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ON NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS
FOR ELLIPTIC DIFFERENTIAL OPERATORS

BY KAZUAKI TAIRA

§ 0. Introduction.

This paper is inspired by Seeley's work [10]. In [10], he has shown that one
can reduce the study of boundary value problems for elliptic differential operators
to the study of operators defined on the boundary by means of appropriate surface
potentials and volume potentials (cf. [3], [4], [5], [7], [11]).

In this paper, we show by the same approach that the question of the validity
of a priori estimates, the question of solvability and the question of regularity for
the non-homogeneous boundary value problems formulated in a slightly more general
framework can be reduced to the corresponding questions for the operators defined
on the boundary.

The paper is organized as follows. § 1 esLablishes the notation and the defini-
tions and summarizes some of the results in Seeley [10], [11]. § 2 formulates the
non-homogeneous boundary value problems and states main theorem (Theorem 2.2).
§ 3, § 4 and § 5 are devoted to the proof of this theorem.

§ 1. Preliminaries.

1.1. Spaces. Let M^ be an ^-dimensional compact C°° manifold with boundary.
Then we may assume that Mf is the closure of a relatively compact open subset
M+ of an n-dimensional compact C°° manifold M without boundary in which M+

has a C°° boundary X (see Palais [9], p. 170). We also assume a C°° volume element
on M. Let E be a complex C°° vector bundle over M with ^-dimensional fiber, let
C°°{E) denote the space of C°° sections of E and let C?{EM+) denote the subspace of
C°°(E) with compact support in Mb. We assume a C°° Hermitian inner product in
E. (A complex C°° vector bundle with such a structure will be called an Hermitian
vector bundle.) Thus we get the inner product on C°°(E) which we denote by ((,)).
For each real s, we denote by HS(E) the Sobolev space of E and by || \\S,M its
norm (for the definition, we refer to Palais [9], pp. 147-155). Then H\E) and
H~S(E) are antidual with respect to an extension of the inner product ((#, v)) de-
fined for uy v€C°°{E) and the duality will be denoted by

((«, v));
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Let EM+ be the restriction of E to Λfi+=M+(J-X" and let C°°(EM+) denote the
space of C°° sections of EMf> For each real s, we define the following spaces:

Hs(EM

+)=the space of restrictions to M+ of elements in HS(E); the norm of
UGHS(EM+) is defined by

\\u\\s = mf\\U\\s,M,

the infimum being taken over all U^HS{E) such that U—u in Mr\
Ho

s(EM+)=the subspace of H*{E) with support in M1

+ = M+l)X. Then C°°(EM+)
is dense in each H\EM+) and Q°(£V+) is dense in each HO

S(EM

+). Moreover, H\EM

+)
and H~l{EM

+) are antidual with respect to an extension of the inner product ((«, v))
defined for u£C°°(EM

+), v€Q?(EM
+) (cf. Hormander [6], p. 51) and the duality will

be denoted by

Let Zŝ  be the restriction of E to X and let C°(Eχ) denote the space of C°°
sections of Ex. Then, using the induced volume element on X, we get the inner
product on C°°(EX) which we denote by (,). For each real s, we denote by HS{EX)
the Sobolev space of Ex and by | | s its norm. Then H\EX) and H~S(EX) are antidual
with respect to an extension of the inner product (g, h) defined for g,h€C°°(Eχ).
Here we define the following spaces for each real s: Bs(X) = ®ω

Jz
i

0H
s-J-1/2(Exy, the

norm of g = (g0, •• ,grω_1)€Jδ
β(X) is defined by

/ω-l \l/2

\o\.= Σ NV,-i/2
\;=o /

(Bs(X))*=:®p0H-s^+1/2(Ex); the norm of A=(A0, - , hω-,)z{B\X))* is defined by

(«-l \l/2

Then BS(X) and (BS(X))* are antidual with respect to an extension ot

ω-l

1=0

and the duality will be denoted by

(g, h); geB (X),
(«,Z) (ί .Z)

Let G be an Hermitian vector bundle over X with ^--dimensional fiber and let
C°°(G) denote space of C°° sections of G. Then, using the induced volume element
on X, we get the inner product on C°°(G) which we denote by [, ]. For each real
5, we denote by HS(G) the Sobolev space of G and by < ) s its norm. Then HS(G)
and H~$(G) are antidual with respect to an extension of the inner product [φ, ψ]
defined for φ, ψGC°°(G) and the duality will be denoted by

[ω, ώ]; ω€Hs(G),ψζH-s(G).
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1.2. Pseudo-differential operators on vector bundles. Let A: C*(JE)-+O°(E) be
a pseudo-differential operator of order ω and let σa(A) denote the principal symbol
of A (for the definitions, we refer to Seeley [10], pp. 230-237). Then σω(A) is the
map of T'{M) (the cotangent bundle minus the zero section) into Horn (E,E). A
is called elliptic if and only if σω{A)(ζx) is an isomorphism Ex onto Ex for all
(x,ξx)£T'(M). Here Ex denotes the fiber of E at XQM.

A has the formal adjoint A*: C°°(E )-+C°°(E) such that

(1) ((Au, v)) = ((«, A*v))', u, v€C°(E).

A* is also a pseudo-differential operator of order ω and the principal symbol of A*
is the adjoint of σw(A) with respect to the Hermitian inner product in E. Thus A
is elliptic if and only if A* is elliptic. Further, in view of (1), we see that if A
is an elliptic differential operator of order ω, then A* is also an elliptic differen-
tial operator of order ω.

1.3. Restriction maps ;-. We assume that near the boundary X a normal
coordinate t has been chosen so that the points of M are represented as (x,t),x£X,
-l<t<l and that the bundle E is represented as EχX(-l, l):t>0 in M+ and t<0
in Λf- (the complement of M1

+ = M+\jX) and £=0 only on X\ and u£C°°{E) is re-
presented as u(xJ)£Eχ with x$Xy — l < ί < l .

Now we define γ0: C"(E)-+C°°(Eχ) by

(γou)(x)= \imu(x,t), u€C~{E)
ί->0+

and ry. O°{E)-*C°{EX) ( / = 1 , 2 , •••) by

= lim DMx,t),Dι = τ=~.
ί-»0+ V — L Ol

Then we define the restriction map r: C°°(E)-+(BmjZ}p*(Eχ) by

(Cauchy data of order <ω on X). It is well known that γ extends to a continuous
linear map γ: Hσ(E)->Ba(X)=®ω

jz\Ha-:)-ι/\Eχ) for σ>ω-lβ and also to a continuous
linear map γ\ Hσ(HM+)-+Bσ(X) for σ>ω — lj2 (cf. Lions and Magenes [8], 47; Palais
[9], p. 171).

We define H-°°{E)^O^RHS{E) (resp. H-a3{Ex)=\jS£RHs{Ex)) and topologize
H-°°(E) (resp. H-°°(EX)) as the inductive limit. Then R-°°(E) is the antidual of
Cco{E)=^SζRH\E) (cf. Palais [9], p. 126) and the duality will be denoted by

Also H-°(Eχ) is the antidual of C°°{Ex)=^sζRHs{Ex) and the duality will be denoted

by
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We define the adjoint r *: ̂ zlH-^Ex^H-^E) by

{{u, γ*h}}=ωΣ ίr/u, hj}9 ueC"(E)

for h = (h0, •-,hω-ι)€Q)ωjZlH~oo(Eχ). In particular, since γ is continuous from H°(E)
into B\X) for σ>ω-l/2, γ* is continuous from (B\X))* into H~β(E) and satisfies

(2) ((«, r*Λ)) = (r«, A); ueH\E), hs(B\X))*.

1.4. Extension maps Ek Let k be a positive integer. For real τ with |r|^i&,
we define the extension map Ek: H

T(EM

+)^H\E) by

(3) (Eku)(x,t)--

u{x,t) if t^

, -it) if

where ΣjS.i(~l)^ = l for —k^l^k — l, and φk is C00, y>fc(ί) = l for /^0, y>A(ί)=0 for

Since £•*: HT(EM

+)->HT(E) is continuous (cf. Lions and Magenes [8], p. 83), there
exists the adjoint Ek*: H-χE)-^HQ-τ(EM

+) such that

(4) ((«, Ek*v)) = ((Eku, υ))\ u£Hτ(EM+),v£H-τ(E).

Further, assuming that near the boundary X the volume element on M is the
product of the induced volume element on X and Lebesgue measure on ( — 1,1),
we can easily prove from the definition (3) of Ek that if v is C°° up to X in M~
and also in M", then

2k n I t \ I t \

(5) (Ek*vXx,t) = v(x,t)+ Σ-+v[x, -— )ψt(- — ),
3=1 J \ J I \ J I

so Ek*v is C~ up to X in M .

1.5. Summary of known results. From now on, let A: C°°(E )-+C°°(E) be an
elliptic differential operator of order ω and let K denote a generic positive constant.

Now we summarize some of the results in Seeley [10], [11] (cf. Hormander [5],
pp. 187-194).

We define for each real 5

( , ) { ( ) : Au=0 in

Then we have

THEOREM 1.1. (Seeley [11], p. 803).

( i ) For any usN(A,s), γu exists in BS(X).
(ii) γ: N(A, s)-+Bs(X) is continuous:

(6) \ruU^K\\u\\t9ueN(A,s).
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By Theorem 1.1, we can define for each real 5

(7) Ro(A,s) = {gςB%X): g = ru for some UQN(A,S)}.

Further, we define

NQ(A) = {usCca(E): supp(«)cMi+, Au=0 in M+}.

Then we have for the surface potentials

THEOREM 1.2. (Seeley [10], pp. 274-275).
( i ) dimJV0(i4)<oo.
(ii) There is a linear map P: φω

JZlC00(Eχ)->C00(EM+) which, for each real s,
extends to a continuous linear map P: BS(X)->N(A, s):

(8) \\Pg\\,^K\g\,,geB'(X).

(iii) ueN(A,s) can be decomposed into u — u^Ui {direct sum), where UOQNO(A)
and u1 = Pγu1.

(iv) For any g$Bs(X), γ(Pg) exists in BS(X); call it P f g.
(v) P+ is a pseudo-differential operator from BS(X) into BS(X):

( 9 ) \P+g\s

(vi) P 4 is a projection onto R0(A,s): Pi-(P+g)=P+geR0(A,s), geBs(X).

REMARK 1.3. Since the formal adjoint A*: C°(E)-+C°(E) is also an elliptic
differential operator of order ω (see 1.2), Theorem 1.2 remains valid for A*. In
particular, dim iV0(A*)<00 and NO(A*)C:HO-T(EM+) (the dual of H\EM+)) for all real
τ (see 1.1).

For the volume potentials, we have

THEOREM 1.4. (Seeley [10], pp. 276-277). There is a pseudo-differential operator
C of order —ω with the following properties'.

( i ) The map g-*C*γ*g of Θ zJC 0 0 ^) intoΓ\ε>0H
1/2-ε(E) extends to a continuous

linear map C*γ*: (Br(X))* = @ϊZ\H- +>n'\Ez)-*Hm-β(E) for σ>ω-lβy where C* is
the formal adjoint of C.

(ii) The map g-+C*γ*g\M

+ (the restriction of C*γ*g to M4-) of φ;:JC°°(jBχ) into
C0O(£'Λf+) extends to a continuous linear map O / * k + : (Bs(X))*-*Hω-s(EM

+) for each
real s, and the same holds with M+ replaced by M~.

(iii) // / is in Hτ(EM

+) and orthogonal to N0(A*), i.e.,

for all VGN0(A*) (see Remark 1. 3), then ACEkf—f in M+, where k is some positive
integer such that \τ\^k.

REMARK 1.5. P of Theorem 1.2 and C*Y*\M+ of Theorem 1.4 are pseudo-
Poisson kernels in the sense of Boutet de Monvel (see [3], p. 278).
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§ 2. Statement of main theorem.

2.1. Spaces HA\ For real σ, τ, we define the following space:
Au€H\EM+)}\ the norm of u^HA

>τ is defined by

The basic properties of the spaces H/tT are presented in the following pro-
position.

PROPOSITION 2.1. Let σ^τ+ω, τ> —1/2 and let k be the minimum positive in-
teger such that \τ\^k. Then

( i ) U$HA'T can be decomposed into u=z+w, where z=CEkAu\M

+GHΐ+ω(EM

+)
and w=u—z€N(A,σ).

(ii) The decomposition is continuous: More precisely,

(10) \\z\U+al^K\\Au\\T;

(11) \\w\\σ^K\\u\Uτ.

(iii) The restriction map γ: HT+ω(EM

+)-+BT+ω(X) extends to a linear map γ\ HA

a'τ

-*B\X).
(iv) γ\ HA

σ'τ->Bσ(X) is continuous:

Proposition 2.1 will be proved in the appendix.

2.2. Formulation of non-homogeneous boundary value problems. Now suppose
that we are given a linear map B=B0® ••• 0B.- i : B\X)-*Ha-ω+1/2^(G), where λ is
some real constant. Let σ^τ+ω, τ>—1/2. Then by Proposition 2.1 (iii) the boun-
dary condition By can be defined for elements in HA

σ'T. So our non-homogeneous
boundary value problem for A is formulated as follows: For given fsH\EM

+) and
φsHp(G) (ρ=σ-ω + l/2+λ) with σ^τ+ω, τ>-l/2, find ueHA

σ'τ such that

[Au=f in M+,
(*)

[Bγu=φ on X

With (*), we can associate the following operators, spaces and integers:

(AξBBγ] σ,τ) = the operator A®Bγ from # / r into H\EM+)®HP(G))

γ\ σ, τ) = {ueH/>T: Au = 0, Bru=0}\

γ; σ, τ) = {(Au9 Bγu): «€£Γ/ Γ};

; σ, τ) = dim N(AφBγ; σ, τ)-codim R(AφBγ; σ, r);

(B+,σ)=the restriction of B to R0(A,σ);

Λ σ): Bg=Q};



BOUNDARY VALUE PROBLEMS FOR ELLIPTIC OPERATORS 343

(12) R(B+,σ) = {Bg: geRQ(A9σ)};

index (B+, <0 = dim N(&> <?)-codim R(B\ σ).

2.3. Reduction to the boundary. Our main theorem will be:

THEOREM 2.2. Let t<σ^τ+ω, r > —1/2, let λ be some real constant and let B
be a continuous linear map of BS(X) into Hs~ω^1/2+λ{G) for each real s. Then the
operator (A®Bγ)σyτ):HA

a'T-+H\EM+)®Hp(G) (ρ=σ-ω + ll2+λ) is continuous, and
in addition

I. Estimates. The estimate

is valid for all u€HA
a'τ if and only if the estimate

is valid for all g€R0(A,σ).
II. Solvability.
(la) dim N(A®Bf, σ, r)<oo if and only if dim N(B+, <τ)<oo.
(2a) dim N(A®Br; σ, τ)=dim N0(A)+dim N(B+, σ).
(lb) R(A®Br; σ, r) is closed in H\EM+)®HP(G) if and only if R(B+, σ) is closed

in HP(G).
(2b) codim R{A®Bγ\ σ,τ)<<χ> if and only if codim R(B+, <τ)<oo.
(3b) codim R(A®Bγ\ σ, τ) = dim N0(A*)+codim R(B+, σ).
(lc) index(Aζ&Bγ; σ,τ)<oo if and only if index(B+,o )<cχ^.
(2c) index (A®Br; σ, τ)=dim NQ(A) - dim iV0(^*) + index (B+, σ).
(3c) index(A®Bxγ\ a, τ) — index(Λ052r; σ> τ ) = index(^i+, o) — index(Z?2

+, σ), where
Bk (^ = 1,2) is a linear map having the same property as B.

III. Regularity.
(a) For every U£HC(EM+) such that Au£H\EM

+) and Bγu€Hp(G) we have
ueHσ(EM

+) if and only if for every gζR0(A, t) such that B g£Hp(G), we have g$B\X).
(b) N(AφBγ] σ, τ) consists of C°° sections of EM+ if and only if N(B+, σ) con-

sists of C°° sections of Ex.
(c) R(A@By; σ, τ) is the orthogonal complement of finitely many elements in

C"{EM+)®C°(G) if and only if R(B+, σ) is the orthogonal complement of finitely many
elements in C°°(G).

% 3. Estimates.

THEOREM 3.1. Let t<σ and let B: Bσ{X)^Hp{G) (p=σ-ω + ll2+λ) be a con-
tinuous linear map. Then the following three statements are equivalent:

( i ) The estimate

(13) \o

is valid for all gζR0(A,σ).
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( i y The estimate

is valid for all geB\X).
(ii) The estimate

(14) \\u\\σ^K((Bruyp+\\u\\t)

is valid for all u€N(A, σ).
Furthermore, if σ^τ+ω, τ>—1/2, then the above three statements are equivalent

to
( i i) ' The estimate

(15)

is valid for all

REMARK 3.2. The estimate (15) with σ=ω+τyλ = ΰ is elliptic (see Seeley [10],
p. 286) and the one with σ=ω + τ —1/2, λ = lβ is sub-elliptic (cf. Hormander [5], p.
208). Further, the estimate (15) with <τ=ω-l/2, λ=0, r = 0, *=0 is important for
non-local boundary value problems (see Beals [2], p. 329).

Proof of theorem 3.1. That (i)'=ί>(i) and that (iiy±>(ii) are obvious.
(i)4>(i)': Let gsB\X). Since by Theorem 1.2 (vi) P+gςR0(A,σ), we can apply

(13) to P+g and obtain

Hence, using (9) of Theorem 1.2 for g^B\X)dB\X) (t<σ), we get

(16) \P+g\.^K«BP+g>p + \g\t).

On the other hand, it follows from the continuity of B: B\X)-+HP{G) that

Thus, carrying this into (16), we obtain

\P+g\σ^K(\a-P+)gU + <Bg>P+ \g\t\

Hence

(ii): Let ueN(A,σ). Then by Theorem 1.2 (iii) u can be decomposed into
u=uo+Ui, where uoeNo(A) and u1=Pγuί. Since by Theorem 1.2 (i) NoiAXaC^E))
is finite dimensional, it follows that the projection u->u0 is a pseudo-differential
operator of order — oo. Hence we have for t<σ
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(17) ||«o||.^ϋΠ|κ||(.

Further, applying (8) of Theorem 1.2 to γuit we obtain

(18) | |«i | | .

since γuo = O. Thus we obtain from (17) and (18)

Therefore, applying (13) to γusR^A, a) and (6) of Theorem 1.1 to usN(A, σ)cN(A, t),
we finally obtain

(ii)φ(i): Let gςR0(A,a). Then by the definition (7) of Ra{A,o) there exists
ueN(A,σ) such that γu=g. Further, by Theorem 1.2 (iii) u can be decomposed
into u = uo+Ui, where uoeNo(A) and Ui = PγUi. Thus, since γuo = O, we have γu! = γu = g
and Uι=PγUχ=Pg. Hence, applying (6) of Theorem 1.1 and (14) to UiGN(A, σ) and
(8) of Theorem 1.2 to g<=R0(A,σ)czBt(X)(t<σ), we obtain

(ii)': Let UZHA'. Then, by Proposition 2.1 (i) u can be decomposed into
u=z+w, where ZZHT+"'{EM+) and wzN(A,a). Further, since ί O g j τ + ω , we then
have (see (10))

^K\\Au\\t.

Hence it follows that

( 1 9 ) I I « I I . ^ I I « I I . + I I « Ί I .

$K\\Au\\*+\\w\\»

that
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(20) \\w\\t^\\u\\t+\\z\U

^\\u\U+K\\Au\\v

and that

(21)

since B: Bσ(X)->Hp(G) is continuous, and γ is continuous from HT+ω(EM

+) into
Bτ+ω(X) for r + ω>ω-l/2 (see 1.3). Then, applying (14) to weN(A,σ), we obtain
from (20) and (21)

Thus, carrying this into (19), we finally get

The proof is complete.

§ 4. Solvability.

4.1. Kernels.

THEOREM 4.1. Let σ, τ be real and let B: Ba{X)-^Hp(G) (f>=σ-ω + ll2+λ) be a
linear map. Then the following three statements are equivalent

( i ) dimiV(J5+,(;)<oo.
( i ) ' dim N{BP f, σ)jN{P +, σ)<oo.
(ii) dim N(A®Bγ\ σy τ) < oo.
Here N(BP+,σ) = {gςBσ(X): BP+g = 0} and N{P+,σ) = {gsB\X)\ P+g = 0}.
Furthermore, we have

dim N(B+, <r)=dim N(BP+, σ)/N(P+

i σ)\

dim N(A®Bγ; σ, τ) = dim N,(A)+aim N(B+, σ).

Note that by Theorem 1.1 (i) γu exists in B\X) for all usN(A@Bγ\ a, τ)
cN(A,σ).

Proof. (i)4=»(i)/: It follows from the isomorphism: N(BP+, σ)/N(P % σ)->N(B+, σ)
that (i)«=»(i)7 and that dim N(B+, σ)=άim N(BP+,σ)/N(P+,σ).
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): By Theorem 1.2 (iii), u€N(A,σ) can be decomposed into u = uo + Ui
(direct sum), where uo£No(A) and u1=Pγu1. Hence we have N(A®Bγ; σy τ) = N0(A)
+ {Pg: gεBσ(X), P+g = g, Bg=0} (direct sum). Thus, since by Theorem 1.2 (vi) γ
maps {Pg:g€Bσ(X),P+g=g, Bg=0} isomorphically onto NiB4-, σ) = {geR0(A, σ): Bg
=0}, we find that dim N(A@Bγ\ σ, r)=dim N0(A) + dim N(Bh,σ). Hence, since by
Theorem 1.2 (i) dim JV0(A) < oo, it follows that (i) and (ii) are equivalent. The
proof is complete.

4.2. Ranges.

LEMMA 4.2. Let σ be real and let B: B\X)^Hp{G)(p=σ-ω + lβ+λ) be a con-
tinuous linear map. Then the following two statements are equivalent'.

( i ) R(B+,σ) is closed in H\G).
( i ) ' R(B®a-P+), σ) is closed in HP(G)®B\X).
Here #(£0(1-P J ),*) = {(£</, (1-P%):

Proof. (i)Φ(i)': Let {gn}aBa(X) such that Bgn->φ in HP(G) and (l-P+)gn-^Q»
in B\X). Then, in view of the continuity of B: Ba{X)--*Hp(GX it follows that
BP+gn=Bgn-B(l-P+)gn-+φ-Bg0 in HP(G). Further, since by Theorem 1.2 (vi)
{P+gn}<^Ro(A,σ), it follows from the definition (12) of R(B+,σ) that {BP+gn}
aR(B+,σ). Thus we have by (i) φ—BgoςR(B+,σ), which implies that there
exists gi€Ro(A,σ) such that Bg1 = φ—Bg0. Hence, setting g = g0 + giQBσ(X)f we obtain
Bg=φ and (l-P+)g = (l-P+)go=go, since by Theorem 1.2 (yi) P+g1=g1 and P+g0

= \imn^P"a-P+)ΰn = 0. So (φ,go)eR(B®(l-P+),σ).
( i y i > ( i ) : Let W c i o ( Λ f f ) such that Bgn-+φ in HP(G). Then, since by

Theorem 1.2 (vi) (l-P+)gn=0, it follows that (Bgn, (l-P+)gn) = (Bgn, 0)->(y>, 0) in
Hp(G)®Bσ(X). Thus we have by ( i ) ' (^,0)ei?(J5φ(l-P+), σ), which implies that
there exists gsBσ(X) such that Bg=φ and (l-P+)g = 0. So φ=BgsR{B+,σ), since
g=P+gςR0(A,σ). The proof is complete.

LEMMA 4.3. Let σ^τ + ω, r > - l / 2 β«d /^ 5: B\X)-+HP(G) (p=σ-ω+ll2+λ)
be a continuous linear map. Then the operator (Aξ&Bγ; σ, τ): HA'r^H\EM+)®Hp{G)
is continuous and in addition the following two statements are equivalent.

( i ) R(B+, σ) is closed in HP(G).
(ii) R(A®Bγ\ σ, τ) is closed in H\EM+)®HP{G).

Proof. The continuity of (A®Bγ\ σ, τ) follows immediately from Proposition
2.1 (iv) and the continuity of B.

(ii)i>(i): Let {gn} c Ro(A, σ) such that Bgn-^φ m HP{G). Since by the definition
(7) of Ro(A,σ) there exists {wn}<zN(A,σ) such that γwn=gn, it then follows that
(Awn,Brwn) = (0,Bgn)-+(0,<p) in H\EM

+)®HP(G). Hence we have by (ii) (0,φ)eR(A®
Bγ;σ,τ), which implies that there exists weHA

a>τ such that Aw=0 and Bγw=φ. So
φ=BγwQR(B+.,σ)ί since γwςR0(A,σ).

(i)=>(ii): Let {un}c.HA

σ'τ such that Aun->f in H\EM+) and Brun-*p in HP(G).
Then by Proposition 2.1 (i) un can be decomposed into un=zn+wn, where zn
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=CEkAun\M
+€Hτ+ω(EM+) and wn=un—znGN(Afσ). Since Aun-+f in H\EM+) and since

{Aun}aH\EM+)c:H''-ω(EM+)(σ^τ+ω\ it follows that for all veN0(A*)

((/, v)) = lim ((Aun, v))

=0

(see Remark 1.3). Hence by Theorem 1.4 (iii) Az=f, where z=CEkf\M+tHr+0>(EM+).
Further, since Ek: Hτ(EM

+)->HT(E) and C: Hτ{E)->Hτ+w(E) are continuous, it follows
that zn-+z in HZ+W(EM+) and hence from the continuity of γ: Hΐ+ω{EM+)-+Bτ+ω(X) for
τ + ω>ω —1/2 (see 1.3) that T ^ - ^ Z in 5 r+α)(X). So we have γzn-+γz in B\X) and
Bγzn-»Bγz in iF(G), since B: Bσ(X)-+Hp(G) is continuous. Hence Bγwn = Bγun-Bγzn

-+φ—Bγz in HP{G). Then, since (^ n [c i? 0 (Λσ) and hence {Bγwn}<^R(Br,σ), we have
by (i) φ—Bγz€R(B+,σ), which implies that there exists w€JVCA,ff) such that i??^
=φ-Bγz. Thus, setting u=z+w€Hσ(EM

+), we obtain Aκ = As+AH;=As =/€# '(£*+)
and Bγu=Bγz+Bγw=φ. So (/, y>) €2?(A©2?r; <7, r). The proof is complete.

Combining Lemma 4.2 and Lemma 4.3, we have proved

THEOREM 4.4. Let σ be real and let B\Ba(X)-*Hp{G) (p=σ-ω + lβ+λ) be a
continuous linear map. Then the following two statements are equivalent

( i ) R(B+, σ) is closed in H°(G)
( i i) ' R(B®(l-P+),σ) is closed in HP{G)@B\X).
Furthermore, if σ^τ+ω, r > -1/2, then the operator (AφBγ; σ, τ): HA

σ<τ->Hτ{EM

+)
®HP(G) is continuous and the above two statements are equivalent to

(ii) R(A®Bγ\ σ, τ) is closed in H\EM

+)®HP(G).

4.3. Cokernels.

THEOREM 4.5. Let σ^τ+ω, τ>—1/2, let k be the minimum positive integer
such that \τ\^kk and let B: Bσ(X)->Hp(G)(p=σ—ω + ll2 + λ) be a continuous linear
map. Suppose that dimiVo(A*)=m and that the family {̂ }f=i is a basis of JV0(A*)
{see Remark 1.3). Let {φj}ι^ιC.H~p{G) and supppose that the family {ψj))=\ satisfies
the following two assumptions (Ai), (Aii):

(Ai) <pGHp(G) belongs to R(B+,σ) if and only if ψ is orthogonal to {ψj}lj=i, i.e.,
if and only if

[φ, ΦA = 0 , ; = 1, •-,/.
(p,G) ί-p,G)

(Aii) The family {φj}j^i is linearly independent.
Then the following two conclusions (Ci), (Cii) hold:
(Ci) (fφ)GHτ(EM+)®Hp(G) belongs to R(A®Br\σ,v) if and only if (/, ψ) is

orthogonal to {(^,0)}Γ=1 and {{ϋ^ψ^Ui (ϋj= -Ek*C*γ*B*ψj€H(r
τ(EM+)), i.e., if and
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only if

((/> Vi)) =0, z = l, ~,m\

( 2 2 ) ( t t J f 4 / ( "*"

(r,Jlf + ) (-r,3f + ) (P,G){-P,G)

B*: H-p{G)-+{B\X))* is the adjoint of B.
(Cii) 7%0 family {(vt, 0)}f=1, {(z)7, 0y)}5=i is linearly independent.

REMARK 4.6. Here we introduce the following spaces:

N{{B\σ)*) = {ψsH->{G)'. [Bg, ψ] = 0 for all g£R0(A,σ)}
(P,G) i-p.G)

(G): [Bru, φ] =0 for all ueN(A,σ)} (see (7));
(P,G) (-P.G)

v^)eH0-
r(EM

+)®H-p(G): ((Au, υ)) +[Bγu, ψ]
(r,Λf+) (-τ,M + ) (p,G) i-p G)

= 0 for all u€HA
σ>τ}.

Then it follows from the closed range theorem that the assumptions (Ai), (Aii)
imply that the family {φj}ι

J=i is a basis of N((B\σ)*) and that the conclusions (Ci),
(Cii) imply that the family {(vif 0)}f=1 {(ϋJfφj)}ι

Jsl is a basis of N((A@Bγ\ σ, r)*) (see
Palais [9], p. 111).

Proof of theorem 4.5. 1) Let fsH\EM*) be orthogonal to WϊU and let
ω—BγCEjcf be orthogonal to lφj}lj=i, i.e.,

((/> *><)) =0, i=l, ••-, w;

(23)
[φ-BγCEuf, φj] - 0 , 7 = 1,-,/.

Then it follows from Theorem 1.4 (iii) that As=/, where z=CEkf\M+£Hτ+<0(EM

+).
Further, since φ—Bγz=ψ—BγCEkf is orthogonal to {φj})=u it follows from (Ai)
that φ-Bγz£R(B+, σ). Hence by the definition (12) of R(B\σ) there exists geR0(A, σ)
such that Bg=φ-Bγz. Thus, since by Theorem 1. 2 (ii), (vi) PgcN(A, σ) and P g = g,
setting u = z + PgeHa(EM

+), we obtain Au = Az=fsH\EM

+) and Bγu = Bγz + BP~g
— BγzΛ-Bg — ψ, which proves that (/, ̂ ivΛ^L©^; σ, r).

Conversely, let (/, ̂ )€i?(A©^; σ, τ). Then there exists u€HA
σ'τ such that A«=/

and Bγu=φ. Further, by Proposition 2.1 (i) u can be decomposed into u — z+w,
where z=CEkf\M

+^Hτ+ω{EM

+) and w=u — z€N(A,σ). Thus, since by the definition
(7) of R0(A,σ) γweRo(A,σ) and hence Bγw€R(B+,σ), it follows from (Ai) that for
each φj€ff~p(G) (l^j^l)

[φ -BγCEkf, ψj] = [Bγu-Bγz, ψj]
(p,G) i-p.G) (P'G) i-p,G

= [Bγw, ψj\
(P,G) i-p,G)

= 0.



350 KAZUAKI TAIRA

Moreover, since Au£Hτ(EM

+)c:Hσ-<"(EM+)(σ^τ + ω), it follows that for each vtGN<,(A*)

(σ-ω,M+) (-ff

=0.

Therefore we have proved that (/, <p)sH\EM+)®Hp(G) belongs to R(A@Bγ\ σ, r)
if and only if (23) holds.

2) Since rCEkfeBτ+ω(X)czBa(X)(σ^τ+ω) and B*ψjS(Ba{X))*C.(Bτ+lύ{X)γ, it
follows that

[BγCEkf, φj] = {γCEkf, B*ψj)
(P,G) i-p,G) (°,X) (σ*,X)

(24)

(cf. Palais [9], p. 126). Further, since τ+ω>ω-l/2 and \τ\^k, applying (2) to
CEkfzHτ+<\E) and B*φjs{B*+\X))* and (4) to fsH\EM+) and C*γ*B*ψjzH-τ(E\
we obtain

(γCEkf, B*φj) = ((CEjcf, γ*B*φj))

= ^Ekf,C*r*B*<Pj)))

=fr(CΛ Etc*r*B*ψj,)^

Hence, combining this with (24) and setting Vj=—EtC*γ*B*ψj€H<Γ\EM+) (l^j^l),
we get

IBγCEtf, f_iiG=(((f^ EiC*r*B*£j))+)

Thus we have

[φ-BγCEkf, ΨJI=JΨ> ΨJ\+ ((fh Vj))ijL)

3) Now we conclude from parts 1), 2) that (/, φ)ζH\EM+)®Hp(G) belongs to
R{Aζ&Bγ\ σ, τ) if and only if (22) holds. Moreover, since the family {̂ }f=1 is a basis
of No(A*), we conclude from (Aii) that the family {(vit 0)}f=1, {(ϋj, φj)}lj=ι is linearly
independent. The proof is complete.
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COROLLARY 4. 7. Let σ^τ+ω, τ> -1/2 and let B: Bσ(X)->Hp(G)(p=σ-ω
be a continuous linear map. If codim R(B+, <τ)<oo, then codim R(A@Bγ\ σ,τ)<oo.
Furthermore, we have

codim R{A@Bγ\ σ, r) = dim N0(A*) +codim R(B+, σ).

Proof. Suppose that codim R(B ,σ) = l. Then it follows that R(B+,σ) is
closed in HP(G) and hence from the closed range theorem that dimiV((i?+, </)*)
=codim R(B%σ).=l (see Palais [9], p. 119). So let {ψj}ι

J=1 be a basis of N((B-tσ)*).
Then by Theorem 4.5 the family {(vt, 0)}?=1, {(ϋ,, ψj)}^i is a basis of N{(A@Bγ\ σ, τ)*)
(see Remark 4.6). Hence we have

codim R{A®Bγ\ σ, τ) = dim N((A@Br; σ, r)*)

= m+l

= dim 7Vo(A*) + codim

This completes the proof.
Conversely, we have

THEOREM 4.8. Let σ^τ+ω, τ> -1/2 αwd /^ 5: 5\X)-+HP(G) (p=σ-ω
be a continuous linear map. If codim R(AφBγ; σ, r)<oo, then codim R(B ,σ)<co.
Furthermore, we have

codim R(B+, σ) = codim i ? ( A 0 ^ ; σ, r)-dim JV0(A*).

Proof. Suppose that codim R(A@Bγ\ σ,τ)=q. Then, as in the proof of Corol-
lary 4. 7, it follows that R(A@Bγ; σ, τ) is closed in H\EM

+)®HP{G) and that dim
N((A(BBr;σ,τ)*)=codim i?(A0^;<J, r )=^ So let {(^,0y)}?=i be a basis of iV((A©
Br;σ,τ)*). Then, since by the definitions (7), (12) of R0(A,σ) and R(B\σ) φzHp{G)
belongs to R(B+,σ) if and only if (O,φ)ζR(A®Bγ;σ,τ), it follows that φ$Hp(G)
belongs to R(B+,σ) if and only if

[φ, φj] =0, y = l , -',q,
(P,G) (-P.G)

which implies that the family {̂ }J=i generates N((BJ-, σ)*). Hence codim R(B\σ)
=dimN((B+,σ)*)^q<oo. Now we define the linear map #: N({A@Bγ\ τ)*)
->M(5+,(7)*) by

i?(t;, ,̂) = ̂  for (t;, 0)€A^((A©^; σ, r)*)

(see Remark 4.6). Since the family {(vJt ψj)}%i is a basis of iV((A©^; σ, r)*) and
since the family {0y}J=i generates N((B+,σ)*), it then follows that i? is onto. On
the other hand, we can easily prove from Theorem 1.4 (iii) that for σ^~+o>

R(A;σ,τ) = {Aί

?M+): ((/, v)) =0 for all vsN0(A*)}



352 KAZUAKI TAIRA

(the first equality is a definition of R(A; σ, τ)). This yields

the kernel of R={(v, 0)€H0-
τ(EM

+)®{0}: ((Au, v)) =0 for all
(r,M + ) (-r,ΛΓ + )

Hence we have

codim R(B+, σ) = dim N((B", σ)*)

= dim N((A®Bγ; a, τ)*)—dim Ker R

= codim (R(A®Bγ; σ, r)-dim N0(A*).

Here we have used the notation Keri?=the kernel of R. This completes the proof.

4.4. Indices.

THEOREM 4.9. Let o^τ+ω,τ>-\\2 and let B: B°(X)-+HP(G) (p=σ-ω + 1/2
+ λ) be a continuous linear map. Then index (AφBγ; σ, r)<oo if and only if
index (Br, σ)<oo. Furthermore, we have

index (AφBγ; σ, τ) = dim N0(A)-dim N0(A*) + index {B{, σ).

Proof. This is an immediate consequence of Theorem 4.1, Corollary 4. 7 and
Theorem 4. 8.

REMARK 4.10. If dim N(BP'r, σ)IN(Pr,σ)<oo and codim R(B+, σ)<oo, then we
say that B is well-posed for A (see Seeley [11], p. 783). Since by Theorem 4.1
dimN(BPi-,σ)lN(PΛ-,σ)=-dimN(B+

fσ), it follows from Theorem 4.9 that index
(AφBγ; σ, τ)<cx> if any only if B is well-posed for A.

COROLLARY 4.11 (cf. Agranovie [1], p. 105). Let Bk (& = 1,2) be well-posed for
A. Then we have

index (A@Bλγ; σ, τ) — index (A@B2γ\ σ, τ) = index (2?f, a) — index (B2~, </)•

§ 5. Regularity.

5.1. Kernels. First, we prove the following result (cf. Hormander [5], p. 197).

THEOREM 5.1. Let t<σ, let p=σ—ω-\-lβ+λ and let B be a linear map of BS(X)
into Hs~ω+1/2+λ(G) for each real s. Then the following three statements are equivalent:

( i ) For every gtR0(A,t) such that BgsHp(G), we have gsBa(X).
( i ) ' For every geB'(X) such that (l-PΛ)gzBσ(X) and Bg$Hp(G), we have

(ii) For every uεN(A,t) such that Bγu€Hp(G), we have u€Ha(EM
+)

Furthermore, if oίkτ+ω, τ> —1/2, then the above three statements are equivalent to
(i i) ' For every tt£Ht(EM

+) such that AusH\EM

+) and Bγu$Hp(G), we have
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Proof. That (i)'=>(i) and that (ii)'=>(ii) are obvious.
(ii)=>(i): Let gsR0(A,t) such that BgeHp(G). Then by the definition (7) of

Ro(A,t) there exists ueN(A,t) such that γu=g. Since ueN(A,t) and Bγu=Bg€Hp(G),
we have by (ii) u€Hσ(EM

+) and hence ueN(A,σ). Thus we obtain from Theorem
1.1 (i) g = γusB\X).

(i )=>(ii): Let ueN(A,t) such that BγusHp(G). Then by Theorem 1.2 (iii) u
can be decomposed into u = uo+uu where u0€N0(A)c:Coo(E) and ux—PyUι. Then,
since γuo = O, it follows that γu1 = γu^R0(A,t) and hence that Bγu1 = Bγu€Hp(G).
Thus we have by (i) γu^Bσ{X) and hence by Theorem 1.2 (iii) Uι=Pγux^N{A,σ),
which proves that u = Uo+u1ζHσ(EM+).

(i)^>(i)': Let gsB\X) such that ( 1 - P ')g£Bσ{X) and BgzHp{G). Then since
(l-P+)g£Bσ(X) and ςr = P+g + ( l -P + )g , we have only to show that P+gsB\X).
Now, since gsB%X), it follows from Theorem 1.2 (vi) that P+gςR0(A,t). Further,
since Bg£Hp(G) and (l-P+)g£Bσ(X), it follows from the property of B that BP+g
= Bg-B(l-P+)gzHp(G). Thus we have by (i) P+geB\X).

(ii)=>(ii)': Let u$Ht{EM+) such that AusH\EM+) and BγutHp(G). Then by
Proposition 2.1 (i) u can be decomposed into u—z+w, where z€Hτ+ω(EM+) and
weN(A,t). Since / O ^ τ + ω , we have only to show that W$H\EM+). NOW, since
zsHT+w(EM+) with r+ω>α>-l/2, it follows that γz^Br+ω{E) (see 1.3) and hence that
Bγz€Hτ+1/2+λ(G). Further, since <j^r+ω, ,o = σ-ω + l/2+Λ and since BγuzHp(G)y it
follows that Bγw=Bru-Brz£Hp(G). Thus we have by (ii) w€Hσ(EM+) The proof
is complete.

From the proof of Theorem 5.1 and Sobolev's Lemma, we obtain immediately

COROLLARY 5. 2. The following two statements are equivalent:
( i ) N{B-ya) consists of C°° sections of Ex, i.e., iV(Jδ

+,(7)cCoo(£1χ);
(ii) N(A®Bγ; σ, τ) consists of C°° sections of EM+, i.e., N(A®Bγ\ σ, τ)dC°°(EM+)^

5.2. Cokernels.

THEOREM 5.3. Let σ^τ+ω, τ>—1/2 and let B be a continuous linear map of
BS{X) into 77*-ω+1/2+/(G) for each real s. Then the following two statement are equi-
valent:

( i ) R{B,o) is the orthogonal complement of finitely many elements in C°°(G),
i.e., dimΛf((i?;,σ)*)<co and N((B\ σ)*)cC°°(G).

(ii) R(A@Bγ\ σ, τ) is the orthogonal complement of finitely many elements in
C~(EM+)®C°°(G), i.e., άimN((A®Br; σ, τ)*)<oo and N({A®Br\ σ, τ)*)cCo o(^ i +)0Co o(G).

For the definitions of iV((J5+,σ)*) and N((A@Br; σ, τ)*), see Remark 4.6.

Proof. (ii)=>(i): Suppose that the family {(^,^y)}J=iCC0O(^Af+)ΘC00(G) is a basis
of N{(A@Bγ', σ, τ)*). Then, as in the proof of Theorem 4.8, it follows that the
family [ψ^cC^G) generates N((B+, σ)*), which implies that dim N({B+, σ)*)^q<oo
and that
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( i )=>(ii): Suppose that the family {^=iCC°°(G) is a basis of N((B+,σ)*).
Then it follows from Theorem 4.5 that the family {(vit 0)}?=1, {(vJ} ψjj)ι

3=i {v3

= -E*C*γ*B*ψj) is a basis of N((A@Br;σ,τ)*). Since {^}f=1cAΓ0(A*)cCoo(^4-) and
{0y}ί=iCC°°(G), we have only to show that ( ^ = 1 c C O 0 ( & + ) . Now, since B* is con-
tinuous from H-s+ω-1/2-\G) into (B%X))* for each real 5, it follows from Sobolev's
Lemma that {B*ψJ}

ι

JsslczζBi;zlCoo(Eχ). Thus we derive from Theorem 1.4 (i), (ii) that
{C*r*B*ψj}ι

J=1c: nε>oH1/2-ε(E) and that the restrictions of {C*γ*B*φj}ι

Jssl to M+ (resp.
M~) belong to C°°(EM+) (resp. C~(EM-)), i.e., that C*γ*B*ψJX^j^l) is C°° up to the
boundary X in M+ and also in M~. On the other hand, we have known that if v
is C°° up to X in M+ and also in M~, then £ > is C°° up to X in M+ (see (5)).
Hence we conclude that Vj=-EtC*γ*B*ψj£Ccx>(EM+) ( l ^ i ^ / ) . The proof is complete.

APPENDIX.

Proof of Proposition 2.1. (i) Let u^HA

a'τ. Then, since Ek: H\EM+)->H\E) is
continuous (see 1.4) and since by Theorem 1.4 C: Hτ(E)-*Hτ+ω(E) is continuous,
it follows that CEkAu£Hτ+ω(E) and hence that z=CEkAu\M+tHτ+ω(EM+) On the
other hand, since Au£Hτ{EM+)^Ha-ω{EM+) (σ^τ+ω), it follows that for all v€N0(A*)

{{Au, v)) = {{Au, υ))
(τ,M+) (-r,ΛΓ+) (σ-ω,M+)(-o + ω,M+)

= ((«, AH))

(see Remark 1.3). Hence we obtain from Theorem 1.4 (iii) Az^Au and thus
w=u — zςN(A,σ), since u£HA

σ>τc:Hσ(EM+) and zeHτ+ω(EM+). Therefore u£HA

a'τ can
be decomposed into u=z+w, where z€Hτ+ω{EM+) and weN(A,σ).

(ii) Since Ek: H\EM+)->H\E) and C: H\E)^HT+ω(E) are continuous, it fol-
lows that

\\z\\τ+ω^\\CEkAu\\ττ(1),M

and hence that

\\w\\a^\\u\\a+\\z\\

since <;^τ+ω. These are the desired inequalities (10), (11).
(iii) By part (i), u^HA

σ'τ can be decomposed into u = z+w, where z^Hτ+ω(EM+)
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and WGN(A,σ). Since τ+ω>ω —1/2, γz exists in Bτ+ω(X) (see 1.3) and also in
(Bσ(X) (σ^τ+ω), and since weN(A,σ), γw exists in B\X) (by Theorem 1.1 (i)).
Further, if U€HT+U>(EM+)<^HA"'T, it follows that γz+γw=γz+γ(u — z) = γz+γu — yz—yu.
Thus we can extend γ: Hτ+ω(EM+)-+Bτ+ω(X) to a map f\HA

a'τ->B\X) by defining

(25) fu = γz+γw.

Since f agrees with the original γ on Ht+ω(EM+), we shall simply drop the tilde
and continue to denote it by γ.

(iv) Since σ^τ+ω and γ is continuous from HT+ω(EM+) into BT+ω(X) for τ+ω
>ω-lβ (see 1.3), it follows that

Hence, combining this with (10), we obtain

(26) \rz\.^K\\Au\\τ.

On the other hand, applying (6) of Theorem 1.1 to w€N(A,σ) and using (11), we
obtain

Therefore, combining this and (26), we finally obtain (see (25))

\γu\σ=\γz+ρv\σ

which proves that γ\ HA

a'τ-+Ba{X) is continuous. The proof is complete.
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