right|<\beta c_{n}$ on Γ_{n} in $\left(v(p)-F_{1}-F_{2}\right) \cap A\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)$ and length of $\Gamma_{n}<\alpha b_{n}$. Let \mathfrak{F}_{n} be the part of $\mathfrak{F} \cap\left(v(p)-F_{1}-F_{2}\right)$ over $A\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)$ bounded by $\partial v(p), F_{1}, F_{2} \arg z=\theta_{1}^{\prime}$, $\arg z=\theta_{2}^{\prime}$ and Γ_{n}. Let $U_{n}(z)$ be a harmonic function in \mathscr{F}_{n} such that $U_{n}(z)=0$ on $\partial v(p),=1$ on Γ_{n}. Then as case of example 2 we have

$$
D\left(U_{n}(z)\right) \leqq 0\left(\frac{1}{-\log b_{n}-\log c_{n}-\log \alpha \beta}\right) .
$$

On the other hand by condition c) $D\left(U_{n}(z)\right) \geqq 0\left(\frac{\theta_{2}^{\prime}-\theta_{1}^{\prime \prime}}{-\log b_{n}}\right)$. This is a contradiction by $\lim \frac{\log c_{n}}{\log b_{n}}=\infty$. Hence we have the conclusion.

EXAMPLE 4. Let $\frac{1}{3}<a_{1}<a_{2}, \cdots \uparrow 1$ with $\sum_{n} \log \frac{1-a_{2 n+1}}{1-a_{2 n+2}}=\infty$. Let G_{n} be a ring $\left\{b_{n} \leqq|z| \leqq b_{n}^{\prime}\right\}$ with slits $\sum_{i=1}^{j(n)} I_{j(n)}^{i}$ such that

1) $\frac{1}{3}<b_{n}<b_{n}^{\prime}<b_{n+1}<b_{n+1}^{\prime} \cdots \uparrow 1$ and $\sum_{n}\left\{b_{n} \leqq|z| \leqq b_{n}^{\prime}\right\} \cap \Sigma\left\{a_{2 n+1} \leqq|z| \leqq a_{2 n+2}\right\}$ $=0$.
2) \tilde{G}_{n} is a strong surface with exception $\delta_{n}=\frac{1}{n}$ and deviation $\varepsilon_{n}: \lim _{n=\infty} \varepsilon_{n}=0$.
3) $\underset{|z|=\lambda b^{b} b_{n} b_{n}^{\prime}}{\omega_{n}(z)} \leqq \frac{1}{n}$, where $\omega_{n}(z)$ is a harmonic function in G_{n} such that $0<\omega_{n}(z) \leqq 1$ on G_{n} and $=0$ on $\sum_{i}^{j(n)} I_{j(n)}^{i}$ (this condition is easily satisfied by Lemma 8. 2) for sufficiently many slits). Let \mathfrak{F} be a unit circle with slits $I_{j(n)}^{i}(n=1$, $2,3, \cdots, i=1,2, \cdots, j(n))$. Let $\hat{\mathfrak{F}}$ be the same leaf as \mathfrak{F}. Identify $I_{j(n)}^{i}$ of \mathfrak{F} and $\hat{\mathfrak{F}}$. Then we have a Riemann surface $\widetilde{\widetilde{F}}$ over $|z|<1$ with one boundary component on $|z|=1$. The part of over $G_{n}\left(b_{n}, b_{n}^{\prime}\right)$ is an strong surface. At first we investigate the structure of the boundary. Then
4) $\tilde{\mathfrak{F}}$ has no singular point relative to N-Martin and Martin topology.
5) There exsits only one point on $e^{i \theta}$ relative to N-Martin topology.

Proof of 1) Let $\tilde{\mathscr{F}}^{\prime}$ be the part of \mathfrak{F} over $1>|z|>\frac{1}{3}$. Then $\tilde{\mathscr{F}}^{\prime}$ has relative boundary $\partial \widetilde{\mathscr{W}}^{\prime}$ on $|z|=\frac{1}{3}$. We suppose N-Martin topology is defined on $\tilde{\mathfrak{F}}^{\prime}$. Let $\Delta_{n, \imath}=\left\{1-\frac{1}{n} \leqq|z|<1, \frac{2 \pi i}{n} \leqq \arg z \leqq \frac{2 \pi(i+1)}{n}: \imath=0,1, \cdots, n-1\right\}$. Let G be a domain in $\widetilde{\mathscr{F}}^{\prime}$ and let $\omega(G, t): t \in \widetilde{\mathfrak{F}}^{\prime}$ be capacitary potential, i. e. $\omega(G, t)$ is the harmonic function in $\widetilde{\mathscr{F}}^{\prime}-G$ such that $\omega(G, t)=0$ on $\partial \tilde{\mathfrak{\vartheta}}^{\prime},=1$ on G and has M. D. I. Let $U(z)$ be a harmonic function in $\left\{\frac{1}{3}<|z|<1\right\}-\Delta_{n, 2}$ such that $U(z)=1$ on $\Delta_{n, 2},=0$ on $|z|=1$ and $U(z)$ has M. D. I. Then

$$
D(U(z)) \leqq \frac{-\pi \log \left(\text { diameter of } \Delta_{n, 2}\right)}{\pi \log \frac{2}{3}} \downarrow 0 \text { as } n \rightarrow \infty
$$

Let $U^{\prime}(z)$ be a harmonic function in $\left\{\frac{1}{3}<|z|<1\right\}-\sum_{n, 2} I_{n, 2}$ such that $U^{\prime}(z)=1$ on $\Delta_{n, 2},=0$ on $|z|=\frac{1}{3}$ and has M.D.I. Then $D\left(U^{\prime}(z)\right) \leqq D(U(z))$ and $\frac{\partial}{\partial n} U^{\prime}(z)=0$ on $\sum I_{n, 2}$. Put $U^{\prime}(t)=U^{\prime}(z)(z=\operatorname{proj} t)$ in $\widetilde{\mathfrak{F}}^{\prime}-U_{n, 2}^{\widetilde{\widetilde{ }},}$, where $\Delta_{n, 2}^{\widetilde{\widetilde{ }}, ~ i s ~ t h e ~ p a r t ~ o f ~} \tilde{\mathfrak{F}}^{\prime}$ over $\Delta_{n, \imath}$. Then $U^{\prime}(t)$ is harmonic in $\widetilde{\mathscr{F}}^{\prime}-\|_{n, 2}^{\widetilde{\widetilde{F}}}$. Hence $D\left(\omega\left(\|_{n, \imath}^{\widetilde{\widetilde{F}}}, t\right)\right) \leqq 2 D\left(U^{\prime}(z)\right) \downarrow 0$ as $n \rightarrow \infty$. This implies $\omega\left(\Delta_{n, 2}^{\widetilde{\lessgtr}}, t\right) \rightarrow 0$ as $n \rightarrow \infty$. Assume there exists a singular point p relative to N-Martin topology. Then $\omega(p, t)=\lim _{m=\infty} \omega\left(v_{m}(p), t\right)>0$. Where $v_{m}(p)$ is a neighbourhood of p relative to N-Martin topology. Let t_{0} be a point and let n_{0} be a number such than

$$
\begin{equation*}
\omega\left(\Delta_{n, 2}^{\widetilde{\S}}, t_{0}\right)<\frac{1}{3} \omega\left(p, t_{0}\right) \quad \text { for } \quad i=1,2, \cdots, n_{0} \tag{17}
\end{equation*}
$$

Now $\sum_{\imath}^{n_{0}} \omega\left(\Delta_{n_{0}, i}^{\tilde{F}_{n}} \cap v_{m}(p), t\right) \geqq \omega\left(v_{m}(p), t\right) \geqq \omega(p, t)$, where we suppose proj $v_{m}(p) \subset$ $\left(|z|>1-\frac{1}{n_{0}}\right)$. Since $\omega\left(\Delta_{n_{0}, i}^{\widetilde{\S}} \cap v_{m}(p), t\right) \downarrow$ as $m \rightarrow \infty$, there exists at least one

$\lim _{m=\infty} \omega\left(\Delta_{n_{0}, \nu_{0}} \cap v_{m}(p), t\right)=\alpha \omega(p, t) \quad$ by $\cap \overline{v_{m}(p) \cap \Delta_{n_{0}, \nu_{0}}} \subset p$. On the other hand, $\lim _{m} \omega\left(\Delta_{n_{0}, 2_{0} \cap} \cap v_{m}(p), t\right)>0$ implies $\sup \left(\lim _{m} \omega\left(\Delta_{n_{0}, 2_{0}} \cap v_{m}(p), t\right)\right)=1$ and $\alpha=1$, whence $\frac{1}{3} \omega\left(p, t_{0}\right) \geqq \lim _{m} \omega\left(\Delta_{n_{0}, 2} \cap v_{m}(p), t_{0}\right)=\omega\left(p, t_{0}\right)$ by (17). This is a contradiction. Hence there exsits no singular point relative to N-Martin topology. Assume there exists a singular point p relative to Martin topology. Then $\lim _{m} w\left(v_{m}(p), t\right)$ $=w(p, t)>0$, where $v_{m}(p)$ is a neighbourhood of p relative to Martin topology and $w(G, t)$ is H . M. of G i. e. is the least positive superharmonic function in $\widetilde{\mathscr{F}}^{\prime}$ larger than 1 on G. Now $w\left(\Delta_{n_{0}, \imath_{0}}^{\widetilde{T}}, t\right) \leqq \omega\left(\Delta_{n_{0}, r_{0}}^{\widetilde{\tilde{}}}, t\right)$. Hence we can prove similarly as case of $\omega(p, z)$ that there exists no singular point relative to Martin topology.

Proof of 2) To prove 2) we use following three facts.
a) Let t and \hat{t} be points in $\widetilde{\vartheta}$ and $\widetilde{\mathcal{F}}$ such that $\operatorname{proj} t_{1}=\operatorname{proj} t_{2}=z$. Let $U(t)$ be a harmonic function in $\tilde{\mathscr{F}}^{\prime}$ such that $|U(t)|<M$. Then $|U(t)-U(\hat{t})| \rightarrow 0$ as $|z| \rightarrow 1$.

In fact, consider $U(t)-U(\hat{t})$ over $b_{n}<|z|<b_{n}^{\prime}$. Then $|U(t)-U(\hat{t})| \leqq 2 M \omega_{n}(z)$. Hence by the maximum principle $|U(t)-U(\hat{t})|<2 M \times \max \left(\varepsilon_{n}, \varepsilon_{n+1}\right)$ over $\sqrt{b_{n} b_{n}^{\prime}}$ $\leqq|z| \leqq \sqrt{b_{n+1} b_{n+1}^{\prime}}$ and we have a).
b) Let $U(t)$ be a harmonic function in $\widetilde{\mathscr{F}}^{\prime}$ such that $U(t)$ has M. D. I. among all harmonic functions with the same value as $U(z)$ on $\partial \widetilde{\mathfrak{q}}^{\prime}$ over $\widetilde{\mathfrak{F}}^{\prime}$. Let G be a domain in $\tilde{\widetilde{\gamma}}^{\prime}$. Then $\sup _{t \in G}|U(t)| \leqq \sup _{t \in \partial G}|U(t)|$.

Because let $\left\{\tilde{\mathscr{\vartheta}}_{n}^{\prime}\right\}$ be an exhaustion of $\tilde{\mathfrak{F}}^{\prime}$ such that $\partial \widetilde{\mathscr{F}}_{n}^{\prime} \supset \partial \mathscr{\mho}^{\prime}$ for any n and $\tilde{\mathfrak{\mho}}_{n}^{\prime} \uparrow \widetilde{\mathfrak{F}}^{\prime}$. Let $U_{n}(t)$ be a harmonic function in $\widetilde{\mathfrak{W}}_{n}^{\prime}$ such that $U_{n}(t)=U(t)$ on $\partial \widetilde{\mathfrak{\mho}}^{\prime}$ and $\frac{\partial}{\partial n} U_{n}(t)=0$ on $\partial \widetilde{\mho}_{n}^{\prime}-\partial \widetilde{\widetilde{\mho}}^{\prime}$. Then $U_{n}(t) \rightarrow U(t)$. Clearly for $U_{n}(t)$, by the maximum principle $\sup _{t \in G}\left|U_{n}(t)\right| \leqq \sup _{t \in \partial G}|U(t)|$. Hence we have b).
c) Let $U(t)$ be a harmonic function in $\widetilde{\mathscr{Y}}^{\prime}$ with $D(U(t))<\infty$. Then there exists a curve $\tilde{\Gamma}_{n}: n=1,2, \cdots$ consisting of two components : $\tilde{\Gamma}_{n}=\Gamma_{n}+\hat{\Gamma}_{n}$ in such that $\Gamma_{n} \subset \widetilde{\vartheta}^{\prime}, \quad \hat{\Gamma}_{n} \subset \widetilde{\mathfrak{V}}^{\prime}, \quad \operatorname{proj} \Gamma_{n}=\operatorname{proj} \hat{\Gamma}_{n}, \quad \operatorname{proj} \tilde{\Gamma}_{n} \cap \sum_{n, 2} I_{n}^{i}=0, \quad \operatorname{proj} \tilde{\Gamma}_{n} \quad$ separates $z=e^{i \theta}$ from $|z|=\frac{1}{3}, \operatorname{proj} \tilde{\Gamma}_{n} \rightarrow e^{i \theta}$ as $n \rightarrow \infty$ and $\int_{\tilde{\Gamma}_{n}}|\operatorname{grad} U(t)| d t \rightarrow 0$ as $n \rightarrow \infty$.

Proof. We suppose $e^{i \theta}=1$. Map U (unit circle with slits I_{n}^{i}) by $\xi=\log z$ in the ξ-plane. Then $z=1 \rightarrow \xi=0, I_{j(n)}^{i} \rightarrow a$ horizontal slits ${ }_{\xi} I_{j(n)}^{i}$. Let $\Delta_{1}=\{0 \leqq \operatorname{Im} \xi \leqq l$, $\left.\frac{\pi}{2} \leqq \arg \xi \leqq \frac{3 \pi}{4}\right\}, \Delta_{2}=\left\{-l \leqq \operatorname{Re} \xi \leqq 0, \frac{3 \pi}{4}<\arg \xi \leqq \frac{5 \pi}{4}\right\}, \Delta_{3}=\left\{0 \geqq \operatorname{Re} \xi \geqq-l, \frac{5 \pi}{4}<\right.$ $\left.\arg \xi \leqq \frac{3 \pi}{2}\right\}$, where $l=1$. Let $\eta=g(\xi)$ be a one to one mapping from $\Delta_{1}+\Delta_{2}+\Delta_{3}$ to $\left\{0 \leqq|\eta| \leqq l, \frac{\pi}{2} \leqq \arg \eta \leqq \frac{3 \pi}{2}\right\}$ such that

$$
(r=\operatorname{Im} \xi, \theta=\arg \xi) \text { in } \Delta_{1}, \quad(r=-\operatorname{Re} \xi, \theta=\arg \xi) \text { in } \Delta_{2}
$$

and $\quad(r=-\operatorname{Im} \xi, \theta=\arg \xi)$ in Δ_{3}, where $r e^{i \theta}=\eta=g(\xi)$.

We see by computation $\eta=g(\xi)$ is a quasiconformal mapping with maximal dilation quotient $=K \leqq \frac{3+\sqrt{5}}{2}$. Let $R^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right)=\Delta_{1} \cap\left(-\log a_{2 n+2} \leqq \operatorname{Im} \xi \leqq\right.$ $\left.\left.-\log a_{2 n+1}\right)\right\}+\Delta_{2} \cap\left\{\log a_{2 n+1} \leqq \operatorname{Re} \xi \leqq \log a_{2 n+2}\right\}+\Delta_{3} \cap\left\{\log a_{2 n+2} \geqq \operatorname{Im} \xi \geqq \log a_{2 n+1}\right\}$. Then $g(\xi)$ maps $R^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right)$ onto a semiring $R^{\eta}\left(a_{2 n+1}, a_{2 n+2}\right)=\left\{-\log a_{2 n+1} \leqq\right.$ $\left.|\eta| \leqq-\log a_{2 n+2}, \frac{\pi}{2} \leqq \arg \eta \leqq \frac{3 \pi}{2}\right\}$. We remark ${ }^{\xi} I_{j(n)}^{i}$ contained in $\left(\Lambda_{1}+\Delta_{2}\right) \cap$ $R^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right) \rightarrow$ a circular slit ${ }_{\eta} I_{j(n)}^{i}$ in $R^{\eta}\left(a_{2 n+1}, a_{2 n+2}\right)$ and there is no slit in $\Delta_{2} \cap R^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right)$. Hence $R^{\eta}\left(a_{2 n+1}, a_{2 n+2}\right)$ has only circular slits. Let $\hat{R}^{\Delta}\left(a_{2 n+1}\right.$, $\left.a_{2 n+2}\right)$ be the same leaf as $R^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right)$. Identify ξ_{n}^{i} of $R^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right)$ and $\hat{R}^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right)$. Then we have a surface $\tilde{R}^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right)$. We construct a surface $\tilde{R}^{\eta}\left(a_{2 n+1}, a_{2 n+2}\right)$ from $R^{\eta}\left(a_{2 n+1}, a_{2 n+2}\right)$ similarly. Then $\eta=g(\xi)$ continued to a quasiconformal mapping from $\widetilde{R}^{\Delta}\left(a_{2 n+1}, a_{2 n+2}\right)$ to $\widetilde{R}^{\eta}\left(a_{2 n+1}, a_{2 n+2}\right)$ with the same maximal dilatation quotient except on $\sum I_{n}^{i}$. Consider the function $U(t): t \in \widetilde{\widetilde{F}}^{\prime}$. $z=$ proj t. Then $U(\eta)=U\left(\exp \left(g^{-1}(\eta)\right)\right)$ is not harmonic in $\eta \widetilde{R}\left(a_{2 n+1}, a_{2 n+2}\right)$ but a Dirichlet bounded function and

$$
\sum_{n} \sum_{\tilde{R}\left(a_{2 n+1}, a_{2 n+2}\right)}^{D(U(\eta))} \underset{\tilde{R}\left(a_{2 n+1}, a_{2 n+2}\right)}{\sum K D(U(\xi))} \leqq \underset{\widetilde{\mathscr{F}}^{\prime}}{\underset{\sim}{N}(U(t))<\infty .}
$$

Put $\eta=r e^{i \theta}$ and $L(r)=\int_{C_{r}}\left|\frac{\partial u}{\partial \theta}\left(r e^{i \theta}\right)\right| d \theta$, where $C_{r}=\{|\eta|=r\}$ is contained in $\Sigma_{\eta} \widetilde{R}\left(a_{2 n+1}, a_{2 n+2}\right)$ and composed of two components, $C(r)$ does not intersect ${ }_{\xi} I_{n}^{i}$ except a set of r of measure zero. By Schwarz's inequality

$$
\int_{\Sigma \lambda_{n}} \frac{L^{2}(r)}{r} d r \leqq \sum_{n}{ }_{\eta} \tilde{R}\left(U\left(a_{2 n+1}, a_{2 n+2}\right)<\infty\right.
$$

where λ_{n} is an interval $=\left\{-\log a_{2 n+2},-\log a_{2 n+1}\right\}$. By $\sum_{n} \log \left(\frac{\log a_{2 n+1}}{\log a_{2 n+2}}\right) \sim$ $\sum_{n} \log \frac{1-a_{2 n+1}}{1-a_{2 n+2}}=\infty$, we see there exists a sequence $\left\{r_{n}\right\}$ such that $C_{r_{n}}$ does not touch $\left\{I_{n}^{i}\right\}$ and $L\left(r_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Let $\Gamma_{n}=g^{-1}\left(C_{r_{n}}\right)$. Then clearly proj $\Gamma_{n} \rightarrow z=1$. Hence Γ_{n} is a required curve.

Let $U(t)$ be a harmonic function in $\tilde{\mathscr{F}}^{\prime}$ such that $U(t)$ has M. D. I. among all harmonic functions with the same value as $U(t)$ on $\partial \widetilde{\mathfrak{y}}^{\prime}$. Then by a), b) and c) $U(t)$ has a limit as proj $t \rightarrow z=1$. Hence there exists only one N-Martin point over $e^{i \theta}$. Let p be the N-Martin point over $e^{i \theta}$. Then since there exists only one point p over $e^{i \theta}$, dist $\left(e^{i \theta}, \operatorname{proj} \partial v_{n}(p)\right)>0$ for any $v_{n}(p)=\{t$: Martin distance $\left.(t, p)<\frac{1}{n}\right\}$. Let F_{1} be a set of radial slits in the part of $\tilde{\mathscr{W}}_{1}$ over $\Sigma R\left(a_{2 n+1}\right.$, $a_{2 n+2}$). Now the part of $\tilde{\mathfrak{F}}^{\prime}$ over $b_{n}<|z|<b_{n}^{\prime}$ is an strong surface with $\delta_{n}, \varepsilon_{n}$. Let F_{2} be a closed set in $\tilde{\mathscr{F}}^{\prime}$ such that F_{2} is an α, β-thin set in the part of $\widetilde{\mathcal{F}}^{\prime}$ over $R\left(b_{n}, b_{n}^{\prime}\right)(n=1,2, \cdots)$ and 2) $D(U(z))>\gamma\left(\theta_{2}-\theta_{1}\right): \gamma>0$ where $U(z)$ is a harmonic function in $\dddot{\vartheta}^{\prime} \cap\left(\frac{1}{3}<|z|<1, \theta_{1}<\arg z<\theta_{2}\right)-F_{1}-F_{2}$ such that $U(z)=0$
on $|z|=\frac{1}{3}, U(z)=1$ on $|z|=1$ and $U(z)$ has M. D. I. Then we have as example 3 following

Proposition.

$$
\left(v_{n}(p)-F_{1}-F_{2}\right) \in O_{A B F} .
$$

References

[1] Z. Kuramochi, Singular points of Riemann surfaces. J. Fac. Sci. Hokkaido Univ., 16, 80-104 (1962).
C. Constantinesu and A. Cornea, Ideale Ränder Riemannscher Flächen, Berlin-Göttingen-Helderberg: Springer (1963).
[2] M. Heins, Riemann surfaces of infinite genus. Ann. Math., 52, 296-317 (1952).
[3] Z. Kuramochi, On minimal points of Riemann surfaces. II. Hokkaido Math. Jour. Vol. II, 139-175 (1973).
[4] P.J. Myrberg, Über die analytische Fortsetzung von beschränkten Funktionen. Ann. Acad. Sci. Fenn. Ser. A. I. No. 58 (1949).
[5] See (2).
[6] Z. Kuramochi, On the behaviour of analytic functions on abstract Riemann surfaces. Osaka Math. J., 7, 109-127 (1955).
[7] See Lemma 8.

