ON ANALYTIC FUNCTIONS IN A NEIGHBOURHOOD OF BOUNDARY POINTS OF RIEMANN SURFACES

Dedicated to Professor Yûsaku KOMATU on his 60th Birthday

BY ZENJIRO KURAMOCHI

THEOREM 1¹⁾. Let $R \notin O_g$ be a Riemann surface and let p be a singular point relative to Martin topology (i.e. p is minimal and sup $K(z, p) < \infty$). Then $G \in O_{AB}$ for a domain G such that CG is thin at p.

Analogous theorems¹⁾ are obtained relative to N-Martin topology.

THEOREM 2²⁰. Let G be an end (domain G of R with compact relative boundary ∂G) of $R \in O_g$. Let \mathfrak{p} be an ideal boundary component of G. Let $f(t): t \in G$ be an analytic function. If $|f(t)| \leq M < \infty$ in G, then $f(t) \rightarrow a$ limit as $t \rightarrow \mathfrak{p}$, f(G)is a covering surface over the w-plane of a finite number N sheets and the harmonic dimension of \mathfrak{p} is $\leq N$.

THEOREM 2⁽³⁾. Let \mathfrak{p} be a one in Theorem 2. Let F be a completely thin set at \mathfrak{p} . If G-F is represented as a covering surface of N number of sheets, the harmonic dimension of $\mathfrak{p} \leq N$.

These theorems mean a singular point p (or boundary component of harmonic dimension ∞) is so much complicated as $G - F \in O_{AB}$ (or O_{AF}) and the complicacy of p (or \mathfrak{p}) is not disturbed by extracting a small set F from G, where F is thin at p (or F is completely thin at \mathfrak{p}) and O_{AF} means a class of Riemann surface R on which there exists no non constant analytic function f(t) such that f(R) is at most a finite number of sheets. From these points of view we propose the following

PROBLEM 1. About Theorem 1, is there a non singular point p such that $v(p)-F \in O_{AB}$? In other words, is the existence of a singular point necessary for $v(p)-F \in O_{AB}$? where v(p) is a neighbourhood of p and F is thin at p.

PROBLEM 2. About Theorem 2 and 2', is it true that there exists a boundary point p, instead of \mathfrak{p} such that $G - F \in O_{AB}$? where F is thin at p.

But these problems are difficult and in this paper we can only show examples as follows: Example 1. There exists a point p of a Riemann surface $R \in O_g$ such that $v(p) \in O_{AB}$. Example 2 and 3. There exists a boundary point p of $R \in O_g$

Received Feb. 15, 1974.

ANALYTIC FUNCTIONS

such that $v(p)-F \in O_{ADF}$ or O_{ABF} , where F is a small set in a sense and $O_{ADF}(O_{ABF})$ means a class of Riemann surface on which there exists no non constant Drichlet bounded (bounded) analytic function such that f(R) is a covering surface of a finite number of sheets. Clearly $O_{ABF} \subset O_{ADF}$. Example 4. There exists a non singular point p of a Riemann surface $\notin O_g$ such that $v(p)-F \in O_{ABF}$, where F is a small set. At first we shall construct an example using P. J. Myrberg's idea⁴.

EXAMPLE 1. Let \mathfrak{F}_0 be a unit disc: |z| < 1 with slits $J_n: n=1, 2, \cdots$ and $I_n^i: n=1, 2, \cdots, i=1, 2, \cdots$ as follow

$$J_n = \{a_{2n+2} \le \operatorname{Re} z \le a_{2n+1}, \operatorname{Im} z = 0\}$$
,

where $1 > a_1 > a_2 \dots \downarrow 0$ and $\sum_{n=1}^{\infty} \frac{1}{n+1} \log \frac{a_{2n+1}}{a_{2n+2}} = \infty$.

$$I_n^i = \left\{ \arg z = \frac{\pi}{2} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}} \right), \ b_{n,2i+1} \leq |z| \leq b_{n,2i-1} \right\},$$

where $a_{2n+2} > b_{n,1} > b_{n,2} \dots \downarrow 0$, $\sum_{i=1}^{\infty} (b_{n,i})^{2n} = \infty$ for any *n* and $\sum_{n} \sum_{i} I_n^i \cap \sum R_i(a_{2n+1}, a_{2n+1})^{2n}$ $a_{2n+2} = 0$, where $R_z(a_{2n+1}, a_{2n+2}) = \{a_{2n+2} \leq |z| \leq a_{2n+1}\}$. Let $\mathfrak{F}_n : n \geq 1$ be a leaf of the whole z-plane with slits $\sum_{n=1}^{\infty} J_m + \sum_{n=1}^{\infty} I_n^i$. Connect \mathfrak{F}_0 with $\mathfrak{F}_n: n=1, 2, \cdots$ crosswise on $\sum_{i=1}^{\infty} I_n^i$ so that endpoints of I_n^i are branch points of order 1. Connect $\mathfrak{F}_0, \mathfrak{F}_1, \cdots, \mathfrak{F}_n$ on $J_n: n=1, 2, \cdots$ so that endpoints of J_n are branch points of order n. Then we have a Riemann surface \Re over the z-plane with compact relative boundary $\partial \mathfrak{R} = \{|z|=1 \text{ of } \mathfrak{F}_0\}$. It is evident \mathfrak{R} has only one boundary component \mathfrak{p} . Let $R(a_{2n+1}, a_{2n+2})$ be the part of $\mathfrak{F}_0 + \mathfrak{F}_1 + \cdots + \mathfrak{F}_n$ over $R_z(a_{2n+1}, a_{2n+2})$. Then $R(a_{2n+1}, a_{2n+2})$ is a ring domain with two boundary components over $|z| = a_{2n+1}$ and $|z| = a_{2n+2}$ with module $= \frac{1}{n+1} \log \frac{a_{2n+1}}{a_{2n+2}}$ and $R(a_{2n+1}, a_{2n+2})$ separates \mathfrak{p} from $\partial \mathfrak{R}$. By $\sum_{n=1}^{\infty} \mod R(a_{2n+1}, a_{2n+2}) = \infty \mathfrak{R}$ is an end of another Riemann surface $\in O_g$ and \mathfrak{p} is of harmonic dimension⁵⁾=1. Therefore there exists only one Martin point p on \mathfrak{p} . Clearly p is minimal. Let C_n be the boundary component lying over $|z| = a_{2n+2}$ of $R(a_{2n+1}, a_{2n+2})$ and let G_n be the domain of \Re divided by C_n such that G_n is a neighbourhood of \mathfrak{p} . Put $\mathfrak{R}_n = \mathfrak{R} - G_n$. Then \mathfrak{R}_n is an (n+1) sheeted covering surface and $\Re = \sum_{n=1}^{\infty} \Re_n$. Let v(p) be a neighbourhood of p relative to Martin topology. Then there exists a number n_0 such that $v(p) \supset$ $\Re-\Re_{n_0}$. Assume there exists a bounded analytic function $f(t): t \in v(p)$. Let $A_{n} = \{0 < |z| < r, \ \theta_{1,n} < \arg z < \theta_{2,n}\}: r = a_{2n_{0}+2}, \ \theta_{1,n} = \frac{\pi}{2} \left(1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}} - \frac{1}{2^{n}}\right),$ $\theta_{2,n} = \frac{\pi}{2} \Big(1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}} + \frac{1}{2^n} \Big). \quad \text{Let } \mathcal{A}_n \text{ be the part of } \mathfrak{F}_0 + \mathfrak{F}_n \text{ over } \mathcal{A}_n. \text{ Map}$ $A_n \text{ by } \zeta = \left(\frac{ze^{-i\theta_{1,n}}}{r}\right)^{2^n} \text{ onto } A_n^{\zeta} = \{0 < |\zeta| < 1, 0 < \arg \zeta < \pi\}. \text{ Then } I_n^j \rightarrow^{\zeta} I_n^j, b_{n,j} \rightarrow^{\zeta} b_{n,j}$

 $= \left(\frac{b_{n,j}}{r}\right)^{z^n}$ Let ${}^{\zeta} \mathcal{A}_n$ be the surface consisting of two leaves (which are the same as $A_{n,\zeta}$) connected crosswise on $\sum_{j}{}^{\zeta} I_n^j$. Then \mathcal{A}_n and ${}^{\zeta} \mathcal{A}_n$ are conformally equivalent. Hence f(t) in \mathcal{A}_n is transformed to f(s) in ${}^{\zeta} \mathcal{A}_n$. Let s_1 and s_2 be two points in ${}^{\zeta} \mathcal{A}_n$ such that $s_1 \neq s_2$ (except branch points) with proj. s_1 =proj. $s_2 = \zeta$. Then $(f(s_1) - f(s_2))^2$ is a bounded analytic function $g(\zeta)$ and $g(\zeta)=0$ at $\sum_j b_{n,j}^{\zeta}$. Let $G(\zeta, b_{n,j}^{\zeta})$ be a Green's function of \mathcal{A}_n^{ζ} . Then by brief computation $G(\zeta, b_{n,j}^{\zeta})$ $\geq A(\zeta)(b_{n,j}^{\zeta})^{z^n}: A(\zeta) > 0$. Hence $g(\zeta)=0$ by $\sum_j G(\zeta, b_{n,j}^{\zeta})=\infty$, whence $f(s_1)=f(s_2)$ and f(t)=f(z): z=proj.t in \mathcal{A}_n . By identity theorem $f(t_1)=f(t_2)$ so far as $f(t_1)$ and $f(t_2)$ can be continued analytically, where proj. $t_1=\text{proj.}t_2$. We denote by $f_n(z):$ $n=0, 1, 2, \cdots$ the branch of f(t) in \mathfrak{F}_n . Then $f_0(z)=f_n(z)$ in \mathcal{A}_n for any n and $f_0(z)$ is analytic in $\{0 < |z| < r\} - \sum_{n}^{\infty} J_n$ on the other hand, \mathfrak{F}_n has no branch points for $|z| > a_{2n+1}$ and $f_n(z)$ is analytic in a neighbourhood of $J_m: m < n$. Hence $f_0(z)(=f_n(z))$ is analytic on $\sum_{n_0}^{\infty} J_n$ and $f_0(z)$ is analytic in $0 < |z| < a_{2n_0+1} = r$ and in $|z| > a_{4n_0+1}$ (by putting $f_0(z) = f_{2n_0}(z)$). Thus $f_0(z)$ is analytic in $0 < |z| \leq \infty$. This implies f(z) = const. and $v(p) \in O_{AB}$.

REMARK 1. By the method of the proof we see at once following. Let F be a closed set in \mathfrak{R} such that $F \cap \Sigma \mathcal{A}_n = 0$ and proj. $(\mathfrak{R} - F)$ covers the z-plane except a set $\in N_{AB}$, then $v(p) - F \in O_{AB}$, where N_{AB} means a class of set F such that $\{0 < |z| \leq \infty\} - F \in O_{AB}$.

REMARK 2. Suppose F contains branch points on $z=b_{n,i}: n=1, 2, ..., i=1, 2, 3, ...,$ Then we cannot prove $v(p)-F \in O_{AB}$, however thinly F may be distributed. On the other hand, we shall show examples of a point p such that there exists no analytic functions of some class in v(p)-F, if F is small in a sense. We proved

LEMMA 1⁶⁾. Let G be a ring domain with radial slits s_i such that $\partial G = \Gamma_1 + \Gamma_2 + \sum_{i=1}^{i_0} s_i$: $\Gamma_1 = \{|z|=1\}, \Gamma_2 = \{|z|=\exp \mathfrak{M}\}$ and s_i is a radial slit in $1 \leq |z| \leq \exp \mathfrak{M}$ and s_i may touch $\Gamma_1 + \Gamma_2$. Let U(z) be a harmonic function in G with continuous value. Then

$$D(U(z)) \geq \frac{1}{\mathfrak{M}} \int_0^{2\pi} |U(e^{i\theta}) - U(e^{\mathfrak{M}+i\theta})|^2 d\theta.$$

By the same method we have at once

LEMMA 1'. Let G be a circular trapezoid $1 < |z| < e^{\mathfrak{M}}$, $\theta_1 < \arg z < \theta_2$ with a finite number of radial slits. Then

$$D(U(z)) \ge \frac{1}{\mathfrak{M}} \int_{\theta_1}^{\theta_2} |U(e^{i\theta}) - U(e^{\mathfrak{M}+i\theta})|^2 d\theta .$$

LEMMA 2. Let G be a rectangle with vertices -a, a, a+ih, -a+ih and U(z)

be H. M. (harmonic measure) of vertical sides. Then for any $0 < \delta < a$ and for any $\varepsilon > 0$, there exists an h such that

$$U(z) < \varepsilon$$
 for $|\operatorname{Re} z| < a - \delta$.

Proof. Let G_s be a rectangle with vertices, $s+\delta$, $s+\delta+ih$, $s-\delta+ih$, $s-\delta$. Then $G_s \subset G: |s| < a-\delta$. Let $U_s(z)$ be H. M. of vertical sides of G_s . Then $U(z) \leq U_s(z)$. Now $\max_{B \circ z = s} U_s(z) = \alpha(h, \delta) \to 0$ as $h \to 0^{\gamma}$. Hence

$$U(z)_{|\operatorname{Re} z| < a - \delta} < \alpha(h, \delta)$$
 ,

and we have Lemma 2.

LEMMA 3. Let G_n be a domain with $\partial G_n = \Gamma_1 + \Gamma_2 + \sum_i I_n^i : \Gamma_1 = \{|z|=1\}, \Gamma_2 = \{|z|=\exp(\mathfrak{M}+\alpha)\}$. $I_n^i = \{\arg z = \frac{2\pi i}{n}, e^{\mathfrak{M}} \leq |z| \leq e^{\mathfrak{M}+\alpha}\}$: $\alpha > 0, \mathfrak{M} > 0$. Let J_n^i be an arc on $\Gamma_2: J_n^i = \{\frac{2\pi i}{n} \leq \arg z \leq \frac{2\pi (1+i)}{n}, |z|=e^{\mathfrak{M}+\alpha}\}$. Map G_n by $\zeta = f_n(z)$ onto a domain G_n^c so that $\Gamma_1 \to \Gamma_1^c = \{|\zeta|=1\}, I_n^i \to an \ arc \ on \ |\zeta|=e^{\mathfrak{M}^*} \ and \ J_n^i \to a \ radial slit = \{\arg \zeta = \frac{2\pi i}{n}, e^{\mathfrak{M}_n'} \leq |\zeta| \leq e^{\mathfrak{M}_n^*}\}$, where \mathfrak{M}_n' and \mathfrak{M}_n'' are suitable constants. Let $n \to \infty$. Then $\mathfrak{M}_n'' \to \mathfrak{M}$ and $f_n(z) \to z$. Let $U_n(z)$ be a harmonic function in G_n , continuous on $G_n + \Gamma_1 + \Gamma_2 + \sum_i I_n^i$ such that $U_n(z) = 0$ on $\sum_i I_n^i$ and $D(U_n(z)) \leq 1$. Then there exists a number n_0 such that

$$\int_{\Gamma_1} U_n(z)^2 d\theta \leq 2\mathfrak{M} \quad for \quad n \geq n_0.$$

Proof. Let $\omega_n(z)$ be a harmonic function in G_n such that $\omega_n(z)=0$ on $\Gamma_1, \omega_n(z)=1$ on $\sum_i I_n^i$ and $\frac{\partial}{\partial n}\omega_n(z)=0$ on $\sum_i J_n^i$. Then

$$f_n(z) = \exp\left(\gamma_n(\omega_n(z) + \imath \widetilde{\omega}_n(z))\right),$$

where $\gamma_n = 2\pi \Big/ \int_{\Gamma_1} \frac{\partial}{\partial n} \omega_n(z) ds$, $\tilde{\omega}_n(z)$ is the conjugate of $\omega_n(z)$ and $\mathfrak{M}_n'' = \gamma_n$. Consider $\omega_n(z)$ in a circular trapezoid = $\Big\{ \frac{2\pi i}{n} < \arg z < \frac{2\pi (i+1)}{n}, e^{\mathfrak{M}} < |z| < e^{\mathfrak{M}+a} \Big\}$. Since $\omega_n(z) > 0$ and $\omega_n(z) = 1$ on $\arg z = \frac{2\pi i}{n}$ and $= \frac{2\pi (1+i)}{n}$, there exists a number n' by Lemma 2 such that $\omega_n(z) \ge 1-\varepsilon$ on $|z| = e^{\mathfrak{M}+\varepsilon}$ for $n \ge n'$ for any given $\varepsilon > 0$. Hence by the maximum principle $\omega_n(z) \ge (1-\varepsilon) \frac{\log |z|}{\mathfrak{M}+\varepsilon}$ on $1 < |z| < e^{\mathfrak{M}+\varepsilon}$. On the other hand, clearly $\omega_n(z) \le \frac{\log |z|}{\mathfrak{M}}$ in $1 < |z| < e^{\mathfrak{M}}$, whence $\mathfrak{M} < \mathfrak{M}_n'' < \frac{\mathfrak{M}+\varepsilon}{1-\varepsilon}$ and $\omega_n(z) \rightarrow \frac{\log |z|}{\mathfrak{M}}$ as $n \rightarrow \infty$. Since $\omega_n(z) = 0$ on $\Gamma_1, \omega_n(z) \rightarrow \frac{\log |z|}{\mathfrak{M}}$ implies $\frac{\partial}{\partial n} \omega_n(z) \rightarrow \frac{\partial}{\partial n} \Big(\frac{\log |z|}{\mathfrak{M}} \Big)$ on $\Gamma_1, \mathfrak{M}_n'' \rightarrow \mathfrak{M}, f_n(z) \rightarrow z$ and $f_n'(z) \rightarrow 1$

on Γ_1 uniformly as $n \to \infty$. Consider $U_n(z)$ in the ζ -plane. Then by for Lemma 1

$$D(U_{n}(z)) = D(U_{n}(f_{n}^{-1}(z))) \ge \frac{1}{\mathfrak{M}_{n}^{\prime\prime}} \int_{\Gamma_{1}} U_{n}(f_{n}^{-1}(z))^{2} d\theta$$

By $f'_n(z) \rightarrow 1$ and $\mathfrak{M}''_n \rightarrow \mathfrak{M}$ as $n \rightarrow \infty$, there exists a number n_0 such that

$$D(U_n(z)) \ge \frac{1}{2\mathfrak{M}} \int_{\Gamma_1} U_n(z)^2 d\theta \quad \text{for} \quad n \ge n_0.$$

LEMMA 4. Let G_n be a domain with $\partial G_n = \Gamma + \Gamma + \sum_{i=1}^n (-I_n^i + I_n^i)$: $\Gamma = \{|z| = e^{-a}\}, \Gamma = \{|z| = e^{a}\}, I_n^i = \{\arg z = \frac{2\pi i}{n}, e^{-a} \leq |z| \leq e^{-\frac{5a}{6}}\}, I_n^i = \{\arg z = \frac{2\pi i}{n}, e^{-\frac{5a}{6}} \leq |z| \leq e^{a}\}$. Let $U_n(z)$ be a harmonic function in G_n continuous on \overline{G}_n such that $U_n(z) = 0$ on $\sum (I_n^i + I_n^i)$ and $D(U_n(z)) \leq 1$. Then for any $\varepsilon > 0$ there exists a number n_0 such that

$$|\operatorname{grad} U_n(z)| < \varepsilon \quad in \quad \{e^{-\frac{a}{2}} < |z| < e^{\frac{a}{2}}\}.$$

We call such G_n a ring with deviation ε .

Proof. Let $G_c = \{e^{-c} < |z| < e^c\}: \frac{2a}{3} \le c \le \frac{5a}{3}$. Let $G_c(z, z_0)$ be a Green's function of G_c . Since $\operatorname{grad} \frac{\partial}{\partial n} G_c(z, z_0)$ is finite and continuous relative to z, z_0 and c for $e^{-\frac{a}{2}} \le |z_0| \le e^{\frac{a}{2}}, z \in \partial G_c$ and $\frac{2a}{3} \le c \le \frac{5a}{6}$, there exists a const. M such that $\left| \operatorname{grad} \frac{\partial}{\partial n_z} G(z, z_0) \right| \le M$. Let $\delta = \min\left(\frac{a}{6}, \frac{\varepsilon^2}{4\pi M^2 e^{\frac{10a}{6}}}\right)$ and consider $U_n(z)$ in $e^{\frac{5a}{6} - \delta} < |z| < e^a \left(\frac{2a}{3} < \frac{5a}{6} - \delta < a\right)$. Then by Lemma 3, there exists a number n_0 such that

$$\int U(e^{\frac{5a}{6}-\delta+i\theta})^2 d\theta \leq 2\delta \leq \frac{\varepsilon^2}{2\pi M^2 e^{\frac{10a}{6}}} \quad \text{for} \quad n \geq n_0.$$

By Schwarz's inequality $\int_{+\Gamma} |U(e^{\frac{5a}{6}+\delta+i\theta})| d\theta < \frac{\varepsilon}{Me^{\frac{5a}{6}}}, \text{ similarly } \int_{-\Gamma} |U(e^{-\frac{5a}{6}+\delta+i\theta})| d\theta$ $\leq \frac{\varepsilon}{Me^{\frac{5a}{6}}}. \quad \text{Consider } U_n(z) \text{ in } \{e^{-\frac{5a}{6}+\delta} < |z| < e^{\frac{5a}{6}+\delta} \}. \quad \text{Then}$ $|\operatorname{grad} U_n(z)| \leq \frac{1}{2\pi} \int_{-\Gamma_c} U_n(t) |\left|\operatorname{grad} \frac{\partial}{\partial n} G(t, z)\right| e^{-\frac{5a}{6}+\delta} d\theta$ $+ \frac{1}{2\pi} \int_{+\Gamma_c} |U_n(t)| \left|\operatorname{grad} \frac{\partial}{\partial n} G(t, z)\right| e^{\frac{5a}{6}-\delta} d\theta < \frac{\varepsilon}{\pi},$

for $z \in G_{\underline{a}}$, where

$$\Gamma_{c} = \{ |z| = e^{-c} \}, \quad {}_{+}\Gamma_{c} = \{ |z| = e^{c} \} : \quad c = \frac{5a}{6} - \delta, \quad \frac{2a}{3} \leq c \leq \frac{5a}{6}.$$

ANALYTIC FUNCTIONS

LEMMA 5. Let G_n be the domain in Lemma 4 with $n \ge n_0$. Let \hat{G}_n be the same leaf as G_n (with $_-I_n^i+_+I_n^i$) of G_n . We identify each side of $_-I_n^i(_+I_n^i)$ on G_n with the same side of $_-I_n^i(_+I_n^i)$ of \hat{G}_n . Then we have a Riemann surface \tilde{G}_n of planar character with connectivity $2n_0-1$. Let $f(t): t\in \tilde{G}_n$ be an analytic function in \tilde{G}_n with $D(f(t)) \le \frac{1}{4}$. Then $\left|\frac{df(t)}{dt}\right| < 2\sqrt{2\varepsilon}$ in the part of \tilde{G}_n over $e^{-\frac{\alpha}{2}} < |z| < e^{\frac{\alpha}{2}}$. We call such \tilde{G}_n a ring surface with deviation $2\sqrt{2\varepsilon}$.

Proof. Let t and t be points in G_n and \hat{G}_n respectively such that proj. t= proj. $\hat{t}=z$. Let $\hat{t}=\hat{x}+i\hat{y}$ and t=x+iy. Put for simplicity $U(\hat{t})=\hat{U}(z)$, $V(\hat{t})=\hat{V}(z)$: $t\in\hat{G}$, U(t)=U(z), V(t)=V(z): $t\in G$. Then by C. R. equality

$$U_x = V_y$$
, $U_y = -V_x$, $\hat{U}_x = -\hat{V}_y$, $\hat{U}_y = \hat{V}_x$. (1)

Now $D(U(z)) = D(V(z)) \le \frac{1}{4}$, $D(U(z) - \hat{U}(z)) \le 1$ and $U(z) - \hat{U}(z) = 0$ on ${}_{+}I_{n}^{i} + {}_{-}I_{n}^{i}$. We have by Lemma

$$|U_x - \hat{U}_x| < \varepsilon, \qquad |V_y - \hat{V}_y| < \varepsilon.$$
⁽²⁾

By (1) and (2)

$$\left|\frac{d}{dt}f(t)\right| < 2\sqrt{2}\varepsilon$$
 for $e^{-\frac{a}{2}} < |\operatorname{proj} t| < e^{\frac{a}{2}}$.

Let *D* be a domain and let *F* be a compact set in *D*. Let $\omega(F, z, D)$ be H.M. of *F*, i.e. $\omega(F, z, D)=0$ on ∂D , =1 on *F* we defind Cap(*F*) by $\int_{\partial D} \frac{\partial}{\partial n} \omega(F, z, D) ds/2\pi$ and denote it by $\gamma(F)$. Then it is clear $\gamma(F)=0$ if and only if *F* is a set of logarithmic capacity zero.

LEMMA 6. 1) (An upper bound for Dirichlet bounded harmonic functions). Let D be a domain of finite connectivity and let F be a compact set in the interior of a compact set $A \subset D$. Let H(z) be a harmonic function in D-F such that H(z)=0 on ∂D and $D(H(z)) \leq 1$. Then $|H(z)| \leq C(z) \sqrt{\gamma(F)}$ in D-A, where C(z)is a constant depending only on A, D and z.

2) Let D_0 be a compact set in D-A. Let F_n be a sequence of compact sets such that $F_n \subset A$ and $\gamma(F_n) \downarrow 0$. Let U(z) and $U_n(z)$ be a harmonic functions in D and $D-F_n$ respectively such that $U(z)=U_n(z)$ on ∂D , $D(U(z)) \leq 1$ and $D(U_n(z)) \leq 1$. Then

grad $U_n(z) \rightarrow$ grad U(z) in D_0 uniformly as $n \rightarrow \infty$.

3) Let F^* be a compact set in D with $\gamma(F^*)=0$. Then for any $\varepsilon > 0$ and for any compact set D_0 in $D-F^*$ we can find a compact set $F \supset F^*$ such that

$$|\operatorname{grad} U(z) - \operatorname{grad} U^F(z)| < \varepsilon \text{ on } D_0$$

where U(z) is a harmonic function in (2) and $U^{F}(z)$ is a harmonic function in D-F such that $U(z)=U^{F}(z)$ on ∂D and $D(U^{F}(z))\leq 1$.

Proof of 1) Let F_m be a decreasing sequence of compact sets such that $F_m \downarrow F$, $F_m \subset A^\circ$, the connectivity of $D-F_m$ is finite, every point of ∂F_m is regular with respect to Dirichlet problem in $D-F_m$ and H(z) is continuous on ∂F_m . Let $\omega(z) = \frac{\omega(F_m, z, D)}{\gamma(F_m)}$ and $\tilde{\omega}(z)$ be the conjugate of $\omega(z)$. Put $\zeta(z) = \exp(\omega(z) + i\tilde{\omega}(z)) = re^{i\theta}$. Then $\zeta(z)$ maps $D-F_m$ onto a ring $R_{\zeta} = \left\{1 < |\zeta| < \exp\left(\frac{1}{\gamma(F_m)}\right)\right\}$ with a finite number of radial slits. Consider $H(\zeta) = H(\zeta(z))$ in R_{ζ} . Then by Lemma 1 and Schwarz's inequality

$$\int_{\zeta \mid = \exp(1/\gamma(F_m))} \mid H(z) \mid d\theta \leq \sqrt{\frac{2\pi}{\gamma(F_m)}}.$$

Let $V_m(z)$ be a harmonic function in $D-F_m$ such that $V_m(z) = |H(z)|$ on ∂F_m , $V_m(z) = 0$ on ∂D . Then since |H(z)| is subharmonic $V_m(z) \le V_{m+1}(z)$ and $|H(z)| \le V_m(z)$. $\int_{\partial F_m} \frac{\partial}{\partial n} V_m(z) \omega(z) ds = \int_{\partial F_m} V_m(z) \frac{\partial}{\partial n} \omega(z) ds$, let $ds = rd\theta$ and $\partial n = \partial r$ on $\partial D + \partial F_m$. Then $\frac{1}{\gamma(F_m)} \int_{\partial D} \frac{\partial}{\partial n} V_m(z) ds = \frac{1}{\gamma(F_m)} \int_{\partial F_m} \frac{\partial}{\partial n} V_m(z) ds = \int_{\partial F_m} V_m(z) d\theta \le \sqrt{\frac{2\pi}{\gamma(F_m)}}$. Hence

$$\int_{\partial D} \frac{\partial}{\partial n} V_m(z) ds \leq \sqrt{2\pi \gamma(F_m)}.$$

We can find a compact set $A' \supset A$ with dist $(\partial A', A) > 0$. By Harnack's theorem there exists a constant K depending on A', z, D such that $V_m(t) \ge \frac{V(z)}{K}$, whence $V_m(t) \ge \frac{V_m(t)}{K} \omega(A', t, D)$ on $\partial A'$. Hence by $\int_{\partial D} \frac{\partial}{\partial n} V_m(t) ds \ge \frac{V_m(z)}{K}$ $\ge \int_{\partial D} \frac{\partial \omega}{\partial n} (A, t, D) ds$ we have $V_m(z) \le \frac{K\sqrt{\gamma(F_n)}}{\sqrt{2\pi\gamma(A')}}$. Let $m \to \infty$. Then |H(z)| $\le \lim_m V_m(z) \le \frac{K\sqrt{\gamma(F)}}{\sqrt{2\pi\gamma(A')}}$ and $\frac{K}{\sqrt{2\pi\gamma(A')}}$ is a required constant.

Proof of 2) Let $H_n(z) = U(z) - U_n(z)$. Then $D\left(\frac{H_n(z)}{2}\right) \leq 1$. By (1) $|H_n(z)| \leq 2C(z)\sqrt{\gamma(F_n)}$ in D-A. Let D_0^* be a closed domain in D-A such that $D_0^* \supset D_0$, dist $(\partial D_0^*, D_0) > 0$. Let G(z, q) be a Green's function of D_0^* . Then since there exists a constant $M < \infty$ such that $\operatorname{grad} \frac{\partial}{\partial n} G(z, q) < M : q \in D_0, z \in \partial D_0^*$. Now $\max_{z \in D_0^*} |H_n(z)| \to 0$ uniformly as $n \to \infty$. We have $|\operatorname{grad} U(z) - \operatorname{grad} U_n(z)| \leq \int_{\partial D_0^*} 2M |H_n(\zeta)| |\operatorname{grad} \frac{\partial}{\partial n} G(\zeta, z) | ds \to 0$ as $n \to \infty$. 3) is obtained at once.

Let \tilde{G}_n be a surface in Lemma 5 with $n \ge n_0$. Suppose a sufficiently small closed set F in \tilde{G}_n . Then we see by Lemma 6 the property of \tilde{G}_n does not change so much by extracting F from \tilde{G}_n .

 α , β -thin set. Let F be a closed set in \widetilde{G}_n in Lemma 5 with deviation $2\sqrt{2\varepsilon}$.

If we can find a closed Jordan curve Γ in G_n-F (and in \hat{G}_n-F) such that proj Γ separates $|z| = e^{-a}$ from $|z| = e^{a}$, length of $\Gamma \leq \alpha e^{-a}$ and $\left| \frac{df(t)}{dt} \right| < \beta \varepsilon$ for any analytic function f(t) in $\tilde{G}_n - F$ with $D(F(t)) \leq \frac{1}{4}$, we call F an α , β -thin set in \tilde{G}_{n} .

EXAMPLE 2. Let

$$1 > a_1 > a_2, \dots \downarrow 0$$
 and $\sum_{n=1}^{\infty} \log \frac{a_{2n+1}}{a_{2n+2}} = \infty$. (3)

Let J_n be a slit: $J_n = \{ \arg z = \pi, a_{2n+2} \le |z| \le a_{2n+1} \} : n = 1, 2, 3, \cdots$. Let

$$1 > b_1 > b_1' > b_2 > b_2', \dots \downarrow 0, \qquad \lim_n \frac{\log b_n'}{\log b_n} = 1,$$

$$\sum_n \{a_{2n+2} \le |z| \le a_{2n+1}\} \cap \sum_n^\infty \{b_n' \le |z| \le b_n\} = 0.$$
(3')

Let I_n^i and I_n^i are slits: $n=1, 2, 3, \dots, i=1, 2, \dots, j(n)$ as follow:

$$I_n^i = \left\{ \arg z = \frac{2\pi i}{j(n)}, \ b_n' \leq |z| \leq b_n' e^{\frac{d_n}{6}} \right\}$$

$$d_n = \frac{1}{2} \log \frac{b_n}{b_n'}$$

$$d_n = \frac{1}{2} \log \frac{b_n}{b_n'}$$

where the number j(n) of slits I_n^i (or I_n^i) is so large that we can obtain a ring surface \widetilde{G}_n (from two leaves by identifying slits of the leaves) with deviation c_n over $\{b'_n \leq |z| \leq b_n\}$, where

$$\lim_{n} \frac{\log c_n}{\log b_n} = \infty . \tag{3"}$$

Let \mathfrak{F} be a unit circle |z| < 1 with slits $\sum_{n} J_n + \sum_{n} \sum_{j} (-I_n^i + I_n^j)$ and \mathfrak{F} be the same leaf as \mathfrak{F} . We identify $\sum_{n} j_n + \sum_{n} \sum_{i} (-I_n^i + I_n^i)$ of \mathfrak{F} and $\hat{\mathfrak{F}}$. Then we have a Riemann surface \mathfrak{F} with compact relative boundary $\partial \mathfrak{F}$ consisting of two components over |z|=1 and has one ideal boundary component \mathfrak{P} . The part of \mathfrak{F} over $\{a_{2n+1} < |z| < a_{2n+2}\}$ is a ring with two boundary components of module $=\frac{1}{2}\log\frac{a_{2n+1}}{a_{2n+2}}$ separating \mathfrak{p} from $\partial \mathfrak{F}$. Hence by (3) \mathfrak{F} is an end of another Riemann surface $\in O_g$ and \mathfrak{p} is of harmonic dimension 1. There exists only one Martin point p on p. Let v(p) be a neighbourhood. Then $\partial v(p)$ is compact.

PROPOSITION. Let F_1 be set of radial slits in $\tilde{\mathfrak{F}}$ such that $F_1 \cap \sum_n \tilde{G}_n = 0$. 1) Let F_2 be a closed set in $\tilde{\mathfrak{F}}$ such that F_2 is α, β -thin set in every \tilde{G}_n and $v(p) - F_2$ is connected.

2) Let $U_n(z)$ be a harmonic function in $\mathfrak{F}-F_1-F_2$ or $\hat{\mathfrak{F}}-F_1=F_2$ over $\{\theta_1 < \arg z < \theta_2, \ b_n < |z| < 1\}$ such that $U_n(z)=0$ on |z|=1 and $U_n(z)=1$ on $|z|=b_n$ and $U_n(z)$ has M.D.I. (minimal Dirichlet integral). Then $D(U_n(z)) \ge \frac{\gamma(\theta_2-\theta_1)}{-\log b'_n}$: $\gamma > 0$ for any θ_1 and θ_2 and b'_n (if $F_2=0$, $D(U_n(z)) = \frac{\theta_2-\theta_1}{-\log b'_n}$). If F_2 is so thinly distributed in \mathfrak{F} that F_2 may satisfy condition 1) and 2),

$$v(p) - F_1 - F_2 \in O_{ADF}$$
.

Proof. Assume $w=f(t): t \in v(p)-F_1-F_2$ is non const and $D(f(t)) < \infty$ and $f(v(p)-F_1-F_2)$ is an L number of sheets over the w-plane. We can suppose without loss of generality $D(f(t)) \leq \frac{1}{4}$. By condition 2) there exists a Jordan curve Γ_n in $\mathfrak{F} \cap G_n$ such that $\left|\frac{df(t)}{dt}\right| < \beta c_n$ on Γ_n and length of $\Gamma_n < \alpha b_n$. Hence we can find a subsequence $\{n'\}$ of $\{n\}$ such that $f(\Gamma_{n'}) \rightarrow w_0$ as $n' \rightarrow \infty$. By choosing suitable $v_l(p) \subset v(p)$ we can suppose $\partial v_l(p) \cap (\mathfrak{F} - F_1 - F_2)$ has an arc λ such that dist $(f(\lambda), w_0) = d_0 > 0$, proj λ is contained in $\theta_1 \mathcal{L}_{\theta_2} = \{\theta_1 < \arg z < \theta_2\}$ and proj λ is connecting $e^{a+i\theta_1}$ with $e^{a'+i\theta_2}$. Let ${}_{\lambda}\mathcal{L}_{\Gamma_{n'}}$ be the part of $\mathfrak{F} - F_1 - F_2$ over $\theta_1 \mathcal{L}_{\theta_2}$ bounded by λ , F_1 , F_2 , $\Gamma'_{n'}$ and two segments $\arg z = \theta_1$ and θ_2 , where $\Gamma'_{n'}$ is the part of $\Gamma_{n'}$ lying over $\theta_1 \mathcal{L}_{\theta_2}$. Let $U_n(z)$ be a harmonic function in ${}_{\lambda}\mathcal{L}_{\Gamma_{n'}}$ such that $U_{n'}(z) = 0$ on λ , $U_{n'}(z) = 1$ on $\Gamma'_{n'}$ and $U_{n'}(z)$ has M. D. I (has minimal Dirichlet integral among all functions with the same value as $U_{n'}(z)$ on $\lambda + \Gamma'_{n'}$). Then by the Dirichlet principle and by condition 2)

$$D(U_{n'}(z)) \ge D(U'_{n'}(z)) \ge \frac{\gamma(\theta_2 - \theta_1)}{-\log b'_{n'}},$$
(4)

where $U'_{n'}(z)$ is a harmonic function in $\mathfrak{F}-F_1-F_2$ over $\{b'_{n'}<|z|<1, \ \theta_1<\arg z<\theta_2\}$ such that $U'_{n'}(z)=0$ on $|z|=1, \ U'_{n'}(z)=1$ on $|z|=b'_{n'}$ and $U'_{n'}(z)$ has M.D.I. Consider $f(\Gamma_{n'})$. Then by $\left|\frac{df(t)}{dt}\right| \leq \beta c_{n'}$, diameter of $f(\Gamma_{n'}) \leq 2\pi b_{n'}c_{n'}\alpha\beta$. Since diameter $(w_0+f(\Gamma_{n'}))\to 0$ as $n'\to\infty$, we can find a number n_0 and a point $p_{n'}$: $n'\geq n_0$ in $f(\Gamma_{n'})$ such that $|p_{n'}-w_0| < \frac{d_0}{4}$: $d_0<1$, $\{|w-p_{n'}|<4\pi b_{n'}c_{n'}\alpha\beta\}\supset f(\Gamma_{n'})$ and $\{|w-p_{n'}|>\frac{d_0}{2}\}\supset f(\lambda)$ for $n'\geq n_0$. Let $V_{n'}(w)$ be a continuous function in the w-plane such that $V_{n'}(w)=1$ in $|w-p_{n'}|<4\pi b_{n'}c_{n'}\alpha\beta$, $V_{n'}(w)$ is harmonic in $\{4\pi b_{n'}c_{n'}\alpha\beta<|w-p_{n'}|<\frac{d_0}{2}\}$ and =0 in $|w-p_{n'}|\geq \frac{d_0}{2}$. Then $f^{-1}(V_{n'}(w))\geq 1$ on $\Gamma_{n'}$ and =0 on λ and

$$D(f^{-1}(V_{n'}(w))) \leq \frac{2\pi L}{\log \frac{\frac{d_0}{2}}{4\pi b'_n c'_n \alpha \beta}}.$$
(5)

Clearly $D(U_{n'}(z)) \leq D(V_n(f^{-1}(w)))$. By $\lim_n \frac{\log c_n}{\log b_n} = \infty$, $\lim_n \frac{\log b'_n}{\log b_n} = 1$ we have by

(4) and (5) a contradiction. Hence $v(p)-F_1-F_2 \in O_{ADF}$.

LEMMA 7. Let T be a circular trapezoid with radial slits $I_n^i: i=1, 2, \dots, n-1$ such that $T = \{1 < |z| < e^{\mathfrak{M}+\alpha}, 0 < \arg z < \theta\} - \sum I_n^i: I_n^i = \{\arg z = \frac{i\theta}{n}, e^{\mathfrak{M}} \le |z| \le e^{\mathfrak{M}+\alpha}\}.$ Map T onto a circular trapezoid T_{ζ} with slits by $\zeta = f_n(z)$ so that $\{0 < \arg z < \theta, |z|=1\} \rightarrow \{0 < \arg z < \theta, |\zeta|=1\}.$ $\{\arg z=\theta, 1 \le |z| \le e^{\mathfrak{M}+\alpha}\} + \{(\frac{n-1}{n})\theta \le \arg z \le \theta, |z|=e^{\mathfrak{M}+\alpha}\} = A_1 \rightarrow \{\arg \zeta=\theta, 0 \le |\zeta| \le e^{\mathfrak{M}'n}\}.$ $I_n^i \rightarrow an \ arc \ on \ |\zeta|=e^{\mathfrak{M}'n}: i=1, 3, \dots, n-1.$ A circular arc $J_n^i = \{\frac{i\theta}{n} \le \arg z \le \frac{(i+1)\theta}{n}\} \rightarrow a$ radial slit in T_{ζ} connecting $|\zeta|=e^{\mathfrak{M}'n}: i=1, 2, 3, \dots, n-2.$ $\{\arg z=0, 0 \le |z| \le e^{\mathfrak{M}+\zeta}\} + \{0 \le \arg z \le \frac{\theta}{n}, |z|=e^{\mathfrak{M}+\alpha}\} = A_2$ $\rightarrow \{\arg \zeta=0, 0 \le |\zeta| \le e^{\mathfrak{M}'n}\}, where \mathfrak{M}'_n \text{ is a suitable const. Let } n \rightarrow \infty.$ Then $\mathfrak{M}'_n \rightarrow \mathfrak{M}$ and $f_n(z) \rightarrow z.$ Let $U_n(z)$ be a harmonic function in T such that $U_n(z)=0$ on $\sum I_n'$ and $D(U_n(z)) \le 1.$ Then

$$\int_{|z|=1} U^2(z) d\theta \leq 2\mathfrak{M} \quad for \quad n \geq n_0.$$

Proof. Let $\omega_n(z)$ be a harmonic function in $T - \sum_i I_n^i$ such that $\omega_n(z) = 0$ on |z| = 1, $\frac{\partial}{\partial n} \omega_n(z) = 0$ on $\Lambda_1 + \Lambda_2 + \sum_i J_n^i$, $\omega_n(z) = 1$ on $\sum_i I_n^i$. Then $f_n(z) = \exp\left(\gamma_n(\omega_n(z_n) + i\tilde{\omega}_n(z))\right)$,

where $\gamma_n = \theta \Big/ \int_{|z|=1} \frac{\partial}{\partial n} \omega_n(z) ds$ and $\tilde{\omega}_n(z)$ is the conjugate of $\omega_n(z)$. Consider $\omega_n(z)$ in $\left\{ 0 < \arg z < \frac{\theta}{n}, e^{\mathfrak{M}} < |z| < e^{\mathfrak{M}+\alpha} \right\}$. Then $\omega_n(z) = 1$ on $\left\{ \arg z = \frac{\theta}{n}, e^{\mathfrak{M}} < |z| < e^{\mathfrak{M}+\alpha} \right\}$, $\frac{\partial}{\partial n} \omega_n(z) = 0$ on $\left\{ \arg z = 0, e^{\mathfrak{M}} < |z| < e^{\mathfrak{M}+\alpha} \right\}$. By putting $\omega_n(\hat{z}) = \omega_n(z), \omega_n(z)$ can be continued harmonically into $\left\{ -\frac{\theta}{n} < \arg z < \frac{\theta}{n}, e^{\mathfrak{M}} < |z| < e^{\mathfrak{M}+\alpha} \right\}$, where \hat{z} is the symmetric point of z with respect to $0 = \arg z$. Hence by Lemma 2, for any $\varepsilon > 0$, there exists a number n_0 such that $\omega_n(z) > 1 - \varepsilon$ on $|z| = e^{\mathfrak{M}+\varepsilon}$ in T for $n > n_0$. Clearly for the same number $\omega_n(z) > 1 - \varepsilon$ on $|z| = e^{\mathfrak{M}+\varepsilon}$ in T. Hence we have Lemma 7 similarly as Lemma 3.

In the following we investigate the behaviour of a ring (or a rectangle) as its module $\mathfrak{M} \rightarrow 0$. Let 0 < k < 1. The upper half plane: $\operatorname{Im} z > 0$ is mapped onto a rectangle $\{-K < \operatorname{Re} \zeta < K, 0 < \operatorname{Im} \zeta < K'\}$ by

$$\eta(z) = \int_0^z \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}$$

so that $-\frac{1}{k}$, -1, 1, $\frac{1}{k} \to -K + iK'$, -K, K, K + iK' respectively, where K and K' are given by $K = \int_{0}^{1} \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}$, $K' = \int_{0}^{1} \frac{dt}{\sqrt{(1-t^2)(1-k'^2t^2)}} : k'^2 = 1-k^2$.

We denote the above rectangle in the η -plane by $R(K, K', \eta)$. Since we investigate the case k is near to 1, we put $k=1-\varepsilon^2$ and suppose $k>\frac{5}{6}$. Then the properties of $R(K, K', \eta)$ depends mostly on ε . We shall prove

LEMMA 8. 1) Put $k=1-\varepsilon^2 \left(>\frac{5}{6}\right)$. Then K and K' are given as follows

$$\left|\frac{2}{k}\log\sqrt{\frac{5\delta}{6}}\right| + \frac{-2}{\sqrt{(2-\delta)(1-k-k\delta)}}\log\frac{\sqrt{1-k}}{1+\sqrt{k}} \ge K$$
$$\ge \frac{-2}{\sqrt{2(1+k)k}}\log\frac{\sqrt{1-k}}{1+\sqrt{k}}$$
$$= \frac{-2}{\sqrt{2(1+k)k}}\left(\log\frac{\varepsilon}{2} - \frac{\varepsilon^2}{8} + 0(\varepsilon^3)\right), \quad 0 < \delta < \frac{1}{6}.$$
(6)

$$\frac{\pi}{2} \leq K' \leq \frac{\pi}{2\sqrt{1-\varepsilon^2}} \,. \tag{7}$$

2) Let $\omega(\eta)$ be the H.M. of vertical sides of $R(K, K', \eta)$. Then

$$\omega\left(\frac{\imath K'}{2}\right) = \frac{1}{\pi} \left(\varepsilon^2 + \frac{\varepsilon^4}{2} + O(\varepsilon^6)\right).$$

3) On the behaviour of the mapping $\eta(z)$. Let ${}_{\varepsilon}V(1) = \{ \operatorname{Im} z > 0, |z-1| < \varepsilon \}$. Then the image of ${}_{\varepsilon}V(1)$ falls in $\{ |\eta - K| < L \}$, where

$$L \leq \frac{1}{\sqrt{k(2-k)(2-2\varepsilon)}} \left(-\log \varepsilon + \pi + \log 2 + \frac{5\varepsilon^2}{16} + 0(\varepsilon^3) \right)$$

and $\frac{L}{K} \rightarrow c < \frac{1}{2-\delta'}$ as $\varepsilon \rightarrow 0$ for any $\delta' \rightarrow 0$. Hence there exists a const. ε^* such that the inverse image of the subrectangle $R\left(\frac{K}{3}, K', \eta\right)$ does not touch $\varepsilon V(1) + \varepsilon V(-1)$ for $\varepsilon < \varepsilon^*$.

$$|\operatorname{grad} U(\zeta)| \leq MKC\varepsilon \text{ in } R\left(\frac{1}{3}, \frac{K'}{K}, \eta\right) \quad \text{for } \varepsilon < \varepsilon^* : C = \frac{6 \sqrt[4]{19}}{\pi}$$

By noting $K\varepsilon \to 0$ as $\varepsilon \to 0$, we see for any given $\gamma > 0$ there exists a const. ε_0 such that $|\operatorname{grad} U(\zeta)| < \gamma$ in $R\left(\frac{1}{3}, \frac{K'}{K}, \zeta\right)$ for $\varepsilon < \varepsilon_0$.

Proof of 1)

$$\begin{split} \int_{0}^{1} \frac{dt}{\sqrt{(1-t^{2})(1-k^{2}t^{2})}} &\leq \int_{0}^{1-\delta} \frac{dt}{\sqrt{(1-t)(1-kt)}} \\ &+ \frac{1}{\sqrt{(2-\delta)(1+k-k\delta)}} \int_{1-\delta}^{1} \frac{dt}{\sqrt{(1-t)(1-kt)}}. \end{split}$$

Now by $(\sqrt{k\delta} + \sqrt{1-k\delta+k}) < 1$, we have

$$\frac{-2}{k}\log\left(\sqrt{k\delta} + \sqrt{1+k\delta-k}\right) \leq \left|\frac{2}{k}\log\sqrt{\frac{5\delta}{6}}\right|.$$

Hence

$$K \leq \frac{2}{k} \left| \log \frac{5\delta}{6} \right| + \frac{-2}{\sqrt{(2-\delta)(1+k-k\delta)k}} \log \frac{\sqrt{1-k}}{1+\sqrt{k}}.$$

On the other hand,

$$\begin{split} K &= \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \ge \frac{1}{\sqrt{2(1+k)}} \int_0^1 \frac{dt}{\sqrt{(1-t)(1-kt)}} \\ &= \frac{-2}{\sqrt{2k(1+k)}} \log \frac{\sqrt{1-k}}{1+\sqrt{k}} \,. \end{split}$$

Put $k=1-\varepsilon^2$. Then

$$\log \frac{\sqrt{1-k}}{1+\sqrt{k}} = \log \varepsilon - \log \left(1+\sqrt{k}\right) = \log \frac{\varepsilon}{2} - \frac{\varepsilon^2}{8} + O(\varepsilon^4) .$$

Hence we have (6). Clearly $\frac{\pi}{2} \leq K' \leq \frac{\pi}{2\sqrt{1-\varepsilon^2}}$. Thus we have 1).

Proof of 2) Map the upper half z-plane by $\xi = i \left(\frac{z - \frac{i}{\sqrt{k}}}{z + \frac{i}{\sqrt{k}}} \right)$ to $|\xi| < 1$. Then

by the mapping $\eta \rightarrow z \rightarrow \hat{\xi}, \ \eta = \frac{K'i}{2} \rightarrow z = \frac{i}{\sqrt{k}} \rightarrow \hat{\xi} = 0$ and the vertical sides of $R(K, K', \eta)$ are mapped onto arcs on $|\xi| = 1$ with length $= 4 \tan^{-1} \frac{1-k}{1+k} = \frac{1}{\pi} \left(\varepsilon^2 + \frac{\varepsilon^4}{2} + O(\varepsilon^6) \right)$. Hence we have 2).

Proof of 3) Let $z \in V_{\varepsilon}(1)$. Then $z=1+re^{i\theta}$, $r < \varepsilon$. Since $\int_{0}^{z} \frac{dt}{\sqrt{(1-t^{2})(1-k^{2}t^{2})}}$ does not depend on the integration path, we can suppose it is a straight connecting 1 with $1+re^{i\theta}$. We estimate the integration. Let $t=1+re^{i\theta}$. Then

$$\sqrt{1+t} \ge \sqrt{2-r} \ge \sqrt{2-\varepsilon}$$
 and $|\sqrt{1+kt}| \ge \sqrt{1+k-kr} \ge \sqrt{2-2\varepsilon}$.

Now $|(1-t)(1-kt)| = r|(1-kre^{i\theta}-k)| \ge r|1-k-kr|$ and $|1-k-kr| \ge 1-k-kr$ or $\ge kr+k-1$ according as $r \le \frac{1-k}{k}$ or $r \ge \frac{1-k}{k}$. Hence by $\frac{1-k}{k} = \frac{\varepsilon^2}{1-\varepsilon^2}$ we have

$$\int_{0}^{\varepsilon^{e^{t\theta}}} \frac{dr}{\sqrt{re^{i\theta}(1-k-kre^{i\theta})}} \\ \leq \int_{0}^{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}} \frac{dr}{\sqrt{r(1-kr-k)}} + \int_{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}}^{\varepsilon} \frac{dr}{\sqrt{r(kr-1+k)}} \\ = \frac{-2}{\sqrt{1-\varepsilon^{2}}} \tan^{-1} \left[\frac{\varepsilon^{2}}{1-\varepsilon^{2}} - r}{r} \right]_{0}^{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}} + \frac{2}{\sqrt{1-\varepsilon^{2}}} \left[\log\left(\sqrt{r} + \sqrt{r-\frac{\varepsilon^{2}}{1-\varepsilon^{2}}}\right) \right]_{\frac{\varepsilon^{2}}{1-\varepsilon^{2}}}^{\varepsilon} \\ = \frac{\pi}{k} + \frac{2}{k} \left(\log\frac{1}{\sqrt{\varepsilon}} + \frac{1}{2}\log\left(1-\varepsilon-\varepsilon^{2}\right) \right) \\ = \frac{\pi}{\sqrt{k}} + \frac{-\log\varepsilon}{\sqrt{k}} + \frac{1}{\sqrt{k}} \left(\log2 + \frac{5\varepsilon^{2}}{16} - \frac{3\varepsilon^{3}}{8} + O(\varepsilon^{4}) \right). \end{cases}$$

Thus

$$\begin{split} & \left| \int_{0}^{1+r\epsilon^{t}\theta} \frac{dt}{\sqrt{(1-t^{2})(1-k^{2}t^{2})}} \right| \leq \frac{1}{\sqrt{(2-\varepsilon)(2-2\varepsilon)k}} \\ & \left(-\log\varepsilon + \pi + \log 2 + \frac{5\varepsilon^{2}}{16} + O(\varepsilon)^{3} \right) = L : \ r < \varepsilon \,. \end{split}$$

The same fact occurs for $V_{\varepsilon}(-1)$. By (6) we have

$$\lim \frac{L}{K} = c < \frac{1}{2 - \delta'} \quad \text{for any} \quad \delta' > 0 \text{ as } \varepsilon \to 0.$$

Hence we have 3).

Proof of 4). The mapping $z \to \eta \to \zeta$ is denoted by $\zeta = f(z)$, where $\zeta = \frac{\eta}{K}$. Then by 3) there exists a const. ε^* such that $R\left(\frac{1}{3}, \frac{K'}{K}, \zeta\right)$ is mapped onto a domain G in $\{\operatorname{Im} z > 0\}$ such that G does not touch $V_{\varepsilon}(1) + V_{\varepsilon}(-1)$ for $\varepsilon < \varepsilon^*$. In the following we suppose $\varepsilon < \varepsilon^* < \frac{1}{4}$. A harmonic function $U(\zeta)$ in $R\left(1, \frac{K'}{K}, \zeta\right)$ is transformed to U(z) such that U(z)=0 on $\{\operatorname{Im} z=0, -\infty < \operatorname{Re} z < -\frac{1}{k}\}$ $\{\operatorname{Im} z=0, \frac{1}{k} \leq \operatorname{Re} z < \infty\}$ and $|U(z)| \leq M$ on $_{-I++I}$, where $_{-I}=\{\operatorname{Im} z=0, -\frac{1}{k} \leq \operatorname{Re} z \leq 1\}$ and $_{+I}=\{\operatorname{Im} z=0, 1 \leq \operatorname{Re} z \leq \frac{1}{k}\}$. Then

$$U(z) = \frac{1}{\pi} \int_{-I+I} U(t) K(z, t) dt ,$$

where

$$K(z, t) = \frac{y}{(x-t)^2 + y^2}$$
 and grad $K(z, t) = \frac{1}{(x-t^2) + y^2}$.

We estimate grad K(z, t) for $t \in I$ and $z \in G$. Put $t=1+\varepsilon'$ and $z=1+re^{i\theta}$. Then

by $t \in I$, $1 + \varepsilon' \leq \frac{1}{k} = \frac{1}{1 - \varepsilon^2}$ and $r > \varepsilon$ for $z \in G$. Hence by $\varepsilon < \varepsilon^* < \frac{1}{4}$ and $\varepsilon < r$ we have

$$\varepsilon' \leq \varepsilon^2 < \frac{\varepsilon}{4} < \frac{r}{4} \,. \tag{8}$$

By (8) $(x-t)^2 + y^2 \ge r^2 - 2r\varepsilon' \cos \theta + \varepsilon'^2 \ge r^2 - 2r\varepsilon' \ge \frac{r^2}{2}$: $t \in I$, $z \in G$ and

$$|\operatorname{grad}_{z} K(z, y)| \leq \frac{2}{r^{2}}.$$
(9)

We have also

$$\sqrt{1-z^2} \leq r^{\frac{1}{2}} (r+2)^{\frac{1}{2}}$$
 and $\sqrt{1+kz} \leq (r+2)^{\frac{1}{2}}; \quad t \in I, \quad z \in G.$ (10)

By
$$\varepsilon^2 < \frac{\varepsilon}{4} < \frac{r}{4}$$
, $\varepsilon^4 < \frac{r^2}{16}$
 $\sqrt{1-kz} \leq r^{\frac{1}{2}} \sqrt[4]{19}$, $t \in I$, $z \in G$. (11)

For $t \in I$ we have the same estimation for $z \in G$. Hence by (9), (10), (11) we have

$$\begin{aligned} |\operatorname{grad} U(\zeta)| &\leq \frac{M}{2\pi} \int_{-I+I} \operatorname{grad} K(z,t) \left| \frac{dz}{d\xi} \right| \left| \frac{d\xi}{dt} \right| dt \\ &\leq \frac{M}{2\pi} \int_{-I+I} \frac{2}{r^2} \sqrt{1-z^2} \sqrt{1-k^2 z^2} K dt \\ &\leq \frac{2M(2+r) \sqrt[4]{19}}{\pi r} \varepsilon^2 K. \end{aligned}$$

Whence $\operatorname{grad}_{\zeta} U(\zeta) \leq \frac{6 \sqrt[4]{19} M \varepsilon^2 K}{\pi}$: $r \geq 1$ and $\operatorname{grad}_{\zeta} U(\zeta) \leq \frac{6 \sqrt[4]{19} M \varepsilon K}{\pi}$: $r \leq 1$. Thus $|\operatorname{grad} U(\zeta)| \leq 6 \sqrt[4]{19} M \varepsilon K$.

Now by (6) $K\varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$. Hence for any $\gamma > 0$ there exists $\varepsilon_0 < \varepsilon^*$ such that

$$|\operatorname{grad} U(\zeta)| < \gamma \quad \operatorname{in} \quad R\Big(\frac{1}{3}, \frac{K'}{K}, \zeta\Big) \quad \text{for} \quad \varepsilon < \varepsilon_0$$

LEMMA 9. Let R be a rectangle $\{-\theta \leq \operatorname{Re} \zeta \leq \theta, 0 \leq \operatorname{Im} \zeta \leq 2\mathfrak{M}\theta\}$. Let ${}^{U}_{\delta}I^{i}_{n}({}^{L}_{\delta}I^{i}_{n})$ be a slit: $0 < \delta < \frac{1}{2}$ as follow

We denote this rectangle with the slits by $R(\theta, \mathfrak{M}\theta, \delta, n)$. Let R' be a rectangle

in $R(\theta, \mathfrak{M}\theta, \delta, n)$ such that $-\frac{\theta}{3} \leq \operatorname{Re} \leq \frac{\theta}{3}$, $\frac{3\mathfrak{M}\theta}{4} \leq \operatorname{Im} \zeta \leq \frac{5\mathfrak{M}\theta}{4}$. Then for any given $\varepsilon > 0$, there exist numbers \mathfrak{M}, n, δ such that

$$|\operatorname{grad}_{\zeta} U(\zeta)| < \varepsilon \quad in \quad R'$$

for any harmonic function $U(\zeta)$ in $R(\theta, \mathfrak{M}\theta, \delta, n)$ such that $|U(\zeta)| \leq 1$, $U(\zeta)=0$ on $\sum_{i} \binom{U}{\delta} I_n^i + \frac{L}{\delta} I_n^i$ and $D(U(\zeta)) \leq 1$.

Proof. At first we determine \mathfrak{M} . By 4) of lemma 8, for any $\varepsilon > 0$ there exists a number \mathfrak{M} (this is equivalent to the existence of $k=1-\varepsilon^2$) such that $|\operatorname{grad} U(\zeta)| < \varepsilon$ in $R\left(\frac{\theta}{3}, \frac{\mathfrak{M}\theta}{2}\right) = \left\{-\frac{\theta}{3} \leq \operatorname{Re} \zeta \leq \frac{\theta}{3}, \frac{\mathfrak{M}\theta}{2} \leq \operatorname{Im} \zeta \leq \frac{3\mathfrak{M}\theta}{2}\right\}$ for any harmonic function $U(\zeta)$ in $R\left(\theta, \frac{\mathfrak{M}\theta}{2}\right) = \left\{-\theta \leq \operatorname{Re} \zeta \leq \theta, \frac{\mathfrak{M}\theta}{2} \leq \operatorname{Im} \zeta \leq \frac{3\mathfrak{M}\theta}{2}\right\}$ vanishing on the horizontal sides and $|U(\zeta)| \leq 1$ on vertical sides. Fix \mathfrak{M} and denote it by \mathfrak{M}_0 . Secondly we determine δ . Let $G(\zeta, p)$ be a Green's function of $R\left(\theta, \frac{\mathfrak{M}\theta}{2}\right)$. Then there exists a const. M such that $|\operatorname{grad} \frac{\partial}{\partial n} G(\zeta, p)| \leq M$ for $\zeta \in \partial R\left(\theta, \frac{\mathfrak{M}\theta}{2}\right)$ and $p \in R\left(\frac{\theta}{3}, \frac{\mathfrak{M}\theta}{4}\right) = \left\{-\frac{\theta}{3} \leq \operatorname{Re} \zeta \leq \frac{\theta}{3}, \frac{3\mathfrak{M}\theta}{4} \leq \operatorname{Im} \zeta \leq \frac{5\mathfrak{M}\theta}{4}\right\}$. A rectangle with vertical slits is mapped by $z=e^{i\zeta}$ onto a circular trapezoid with circular slits. Hence Lemma 1' is applicable to a rectangle. Let $R_{\delta} = \left\{-\theta \leq \operatorname{Re} \zeta \leq \theta, 0 \leq \operatorname{Im} \zeta \leq \frac{\mathfrak{M}\theta}{2}\right\}$ with vertical slits $\left\{\frac{r}{\delta}I_n^t\right\}$. Let δ_0 be the number and fix it, where

$$\delta_0 \leq \frac{\varepsilon^2 \pi^2}{16M^2 \theta} \,. \tag{12}$$

Let $U_n(\zeta)$ be a harmonic function in R_{δ} such that $D(U_n(\zeta)) \leq 1$ vanishing on $\{\frac{L}{\delta}I_n^i\}$. Then by Lemma 7 $\lim_n D(U_n(\zeta)) \geq \frac{1}{\delta_0} \int_{\mathrm{Im} \zeta = \frac{\mathfrak{M}\theta}{2}} U(\zeta)^2 d\theta$. Hence there exists a number n_0 such that

$$\int_{\mathrm{Im}\,\zeta=\frac{\mathfrak{M}\theta}{2}} U_n^2(\zeta) d\theta \leq 2\delta_0 = \frac{\varepsilon^2 \pi^2}{8M^2 \theta} \quad \text{for} \quad n \geq n_0 \,. \tag{13}$$

Fix such n_0 . Then such numbers $\mathfrak{M}_0, \delta_0, n_0$ are required numbers. Similar fact occurs in $\left\{-\theta < \operatorname{Re} \zeta < \theta, \frac{3\mathfrak{M}\theta}{2} \leq \operatorname{Im} \zeta \leq 2\mathfrak{M}\theta\right\}$. Let $U(\zeta)$ be a harmonic function in $R(\theta, \mathfrak{M}_0\theta, \delta_0, n_0)$ satisfying the condition of Lemma 9. Put $U_1(\zeta) = \frac{1}{2\pi} \int_A U(t) \frac{\partial}{\partial n} G(t, \zeta) ds$ and $U_2(\zeta) = \int_B U(t) \frac{\partial}{\partial n} G(t, \zeta) ds$, where $G(t, \zeta)$ is a Green's function of $R\left(\theta, \frac{\mathfrak{M}\theta}{2}\right)$, A and B are vertical and horizontal sides. Then $|U_1(\zeta)| \leq 1$ on A and =0 on B. Hence $|\operatorname{grad} U_1(\zeta)| < \frac{\varepsilon}{2}$ in $R\left(\frac{\theta}{3}, \frac{\mathfrak{M}\theta}{2}\right)$. By Schwarz's

inequality $U_2(\zeta)$ satisfies by (13) $\int_B |U_2(\zeta)| d\theta < \frac{\pi\varepsilon}{2M}$ and $|\operatorname{grad} U_2(\zeta)| < \frac{\varepsilon}{2}$ in $R\left(\frac{\theta}{3}, \frac{\mathfrak{M}\theta}{4}\right) = \left\{-\frac{\theta}{3} \leq \operatorname{Re} \zeta \leq \frac{3\theta}{4}, \frac{\mathfrak{M}\theta}{4} \leq \operatorname{Im} \zeta \leq \frac{5\mathfrak{M}\theta}{4}\right\}$. Thus $|\operatorname{grad} U(\zeta)| < \varepsilon$ in $R\left(\frac{\theta}{3}, \frac{\mathfrak{M}\theta}{4}\right)$ for any harmonic function $U(\zeta)$ in $R(\theta, \mathfrak{M}_0\theta, \delta_0, n_0)$ satisfying the condition of Lemma 9.

Strong surface with exception δ and deviation ε . Let R be the same leaf of $R(\theta, \mathfrak{M}_0\theta, \delta_0, n_0)$ of Lemma 9. Identify $\{ {}^{U}_{\delta}I_n^i + {}^{L}_{\delta}I_n^i \}$ of \hat{R} and $R(\theta, \mathfrak{M}_0\theta, \delta_0, n_0)$. Then we have a surface \tilde{R} . As case of Lemma 5 $\left| \frac{d}{dt} f(t) \right| \leq 2\sqrt{2}\varepsilon$: proj. $t \in R\left(\frac{\theta}{3}, \frac{\mathfrak{M}_0\theta}{4}\right)$ in Lemma 9 for any analytic function $f(t): t \in \tilde{R}$ with $|f(t)| \leq \frac{1}{2}$ and $D(f(t)) \leq \frac{1}{4}$. Let l be an integer and put $\theta = \frac{\pi}{l}$ and let $\mathfrak{M}_0, \delta_0, n_0$ be numbers in Lemma 9 corresponding to θ . Let $_I^i$ and $_+I^i$ $(i=1, 2, 3, \cdots, ln_0)$ in $\{a \leq |w| \leq ae^{\mathfrak{M}^0}\}: \mathfrak{M}^0 = \frac{\pi \mathfrak{M}_0}{l}$ such that

$${}_{-}I^{\imath} = \left\{ \arg w = \frac{2i\theta}{n_{0}} : a \leq |w| \leq ae^{\mathfrak{M}_{0}\left(\frac{1}{2} - \delta_{0}\right)} \right\},$$
$${}_{+}I^{\imath} = \left\{ \arg w = \frac{2i\theta}{n_{0}}, ae^{\left(\frac{3}{4} + \delta_{0}\right)\mathfrak{M}^{0}} \leq |w| \leq ae^{2\mathfrak{M}^{0}} \right\}$$

Let $R^{w} = \{a \leq |w| \leq ae^{2\mathfrak{M}^{0}}\} - \sum_{i} (-I^{i} + I^{i})$ and let \hat{R} be the same leaf as R^{w} . Identify $\{-I^{i} + I^{i}\}$. Then we have a surface \tilde{R}^{w} . Let $A(\theta_{1}, \theta_{2}) \cap \tilde{R}^{w}$ be the part of \tilde{R}^{w} over $\theta_{1} < \arg w < \theta_{2}$. Then $A\left(\frac{2j_{0}\theta}{n_{0}}, \frac{2j_{0}\theta + 2n_{0}\theta}{n_{0}}\right) \cap R^{w}$ is mapped conformally onto $R(\theta, \mathfrak{M}_{0}, \delta_{0}, n_{0})$ in Lemma 9 by $w = ae^{-iz + \frac{2j_{0}\theta}{n_{0}}}$ where j_{0} is an integer. Hence we have at once

a) Let j_1 and j_2 be integers such that $j_2 - j_1 \ge n_0$. Then since $A\left(\frac{2j_1\theta}{n_0}, \frac{2j_2\theta}{n_0}\right)$ $\supset A\left(\frac{2j_3\theta}{n_0}, \frac{2j_3\theta + 2n_0\theta}{n_0}\right)$ for $j_1 \le j_3 \le j_2 - n_0$, $\left|\frac{d}{dt}f(t)\right| \le 2\sqrt{2}\varepsilon$ in $A\left(\frac{2j_1\theta}{n_0} + \frac{2\theta}{3}, \frac{2j_2\theta}{n_0}\right)$ $-\frac{2\theta}{3} \cap \widetilde{R}^w$ over $ae^{\frac{3}{4}\mathfrak{M}^0} < |w| < ea^{\frac{5}{4}\mathfrak{M}^0}$ for and f(t) which is analytic in $A\left(\frac{2j_1\theta}{n_0}, \frac{2j_2\theta}{n_0}\right)$ $\frac{2j_2\theta}{n_0} \cap \widetilde{R}^w$ with $|f(t)| \le \frac{1}{2}$ and $D(f(t)) \le \frac{1}{4}$. b) Let $\delta = \frac{2\theta}{3} + \frac{2\theta}{n_0}$. Then $\left|\frac{d}{dt}f(t)\right| \le 2\sqrt{2}\varepsilon$ in $A(\theta_1 + \delta, \theta_2 - \delta) \cap \widetilde{R}^w$ over $ae^{\frac{3}{4}\mathfrak{M}^0} < |w| < ae^{\frac{5}{4}\mathfrak{M}^0}$ for any f(t) in $A(\theta_1, \theta_2) \cap \widetilde{R}^w$ for $\theta_2 - \theta_1 \ge 4\delta$ with $|f(t)| < \frac{1}{2}$, $D(f(t)) \le \frac{1}{4}$.

In fact, $\theta_2 - \theta_1 \ge 4\delta \ge 2\theta + \frac{8\theta}{n_0}$. We can find $\theta_1 \le \theta_1' < \theta_2' \le \theta_2$ such that $0 \le \theta_2 - \theta_1$

 $\leq \frac{2\theta}{n_0}, \ 0 \leq \theta'_1 - \theta_1 \leq \frac{2\theta}{n_0} \text{ and } \theta'_1 = \frac{2j_1\theta}{n_0}, \ \theta'_2 = \frac{2j_2\theta}{n_0}, \text{ where } j_1 \text{ and } j_2 \text{ are integers.}$ Now $j_2 - j_1 \geq n_0$, hence by a) $\left| \frac{d}{dt} f(t) \right| \leq 2\sqrt{2\varepsilon} \text{ in } A\left(\frac{2j_1\theta}{n_0} + \frac{2\theta}{3}, \frac{2j_2\theta}{n_0} - \frac{2\theta}{3}\right) \cap \tilde{R}^w$ over $ae^{\frac{3}{4}\mathfrak{M}^0} < |w| < ae^{\frac{5}{4}\mathfrak{M}^0}.$ Now $A\left(\frac{2j_1\theta}{n_0} + \frac{2\theta}{3}, \frac{2j_2\theta}{n_0} - \frac{2\theta}{3}\right) \supset A(\theta_1 + \delta, \theta_2 - \delta)$ by $\frac{2j_1\theta}{n_0} + \frac{2\theta}{3} - \theta_1 < \frac{2\theta}{3} + \frac{2\theta}{n_0} < \delta \text{ and } \theta_2 - \left(\frac{2j_2\theta}{n_0} - \frac{2\theta}{3}\right) \leq \frac{2\theta}{3} + \frac{2\theta}{n_0} < \delta \text{ and we have b). }$

In general, let R be a ring surface consisting of two leaves obtained by identifying radial slits over $a < |w| a e^{\mathfrak{M}}$. If $\left|\frac{d}{dt}f(t)\right| < \varepsilon$ over $\{ae^{\frac{3}{4}\mathfrak{M}} < |w| < ae^{\frac{5}{4}\mathfrak{M}}\}$ $\cap A(\theta_1 + \delta, \theta_2 - \delta) \cap \widetilde{R}$ for any analytic function f(t) in $A(\theta_1, \theta_2) \cap \widetilde{R}$ with $|f(t)| < \frac{1}{2}$ and $D(f(t)) \leq \frac{1}{4} : \theta_2 - \theta_1 > 4\delta$, we call \widetilde{R} a strong surface with exception δ and deviation ε . In fact the surface \widetilde{R}^w discussed above is a strong surface with exception $\frac{2\theta}{3} + \frac{2\theta}{n_0}$ and deviation $2\sqrt{2\varepsilon}$.

 α, β -thin set. Let \widetilde{G} be a strong surface with exception δ and with deviation ε over $a < |z| < ae^{\mathfrak{M}}$. Let F be a closed set in \widetilde{G} . We say F is α, β -thin set in G, if F is so thinly distributed that there exists a Jordan curve Γ in G-F and $\widehat{G}-F$ such that 1) proj Γ separates |z|=a from $|z|=ae^{\mathfrak{M}}$, 2) length of $\Gamma \leq \alpha a$. 3) $\left|\frac{d}{dt}f(t)\right| < \beta \varepsilon$ on $\Gamma \cap A^{\widetilde{e}}(\theta_1 + \delta, \theta_2 - \delta)$ for any analytic function f(t) in $(\widetilde{G}-F) \cap A^{\widetilde{e}}(\theta_1, \theta_2): \theta_2 - \theta_1 \geq 4\delta$ with $|f(t)| \leq \frac{1}{2}$ and $D(f(t)) \leq \frac{1}{4}$, where $A^{\widetilde{e}}(\theta_1, \theta_2)$ means the part of \widetilde{G} over $\theta_1 \leq \arg z \leq \theta_2$.

EXAMPLE 3. Let U = |z| < 1 and $1 > a_1 > a_2 \cdots \downarrow 0$ and

$$\sum_{n} \log \frac{a_{2n+1}}{a_{2n+2}} = \infty .$$
 (14)

Let $J_n = \{\arg z = \pi, a_{2n+2} \leq |z| \leq a_{2n+1}\}$ be a slit and $R(a_{2n+2}, a_{2n+1}) = \{a_{2n+2} \leq |z| \leq a_{2n+1}\}$. Let $1 > b'_1 > b_1 > b'_2 > b_2 \cdots \downarrow 0$ G_n be a ring $b_n \leq |z| \leq b'_n$ with slits $\sum_{i=1}^{j(n)} I^i_{j(n)}$ such that we can construct a strong surface \widetilde{G}_n with exception $\delta = \frac{1}{n}$ with deviation c_n , where $\lim_{n \to \infty} \frac{\log c_n}{\log b_n} = \infty$, $\sum_{n=1}^{\infty} R(b_n, b'_n) \cap \sum_{n=1}^{\infty} R(a_{2n+2}, a_{2n+1}) = 0$ and

$$\lim_{n \to \infty} \frac{\log b_n}{\log b'_n} = 1.$$
(15)

Let \mathfrak{F} be a unit circle with slits $\sum_{n=1}^{\infty} J_n + \sum_{n=1}^{\infty} \sum_{i=1}^{j(n)} I_{j(n)}^i$ and $\hat{\mathfrak{F}}$ be the same leaf as \mathfrak{F} . Identify $J_n + I_n^i$ of \mathfrak{F} and $\hat{\mathfrak{F}}$. Then we have a Riemann surface $\hat{\mathfrak{F}}$. Evidently $\tilde{\mathfrak{F}}$ has one boundary component \mathfrak{p} . The part of $\tilde{\mathfrak{F}}$ over $R(a_{2n+1}, a_{2n+2})$ is a ring

with module $=\frac{1}{2}\log \frac{a_{2n+1}}{a_{2n+2}}$ and separates $\partial \mathfrak{F}$ from \mathfrak{P} , hence \mathfrak{F} is an end of another Riemann surface $\in O_g$ and \mathfrak{P} is of harmonic dimension =1 and there exists only one Martin point p over \mathfrak{P} .

- a) Let F_1 be a set of radial slits in $\mathfrak{F}-\Sigma \widetilde{G}_n$.
- b) $F_2 \cap \widetilde{G}_n$ is an α, β -thin set for $n=1, 2, \cdots$.

c) Let $A(\theta_1, \theta_2) = \{\theta_1 < \arg z < \theta_2\}$. Let $A^{\mathfrak{F}}(\theta_1, \theta_2, b'_n)(or \, \widehat{\mathfrak{F}})$ be the part of \mathfrak{F} over $A(\theta_1, \theta_2)$ bounded by |z| = 1, $|z| = b'_n$, $\arg z = \theta_1$ and $\arg z = \theta_2$. Let $U_n(z)$ be a harmonic function in $A^{\mathfrak{F}}(\theta_1, \theta_2, b'_n) - F_1 - F_2$ such that $U_n(z) = 0$ on |z| = 1, =1 on $|z| = b'_n$ and has M.D.I. Then

$$D(U_n(z)) \ge \frac{\gamma(\theta_2 - \theta_1)}{-\log b'_n} : \quad \gamma > 0.$$
(16)

d) $v(p) \cap A^{\mathfrak{F}}(\theta_1, \theta_2, b) - F_1 - F_2$ is connected for $\theta_2 > \theta_1$. If F_1 and F_2 satisfy the above conditions, then the part of $(v(p) - F_1 - F_2)$ over $A(\theta_1, \theta_2) \in O_{ABF}$ for any $\theta_2 > \theta_1$.

Proof. Assume there exists a non const. analytic function f(t) in the part $v(p)-F_1-F_2$ over $A(\theta_1,\theta_2)$. Then f(t) is a finite number of sheets covering. $\sup|f(t)| < \infty$ implies $D(f(t)) < \infty$. Hence we can suppose $|f(t)| < \frac{1}{2}$, $D(f(t)) \leq \frac{1}{4}$. Let n_0 be the number such that $4\delta_{n_0} < \frac{\theta_2-\theta_1}{4}$. Let $\theta'_1 = \frac{3\theta_1+\theta_2}{4}$, $\theta'_2 = \frac{\theta_1+3\theta_2}{4}$. Then $\theta_1 < \theta'_1 < \theta'_2 < \theta_2$. Let $(v(p)-F_1-F_2) \cap A(\theta'_1,\theta'_2)$ be the part of $v(p)-F_1-F_2$ over $A(\theta'_1,\theta'_2)$. The existence of f(t) in $(v(p)-F_1-F_2) \cap A(\theta_1,\theta_2)$ implies there exists a Jordan curve Γ_n such that $\left|\frac{d}{dt}f(t)\right| < \beta c_n$ on Γ_n in $(v(p)-F_1-F_2) \cap A(\theta'_1,\theta'_2)$ and length of $\Gamma_n < \alpha b_n$. Let \mathfrak{F}_n be the part of $\mathfrak{F} \cap (v(p)-F_1-F_2)$ over $A(\theta'_1,\theta'_2)$ bounded by $\partial v(p)$, F_1 , F_2 arg $z=\theta'_1$, arg $z=\theta'_2$ and Γ_n . Let $U_n(z)$ be a harmonic function in \mathfrak{F}_n such that $U_n(z)=0$ on $\partial v(p)$, =1 on Γ_n . Then as case of example 2 we have

$$D(U_n(z)) \leq 0 \left(\frac{1}{-\log b_n - \log c_n - \log \alpha \beta} \right).$$

On the other hand by condition c) $D(U_n(z)) \ge 0 \left(\frac{\theta'_2 - \theta''_1}{-\log b_n}\right)$. This is a contradiction by $\lim \frac{\log c_n}{\log b_n} = \infty$. Hence we have the conclusion.

EXAMPLE 4. Let $\frac{1}{3} < a_1 < a_2, \dots \uparrow 1$ with $\sum_n \log \frac{1-a_{2n+1}}{1-a_{2n+2}} = \infty$. Let G_n be a ring $\{b_n \leq |z| \leq b'_n\}$ with slits $\sum_{i=1}^{j(n)} I^i_{j(n)}$ such that

1) $\frac{1}{3} < b_n < b'_n < b'_{n+1} < b'_{n+1} \dots \uparrow 1$ and $\sum_n \{b_n \le |z| \le b'_n\} \cap \sum \{a_{2n+1} \le |z| \le a_{2n+2}\}$ =0.

2) \tilde{G}_n is a strong surface with exception $\delta_n = \frac{1}{n}$ and deviation $\varepsilon_n : \lim_{n \to \infty} \varepsilon_n = 0$.

3) $\omega_n(z)_{|z|=\sqrt{b_nb_n'}} \leq \frac{1}{n}$, where $\omega_n(z)$ is a harmonic function in G_n such that $0 < \omega_n(z) \leq 1$ on G_n and = 0 on $\sum_{i}^{j(n)} I_{j(n)}^i$ (this condition is easily satisfied by Lemma 8. 2) for sufficiently many slits). Let \mathfrak{F} be a unit circle with slits $I_{j(n)}^i$ $(n=1, 2, 3, \cdots, i=1, 2, \cdots, j(n))$. Let \mathfrak{F} be the same leaf as \mathfrak{F} . Identify $I_{j(n)}^i$ of \mathfrak{F} and \mathfrak{F} . Then we have a Riemann surface \mathfrak{F} over |z| < 1 with one boundary component on |z|=1. The part of over $G_n(b_n, b'_n)$ is an strong surface. At first we investigate the structure of the boundary. Then

1) $\tilde{\mathfrak{F}}$ has no singular point relative to N-Martin and Martin topology.

2) There exsits only one point on $e^{i\theta}$ relative to N-Martin topology.

Proof of 1) Let $\tilde{\mathfrak{F}}'$ be the part of \mathfrak{F} over $1 > |z| > \frac{1}{3}$. Then $\tilde{\mathfrak{F}}'$ has relative boundary $\partial \tilde{\mathfrak{F}}'$ on $|z| = \frac{1}{3}$. We suppose N-Martin topology is defined on $\tilde{\mathfrak{F}}'$. Let $\mathcal{A}_{n,i} = \left\{1 - \frac{1}{n} \leq |z| < 1, \frac{2\pi i}{n} \leq \arg z \leq \frac{2\pi (i+1)}{n} : i=0, 1, \cdots, n-1\right\}$. Let G be a domain in $\tilde{\mathfrak{F}}'$ and let $\omega(G, t) : t \in \tilde{\mathfrak{F}}'$ be capacitary potential, i.e. $\omega(G, t)$ is the harmonic function in $\tilde{\mathfrak{F}}' - G$ such that $\omega(G, t) = 0$ on $\partial \tilde{\mathfrak{F}}', =1$ on G and has M. D. I. Let U(z) be a harmonic function in $\left\{\frac{1}{3} < |z| < 1\right\} - \mathcal{A}_{n,i}$ such that U(z) = 1 on $\mathcal{A}_{n,i}, = 0$ on |z| = 1 and U(z) has M. D. I. Then

$$D(U(z)) \leq \frac{-\pi \log (\text{diameter of } \mathcal{A}_{n,i})}{\pi \log \frac{2}{3}} \downarrow 0 \quad \text{as} \quad n \to \infty .$$

Let U'(z) be a harmonic function in $\left\{\frac{1}{3} < |z| < 1\right\} - \sum_{n,i} I_{n,i}$ such that U'(z)=1on $\mathcal{A}_{n,i}$, =0 on $|z| = \frac{1}{3}$ and has M.D.I. Then $D(U'(z)) \leq D(U(z))$ and $\frac{\partial}{\partial n}U'(z)=0$ on $\sum I_{n,i}$. Put U'(t)=U'(z) (z=proj t) in $\tilde{\mathfrak{F}}'-\mathcal{A}_{n,i}^{\mathfrak{F}}$, where $\mathcal{A}_{n,i}^{\mathfrak{F}}$ is the part of $\tilde{\mathfrak{F}}'$ over $\mathcal{A}_{n,i}$. Then U'(t) is harmonic in $\tilde{\mathfrak{F}}'-\mathcal{A}_{n,i}^{\mathfrak{F}}$. Hence $D(\omega(\mathcal{A}_{n,i}^{\mathfrak{F}},t)) \leq 2D(U'(z)) \downarrow 0$ as $n \to \infty$. This implies $\omega(\mathcal{A}_{n,i}^{\mathfrak{F}},t) \to 0$ as $n \to \infty$. Assume there exists a singular point p relative to N-Martin topology. Then $\omega(p, t) = \lim_{m \to \infty} \omega(v_m(p), t) > 0$. Where $v_m(p)$ is a neighbourhood of p relative to N-Martin topology. Let t_0 be a point and let n_0 be a number such than

$$\omega(\mathcal{A}_{n_0,i}^{\mathfrak{F}}, t_0) < \frac{1}{3} \omega(p, t_0) \quad \text{for} \quad i=1, 2, \cdots, n_0.$$

$$(17)$$

Now $\sum_{i}^{n_0} \omega(A_{n_0,i}^{\mathfrak{F}} \cap v_m(p), t) \ge \omega(v_m(p), t) \ge \omega(p, t)$, where we suppose proj $v_m(p) \subset (|z| > 1 - \frac{1}{n_0})$. Since $\omega(A_{n_0,i}^{\mathfrak{F}} \cap v_m(p), t) \downarrow$ as $m \to \infty$, there exists at least one $A_{n_0,i_0}^{\mathfrak{F}}$ such that $\omega(A_{n_0,i_0}^{\mathfrak{F}} \cap v_m(p), t_0) \ge \frac{1}{n_0} \omega(p, t_0)$ for any m. Let $m \to \infty$. Then

ANALYTIC FUNCTIONS

$$\begin{split} &\lim_{m\to\infty} \omega(\mathcal{A}_{n_0,\iota_0} \cap v_m(p), t) = \alpha \omega(p, t) \quad \text{by} \quad (\overline{v_m(p)} \cap \mathcal{A}_{n_0,\iota_0} \subset p). \quad \text{On the other hand,} \\ &\lim_{m\to\infty} \omega(\mathcal{A}_{n_0,\iota_0} \cap v_m(p), t) > 0 \quad \text{implies sup} (\lim_{m\to\infty} \omega(\mathcal{A}_{n_0,\iota_0} \cap v_m(p), t)) = 1 \text{ and } \alpha = 1, \text{ whence} \\ &\frac{1}{3} \omega(p, t_0) \geq \lim_{m\to\infty} \omega(\mathcal{A}_{n_0,\iota_0} \cap v_m(p), t_0) = \omega(p, t_0) \quad \text{by (17). This is a contradiction.} \\ &\text{Hence there exsits no singular point relative to N-Martin topology. Assume} \\ &\text{there exists a singular point } p \text{ relative to Martin topology. Then } \lim_{m\to\infty} w(v_m(p), t) \\ &= w(p, t) > 0, \text{ where } v_m(p) \text{ is a neighbourhood of } p \text{ relative to Martin topology} \\ &\text{and } w(G, t) \text{ is H. M. of } G \text{ i.e. is the least positive superharmonic function in } \widetilde{\mathfrak{F}}' \\ &\text{larger than 1 on } G. \quad \text{Now } w(\mathcal{A}_{\overline{n}_0,\iota_0}^{\widetilde{\mathfrak{F}}}, t) \leq \omega(\mathcal{A}_{\overline{n}_0,\iota_0}^{\widetilde{\mathfrak{F}}}, t). \\ &\text{Hence we can prove similarly} \\ &\text{as case of } \omega(p, z) \text{ that there exists no singular point relative to Martin topology.} \end{split}$$

Proof of 2) To prove 2) we use following three facts.

a) Let t and \hat{t} be points in \mathfrak{F} and \mathfrak{F} such that proj $t_1 = \text{proj } t_2 = z$. Let U(t) be a harmonic function in \mathfrak{F}' such that |U(t)| < M. Then $|U(t) - U(t)| \to 0$ as $|z| \to 1$.

In fact, consider $U(t)-U(\hat{t})$ over $b_n < |z| < b'_n$. Then $|U(t)-U(\hat{t})| \le 2M\omega_n(z)$. Hence by the maximum principle $|U(t)-U(\hat{t})| < 2M \times \max(\varepsilon_n, \varepsilon_{n+1})$ over $\sqrt{b_n b'_n} \le |z| \le \sqrt{b_{n+1}b'_{n+1}}$ and we have a).

b) Let U(t) be a harmonic function in $\tilde{\mathfrak{F}}'$ such that U(t) has M.D.I. among all harmonic functions with the same value as U(z) on $\partial \tilde{\mathfrak{F}}'$ over $\tilde{\mathfrak{F}}'$. Let G be a domain in $\tilde{\mathfrak{F}}'$. Then $\sup_{t\in G} |U(t)| \leq \sup_{t\in \partial G} |U(t)|$.

Because let $\{\widetilde{\mathfrak{F}}'_n\}$ be an exhaustion of $\widetilde{\mathfrak{F}}'$ such that $\partial \mathfrak{F}'_n \supset \partial \mathfrak{F}'$ for any n and $\widetilde{\mathfrak{F}}'_n \uparrow \widetilde{\mathfrak{F}}'$. Let $U_n(t)$ be a harmonic function in $\widetilde{\mathfrak{F}}'_n$ such that $U_n(t) = U(t)$ on $\partial \widetilde{\mathfrak{F}}'_n$ and $\frac{\partial}{\partial n} U_n(t) = 0$ on $\partial \widetilde{\mathfrak{F}}'_n - \partial \widetilde{\mathfrak{F}}'$. Then $U_n(t) \rightarrow U(t)$. Clearly for $U_n(t)$, by the maximum principle $\sup_{t \in \mathfrak{A}} |U_n(t)| \leq \sup_{t \in \mathfrak{A}} |U(t)|$. Hence we have b).

c) Let U(t) be a harmonic function in $\tilde{\mathfrak{F}}'$ with $D(U(t)) < \infty$. Then there exists a curve $\tilde{\Gamma}_n : n=1, 2, \cdots$ consisting of two components: $\tilde{\Gamma}_n = \Gamma_n + \hat{\Gamma}_n$ in such that $\Gamma_n \subset \mathfrak{F}'$, $\hat{\Gamma}_n \subset \tilde{\mathfrak{F}}'$, proj $\Gamma_n = \text{proj } \hat{\Gamma}_n$, proj $\tilde{\Gamma}_n \cap \sum_{n,i} I_n^i = 0$, proj $\tilde{\Gamma}_n$ separates $z = e^{i\theta}$ from $|z| = \frac{1}{3}$, proj $\tilde{\Gamma}_n \to e^{i\theta}$ as $n \to \infty$ and $\int_{\tilde{\Gamma}_n} |\text{grad } U(t)| dt \to 0$ as $n \to \infty$.

Proof. We suppose $e^{i\theta} = 1$. Map U (unit circle with slits I_n^i) by $\xi = \log z$ in the ξ -plane. Then $z=1 \rightarrow \xi = 0$, $I_{j(n)}^i \rightarrow a$ horizontal slits $\xi I_{j(n)}^i$. Let $\mathcal{A}_1 = \{0 \leq \operatorname{Im} \xi \leq l, \frac{\pi}{2} \leq \arg \xi \leq \frac{3\pi}{4}\}$, $\mathcal{A}_2 = \{-l \leq \operatorname{Re} \xi \leq 0, \frac{3\pi}{4} < \arg \xi \leq \frac{5\pi}{4}\}$, $\mathcal{A}_3 = \{0 \geq \operatorname{Re} \xi \geq -l, \frac{5\pi}{4} < \arg \xi \leq \frac{3\pi}{2}\}$, where l=1. Let $\eta = g(\xi)$ be a one to one mapping from $\mathcal{A}_1 + \mathcal{A}_2 + \mathcal{A}_3$ to $\{0 \leq |\eta| \leq l, \frac{\pi}{2} \leq \arg \eta \leq \frac{3\pi}{2}\}$ such that

$$(r=\operatorname{Im} \xi, \ \theta=\arg \xi) \text{ in } \mathcal{A}_1, \qquad (r=-\operatorname{Re} \xi, \ \theta=\arg \xi) \text{ in } \mathcal{A}_2$$

and $(r=-\operatorname{Im} \xi, \ \theta=\arg \xi) \text{ in } \mathcal{A}_3, \qquad \text{where } re^{i\theta}=\eta=g(\xi).$

We see by computation $\eta = g(\xi)$ is a quasiconformal mapping with maximal dilation quotient $= K \leq \frac{3 + \sqrt{5}}{2}$. Let $R^4(a_{2n+1}, a_{2n+2}) = \mathcal{A}_1 \cap (-\log a_{2n+2} \leq \operatorname{Im} \xi \leq -\log a_{2n+1}) + \mathcal{A}_2 \cap \{\log a_{2n+1} \leq \operatorname{Re} \xi \leq \log a_{2n+2}\} + \mathcal{A}_3 \cap \{\log a_{2n+2} \geq \operatorname{Im} \xi \geq \log a_{2n+1}\}.$ Then $g(\xi)$ maps $R^4(a_{2n+1}, a_{2n+2})$ onto a semiring $R^{\eta}(a_{2n+1}, a_{2n+2}) = \{-\log a_{2n+1} \leq |\eta| \leq -\log a_{2n+2}, \frac{\pi}{2} \leq \arg \eta \leq \frac{3\pi}{2}\}$. We remark $\xi I_{j(n)}$ contained in $(\mathcal{A}_1 + \mathcal{A}_2) \cap R^4(a_{2n+1}, a_{2n+2}) \rightarrow a$ circular slit $\eta I_{j(n)}^{i}$ in $R^{\eta}(a_{2n+1}, a_{2n+2})$ and there is no slit in $\mathcal{A}_2 \cap R^4(a_{2n+1}, a_{2n+2})$. Hence $R^{\eta}(a_{2n+1}, a_{2n+2})$ has only circular slits. Let $\hat{R}^4(a_{2n+1}, a_{2n+2})$ and $\hat{R}^4(a_{2n+1}, a_{2n+2})$. Then we have a surface $\tilde{R}^4(a_{2n+1}, a_{2n+2})$. We construct a surface $\tilde{R}^{\eta}(a_{2n+1}, a_{2n+2})$ from $R^{\eta}(a_{2n+1}, a_{2n+2})$ to $\tilde{R}^{\eta}(a_{2n+1}, a_{2n+2})$ with the same maximal dilatation quotient except on $\sum I_n^i$. Consider the function $U(t): t \in \tilde{\mathfrak{S}}'.$ $z = \operatorname{proj} t$. Then $U(\eta) = U(\exp(g^{-1}(\eta)))$ is not harmonic in $\eta \tilde{R}(a_{2n+1}, a_{2n+2})$ but a Dirichlet bounded function and

$$\sum_{n} D(U(\eta)) \leq \sum KD(U(\xi)) \leq KD(U(t)) < \infty.$$

$$\widetilde{R}(a_{2n+1}, a_{2n+2}) \qquad \widetilde{\widetilde{R}}(a_{2n+1}, a_{2n+2}) \qquad \widetilde{\mathfrak{F}}'$$

Put $\eta = re^{i\theta}$ and $L(r) = \int_{C_r} \left| \frac{\partial u}{\partial \theta} (re^{i\theta}) \right| d\theta$, where $C_r = \{ |\eta| = r \}$ is contained in $\sum_{\eta} \tilde{R}(a_{2n+1}, a_{2n+2})$ and composed of two components, C(r) does not intersect ξI_n^i except a set of r of measure zero. By Schwarz's inequality

$$\int_{\Sigma^{\lambda_n}} \frac{L^2(r)}{r} dr \leq \sum_{\substack{n \\ \eta \widetilde{R}(a_{2n+1}, a_{2n+2})}} <\infty,$$

where λ_n is an interval $= \{-\log a_{2n+2}, -\log a_{2n+1}\}$. By $\sum_n \log \left(\frac{\log a_{2n+1}}{\log a_{2n+2}}\right) \sim \sum_n \log \frac{1-a_{2n+1}}{1-a_{2n+2}} = \infty$, we see there exists a sequence $\{r_n\}$ such that C_{r_n} does not touch $\{I_n^i\}$ and $L(r_n) \to 0$ as $n \to \infty$. Let $\Gamma_n = g^{-1}(C_{r_n})$. Then clearly proj $\Gamma_n \to z = 1$. Hence Γ_n is a required curve.

Let U(t) be a harmonic function in $\tilde{\mathfrak{F}}'$ such that U(t) has M. D. I. among all harmonic functions with the same value as U(t) on $\partial \tilde{\mathfrak{F}}'$. Then by a), b) and c) U(t) has a limit as proj $t \rightarrow z=1$. Hence there exists only one N-Martin point over $e^{i\theta}$. Let p be the N-Martin point over $e^{i\theta}$. Then since there exists only one point p over $e^{i\theta}$, dist $(e^{i\theta}, \operatorname{proj} \partial v_n(p)) > 0$ for any $v_n(p) = \{t: \text{Martin distance}$ $(t, p) < \frac{1}{n}\}$. Let F_1 be a set of radial slits in the part of $\tilde{\mathfrak{F}}_1$ over $\sum R(a_{2n+1}, a_{2n+2})$. Now the part of $\tilde{\mathfrak{F}}'$ over $b_n < |z| < b'_n$ is an strong surface with δ_n, ϵ_n . Let F_2 be a closed set in $\tilde{\mathfrak{F}}'$ such that F_2 is an α, β -thin set in the part of $\tilde{\mathfrak{F}}'$ over $R(b_n, b'_n)$ $(n=1, 2, \cdots)$ and 2) $D(U(z)) > \gamma(\theta_2 - \theta_1): \gamma > 0$ where U(z) is a harmonic function in $\mathfrak{F}' \cap (\frac{1}{3} < |z| < 1, \theta_1 < \arg z < \theta_2) - F_1 - F_2$ such that U(z) = 0

on $|z| = \frac{1}{3}$, U(z) = 1 on |z| = 1 and U(z) has M.D.I. Then we have as example 3 following

PROPOSITION.

$$(v_n(p) - F_1 - F_2) \in O_{ABF}$$
.

References

- [1] Z. KURAMOCHI, Singular points of Riemann surfaces. J. Fac. Sci. Hokkaido Univ., 16, 80-104 (1962).
 - C. CONSTANTINESU AND A. CORNEA, Ideale Ränder Riemannscher Flächen, Berlin-Göttingen-Heiderberg: Springer (1963).
- [2] M. HEINS, Riemann surfaces of infinite genus. Ann. Math., 52, 296-317 (1952).
- [3] Z. KURAMOCHI, On minimal points of Riemann surfaces. II. Hokkaido Math. Jour. Vol. II, 139-175 (1973).
- [4] P. J. MYRBERG, Über die analytische Fortsetzung von beschränkten Funktionen. Ann. Acad. Sci. Fenn. Ser. A.I. No. 58 (1949).
- [5] See (2).
- [6] Z. KURAMOCHI, On the behaviour of analytic functions on abstract Riemann surfaces. Osaka Math. J., 7, 109-127 (1955).
- [7] See Lemma 8.

MATHEMATICAL DEPARTMENT OF HOKKAIDO UNIVERSITY