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§0. Introduction.

Yano and Okumura [8] have studied hypersurfaces of a manifold with
(f, &, u, v, )-structure. These submanifolds admit an (f, g, %, @u)-Structure,
that is, a set of a tensor field f of type (1, 1), a Riemannian metric g, three 1-
forms u, v and w and functions «, 8 and 4 satisfying certain algebraic conditions
[4]. In particular, a hypersurface of an even-dimensional sphere carries an
(f, &, U, Aupy)-structure (see also [4]).

The submanifolds of codimension 2 in an almost contact metric manifold also
admit the same kind of structure (see [5)).

Let M be an m-dimensional differentiable manifold with (f, &, Uy, Qw)-
structure. We define on MXR®, R® being a 3-dimensional Euclidean space, a
tensor field F of type (1, 1) with local components Fz* given by

1t ut ot
0.1) (Fp)=

J_‘B —a

in {NXR?®; x4}, {N; x"} being a coordinate neighborhood of M and x%, x% x* being
cartesian coordinates in R°, where f,*, u,, v, and w, are respectively local com-
ponents of f, u, v and w, u"=u,g*", v"=v,g"* and w'=w,g® in {N;x"}, and,
where g are entries of the inverse matrix of the matrix (g;,) whose entries are
components of a Riemannian metric on M. (The indices A4, B, C, -~ run over the
range {1,2,---,m+3} and A, 1, j, --- run over the range {1,2,---,m}.) We denote
m-+1, m+2 and m-+3 respectively by I, 2 and 3.

Denoting 0/0x4 by 94, the Nijenhuis tensor [F, F'] of F has local components
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HYPERSURFACES WITH NORMAL (f, &, %cs, @) -STRUCTURE 425

in MXR®. Thus, denoting V', by the operator of covariant differentiation with
respect to the Christoffel symbols {th} formed with g;; of M and using (0.1), we

can write down local components of the tensor Syz4 as follows;
(0.2) Si =1V =V o f =W L=V ) fi
+ u—V u)ut+F w,—V v )"
+F jw,—V w,)w",
S,2=—f V£V w,+w, W, £ =V, 5

_AB(VJ'ulmViuJ)_a(Vjvt_Vivj) ’
etc.
Specially, if S;;*=0, then we say that the (f, g, uc, aw)-Structure is normal
[4].
In the previous paper [4], Pak and the present authors proved the following
theorem :

THEOREM A. Let M be a complete and connected hypersurface of an even-
dimensional sphere S**. If the induced (f, g, U, Qcp)-Structure is normal, S,sz,
the vectors u® v* and w" (or associated 1-forms u,, v, and w,) are linearly n-
dependent and the function 21 1s almost everywhere non-zero on M, then M is
congruent to S*™' or SPx S*™-1P (p=1,2, -+, 2n—2) naturally embedded in S*".

The main purpose of the present paper is to neglect the condition S,f:O as
an extension of Theorem A.

In §1, we recall the definition of (f, g, uc, ®)-structure and give structure
equations on M.

In §2, we study hypersurfaces with normal (f, g, U, ap)-Structure in an
even-dimensional sphere S®* by using the following theorem proved by Ishihara
and Ki one of the present authors [3]:

THEOREM B. Let (M, g) be a complete and connected hypersurface immersed
m a sphere S™*(1) with induced metric g;; and assume that there 1s in (M,g) an
almost product structure P,* of rank p such that V;P,*=0. If the second funda-
mental tensor h;; of the hypersurface (M, g) has the form h;;=aP;;+bQ,;,a and
b being mutually different non-zero constants, where P,;=P/}g,, and Q;;=8;,—Pj,,
and 1f m—1=p=1, then the hypersurface (M,g) is congruent to SP(r;)XS™ 2(r,)
naturally embedded in S™*(1), where 1/r*=1+4+a® and 1/r,*=1+b%

§1. Hypersurfaces of an even-dimensional sphere.

Let E be a (2n+1)-dimensional Euclidean space and X the position vector
starting from the origin of E and ending at a point of E. The E being odd-
dimensional, it can be regared as a manifold with cosymplectic structure, that is,
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an aggregation (F,&,7,G) of a tensor field F of type (1,1), a vector field &, a
l-form 7 and a Riemannian metric G satisfying

F=—I+7Q¢,
Fg=0, poF=0, n(&)=1,
G(FY, FZ)=G(Y, Z)—9(Y)n(Z),
G(§, Y)=n(Y)

for arbitrary vector fields Y and Z and

(L.

(1.2) FF=0, Fe=o0,

where I denotes the unit tensor and / the Riemannian connection of E.

Let S*® be a 2n-dimensional sphere which is covered by a system of co-
ordinate neighborhoods {U ; ¥}, where here and in this section the indices a,b,
¢,---run over the range {1,2,---,2n}, then S** is naturally immersed in E as a
hypersurface by X: S*™—E,

We put X,=0,X (0,=0/0y"), then X, are 2n linearly independent local vector
fields tangent to X(S®*") and g,,=X. X, is the Riemannian metric induced on S**
from that of E, the dot denoting the inner product of vectors of X(S®*"). In the
sequel, X(S*") is identified with S*" itself.

We choose —X as a unit normal C to S*" in such a way that X,, X,, -+, Xon,
C give the positive orientation of E.

The transforms FX, and FC of X, and C respectively by F, and the vector
field £ can be expressed as

FXy=fX.+0,C,
(1.3) FC=—v°X,,
E=u'X,—2C,

where f,° is a tensor field of type (1,1), v, is of 1-form, v*=v,g%, u® is a vector
field and 2 is a function, all globally defined on S*”.

Transvecting each of (1.3) with F respectively and using (1.1) and (1.3) itself,
we find

febfce: —Bg"l'ucub_}" chb ,

ea [ fo"=8eo—UcUp— VeV,
(1.4)

fout=—®,  fhvt=2ul,

U=V =1— 22, u0°=0, U= U8 e,

that is, S** admits an (f, g, u, v, A)-structure (cf. [9]).
We denote V. by the operator of covariant differentiation with respect to the
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Christoffel symbols {cab} formed with g.;,. Then equation of Gauss and Wein-
garten are

(15) Vch:gch, Vcc':_'Xc

because the second fundamental tensor with respect to unit normal C is equal
to Zep.

Differentiating each equation of (1.3) covariantly and using (1.2), (1.3) and
(1.5), we have

Vofo'=—8coV*+ 0, ,
(16) chb:—'chb ’ chb:fcb ’
V.i=u,.

We now compute
1.7 Seo®=LFf, oo+ cuy—V yu)u®+V v, —V v )v®,

where [ f, f].,* is the Nijenhuis tensor formed with f,°

Substituting (1.6) into (1.7), we get S.;*=0, which means that the (f, g, 4, v, 4)-
structure is normal.

Hence, S** admits a normal (f, g, u,v, A)-structure.

Consider a (2n—1)-dimensional manifold M covered by a system of coordinate
neighborhoods {V; x*}, where here and in the sequel the indices h,1,7, %, - run
over the range {1,2,---,2n—1}, and assume that M is differentiably immersed in
S?" by the immersion i: M—S®" which is expressed locally by y°=»"(x™).

We put B,’=0,y° (0,=0/0x™). We assume that we can choose a unit vector
N?® of S*" normal to M in such a way that 2n vectors B,’, N® give the positive
orientation of S**. The transforms f,’B,* and f,’N°® of B,® and N° respectively
by f.* can be written in the forms

(1.8) f&B,f=f"B+w,N°,  f’N‘=—w'B}?,

where f,* is a tensor field of type (1, 1), w, is of 1-form and w'=w,g%, g;; being
the Riemannian metric on M induced from that of S**, and the vectors u° v° can
be expressed as

(1.9) u=u'B+BN?, V’=v'B.+aN?,

where u*, v* are vectors and «a, 8 are functions on M.
Applying f,* to (1.8) and (1.9) respectively and taking account of (1.4), (1.8)
and (1.9), we can find

fift=—0tuu vt tw,w,
t I
e[ [ =85 U — V0 —w W,

fiut=—2v*+pw’, fivt=Au+aw?,
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(1.10) fiwt=—pu*—av*,
wut=1—p"—2%, vt=1—a*—2%,

ww'=1—a’— 3,

up'=—apf, uw'=—al, vaw'=pa,

where u,=u'g,, and v,=v'g,,, that is, M admits an (f, g, U, du)-structure (1],
[4], [8D).

If we put f;;=f,’g.., we can easily verify that f;; is skew-symmetric because
of (1.10).

Denoting 7, by the operator of covariant differentiation with respect to the

Christoffel symbols { ]-hi} formed with g;;, equations of Gauss and Weingarten
of M are
(1.11) VB =h;;N*, V,N*=—h;B,*,

where A;; is the second fundamental tensor and 4," is defined by h,'=h;,g".
Differentiating (1.8) and (1.9) covariantly along M respectively and making
use of (1.6), (1.8), (1.9) and (1.11), we have

(112) kaj't:_gkjvt_l_ai V]_hkjwl—l—hklw] ’

(1.13) Viuy=—2gu+Bhu; Vw=ahy,+f4,,
Viw=—agy—huf,

@10 Via=—h'+w,, V.p=—hyut.

Transvecting the last equation of (1.6) with B,° and using (1.9), we obtain
(1'15) Vk/l:uk .

Since an even-dimensional sphere S®" is a space of constant curvature, the
Codazzi equation of M is given by

(1.16) Vb=V b =0.
Substituting (1.12) and (1.13) into (0.2), we get

(1.17) Sit=(f, b —h,t D w,— (R — R Mw, .
We prove the following two propositions.

PROPOSITION 1.1. In a manifold with (f, g, Uy, Acw)-Structure, the vectors u®,
v™ and w" (or associated 1-forms u,, v, and w,) are linearly independednt 1f and
only if 1—a®—B—22+0.

Moreover, if vectors u*, v* and w" (or associated 1-forms u,, v, and w,) are
linearly dependent, then h;;=(2/B)g;; m M.
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Proof. See [4].

PROPOSITION 1.2. Let M be a hypersurface of a 2n-dimensional sphere S*".
Then the necessary and sufficient condition that the induced (f, g, Uy, Qcpy)-Structure
on M is normal is

f,vthch“hjtfth:o ’
which is equivalent to

(1.18) hief+he f,'=0.
Proof. From (1.17) the sufficiency is trivial.

Assume that (f,g, ua, @)-structure is normal, that is, S;"=0. Putting
T, *=fth—hSf" (1.17) becomes

(1.19) T, w;—T*w,;=0,
from which, contracting with respect to 2 and 7%,
(1.20) T, 'w,=0

by virtue of the symmetry of T,
Transvecting (1.19) with w* and using (1.20), we find

(1—a*—pAT,"=0.

On Ny={PeM:TP)+0} we have 1—a’—f=0, from which, w;=0, it
follows that Bu,+av;=0 on N, by the definition of w,f,’. Since the last equation
means that u, and v, are linearly dependent, we get 1—a®*—*—A’=0 and con-
sequently A;;=(4/8)g;; on this set by virtue of Proposition 1.1. Thus we find %;;=0,
which implies 7,"=0 on N,, that is, T,*=0 on the whole space M. Therefore
the necessity is also proved.

§2. Hypersurfaces with normal (f, g, u,,, a,)-structure.

In this section, we assume that the (f, g, uc,), @u)-structure induced in a
hypersurface M of an even-dimensional sphere S*" is normal, the vectors u”, v"
and w” (or associated 1-forms u,, v, and w,) are linearly independent and functions
B, A are almost everywhere non-zero on M.

Now, transvecting (1.18) with v/v*, w’w®, w/v* and w’w* respectively, and using
the definition of (f, g, ¥, ®xy)-structure, we have

2.1) Ah(u, v)=—ah(v, w),
2.2) Bh(u, wy=—ah(v, w),
2.3) Ah(u, w)+ah(u, w)—An(v, v)+phA(v, w)=0,

2.4) —Bh(u, w)—ah(u, v)—2Ah(v, w)+Bh(w, w)=0,
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Mu, v), h(v, w), --- and h(w, w) being denoted by respectively A(u, v)=h,u'v®, (v, w)
=h,v'w?, - and h(w, w)=h,w'w’.

Multiplying (2.4) by 2 and substituting (2.1) into the equation obtained, we
get

(2.5) BAh(u, u)=(a®— % h(v, w)+ BAh(w, w),
from which, combining (2.2) and (2.3),
(2.6) BAh(v, v)=(B*— ) (v, w)+ pAh(w, w) .

LEMMA 2.1. Let M be a hypersurface of an even-dimensional sphere S**. If
the induced (f, g, U, Acw)-structure on M is normal, the vectors u*,v* and w* (or
associated 1-forms u,,v, and w,) are linearly independent and functions B and 2
are almost everywhere non-zero on M, then

2.7 hyut=(a*x+Y)u;—afxv,—alxw,,
(2.8) hjv'=—afxu,+(Bx+y)v,+pAxw,,
2.9) hjw'=—adxu,+ BAxv,+(Rx-+yw,,

x and y being gwen by respectively
DBix=(1—a’*—p*h(v, w)— pih(w, w),
DBAy=—2h(v, w)+ BAh(w, w)

(2.10)

and D=1—a®—p°— 2%
Proof. Transvecting (1.18) with f,*, we obtain
hy(— 0% Fuput Fovt +wwh)+hy, £, =0,
from which, taking skew-symmetric parts,
(2.11) (hjut Y+ (R 0" ) v+ (Rt Yw = (Rt u, 4 (et )v, + (R w, .
Transvecting (2.11) with u*, v* and w* respectively, and using (1.10), we have
(2.12) (1—=p*=2)hu'—afh;v"—ah;w'=h(u, wyu,+h(u, v)v,+h(u, ww,,
(2.13) —afh;ut+(1—a*—2%)h; vt + Ak wt=h(u, v)u,+h(, v)v,+h(v, Ww, ,
(2.14) —adh;ut+ Ak vt +(1—aP— B2 hwt = h(u, w)u,+h(v, w)v;+h(w, ww, ,
from which, computing coefficient determinant with respect to hju‘, h;v*, h;w',
1-p—2 —af —al
—aff 1l—a*—2* B =D?.
—al B2 1—a*—p
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Since u", v™ and w" are linearly independent, D is not zero by virtue of Prop-

osition 1.1.
Therefore, we find from (2.12), (2.13) and (2.14)

h]tutz—é—{(lﬂaz)h(u, w)+afh(u, v)+arh(u, w)lu,
+b{A— @), v)+ aBh(v, v)+alh(v, W),

L@ a)h, w)+aph(v, w)+arhw, whw,,
from which, multiplying by 82 and substituting (2.1), (2.2), (2.5) and (2.6),
Bahyut=-5Ta*{(1—a*—Bh(v, w)— BA(w, w)} —A*h(v, w)+ BAR(w, w)x,
——b-ap{(l—a— FIh(v, w)—pah(w, )},
— L ad{(1—a—B)h(v, w)— Bah(w, w)}w,
which implies (2.7) because of (2.10).

In the same way, we can verify (2.8) and (2.9).

LEMMA 2.2. Under the same assumptions as those stated wmn Lemma 2.1, we
have

(2.15) Byt ={(1—Dyxty—B Y, - 241D t3)e.

Proof. Differentiating (1.18) covariantly and using (1.12), we find

(2.16) W hi) A T whi)fyf=— (B, Yw;— (B b, Hw,
+hyj(hywt —v)+hpi(hjwt—v,)
+81j(hsst")+ g h;0")

from which, taking the skew-symmetric part with respect to 2 and j

(2.17) W shid)fy =W shin)f it =— (i Yw, +(hyeh,Ywy,
+hp(hwt—v,)—h; (hpw'—vy)
+8r(hy ) —g,i(hu?)

and again skew-symmetric parts with respect to % and 1,

(2.18) W rhidfif =W shy) ot =—(hh, Y, (hgh, Y,
Fhyi(h W' —v,)—h j(hpw'—vy)
+81j(hv") — 81 j(hart")
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because of (1.16).
Calculating (2.16)-(2.17)-(2.18) and using (1.16), we obtain

F jhi) fit=—(hjhYweth (Rt —v,) +g5:(het')
from which, substituting (2.8) and (2.9),
(2.19) Wik fif=—(hhw,
+hj{—alxu,+(BAx— 1), +(Px+y)w,}
+g;i{—aBxu,+H(Bx+y)v,+BAxw,} .

Transvecting (2.19) with u*, v* and w* respectively, and making use of (1.10),
we have

(2.20) (—Zv‘—:—ﬁw‘)thi,:alhj,ht‘—a{Z(x—l—y)—-ﬁ} hji—a'ﬂ(x‘H’)gJi ,
(2.21) (Xut—I—aw‘)th,t:—ﬁlhﬂh,fﬁ-{ﬁl(x—i—y)—(l—az—lz)}hji

+H{Fx+(1—a*—2)y}gs
and

(2.22) (—Bul—av')V jhyy=—1—a’—p*)h;h
+H{22x4+(Q—a®—B)y— P} hy+PAx+)g; -

Multiplying (2.20) and (2.21) by « and —pj respectively, and adding two
equations obtained, we get

(2.23) A(—avt—ButW ;hy=2A(a?+B%)h 0}
+{—A(a®+ ) (x+3)+p(1—2)} Ry,
—B{(@®+ ) x+(1—2)y}gj: .
Comparing with (2.22) and (2.23), we easily see that
Ah;ih f—[2{(1—D)x+y}—Blhy— B{(1—D)x-+}g,=0,
which verifies the lemma.

LEMMA 2.3. Under the same assumptions as those stated in Lemma 2.1, x=0
and hj;=yg;; are equivalent on M.

Proof. Let x=0. Then (2.7), (2.8) and (2.9) become respectively
(2.24) hiut=yu, , h;v'=yv,, hw'=yw, .

Differentiating the second equation of (2.24) covariantly and using (1.13), we
have

(thjt>vt+h‘jt(ahkt+fkt):(7ky)v] +¥(ahyi+fi,),
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from which, taking skew-symmetric parts and using (1.16) and (1.18),
(2.25) 2hjtfkt:(’7ky)vj—(V]y)vk—l_zyfkj .

Transvecting (2.25) with w’ and using (2.24), we find BV ,y=(w¥ ,y)v,. So
(2.25) can be written as the form

(2.26) h]tfkt:yfk] .
Transvecting (2.26) with f,* and using (1.10), we get
hjt(—5§+uiut+vivt_l"wiwt):y<_gji+ujul+vjvz+w]wz) ,

or, U.Sing (2.24), hji:ygjl.
Conversely, if h;;=yg;,, then h;v*=yv,. From this and (2.8), we find

x(—aBu,+pv,+-Biw,)=0,

which suggests x=0 because u,, v, and w, are linearly independent, and S is
almost everywhere non-zero. Therefore Lemma 2.3 is proved.

LEMMA 2.4. Under the same assumptions as those stated in Lemma 2.1, we
find

(227) thjiZO.
Proof. Applying (2.15) to u* and taking account of (2.7)~(2.9), we have
{1—=D)x+2y}(a*xu,—afxv,—aixw,)+y*u,
={a-Dyxty—E (et x )0, aprv,—ataw,)

+4§—{(1—D)x+y}u] ,
and consequently
(3-+- )l (B 2, o, ) =0

Since u,, v, and w, are linearly independent and 3, 4 are almost everywhere non-
zero, the last equation implies that

BY.—
(2.28) (y+-4-)x=0.
We have from (2.7) and (2.8)
(2.29) Bhjut+ah;vt=y(fu,+av,).

Differentiating (2.29) covariantly, we find
Vo) hjut 4B phy)ut+ Bhy W ut
+ T ra)h v+ alV by v+ ahy Vot
=W 2)(Bu,+av)+3{V B)u,+ BV yu,+V ya)v,+alV v},
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from which, taking the skew-symmetric part and making use of (1.13), (1.14),
(1.16) and (1.18),

Wi(hj0") —w ;(ReV*)+2ahy, £}
= e )(Bu,+av,)—V ,3)(Burtav,)
FY{(—hpttt)u,—(—hu)u,
F(—hpV +w)v,—(—h; 0w v+ 2af ),
or, using (2.7), (2.8) and (2.28),
2ahy fit =W 2 3)(Bu,+av,)—F ,3)(Bur+avy) +2ayf, .

Transvecting the above equation with %’ and substituting (2.7) into the equation
obtained, we get

(2.30) DAV ,y—(utV 3)(Bu,+av,)=0.

In N,={PeM: ax(P)+#0} y=———2‘3— by virtue of (2.28). Differentiating this
equation covariantly and making use of (1.14), (1.15) and (2.7), we have

ij:—c%(au,——ﬁvj—lw,) on N,,

or, comparing the above equation with (2.30), ax=0 because u,, v, and w, are
linearly independent. This contradicts the construction of the set N,.
Thereupon, on the whole space M,

(2.31) ax=0.
From (2.7) and (2.31) we have
(2.32) hjut=yu, .

Differentiating (2.32) covariantly, we find
(th;c)ut‘l'hjthut:(ka)“;+,\’7ku;,
which contains
(2.33) 2V why)ut+xh; Vot =x(V wy)u,+x3V 4u, .
8

On the other hand, computing covariant differentiation of T and taking
account of (1.14), (1.15), (2.7) and (2.31), we get

(2:34) rel=— Ll (8.

Differentiating (2.28) covariantly and using (2.28) itself and (2.34), we have
kay-i-(y—l——g—)ka:O, which implies xZka+x(y —|—~‘§)ka=0. This equation
shows that
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(2.35) V=0
because of (2.28).

From (2.21) and (2.31) we get
(2.36) 2AWV jhi)ut=—xBAh;h, +x{BA(x+y)—(1—2®)}hy;

+x{fx4+(1—=22)}g): .
Substituting (2.35) and (2.36) into (2.33) and making use of (1.13), we have
—xBAhh A x{BAAY)—(1—2%)} hy,
+x{Bx+(1—2)y}ge,+ Axh;,(— 20} + Bh,")
=2AxY(—2Agx;+ Bhe;)

and consequently x{(8Ax—1)h,,+(8*x+¥)g,,}=0, which implies x(BAx—1)(hs,—Y84,)
=0 by virtue of (2.28). On a set N,={PeM: x(BAx—1)(P)+0}, hy,—¥g:;=0.
From the result of Lemma 2.3 the last equation shows that x=0 on N,. Thus
the set N, is void, that is,

(2.37) x(BAx—1)=0

on M.

We denote the set {QeM; B(Q)AQ)x(Q)#1} by N. Then on N x=0 and by
virtue of Lemma 2.3 h;;=yg;; on N. Differentiating the last equation covariantly,
we find V h;;=W ,y)g;;, from which

Vey)g;i—V,9)8u=0.

’I; hus we have 2(n—1)/ ,y=0, thNat is, y=const. on the connected components of
N. Hence we have V' ,h;;=0 on N. Now we put Ny={PeM: (V,h;)(P)#0}. Then
BAx=1 and x#0 on N,.

Qn the other hand, if we denote by N, the set N3f\ﬁ ¢ (Nf ¢ is the complement
on N), then

(2.38) =2 a=0, pux-1=0
on N, by virtue of (2.28), (2.31) and (2.37).
Substituting (2.38) into (2.15), we get
hjthztz%ﬁhjﬂ-gﬂ
on N,. Moreover —%ZLI&Z is constant because of (2.34) on this set. Therefore,

taking account of (1.16) we find V,h,,=0 on N, This contradicts the con-
struction of the set N,. Hence N, is empty, that is, V' ,h;;=0 on the whole space
M. And so the proof of Lemma 2.4 is completed (cf. [6]).

From (2.15) and (2.31) we can easily verify that eigenvalues of (h,%) are
(B+)x+y and —L. Putting A=(g+ )xty—~B and B=L (111,
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(2.15) can be represented in the form
(2.39) hjh!=Ah;;+Bg;; .
Differentiating (2.39) covariantly and making use of Lemma 2.4, we have
(2.40) ¥ yA)h;i+F ,B)g;:=0,
from which, transvecting with g%,
(2.41) h'V  A+@2n—1)F ,B=0.
Substituting (2.41) into (2.40), we obtain

1
(hji_mhttgjz)VkA:O ’
which implies
(2.42) {hy ' —(h')?/(2n—1)} ,A=0.
Since

(R 830 ) (W e bt ) =y — () 2n—1)

it follows that hy——-—1h'g,=0 if and only if h,h*—(h)*/@n—1)=0. More-
over hjh*—(h})*/(2n—1) is constant by virtue of (2.27).

Therefore, from (2.42) we may consider only two cases;

Case (A): hjsh?*—(h,')?/(2n—1)=0.

Case (B): V,A=0.

In the Case (A) we see that M is totally umbilical. Moreover, if M is com-

plete, then M is congruent to S**%
The other Case (B) implies ¥ ,B=0 because of (2.41). Hence eigenvalues

——g— and (B*+1%)x+y of (h,') are both constants by virtue of constancy of A

and B. Therefore, using (2.34), we find (y +—';i)uk=0, from which, yz——g— be-
cause of linearly independency of u,, v, and w,.
So an eigenvalue (8*+2%)x+y of (h,%) becomes (,Bz-i—lz)x——g— and non-zero

8

constant. In fact, we assume <ﬁ2+x2)x—7=o. Then x:TﬁZ‘%‘T)_ because 3 and
A are almost everywhere non-zero, from which, substituting into (2.37), B4*=0.
It contradicts our assumptions.

Denoting (,Bz-i—lz)x—-f— and ——g— respectively by a and b, and » by multi-

plicity of a, a and b are both non-zero constants. When a=b, r=0 or r=2n—1,
it is contained in the Case (A).

Thus we may only consider that a+#b and 1=r=2n—2. Now we define a
(1, 1)-type tensor P,* of the from;
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P (b8

7
Then we can easily see that

(2.43) 1<rank of (P,))<2n—2,
(2.44) PP=P,,

that is, P,* is an almost product structure such that
(2.45) V.P,=0

because of Lemma 2.4, where P;;=P,'g,..
Putting Q;;=g;;—P;;, we find

(2.46) hji=aP;+bQj; .

Moreover, if M is complete and connected, the equations (2.43)~(2.46) mean
that assumptions of Theorem B are all satisfied.
Summing up the conclusions obtained in Case (A) and Case (B), we have

THEOREM 2.5. Let M be a complete and connected hypersurface of an even-
dimensional sphere S*". If the wnduced (f,g, Uck, Aow)-Structure 1s normal, the
vectors u*, v™ and w™ (or associated 1-forms u,, v; and w,) are linearly independent
and functions B, 2 are non-zero almost everywhere on M, then M 1s congruent to
St oor SP SR (p=1,2, -, 2n—2) naturally embedded n S
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