TAIRA, K.
KODAI MATH. SEM. REP
25 (1973), 337—356

ON NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS
FOR ELLIPTIC DIFFERENTIAL OPERATORS

By Kazuaxki TAira

§0. Introduction.

This paper is inspired by Seeley’s work [10]. In [10], he has shown that one
can reduce the study of boundary value problems for elliptic differential operators
to the study of operators defined on the boundary by means of appropriate surface
potentials and volume potentials (cf. [3], [4], [5], [7], [11]).

In this paper, we show by the same approach that the question of the validity
of a priori estimates, the question of solvability and the question of regularity for
the non-homogeneous boundary value problems formulated in a slightly more general
framework can be reduced to the corresponding questions for the operators defined
on the boundary.

The paper is organized as follows. §1 esablishes the notation and the defini-
tions and summarizes some of the results in Seeley [10], [11]. §2 formulates the
non-homogeneous boundary value problems and states main theorem (Theorem 2.2).
§3, §4 and §5 are devoted to the proof of this theorem.

§1. Preliminaries.

1.1. Spaces. Let M,~ be an n-dimensional compact C* manifold with boundary.
Then we may assume that M,~ is the closure of a relatively compact open subset
M+ of an n-dimensional compact C* manifold M without boundary in which M+
has a C* boundary X (see Palais [9], p. 170). We also assume a C* volume element
on M. Let E be a complex C* vector bundle over M with e-dimensional fiber, let
C=(E) denote the space of C* sections of E and let CX(Ey+) denote the subspace of
C*(E) with compact support in M*. We assume a C* Hermitian inner product in
E. (A complex C~ vector bundle with such a structure will be called an Hermitian
vector bundle.) Thus we get the inner product on C*(E) which we denote by ((,)).
For each real s, we denote by H%E) the Sobolev space of £ and by || ||s  its
norm (for the definition, we refer to Palais [9], pp. 147-155). Then H*(E) and
H-5(E) are antidual with respect to an extension of the inner product ((#, v)) de-
fined for u, veC=(E) and the duality will be denoted by

((u, v)); ue H(E), ve H3(F).
s, M) (-8, M)
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Let Eyy be the restriction of £ to M;*=M*UX and let C™(Eyy) denote the
space of C* sections of Ey;}. For each real s, we define the following spaces:

H3(Ey+)=the space of restrictions to M* of elements in H3E); the norm of
ueH¥(Ey+) is defined by '

llalls=inf [ Ulls,ar,

the infimum being taken over all UeH*E) such that U=« in M,

Hy*(Ey+)=the subspace of H*E) with support in M;*=M+*UX. Then C*(Eu;)
is dense in each H¥(Ey+) and C3(Ey+) is dense in each Hy(Ey+). Moreover, HY(Ey+)
and H-$(Ex+) are antidual with respect to an extension of the inner product ((%, v))
defined for ueC™(Eyy), veCy(Ey+) (cf. Hormander [6], p. 51) and the duality will
be denoted by

((u: v);}ﬂMEHs(EM*'), vEHO_s(EM+).

(8, M+)(-8,

Let Ex be the restriction of £ to X and let C*(Ex) denote the space of C*
sections of Ey. Then, using the induced volume element on X, we get the inner
product on C*(Ex) which we denote by (,). For each real s, we denote by H%Ex)
the Sobolev space of Ex and by ||s its norm. Then H* Ex) and H-%(Ex) are antidual
with respect to an extension of the inner product (g, %) defined for g, 2eC*(Ex).
Here we define the following spaces for each real s: BY(X)=@jiH*'~V*Ex); the
norm of g=(go, -+, gu_1)€B%(X) is defined by

©0—1 1/2
|g13=(2 lgjlzs-]_m) ;
=0
(BY(X)*=@3zsH 11+ V2(Ex); the norm of A=(hq, -+, ho_1)€(BY(X))* is defined by

w—1 1/2
Ihls‘=<2 Vij|2—s+/+1/z> .
J=0

Then B%X) and (B%X))* are antidual with respect to an extension of

o—1
Z:O (gJ’ hj); (/X hJGCW(EX))
1=

and the duality will be denoted by
(g, h);, ge BX(X), he(B(X))*.
($,X) (5%, X)

Let G be an Hermitian vector bundle over X with g-dimensional fiber and let
C*(G) denote space of C sections of G. Then, using the induced volume element
on X, we get the inner product on C*(G) which we denote by [,]. For each real
s, we denote by H*(G) the Sobolev space of G and by < ); its norm. Then H*G)
and H-%G) are antidual with respect to an extension of the inner product [¢, ¢]
defined for ¢, ¢€C=(G) and the duality will be denoted by

. S, -8,
[?Z;)(g](’?)?eH (G)’ ¢GH (G)’

(s
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1.2. Pseudo-differential operators on vector bundles. Let A: C*(E)—C=(E) be
a pseudo-differential operator of order » and let ¢,(A) denote the principal symbol
of A (for the definitions, we refer to Seeley [10], pp. 230-237). Then ¢.(A) is the
map of T7(M) (the cotangent bundle minus the zero section) into Hom (E,E). A
is called elliptic if and only if ¢,(A)&;) is an isomorphism £, onto E, for all
(z,€2)€T/(M). Here E, denotes the fiber of E at xeM.

A has the formal adjoint A*: C*(E)—C=(E) such that

(1) ((Au, 0))=((u, A*v)); u,veC(E).

A¥* is also a pseudo-differential operator of order w and the principal symbol of A*
is the adjoint of ¢,(A) with respect to the Hermitian inner product in E. Thus A
is elliptic if and only if A* is elliptic. Further, in view of (1), we see that if A
is an elliptic differential operator of order w, then A* is also an elliptic differen-
tial operator of order w.

1.3. Restriction maps . We assume that near the boundary X a normal
coordinate ¢ has been chosen so that the points of M are represented as (z, ¢), z€ X,
—1<¢<1 and that the bundle £ is represented as Exx(—1,1):#>0 in M+ and #<0
in M~ (the complement of M;*=M*UX) and =0 only on X; and ueC=(E) is re-
presented as u(x,#)eEx with reX, —1<¢<1.

Now we define y,: C(E)—~>C=(Ex) by

(rou)(x)= lim u(z, t), ueC(E)

and y,;; C(E)—C(Ex) (j=1,2,---) by

. _ 1 9
o) =jim Dot 0 D= 1 3

Then we define the restriction map y: C*(E)->@53C*(Ex) by
Tu=(roth, -+, 7o-11t), u€C(E)

(Cauchy data of order <w on X). It is well known that y extends to a continuous
linear map y: H(E)—B(X)=@=tH°~9~V*Ex) for 6>w—1/2 and also to a continuous
linear map y: H(Hy+)—B’(X) for 6>w—1/2 (cf. Lions and Magenes [8], 47; Palais
[91, p. 171).

We define H(E)= UszHE) (resp. H(Ex)=U;srH*Ex)) and topologize
H~=(E) (resp. H(Ex)) as the inductive limit. Then H-=(E) is the antidual of
CoE)= NsrHYE) (cf. Palais [9], p. 126) and the duality will be denoted by

{{n, v}}; ueC(E), ve H (E).

Also H-=(Ex) is the antidual of C*(Ex)= NsrH(Ex) and the duality will be denoted
by

{g, h}; 9eC(Ex), he H-(EXx).
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We define the adjoint y*: @usH-<(Ex)—>H ~(E) by
w—1
{{u, T*h}}=ZE> {riw, hj}, weC(E)
=

for h=(ho, -+, Bu-1)€PD3=3H =(Ex). In particular, since y is continuous from H°(E)
into B(X) for ¢>w—1/2, y* is continuous from (B°(X))* into H~°(E) and satisfies
(2) ((u, ("_‘hgu)) ((r% h), ueH'(E), he(B°(X))*.

1.4. Extension maps E;. Let £ be a positive integer. For real r with |7| =k,
we define the extension map Ey: H(Exy+)—~H(E) by

u(x,t) if =0,

5 - 2k
(3) (Ewu)(x, t) oult) 33 aulz, —jt) if ¢<0,

where 2%,(—1)a,=1 for —k=I=k—1, and ¢ is C*, ¢x(t)=1 for =0, ¢(t)=0 for
t=-—1/2k.

Since Ey: H(Ey+)—~>H"(E) is continuous (cf. Lions and Magenes [8], p. 83), there
exists the adjoint Ey*: H (E)—H,"(Ex+) such that
(4) ((u, Ek(*v); (((Eku, v)), ueH (Ex+), veH(E).
Further, assuming that near the boundary X the volume element on M is the
product of the induced volume element on X and Lebesgue measure on (—1,1),
we can easily prove from the definition (3) of E} that if » is C* up to X in M~
and also in M-, then

(5) (Eo)(z, =0z, )+ jgkl % v(x, —§)¢k<—§>, £>0,

so Ey*v is C* up to X in M.

1.5. Summary of known results. From now on, let A: C*(E)—>C*(E) be an
elliptic differential operator of order w and let K denote a generic positive constant.

Now we summarize some of the results in Seeley [10], [11] (cf. Hormander [5],
pp. 187-194).

We define for each real s

NA, s)={ucHEy+): Au=0 in M*}.
Then we have

THEOREM 1.1. (Seeley [11], p. 803).
(i) For any ueN(A,s), ru exists in B¥(X).
(ii) 71 N(A, s)»>B¥(X) is continuous:

(6) lruls=K |lulls, ue N(A, s).
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By Theorem 1.1, we can define for each real s
(7) Ry(A, s)={geB(X): g=yu for some wueN(A,Ss)}.
Further, we define
Ny(A)={ueC(F): supp(w)C M,*, Au=0 in M}
Then we have for the surface potentials

THEOREM 1.2. (Seeley [10], pp. 274-275).

(i) dim Ny(A)<co.

(ii) There is a linear map P: @;;écm(EX)—»C“(EM;) which, for each real s,
extends to a continuous linear map P:. B (X)—N(A, s):

(8) [|Pglls=Klgls, ge BX(X).

(ili) #eN(A,s) can be decomposed into u=u,+u, (divect sum), where u,€ Ny(A)
and u,=Pyru,.

(iv) For any geB¥(X), r(Pg) exists in B5(X); call it P*g.

(v) P+ is a pseudo-differential operator from BS(X) into B¥(X):

(9) |P*gls=K|gls, g BX(X).
(vi) P is a projection onto Ry(A,s): P *(P*g)=P+geRy(A,s), ge B¥(X).

ReEMARK 1.3. Since the formal adjoint A*: C*(£)—C>(E) is also an elliptic
differential operator of order w (see 1.2), Theorem 1.2 remains valid for A*. In
particular, dim Ny(A*)<oco and Ny(A*)C Hy,~"(Ex+) (the dual of H*(Ey+)) for all real
7 (see 1.1).

For the volume potentials, we have

THEOREM 1.4. (Seeley [10], pp. 276-277). There is a pseudo-differential operator
C of order —w with the following properties:

(1) The map g—C*r*g of @2iC~(Ex) intoNoHY2(E') extends to a continuous
linear map C*r*: (B (X))*=@=H 1 V¥ Ex)—>H*(E) for 6 >w0—1/2, where C* is
the formal adjoint of C.

(ii) The map g—>C*y*g\u+ (the restriction of C*yr*g to M) of @sziC*(Ex) into
C™(Eyy) extends to a continuous linear map C¥r*|y+: (B X)) *—>H*(Ex+) for each
real s, and the same holds with M* replaced by M.

(iii) If f is in H(Ex+) and ovthogonal to Ny(A*), i.e.,

((f, o)=0

G, M+)(—z,M+)
for all veNy(A*) (see Remark 1.3), then ACExf=f in M*, where k is some positive
integer such that |t|=k.

REMARK 1.5. P of Theorem 1.2 and C*y*|y+ of Theorem 1.4 are pseudo-
Poisson kernels in the sense of Boutet de Monvel (see [3], p. 278).



342 KAZUAKI TAIRA

§ 2. Statement of main theorem.

2.1. Spaces H;". For real g, 7, we define the following space: Hy ={uec H(Exu+):
AueH (Ey+)}; the norm of uweH:" is defined by

Hoello,e=(lloe]]o* + || Al %),

The basic properties of the spaces H4"° are presented in the following pro-
position.

ProrosiTiON 2.1. Let 6=t+w,t>—1/2 and let k be the minimum positive in-
teger such that |c|<k. Then

(i) weH,"" can be decomposed into u=z+w, where z=CEyAu|y+eH ™+ (Ey+)
and w=u—zeN(A, o).

(ii) The decomposition is continuous: Move precisely,

(10) l2llera=K || Anlls
1D HNowllo=K ||ul,. .

(iii) The restriction map y: H+*(Ey+)—>B (X ) extends to a linear map y: Ha""
—B(X).
(iv) 7 H"—>B(X) is continuous:

lrul, =K ||t||s,c, weH".
Proposition 2.1 will be proved in the appendix.

2.2. Formulation of non-homogeneous boundary value problems. Now suppose
that we are given a linear map B=B® - ®B,_1: B(X)—>H*"°**1((G), where 2 is
some real constant. Let ¢=7+w,7>—1/2. Then by Proposition 2.1 (iii) the boun-
dary condition By can be defined for elements in H,”". So our non-homogeneous
boundary value problem for A is formulated as follows: For given feH (Ex+) and
peH(G) (p=0—w+1/2+2) with 6=t+e, v>—1/2, find ueH,"" such that

Au=f in M-+,
@)
Bru=¢ on X.
With (*), we can associate the following operators, spaces and integers:

(A@By; 0, 7)=the operator A@By from H,"® into H(Ey+)DH*(G);
NA®By; 0, 7)={ueHs" " Au=0, Bru=0};

R(ADPBy; o, 7)={(Au, Byu): ueH,""};

index (A@By; o, 7)=dim MAPBy; g, t)—codim R(APBy; o, 7);

(B*, g)=the restriction of B to Ry(A4,¢);

N(B*,0)={geR\(4, 0): Bg=0};
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(12) R(B*,0)={Bg: ge R(A, o)};
index (B*, ¢)=dim N(B*, ¢)—codim R(B", o).

2.3. Reduction to the boundary. Our main theorem will be:

THEOREM 2.2. Let t<o=t+w,t>—1/2, let 2 be some real constant and let B
be a continuous linear map of BX(X) into H***V2+*¥G) for each veal s. Then the
operator (A®By; o, v): H "> H (Eu+)DH(G) (0=0—w+1/24+2) is continuous, and
in addition

1. Estimates. The estimate

[o| |, = K (|| Anl | +< Bruy,+|lule)
is valid for all wueHy " if and only if the estimate

lgl. =K (Bg>,+1gle)

is valid for all geRy(A, o).

II. Solvability.

(la) dim N(A@PBy; 0,7)<0 if and only if dim N(B*,¢)< co.

(2a) dim N(A@By; o, 7)=dim Ny(A)+dim N(B*, ).

(1b) R(A®By; 0,7) is closed in H (Ex+)PH(G) if and only if R(B*,a) is closed
in H(G).

(2b) codim R(APBy; g, 7)< 0 if and only if codim R(B*,s)< co.

(3b) codim R(A@PBy; o, r)=dim Ny(A*)+codim R(B", o).

(1c) index (A@By; 0,7)<0 if and only if index (B*,g)< co.

(2c) index (AP By; g, 7)=dim Ny(A)—dim Ny(A*)+index (B, 9).

(3c) index(ADPB7; g, r)—index(AP Byy; 0, v) =index(B,*, ¢) —index(B:*, ¢), where
B (B=1,2) is a linear map having the same property as B.

III. Regularity.

(@) For every ueH' Ey+) such that AucH (Ey+) and ByueH®(G) we have
ueH’(Ey+) if and only if for every ge Ry(A, t) such that B ge H*(G), we have ge B’(X).

(b) N(A@BYy; a,7) consists of C* sections of EM? if and only if N(B*, o) con-
sists of C= sections of Ex.

(¢) R(A®By; a,7) is the orthogonal complement of finitely many elements in
C“(EM;)@C“‘(G) if and only if R(B*, o) is the orthogonal complement of finitely many
elements in C(G).

§3. Estimates.

THEOREM 3.1. Let t<o and let B: B'(X)—>H(G) (0=0c—w+1/2+2) be a con-
tinuous linear map. Then the following thvee statements are equivalent:
(i) The estimate

(13) lgle=K(Bgy,+lgl:
is valid for all geRy(A, o).
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(1) The estimate
lgl. =K ((1—P*)gl.+<{Bgy,+lgle)

s valid for all geB’(X).
(ii) The estimate

(14) lull. =K ((Bruy,+||ulle)

is valid for all ue N(A, o).

Furthermore, if c<t+w,t>—1/2, then the above three statements are equivalent
to

(i)’ The estimate

(15) [oe] o =K (|| Aull. +<{Bruy,+|ull.)
is valid for all ueH,"".

REMARK 3.2. The estimate (15) with ¢=w+7,2=0 is elliptic (see Seeley [10],
p. 286) and the one with s=w+1r—1/2, 2=1/2 is sub-elliptic (cf. Hérmander [5], p.
208). Further, the estimate (15) with s=w—1/2, 2=0, r=0, #=0 is important for
non-local boundary value problems (see Beals [2], p. 329).

Proof of theorem 3.1. That (i)’=(i) and that (ii)’=>(ii) are obvious.
(1)=>@): Let geB’(X). Since by Theorem 1.2 (vi) P+geRy(A, o), we can apply
(13) to P*g and obtain

|P*gle=K(BP*g),+|P*gls).
Hence, using (9) of Theorem 1.2 for geB(X)cBY(X) (t<0s), we get
(16) [P*gl,=K(KBP*g),+gle).
On the other hand, it follows from the continuity of B: B(X)—H?’(G) that
(BP*¢3,={Bgy,+<{B(1—P"*)g),
={Bg,+K|(1-P ")gl,.
Thus, carrying this into (16), we obtain

[P*gl,=K(|(1=P*)gl,+<{Bg>,+|gle)-
Hence
lgle=|P*gl,+|1—P")gl,
=K(|1—=P*)gl.+<Bg>,+lgls)-
(i)=(ii): Let #€N(A, o). Then by Theorem 1.2 (iii) # can be decomposed into
wu=1,+u,, Where #,€ Ny(A) and #%,=Pyu,. Since by Theorem 1.2 (i) Ny(A)(cC=(E))

is finite dimensional, it follows that the projection #—u, is a pseudo-differential
operator of order —oco. Hence we have for <o
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17) ll2tollo = K l] o]
Further, applying (8) of Theorem 1.2 to yu;, we obtain
(18) lloes]lo =1 Prasllo = K 721,
=K |rul,
since j#,=0. Thus we obtain from (17) and (18)
Hoello = [laollo+ 2]
=K (llulle+yul.).

Therefore, applying (13) to yue Ry(A4, ¢) and (6) of Theorem 1.1 to #e N(A, s)C N(A4, £),
we finally obtain

loello =K (||| o+ |72l0)
=K(||ulls+<{Bruy,+|ruls)
=K(Byuy,+||ulls).

(i))>(1): Let geRy(A,s). Then by the definition (7) of Ri(A,s) there exists
u€N(A, o) such that yu=g. Further, by Theorem 1.2 (iii) # can be decomposed
into #=wu,+u,, Where u,€ No(A) and u,= Pyu,. Thus, since y#,=0, we have yu,=ru=g
and #;=Pyu,=Py. Hence, applying (6) of Theorem 1.1 and (14) to #,€ NM(4,s) and
(8) of Theorem 1.2 to geRy(A, s)C B{X )(t<as), We obtain

lglo=lrwlo =Kl
=K (Bruy,+||walle)
=K (Bg,+||Pgll:)
=K(Bg,+lglo)-

(ii)=>(ii)’: Let weH,”*. Then, by Proposition 2.1 (i) # can be decomposed into
u=z+w, where ze H***(Ey+) and weN(A,s). Further, since t<s=r+w, we then
have (see (10))

[lzl.=1lzll,
=ll2]li+a
=K||Aul|..

Hence it follows that
(19) [ull.=Ilzlls+]le0l ],

=K || Aul|.+|wl|,
that
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(20) [ewlle=I]o]].+112]le
=||ulle+ K| Aull.

and that
(Byrz),=K|rzl,
(21) <K |72lcs0
=K|lzllcrw
=K||Aull.,

since B: B’(X)—H*(G) is continuous, and y is continuous from H***(Ey+) into
B*(X) for r+o>w—1/2 (see 1.3). Then, applying (14) to weN(A, s), Wwe obtain
from (20) and (21)

lwllo =K (Brwy,+||wll.)
=K ((Byuy,+<{Brz),+ || Aul|+|lull,)
=K (Brup,+|1Aul |- +||ull.).
Thus, carrying this into (19), we finally get
ol lo=K (1| Aul| . +<{Bruy,+||ull.).

The proof is complete.

§4. Solvability.
4.1. Kernels.

THEOREM 4.1. Let o, v be real and let B: B (X)—>H*(G) (o=0—w+1/2+2) be a
linear map. Then the following three statements are equivalent:

(i) dim N(B*,¢)<oo.

(i) dim MBP*t,e)|N(P, ¢)<co.

(ii) dim MA@By; 0, 7)< oco.

Here N(BP*,0)={geB’(X): BP*¢=0} and N(P*,o)={geB’(X): P*+g=0}.

Furthermore, we have

dim N(B*, ¢)=dim N(BP ", ¢)|[N(P*, 5);
dim N(A@®By; o, t)=dim No(A)+dim M B, o).

Note that by Theorem 1.1 (i) y# exists in B'(X) for all we N(ADPBy; o,7)
c N(A, o).

Proof. (i)&=(i)": It follows from the isomorphism: MBP+, ¢)/| N(P *, 6)—N(B*, s)
that (i)&=»(i)’ and that dim M(B*, ¢)=dim N(BP*, ¢)|[N(P*, o).
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()e=(ii): By Theorem 1.2 (iii), e N(4, 0¢) can be decomposed into w=1u,+u,
(direct sum), where #o€No(A) and #,=Pru,. Hence we have N(ADBy; g, t)=Ny(A)
+{Pg: ge B°(X), P*g=g, Bg=0} (direct sum). Thus, since by Theorem 1.2 (vi) y
maps {Pg:9eB°(X), Ptg=g, By=0} isomorphically onto NM(B*, ¢)={geRy(A4, o): By
=0}, we find that dim MA@ By; g, r)=dim Ny(A)+dim N(B*,s). Hence, since by
Theorem 1.2 (i) dim Ny(A)<oo, it follows that (i) and (ii) are equivalent. The
proof is complete.

4.2. Ranges.

LemMMA 4.2. Let o be real and let B: B'(X)—>H*(G)p=0—w+1/2+2) be a con-
tinuous linear map. Then the following two statements ave equivalent:

(i) R(B*,a) is closed in H°(G).

(i) R(B®(1—PY),0) is closed in H*(GYDB’(X).

Here R(BO(1—P"),0)={(Bg, 1—P")g): ge B (X)}.

Proof. (1)=>(i)": Let {g,}c B°(X) such that Bg,—¢ in H*(G) and (1—P*)g,—go
in B°(X). Then, in view of the continuity of B: B(X)--H*(G), it follows that
BP*+g,=Bg,—B(1—P")gn—>¢—Bg, in H(G). Further, since by Theorem 1.2 (vi)
{Ptg.}C Ry(A, ), it follows from the definition (12) of R(B*,¢) that {BP*g,}
CR(B*,5). Thus we have by (i) ¢—Bg.€R(B*,6), which implies that there
exists g1€Ry(A, s) such that Bg,=¢—Bg,. Hence, setting g=g¢,+¢:€B°(X), we obtain
Bg=¢ and (1—P*)g=(1—P+)go=g,, since by Theorem 1.2 (vi) P*g,=g, and P*g,
=1lim P "(1—P*)g,=0. So (¢, go)e RIBOA—P™),q).

(iY=>(i): Let {goJTR¢(A,0) such that Bg,—¢ in H?G). Then, since by
Theorem 1.2 (vi) 1—P*)g,=0, it follows that (Bgn, (1—P *)gn)=(Bgs, 0)—(p, 0) in
H(G)®B’(X). Thus we have by (i) (¢, 0)e R(BH(1L—P+), 6), which implies that
there exists geB°(X) such that Bg=¢ and (1—-P*)g=0. So p=BgeR(B*,a), since
g=P+geRy(A,s). The proof is complete.

LemMA 4.3. Let o=t+w,t>—1/2 and let B: B'(X)—H’(G) (o=0—w0+1/2+2)
be a continuous linear map. Then the operator (AP By; o,7): Ha"—H (Ex+)PH"(G)
is continuous and in addition the following two statements are equivalent.

(i) R(B%,o0) is closed in H*(G).

(ii) R(A®By; 0,7) is closed in H (Ex+)DH(G).

Proof. The continuity of (A@By; g, 1) follows immediately from Proposition
2.1 (iv) and the continuity of B.

(i)=>(i): Let {g.}CRo(A, ¢) such that Bg,—¢ in H°(G). Since by the definition
(7) of R(A, o) there exists {w,}CN(A, o) such that yw,=g,, it then follows that
(Awn, Byw,)=(0, Bg,)—(0, ) in H (Ey+)®H"(G). Hence we have by (ii) (0, o) R(LAD
By; 6, 7), which implies that there exists weH," such that Aw=0 and Brw=¢. So
¢=ByweR(B*, 0), since yweRy(A, o).

(1)=>(i): Let {wa)C Ha such that Aw,—f in H'(Eyx+) and Bruy,—¢ in H(G).
Then by Proposition 2.1 (i) #, can be decomposed into #,=2z,+w,, Where z,
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=CErAun|u+€ H+*(Ey+) and w,=u,—2,€ N(A, 0). Since Au,—f in H*(Ex+) and since
{Au)C H (Ex+)C H “(Ex+)0<r+w), it follows that for all veNy(A*)
((f , v)=lim ((Aun, v))

o, M+)(—t,M+) n—oo (s, M+) (-r,

=lim ((A#n, v))

N—oo (6—w,M+) (—o+w, M )

=lim ((#n, A*v))

n-—oo (o, M+) (—o,M+)

(see Remark 1. 3). Hence by Theorem 1.4 (iii) Az=f, where 2=CE}f|u+€H " (Enu+).
Further, since Ey: H (Ey+)—>H'(E) and C: H'(E)—H *(E) are continuous, it follows
that z,—z in H*“(Ex+) and hence from the continuity of y: H*+*(Ey+)—B**(X) for
t+w>0—1/2 (see 1.3) that yz,—yz in B***(X). So we have yz,—7z in B°(X) and
Byz,—Byz in H(G), since B: B(X)—H*(G) is continuous. Hence Byw,=Byu,— Bz,
—¢—Byz in H*(G). Then, since {yw.}C Ry(A4, ¢) and hence {Byw,}C R(B*, ), we have
by (i) ¢—ByzeR(B*,g), which implies that there exists weN(A,s) such that Byw
=¢— Byz. Thus, setting u=z+weH’(Ex+), We obtain Au=Az+ Aw=Az=feH (Ex+)
and Byu=Byz+Byw=¢. So (f, ¢)e R(LA®By;s,7). The proof is complete.

Combining Lemma 4.2 and Lemma 4.3, we have proved

THEOREM 4.4. Let o be real and let B: B°(X)—>H*(G) (o=0—w+1/2+2) be a
continuous linear map. Then the following two statements arve equivalent:

(i) R(B*, o) is closed in H(G);

(ii) R(BPBA—P),0) is closed in H (G)PB(X).

Furthermore, if 0=t+w, t>—1/2, then the operator (A®By; o,7): Hi""—>H (Ex+)
@H!G) is continuous and the above two statements arve equivalent to

(ii) R(A@®By; 0,7) is closed in H (Ex+)DH(G).

4.3. Cokernels.

THEOREM 4.5. Let o=t+w,7>—1/2, let k be the minimum positive integer
such that |t|=<k and let B: B'(X)>H(G)o=06—w+1/242) be a continuous linear
map. Suppose that dim Ny(A*)=m and that the family {vi}}-, is a basis of Ny(A*)
(see Remark 1.3). Let {¢;};enCH™*(G) and supppose that the family {p;}}-, satisfies
the following two assumptions (Ai), (Aii):

(Al) ¢eH"(G) belongs to R(B*,a) if and only if ¢ is orthogonal to {$;}i-,, i.e.,
if and only if

B 44, =0 =L

(Ail) The family ()i is linearly independent.

Then the following two conclusions (Ci), (Cii) hold:

Ci) (f, p)eH (Ex+)PH’(G) belongs to R(A®By; g,7) if and only if (f, ¢) is
orthogonal to {(vi, O, and {(0,, ¢;))ier (9= —EFC**B*);e Hy (Ey+)), ie., if and



BOUNDARY VALUE PROBLEMS FOR ELLIPTIC OPERATORS 349
only of
((f: vl)) =0» l:]_’ R
(@M (=5, M t)
(22)
('((Ii{f, 1)])) + [50, ¢j] O ]:]-y ""l)

SMt) (6, (-, ()

where B*. H*(G)—(B’(X))* is the adjoint of B.
(Cii) The family {(vi, 0)Yiy, {(D;, Ps))b=1 is linearly independent.

RemARrk 4.6. Here we introduce the following spaces:
N((BL,o)*):{¢eH‘"(GZ;'G[)Bg,(_¢P}G)=O for all geRy(A, o)}
={peH "’(G): [Bru, _g!}] =0 for all ueN(A, o)} (see (7))
N(A®By; 0, o)) ={(v, ¢)GFL"(EM+)®H "(G): (Au, v)) +1Byu, ¢l
=0 for all weH,"}.

Then it follows from the closed range theorem that the assumptions (Ai), (Aii)
imply that the family {¢,}i.; is a basis of N((B*,¢)*) and that the conclusions (Ci),
(Cii) imply that the family {(v;, 0)}, {(3,, ¢;)}}=1 is a basis of N((A@By; g, 7)*) (see
Palais [9], p. 111).

Proof of theorem 4.5. 1) Let feH'(Ex+) be orthogonal to {v)i, and let
¢—ByCE.f be orthogonal to {¢;}}-,, ie.,

((f’ vi)) ‘—O l=1, s, My

@M+ (=, M

[GD”BTCEkf, ¢']] =0’ ]:1’ ;l
(0, (=0,

(23)

Then it follows from Theorem 1.4 (iii) that Az=f, where z=CEyf|x+€H "(En*).
Further, since ¢—Brz=¢—ByCE:f is orthogonal to {¢;}!=,, it follows from (Ai)
that ¢—Byze R(B*,s). Hence by the definition (12) of R(B*, s) there exists ge Ry(4, 9)
such that Bg=¢—Byz. Thus, since by Theorem 1. 2 (ii), (vi) Pge N(A,s) and P "¢g=g,
setting u=z+PgeH’(Ey+), we obtain Au=Az=feH (Ey+) and Byu=Byz+BP ¢
=Byz+Bg=¢, which proves that (f, ¢)e RLA®By; g, 7).

Conversely, let (f, ¢)e RIA@®By; o, 7). Then there exists ueH," " such that Au=f
and Bru=¢. Further, by Proposition 2.1 (i) # can be decomposed into #=z+uw,
where 2=CE.f|yu+eH**(Ey+) and w=u—2eN(A,s). Thus, since by the definition
(7) of Ry(A, o) yweRy(A,s) and hence ByweR(B*, ), it follows from (Ai) that for
each ¢;e H°(G) (1=j=/)

le —ByCELSf, ¢;] = [Byu—DByz, ¢,]
(, @) =p,G@ (& (=0, @)
=(p|;§rw’ (ﬁ{l’)

=0.
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Moreover, since Aue H (Ey+)C H* *(Eyx+)(0e=t+w), it follows that for each v;e Ny(A*)
(1=i=m)

Gy v) = (Aw, vi)

Mt+) (-t,M+) (&, M+) (-r,

= ((Au, vy))
(o=, M+) (~oto,M+)
= ((%, A vz))
(o, M (—o,M+
=0.

Therefore we have proved that (f, p)e H (Ex+)®H*(G) belongs to R(ADBy; o, 7)
if and only if (23) holds.

2) Since yCEyfeB (X )CB(X)o=r+w) and B*¢;e(B (X))*c(B*(X))*, it
follows that

[ByCELSf, ¢i1 = GCELS, B*¢;)
(0, @) (=p,G) (2,X) @ X)

(24)
= (FCEwf, B*¢;)

(t+0,X) (c+w)*, X)

(cf. Palais [9], p. 126). Further, since r+w>w—1/2 and |[r|=k, applying (2) to
CE.feH*(E) and B*¢;e(B*(X))* and (4) to feH (Ey+) and C*y*B*¢;e H(E),
we obtain

GCES, B*ds) = (CEWf, 7*BY¢s)

(t4+w,X) *X) G+
= %,k Bk ),
(r,(gl)E‘kf, C T B (9—!)3,%2)
= ((f, E¥C*r*B*¢;)
(@ M+) (=r,M+)
Hence, combining this with (24) and setting 7,= — E¥C*r*B*¢,e Hy " (En+) (1=5=1),
we get
[BrCEWf, ¢i1 = (f, E¥C*r*B*¢;)
Q) (=p@) ,M+) (=e,M+)
=—((f, 7).

(&, M+) (=, M+)

Thus we have
— g 5l = by 7).
(,.[,ﬁ BTCEkf’ (‘i)/»j.]a) (p[fg)’ fpj.]m + (S,(,{,:) i)i).anﬂ

3) Now we conclude from parts 1), 2) that (f, p)e H (Ex+)®H*(G) belongs to
R(A®By; 0,7) if and only if (22) holds. Moreover, since the family {vi}7-, is a basis
of Ny(A*), we conclude from (Aii) that the family {(v;, O)}i,, {(7,, ¢5)}i=1 is linearly
independent. The proof is complete.
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CorROLLARY 4.7. Let o=t+w,7>—1/2 and let B: B'(X)—>H*(G)(p=0—w+1/24+2)
be a continuous linear map. If codim R(B*, g)<co, then codim R(A@By; o, 7)< co.
Furthermore, we have

codim R(A@By; o, t)=dim No(A*)+codim R(B*, g).

Proof. Suppose that codim R(B*,s)=[  Then it follows that R(B*, o) is
closed in H*(G) and hence from the closed range theorem that dim N({(B,o)*)
=codim R(B*,o)=I (see Palais [9], p. 119). So let {¢;}}=1 be a basis of NM(B~,0)*).
Then by Theorem 4.5 the family {(vs, 0)}iy, {(7;, ¢5)}s=1 is a basis of N((APBy; o, 7)*)
(see Remark 4.6). Hence we have

codim R(A@By; g, tr)=dim N((APBy; g, t)*)
=m+/

=dim No(A*)+codim R(B*, g).

This completes the proof.
Conversely, we have

THEOREM 4.8. Leto=t+w,t>—1/2 and let B: B"(X)->H*(G) (o=c—w+1/2+2)
be a continuous linear map. If codim R(APBy; o, 7)< oo, then codim R(B*, ¢)< co.
Furthermore, we have

codim R(B*, o)=codim R(A@ By; g, r)—dim N,(A*).

Proof. Suppose that codim R(A@By; g,7)=q. Then, as in the proof of Corol-
lary 4.7, it follows that R(APBy; g, 7) is closed in H (Ey+)PH*(G) and that dim
N(A@By; 0, 7)*)=codim R(APBy; o,7)=q. So let {(v,, ¢;)}?-: be a basis of N((AD
By; a,7)*). Then, since by the definitions (7), (12) of Ry(A,s) and R(B*,0) peH*G)
belongs to R(B*,¢) if and only if (0,¢)e R(A®By; 0, 1), it follows that pe H(G)
belongs to R(B*,o) if and only if

o450 i=be
which implies that the family {p;}4-, generates N((B*,s)*). Hence codim R(B",o0)
=dim N((B*,9)*)=<g<co. Now we define the linear map R: N((APBy; t)*)
—N(B*, 0)*) by

R, y)=¢ for (v, )e N(ADBy; 0,7)%)

(see Remark 4.6). Since the family {(v,, ¢;)}%-: is a basis of N((ADBy; g, t)*) and
since the family {¢;}3., generates N((B*,0)*), it then follows that R is onto. On
the other hand, we can easily prove from Theorem 1.4 (iii) that for ¢=c+w

R(A;0,7)={Au: ueH,""}
={feH (Ex+): (f, v)) =0 for all veNy(A*)}
M) (-, M+)
={Au: ue H**(Ey+)}
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(the first equality is a definition of R(A4;s,7)). This yields
the kernel of R={(», O)eHo"’(EM+)@{0}:(7'(1‘(1éu(,_?1,);1)+)=0 for all ueH,”’}
= No(A*)D10}.
Hence we have
codim R(B*, ¢)=dim N(B*, o)*)
=dim N((A@By; o, v)*)—dim Ker R
=codim (R(APBy; o, ) —dim Ny(A*).

Here we have used the notation Ker R=the kernel of R. This completes the proof.

4.4. Indices.

THEOREM 4.9. Let o=t+w,t>—1/2 and let B: B"(X)—>H*(G) (0=0—w+1/2
+4) be a continuous linear map. Then index (A@By; g,7)<co if and only if
index (B, o)<oco. Furthermore, we have

index (AP By; 0, t)=dim Ny(A)—dim Ny(A*)+index (B, o).

Proof. This is an immediate consequence of Theorem 4.1, Corollary 4.7 and
Theorem 4. 8.

REMARK 4.10. If dim N(BP*,¢)/N(P~,0)<oco and codim R(B*, )< oo, then we
say that B is well-posed for A (see Seeley [11], p. 783). Since by Theorem 4.1
dim M(BP*, ¢)|N(P~,¢)=dim M(B*,¢), it follows from Theorem 4.9 that index
(A®@BYy; 0, t)<co if any only if B is well-posed for A.

CoroLLARY 4.11 (cf. Agranovi¢ [1], p. 105). Let By (k=1,2) be well-posed for
A. Then we have

index (A@B.y; 0, t)—index (AP B:y; g, r)=index (B, ", o) —index (B, 9).

§5. Regularity.
5.1. Kernels. First, we prove the following result (cf. Hormander [5], p. 197).

THEOREM 5.1. Let t<o,let p=c—w+1/2+ 21 and let B be a linear map of B(X)
into H*~*V>*}G) for each real s. Then the following three statements are equivalent:

(i) For every geRy(A,t) such that Bge H*(G), we have geB°(X).

(i) For every geBYX) such that (1—P)geB°(X) and BgeH*(G), we have
geB(X).

(ii) For every ueN(A,t) such that Byue H*(G), we have ueH(Ey+).

Furthermore, if 6=<t+wo, > —1/2, then the above three statements are equivalent to

(ii) For every ue H(Ey+) such that AucH (Ey+) and ByueH’(G), we have
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ueH'(Ex+).

Proof. That (i)’=(i) and that (ii)’=(ii) are obvious.

(ii)=(i): Let geRy(A,t) such that BgeH*(G). Then by the definition (7) of
Ry (A, t) there exists #e N(A, t) such that yu=g. Since ue N(A,¢) and Byu=BgeH"*(G),
we have by (ii) ue H°(Ey+) and hence weN(A,s). Thus we obtain from Theorem
1.1 (i) g=yueB’(X).

(i)=>(ii): Let uweN(A,¢) such that ByuecH?(G). Then by Theorem 1.2 (iii) »
can be decomposed into #=uwu,+u;, Where u,€ No(A)CC>(E) and #;=Pru;. Then,
since yu#,=0, it follows that yu,=7ueR\(A,¢) and hence that Byu,=BrucH*(G).
Thus we have by (i) y#,€B°(X) and hence by Theorem 1.2 (iii) #,=Pru,e N(4, o),
which proves that w=wuo+u,€ H(Ey+).

(i)=>(i): Let geBY(X) such that (1—P~)geB°(X) and Bge H*(G). Then since
(1-P+*)geB’(X) and g=P+g+(1—P+)g, we have only to show that P+geB’(X).
Now, since ge BY(X), it follows from Theorem 1.2 (vi) that P*geRo(A,?). Further,
since Bge H?(G) and (1—P+)geB’(X), it follows from the property of B that BP*g
=Bg—B(1—P+)geH"(G). Thus we have by (i) P geB’(X).

(il)=(ii)’: Let ue HY(Ey+) such that Aue H (Ey+) and ByueH"(G). Then by
Proposition 2.1 (i) # can be decomposed into #=z+w, where zeH +*(Exy+) and
weN(A, t). Since t<o=r+w, we have only to show that we H°(Ex+). Now, since
ze H+(Ey+) with t+o>w—1/2, it follows that yze B™+*(£) (see 1. 3) and hence that
Byze H+V**X(G). Further, since ¢=t+w,p=0—w+1/2+2 and since BrueH*(G), it
follows that Byw=Byu— Byze H°(G). Thus we have by (ii) we H’(Ey+). The proof
is complete.

From the proof of Theorem 5.1 and Sobolev’s Lemma, we obtain immediately

CoOROLLARY 5.2. The following two statements are equivalent:
(i) N(B*, o) consists of C* sections of Ex, i.e., N(B*,o)CC*(Ex);
(ii) MNA®By; a, 1) consists of C* sections of EM1+, i.e., N(A®By; o, r)CC‘”(EM;L).

5.2. Cokernels.

THEOREM 5.3. Let o=t+w,t>—1/2 and let B be a continuous linear map of
B{(X) into H* “*'**(G) for each real s. Then the following two statement are equi-
valent:

(i) R(B-,0) is the orthogonal complement of finitely many elements in C*(G),
i.e., dim N(B,0)*)<co and N(B*',s)*)CC=(G).

(ii) R(A®By; 0, 1) is the orthogonal complement of finitely many elements in
C™(Eny)DC(G), ie., dim N(ADBr; o, 7)*)< o0 and N(AD®By; 0, 0)*) CC(En)DC(G)-

For the definitions of NM(B*,s)*) and N((ADPBy; o, 7)*), see Remark 4.6.

Proof. (ii)=(i): Suppose that the family {(v;, ¢;)}j=1CC*(Ex)DC(G) is a basis
of N((ADBy;,7)*). Then, as in the proof of Theorem 4.8, it follows that the
family {¢;}}-,cC>(G) generates N((B*, ¢)*), which implies that dim NM(B*, 0)*)=g<o0
and that M(B+, e)*)CC(G).
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(i)=(ii): Suppose that the family {¢;};-;cC>(G) is a basis of N((B*,0)*).
Then it follows from Theorem 4.5 that the family {(;, O}, {(7,, ¢)}ie1 (D,
=—E¥§C*r*B*¢;) is a basis of M(A@By; o, 7)*). Since il C No(A¥)C C=(Eyy) and
{¢}5=1cC=(G), we have only to show that {i;}}-;CC*(Exs). Now, since B* is con-
tinuous from H=**"V*~¥(G) into (B%X))* for each real s, it follows from Sobolev’s
Lemma that {B*¢}}-,c@iziC=(Ex). Thus we derive from Theorem 1.4 (i), (ii) that
{C¥r*B*¢;)i..C NsoH Y *(E) and that the restrictions of {C*y*B*¢;}i_; to M* (resp.
M) belong to C™(Eny) (resp. C(Ex;)), ie., that C¥*B*¢(1=j=/) is C* up to the
boundary X in M* and also in M~. On the other hand, we have known that if v
is C* up to X in M* and also in M-, then Efv is C* up to X in M* (see (5)).
Hence we conclude that 4,= —E¥C*r*B*¢;€C=(Eyy) (1=j=I). The proof is complete.

APPENDIX.

Proof of Proposition 2.1. (i) Let ueHy~*. Then, since Eyx: H (Ey+)—>H(E) is
continuous (see 1.4) and since by Theorem 1.4 C: H(E)—~H**(E) is continuous,
it follows that CE AueH+*(E) and hence that z=CExAu|y+€H**(Eyx+). On the
other hand, since Aue H (Ey+)CH ~*(Ex+) (6 =7+w), it follows that for all ve Ny(A*)

((Au v)) = ((Au, v))

M) (-, M+) (6—o,M+)(—oto, M +)

= ((u, A*0)
(o, M+) (—o,M+)
=0

(see Remark 1.3). Hence we obtain from Theorem 1.4 (iii) Az=A#u and thus
w=u—2z2€N(A, o), since ue Hy " CH’(Ey+) and ze H**(Ey+). Therefore ue Hy* can
be decomposed into #=z+w, where ze H**(Ey+) and we N(A, o).

(ii) Since Ey: H'(Ey+)—>HY(E) and C: H(E)—~>H™**(E) are continuous, it fol-
lows that

H2lleso = [|ICECAU] | 0, m
=K||ExAuil:. n
=K || Aul|.
and hence that
Howllo=1leello+ 11211
=|lullo+ 112l o
=K|lulls.,

since 6=7+w. These are the desired inequalities (10), (11).
(iii) By part (i), e H4~* can be decomposed into #=2z+4w, where ze H***(Ey+)



BOUNDARY VALUE PROBLEMS FOR ELLIPTIC OPERATORS 355

and weN(A4,0). Since t+w>w—1/2, rz exists in B**(X) (see 1.3) and also in
(B(X) (¢6=t+w), and since weN(A4,os), yw exists in B’ (X) (by Theorem 1.1 (i)).
Further, if we H**(Ey+)CHy", it follows that yz+yw=yz+y(u—2)=rz+ru—yrz=ru.
Thus we can extend y: H**(Ey+)—>B+*(X) to a map 7 Hs"*—B’(X) by defining

(25) Fu=rz+yw.

Since 7 agrees with the original y on H**“(Ey+), we shall simply drop the tilde
and continue to denote it by 7.

(iv) Since o=t+w and y is continuous from H***(Ey+) into B***(X) for t+o
>w—1/2 (see 1.3), it follows that

lrzle=1rzlee
=K|l2l|c+o

Hence, combining this with (10), we obtain
(26) lrzl,=K||Aull..

On the other hand, applying (6) of Theorem 1.1 to weN(A4,s) and using (11), we
obtain

lrwl.=K|lwll,
=K|lullo.-
Therefore, combining this and (26), we finally obtain (see (25))
lrul.=lrz+rwl,
=lrzlo+lrwl
=K|lullo.c

which proves that y: H4*—B°(X) is continuous. The proof is complete.
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