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ON THE DEFICIENCIES AND THE EXISTENCE OF
PICARD’S EXCEPTIONAL VALUES OF ENTIRE
ALGEBROID FUNCTIONS

By JunJIRO NOGUCHI

1. Introduction. Some characteristic properties of algebroid functions with
more than two branches have been recently made clear by Niino and Ozawa.
These concern with the relations between the sum of deficiencies and the
number of Picard’s exceptional values. Toda showed that those are intimate
with the theory of systems of entire functions and then he solved the problem
in the general case. On the problems of this type, see the summary note,
Toda [6].

In the notes, Niino and Ozawa [3], Ozawa [4] and Suzuki [5], they showed
the following fact: Let f(2) be a transcendental entire algebroid function de-
fined by

M F(z, NH=1"+A(R)f"+ -+ +A,(2)=0,

where A4,, j=1,2, -+, n, are entire functions and n=3,4,5. Let a,, j=0,1, ---, n
be distinct finite numbers such that arbitrary n—1 functions of {F(z, a;)},0,1,-
are linearly independent and >7.,0(a,, f)+>5230(a,,, f)>2n—3 for all n—3 num-
bers a,,, v=1,2, -, n—3 of {a;},-0,1,- ,n-

Then there exists at least one Picard’s exceptional value in {a;},-9,,- .

In this note we shall show that this result is available for all #=2 and in
the case of n=>5, we shall obtain a slightly better result.

2. Regular family and algebroid functions.
DEFINITION. Let f;(2), j=1,2, ---, [, be entire functions and F,=>}_,a,,f,,
v=1,2, -+, N (ISN=co) linear combinations of f,, 7=1,2, -,/ We say that

F={F.},=1,2,-,~ is a regular family of linear combinations of f, j=1,2,---,!
when the matrices (a,,,):ss,;s; are regular for all [ integers v,, k=12, -, 1,
1§Uk§N.

And we say that the elements G;€g, 1=1, 2, ---, k form a basis of & if and
only if G;, i=1,2, -+, k are linearly independent and all of ¥ can be represented
as linear combinations of G,, i=1, 2, ---, k.
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LEMMA 1. Let f(2) be an entire algebroid function defined by the equation
(1) and F={F.},-1,2,,n, nF1=N=co, a regular family of linear combinations of
1, Ay, -+, An. Suppose that G.€§, p=1, 2, -+, I, form a basis of &.

Then we have

2m
T, )=z, max {log*| 4,(re"")|}d+0()

27 )
=g, max (log* 1G,re)1}d0+0()

2r .
- 271rn f o gax {log| G(re'%)|}d6+0(1).

Proof. The first equality was shown in Valiron [7].

1, Ay, -+, A, can be represented as linear combinations of G, -+, G;, so we
have
max {1, | A,(2)], -+, lAn(z)l}éo(l){E/?é {1G21},
@ | “max {log*| A,(re)}d8 =—2—[ “max {log] G(re?)|} d6-+0(1)
2rn Jo 1=psi ’ = 2rn Jo 1zps ’

On the other hand, from G;=®, we have

|Gu(2)| =0(1) max {1, | Ai(2)], -, [Au(2)]},

lnfslféle(zNéO(l) max {1, | A2, -, | Au(2)|}
and hence
1 2m i 0 1 2 N w0
®) 2zn fo max {log"|G,(re’ )l}dﬂéwfo max {log*| A,(re"")|}d6+O(1) .
By (2) and (3), we obtain the lemma. (Q.E.D.)

LEMMA 2 (Nevanlinna [2]). Let fi(z), j=1,2, -, be entire functions, non
constants, and linearly independent such that f,+ --- +f,=1.
Then we have

2z . L
[ "max {log*| f(re) | }d0 £ X N(r, 0, £)+S(),
0 1=y=sl J=1

where S(r)=0(log T(r)+log r), T(r):lrnayz: T(r, f;) as r—oo possibly outside a set
=)=

of r of finite linear measure when the order of T(r) is infinite.

Proof. By fi+ - +fi=1 and f\“’+ -+ +f°=0 for =1, we have f;=4,/4,
j=1,2, -, 1, where



DEFICIENCIES AND EXISTENCE OF EXCEPTIONAL VALUES 31

4

fl(l—l)/fl ee _fl(l-l)/.fl

and 4,, j=1, ---, [ are (1, j)-minor determinants of 4. Hence we have
1

il

_1_l

A b

2r . 4
5= max {log* | £i(re) }d0 < S m(r, 4)+m(r, o)

+ + +
max {log*|f;|} = max {1og* 14,1 +10g

l
= Z}llog*ld,-l—l-log*
J:

< Sy mlr, 4)+T(r, 5-)= S m(r, 4)+mir, D+ N, H+0Q).
J=1 =1
N, HEXL-N(, 0, f;)  because f,-+fid is entire, and Zim(r, 4;)+
m(r, )=S(r). (Q.E.D.))

COROLLARY. Let f(2) be an entire algebroid function defined by the equation
1) and a,, j=0,1, ---, n distinct finite numbers such that g(2)=F(z a;), =0, 1,
-+, n are linearly independent. Then we have X7_,0(a,, f)=n.

Proof. By the distinctness of a,, j=0,1, -+, 1, &+ *** ¢:.8,=1, ¢;%#0, j=
0,1, .-, n By the definition, N(r, a,, f/)=N(r, 0, g;)/n. So we have by Lemma
1 and Lemma 2

T(r, )< 3 N(r, a, /)+S(7)

and further T(r)= max T(r, g)=nT(r, f)+O0(1), then S(r)=0 (log T(r)+logr)=
O (log T(r, f)+logr) as r—oo possibly outside a set of 7 of finite linear measure
when the order of T(7, f) is infinite. Hence

3 da, H=n. (Q.E.D)

3. Existence of Picard’s exceptional values.

THEOREM 1. Let f(2) be a transcendental entire algebroid function defined by
the equation (1) with n=2. Let a,, j=0,1, -+, n, be distinct finite numbers and
g/{2)=F(z, a;), j=0,1, .-+, n satisfy the following conditions:

(i) Arbitrary n—1 functions of {g;},=0,1,-n are linearly independent.

(i) ioﬁ(a;, f)+".§‘_,j o(a,,, f)>2n—3 for all n—3 numbers a,,, v=1,2, -+, n—3,
= v=

of {aj} 71=0y1yyme
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In the case of n=2, the condition (ii) 1s replaced by 22)5(a], f)>2.
1=0

Then there exists at least one Picard’s exceptional value in {a;} =1, n.

Proof. Assume that any g, is not constant. We set 1 the number of dis-
tinct non-trivial linear relations among 1, A4,, ---, A,. The condition (i) implies
0=<1=2 immediately. However A=1 is the case here. We shall show this in
the following.

If 2=0, g,, /=0, 1, -+, n are linearly independent. So by Corollary of Lemma
2, we have >7.,0(a,, f)=n and

é}oé(ah f>+:zj5(am fiZ£2n—3.

This is a contradiction.

If 1=2, we can take F,e{l, A, -, 4,}, k=1,2,--, n—1 so that they
form a basis of {1, 4,, -+, 4,}. Represent g,, j=0,1, -, n by Fy, k=12, -+,
n—1, then {g;},-0,,.,» is @ regular family of linear combinations of F}, k=1, 2,
--«, n—1 because of the condition (i). By Cartan [1] and Lemma 1,

3 da,, fEn—1.

This leads also to a contradiction. Now, A=1 and so we can take n func-
tions Fy, k=1, 2, ---, n from {1, A4,, ---, A,} as a basis of {1, 4,, ---, A,}.

Represent g,, j=0,1, -+, n as linear combinations of F,, k=1,2, -, n and
suppose that any #n functions of {g;},-,:,.» are linearly independent, then
{85} ;=0,1,-n i a regular family of linear combinations of F,, k=12, -, n. So

similarly to the above, we have

> da,, N0,

This is a contradiction.
Now we may assume that g,, j=0, 1, ---, n—1 are linearly dependent;

n—1
(4) ];} ‘ngj:()y ﬂjioy ]ZO’ 1; Tty n—1 ’

by the condition (i). Since A=1, n functions of {g;},=,1,--,n, One of which is g,
are linearly independent and form a basis.
Because of the distinctness of a,, =0, 1, ---, n, we have

(5) q0g0+q1g1+ o +Qngn:1 ’ qjioy ]:0! 1y e, N
Set 8y=¢,. From (4) and (5) it follows that

(41_,31)gx+ +(Qn—1—ﬁn-l)gn—1+qngn:1 .
Hence we have
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(6) Cllgl—'_ e +angn:1 ’ aniO .

If all «;+0, since g,, /=1, 2, -+, n form a basis of {g;},-,1,.,n, using Lemma
1 and Lemma 2, we obtain

3 d(a,, N=n—1,

and this is a contradiction. Thus we may set a,=0.

In the case of n=2, we have a,g,=1, a,#0 and so at least one of {g;},=,1,2
is a constant, i.e., there exists at least one lacunary value and hence Picard’s
exceptional value in {a;};o,,s.

We consider the case of #=3 in the rest. We may set that non-zero ele-

ments of {a,, -+, @,_,} are ay, -+, a,-;, 2<k<n—1. The equation (6) is reduced
to
(6" ap gt o Fa,g,=1, a;#0.

Set Br=a,. From (6') and (4) we obtain

—,Bogo‘ﬁlgl‘ —‘Bkﬂgk—l‘{’(aku".Bkﬂ)gkﬂ‘l‘ +(an—1_.8n—l)gn—1+angn:1 .

Since gy, =+, 8r-1, S+1, =+, 8o form a basis of {g,},-0,1,-,n, One of the coefficients
is zero, say, a,4;—Br+1=0. Thus we have

(7) '_.Bogo_ _‘Bk—lgk—1+(ak+2—.8k+2)gk+2+ +(an—1_‘8n—1)gn—1+angn:1 .
Let g,,, v=1,2, ---, [ be the functions of {g;},-0,,,-,» Which appear with non-zero

coefficients in both equations (6’) and (7). Evidently 1=I<n—k—1=Zn-3.
Applying Lemma 1 and Lemma 2 to the equations (6’) and (7), we have

n L
2 (e, N+ B oa, Nl=ntl.
Let a,,, v=I+1, -+, n—3 be any n—{—3 numbers of {a;},-o,1,-n—1{a,,}1=1,~;- Then
U3 n—3
26y, N+ X d(a,, N=2n—3.

This is a contradiction.

COROLLARY. [If T(r, f)=T(r, g;)/n+0O(ogr) for some g, then the condition
(ii) can be replaced by a weaker one-

]g &a,, f>n.
The proof is clear.

Now, we have obtained the above theorem, but it is not the best for all
n=2. Really we can show the following theorem in the case of n=5.
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THEOREM 2. Let f(z) be a five-valued transcendental entire algebroid function
defined by

F(z, iI=+ A2 f*+ - +A5(2)=0,

where A,, j=1, 2, ---, 5 are entire.

Let a,, -+, a; be six distinct finite numbers and gi(2)=F(z, a;), j=0,1, -, 5
satisfy the following conditions:

(i) Any four functions of {g;},~0,,-5 Gre linearly independent,

(i) ;‘50 (a,, f)+6(ay, )>6 for all ay.

Then there exists at least one Picard’s exceptional value in {a;},= .5

Proof. Assume that all g,, j=0, 1, -+, 5 are not constants. By the similar
process in the proof of Theorem 1, we obtain the equations:
® BogotBi&i+ -+ +B18:=0, B;#0, j=0,1,--,4,
) B:8:+Bs8st a8t asg=1, a;#0.
From these equations, we have
(10 —Bogo— P18+ (a,—Plgtasg=1.

In the case of a,(a,—pB,)=0, applying Lemma 1 and Lemma 2 to the equa-
tions (9) and (10), we have

T(r, /)< 5 N, a,, ))+N, ag, )+S0).
Hence,

éo &a,, f)+6(as, £)<6.

This is a contradiction. In the case of a,(a,—f,)+#0, from the equations (8)
and (9), we have

Xy X _ Ay _ Gy —
1 _—‘34 ﬂogo ‘34 .81g1+<1 B: )ﬁzgz‘]’(l /9: ),ng3+a5g5—l.
The functions g, -+, s, & form a basis of {g;},-,1,.,s and all the coefficients of
g, 7=0,1,--,5 in the equation (11) are non-zero, so by Lemma 1 and Lemma

2, as in the above, we have
5
3 6(a,, /)=4.
gt

This is also a contradiction. (Q.E.D)
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