SUBMANIFOLDS UMBILICAL WITH RESPECT TO A NON-PARALLEL NORMAL SUBBUNDLE

By Bang-Yen Chen and Kentaro Yano

Dedicated to Professor S. Ishihara on his fiftieth birthday

Let V_n be an n-dimensional submanifold of an m-dimensional Riemannian manifold V_m and C be a unit normal vector field of V_n in V_m . If the second fundamental tensor in the normal direction C is proportional to the first fundamental tensor of the submanifold V_n , then V_n is said to be umbilical with respect to the normal direction C. Let N be a subbundle of the normal bundle of V_n in V_m . If the submanifold V_n is umbilical with respect to every normal direction in N, then V_n is said to be umbilical with respect to N. If the covariant derivative of every unit normal direction in N has no component in the complementary normal subbundle N^\perp orthogonal to N, then the subbundle N is said to be parallel. If there exists, in N, a unit normal direction C such that the covariant derivative of C has nonzero component in the subbundle N^\perp everywhere, the subbundle is said to be non-parallel.

In this paper, we shall study submanifolds of a space form which are umbilical with respect to a non-parallel normal subbundle.

§ 1. Preliminaries.

Let V_m be an m-dimensional Riemannian manifold of constant curvature c with the metric $ds^2 = g_{\mu\lambda} d\xi^{\mu} d\xi^{\lambda}$, κ , λ , μ , $\dots = 1$, $2, \dots, m$, where $\{\xi^{\epsilon}\}$ is a local coordinate system in V_m . We denote by $\{ {}^{\epsilon}_{\mu \lambda} \}$ the Christoffel symbols formed with $g_{\mu \lambda}$ and by $K_{\nu \mu \lambda}^{\epsilon}$ the Riemann-Christoffel curvature tensor of V_m :

$$(1) K_{\nu\mu\lambda}^{} = c(\delta^{}_{\nu} g_{\mu\lambda} - \delta^{}_{\mu} g_{\nu\lambda}).$$

Let V_n be an *n*-dimensional submanifold of V_m and the parametric equations of V_n be

$$\hat{\xi}^{\kappa} = \hat{\xi}^{\kappa}(\eta^h),$$

where $\{\eta^h\}$ is a local coordinate system in V_n and, here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1, 2, \cdots, n\}$.

We put

Received June 26, 1972.

$$(2) B_i^{\epsilon} = \partial_i \xi^{\epsilon}, \hat{\sigma}_i = \partial/\partial \eta^i.$$

The fundamental metric tensor of V_n is then given by

$$g_{ji} = g_{\mu\lambda} B_j^{\mu} B_i^{\lambda}.$$

We denote by $\binom{n}{i}$ the Christoffel symbols formed with g_{ji} and by V_j the operator of covariant differentiation along V_n . The van der Waerden-Bortolotti covariant derivative of B_i^{ϵ} is then given by

(4)
$$\nabla_{j}B_{i}^{\kappa} = \partial_{j}B_{i}^{\kappa} + \begin{Bmatrix} \kappa \\ \mu\lambda \end{Bmatrix} B_{j}^{\mu}B_{i}^{\lambda} - B_{h}^{\kappa} \begin{Bmatrix} h \\ ji \end{Bmatrix}.$$

From (3) and (4) we see that $V_jB_i^*$ are orthogonal to the submanifold V_n . We choose m-n mutually orthogonal unit vectors C_y^* which are normal to V_n . Then we have

$$(5) g_{\mu\lambda}B_j^{\mu}C_y^{\lambda} = 0, g_{\mu\lambda}C_z^{\mu}C_y^{\lambda} = \delta_{zy},$$

where δ_{zy} are the Kronecker deltas and the indices x, y, z run over the range $\{1, 2, \dots, m-n\}$.

The equations of Gauss are then given by

$$(6) \nabla_i B_i^{\ \kappa} = h_{ii}^{\ \kappa} C_x^{\ \kappa},$$

where h_{ji}^{x} are the second fundamental tensors of V_n in the normal direction C_x^{x} . The equations of Weingarten are given by

(7)
$$\nabla_{i}C_{y}^{\ \ \ \ } = -h_{i}^{\ \ \ \ \ \ } B_{i}^{\ \ \ \ } + l_{yy}^{\ \ \ \ \ \ \ } C_{x}^{\ \ \ \ \ \ },$$

where $h_{j}^{i}_{y} = h_{jl}^{y}g^{ti}$ and $l_{jy}^{x} = -l_{jx}^{y}$ are the third fundamental tensors. The mean curvature vector of V_{n} is given by

$$H^{s} = \frac{1}{n} g^{ji} \nabla_{j} B_{i}^{s}.$$

Since the curvature tensor of V_n is of the form (1), the equations of Gauss are given by

(8)
$$K_{kji}^{h} = c(\partial_{k}^{h}g_{ji} - \partial_{j}^{h}g_{ki}) + h_{k}^{h}{}_{x}h_{ji}^{x} - h_{j}^{h}{}_{x}h_{ki}^{x},$$

the equations of Codazzi by

(9)
$$\nabla_k h_{ji}^x - \nabla_j h_{ki}^x + l_{ky}^x h_{ji}^y - l_{jy}^x h_{ki}^y = 0,$$

or

(10)
$$\nabla_k h_j^h{}_y - \nabla_j h_k^h{}_y - l_{ky}^x h_j^h{}_x + l_{jy}^x h_k^h{}_x = 0,$$

and the equations of Ricci by

(11)
$$\nabla_k l_{jy}^x - \nabla_j l_{ky}^x - h_{kt}^x h_j^t + h_{jt}^x h_k^t + l_{kz}^x l_{jy}^z - l_{jz}^x l_{ky}^z = 0.$$

If there exist, on the submanifold V_n , two functions α , β and a unit vector field u_i such that

$$h_{ii}^{x} = \alpha g_{ii} + \beta u_{i} u_{i}$$

for a fixed x, then V_n is said to be *quasi-umbilical* with respect to the normal direction C_x . In particular, if $\alpha = 0$ identically, then V_n is said to be *cylindrical* with respect to C_x , if $\beta = 0$ identically, then V_n is said to be *umbilical* with respect to C_x , and if $\alpha = \beta = 0$ identically, then V_n is said to be *geodesic* with respect to C_x . If N is a normal subbundle, i.e., if N is a subbundle of the normal bundle, and the submanifold V_n is umbilical with respect to every normal direction in N, then V_n is said to be *umbilical with respect to the normal subbundle* N.

For a given normal subbundle N of V_n , if the covariant derivative of every unit normal direction in N has no component in the complementary normal subbundle N^{\perp} orthogonal to N, then the subbundle N is said to be *parallel*. If there exists, in N, a unit normal direction C such that the covariant derivative of C has nonzero component everywhere in the complementary normal subbundle N^{\perp} orthogonal to N, then the subbundle N is said to be *non-parallel*.

Let C and D be two unit normal directions of V_n in V_m . If the covariant derivative of C has no normal component except in the normal direction D, then C is said to be *quasi-parallel* with respect to D.

For a normal subbundle N of V_n in V_m , the dimension of the fibres of N is called the dimension of the subbundle N.

§ 2. Lemmas.

In this section, we prove the following lemmas.

Lemma 1. Let N be a normal subbundle of V_n in V_m . If N is non-parallel, then the complementary normal subbundle N^{\perp} orthogonal to N is also non-parallel.

Proof. Suppose that N is non-parallel, then there exists a unit normal direction C in N such that the covariant derivative of C has non-zero component in N^{\perp} . We choose unit normal C_x in such a way that we have

$$C_1^{\kappa} = C^{\kappa}, C_2^{\kappa}, \dots, C_a^{\kappa} \in \mathbb{N}, \qquad C_{a+1}^{\kappa}, \dots, C_{m-n}^{\kappa} \in \mathbb{N}^{\perp},$$

where a denotes the dimension of the normal subbundle N. Then we have, putting y=1 in (7),

(13)
$$\nabla_{j}C_{1}^{\epsilon} = -h_{j}^{i}{}_{1}B_{i}^{\epsilon} + l_{j1}^{u}C_{u}^{\epsilon} + l_{j1}^{r}C_{r}^{\epsilon},$$

where

$$l_{i1}^{r}C_{r}^{r} \neq 0$$

and here and in the sequel the indices u, v, w run over the range $\{1, 2, \dots, a\}$ and

the indices r, s, t run over the range $\{a+1, a+2, \dots, m-n\}$. Since $l_{j_1}{}^rC_r{}^r \neq 0$, we have $l_{j_1}{}^r \neq 0$ for some fixed j. We put, for that j,

$$D^{\epsilon} = \frac{l_{j1}{}^{r}C_{r}{}^{\epsilon}}{|l_{j1}{}^{r}C_{r}{}^{\epsilon}|},$$

where $|l_{j1}^{r}C_{r}^{\epsilon}|$ denotes the length of $l_{j1}^{r}C_{r}^{\epsilon}$. Then D^{ϵ} is a unit normal direction in N^{\perp} . From $g_{\mu\lambda}C_{1}^{\mu}D^{\lambda}=0$, we find

$$(15) g_{\mu\lambda}(\nabla_i C_1^{\mu})D^{\lambda} + g_{\mu\lambda}C_1^{\mu}(\nabla_i D^{\lambda}) = 0,$$

or, using (13),

(16)
$$g_{\mu\lambda}C_1^{\mu}\nabla_j D^{\lambda} = -|l_{j1}^{r}C_r^{\kappa}| \neq 0.$$

This implies that the normal subbundle N^{\perp} is also non-parallel.

Lemma 2. Let N be a normal subbundle of V_n in V_m . If N is parallel, then the complementary normal subbundle N^{\perp} orthogonal to N is also parallel.

This lemma follows immediately from Lemma 1.

Lemma 3. Let N be a non-parallel normal subbundle of V_n in V_m of dimension m-n-1. If the submanifold V_n is umbilical with respect to N, then the submanifold V_n is quasi-umbilical with respect to the normal direction in N^{\perp} .

Proof. Since N is a non-parallel normal subbundle of dimension m-n-1, the subbundle N^{\perp} is, by Lemma 1, also non-parallel and of dimension one. If we choose C_x^{ϵ} in such a way that $C_{m-n}^{\epsilon} = D^{\epsilon}$ with D^{ϵ} as the unit normal direction in N^{\perp} , then by the umbilicity of V_n with respect to N, we have

$$h_{ii}{}^{u} = \alpha^{u} g_{ii}$$

for some functions α^u and

$$l_{1m-n}{}^{u}=l_{1}{}^{u}$$

do not vanish simultaneously.

Under these assumptions, (6) becomes

(19)
$$\nabla_i B_i^{\kappa} = \alpha^u g_{ii} C_u^{\kappa} + k_{ii} D^{\kappa},$$

where $k_{ji} = k_{ji}^{m-n}$ and (7) becomes

$$\nabla_{j}C_{v}^{\star} = -\alpha_{v}B_{j}^{\star} + l_{jv}^{u}C_{u}^{\star} + l_{jv}D^{\star},$$

where $\alpha_v = \alpha^v$ and

$$(21) l_{1v} = l_{1v}^{m-n} = -l_{1m-n}^{v} = -l_{1}^{v},$$

and

(22)
$$\nabla_j D^{\epsilon} = -k_j{}^i B_i{}^{\epsilon} + l_j{}^u C_u{}^{\epsilon}.$$

Equations (9) of Codazzi become

$$(V_{k}\alpha^{u})g_{ji} - (V_{j}\alpha^{u})g_{ki} + l_{kv}{}^{u}\alpha^{v}g_{ji} - l_{jv}{}^{u}\alpha^{v}g_{ki} + l_{k}{}^{u}k_{ji} - l_{j}{}^{u}k_{ki} = 0$$

and

Equations (11) of Ricci becomes

$$(25) V_{k}l_{jv}{}^{u} - V_{j}l_{kv}{}^{u} + l_{kw}{}^{u}l_{jv}{}^{w} - l_{jw}{}^{u}l_{kv}{}^{w} - l_{k}{}^{u}l_{j}{}^{v} + l_{j}{}^{u}l_{k}{}^{v} = 0$$

and

Since $C_{m-n} = D^r$ is non-parallel, without loss of generality, we can assume that

$$(27) l_i = l_i \neq 0.$$

Putting

$$(28) V_k \alpha^1 + l_{kv}^1 \alpha^v = \alpha_k,$$

we have, from (23),

$$\alpha_k g_{ji} - \alpha_j g_{ki} + l_k{}^k{}_{ji} - l_j k_{ki} = 0.$$

Consequently, in exactly the same way as in the proof of Theorem 1 of [1], we can conclude that

$$(29) k_{ji} = \lambda g_{ji} + \mu l_j l_i,$$

where

(30)
$$\lambda = -\frac{\alpha_t l^t}{l^2}, \qquad l^2 = l_t l^t, \qquad \mu = \frac{n\lambda - k_t^t}{l^2}.$$

This proves the lemma.

Lemma 4. Let N be a non-parallel normal subbundle of V_n in V_m of dimension m-n-1. If the submanifold V_n is geodesic with respect to N, then the submanifold V_n is cylindrical with respect to the normal direction of N^{\perp} . Consequently, the submanifold V_n is of constant curvature c. In particular, if V_n is complete and V_m is euclidean, then V_n is a cylinder.

Proof. Since V_n is geodesic with respect to N, by (28), we have $\alpha_k=0$. Thus, by Lemma 3, we see that V_n is quasi-umbilical with respect to the normal direction N^{\perp} satisfying (29). This implies that V_n is cylindrical with respect to the normal direction of N^{\perp} . In particular, by equations (8) of Gauss, we see that V_n and V_m has the same constant curvature c. Hence if V_n is complete and V_m is complete and V_m is euclidean, then V_n is a cylinder.

LEMMA 5. Let $C_{m-n} = D^*$ be a non-parallel unit normal direction of V_n in V_m

and N be the (m-n-1)-dimensional normal subbundle generated by C_1 , C_2 , ..., C_{m-n-1} . If the submanifold V_n is umbilical with respect to N, then all of the third fundamental tensors l_j are proportional. In particular, if l_j $\downarrow 0$, then we have

$$l_{j}^{x} = v^{x}l_{j}^{1}$$

for some functions v^x , where $l_j^x = l_{jm-n}^x$.

Proof. By Lemma 3, we see that the submanifold V_n is quasi-umbilical with respect to $C_{m-n}{}^{\epsilon}=D^{\epsilon}$ and if we assume that $l_j=l_j{}^1\pm 0$, then the second fundamental tensor k_{ji} is given by

$$k_{ii} = \lambda g_{ii} + \mu l_i l_i$$

and consequently, this conclusion may be written as

$$k_{ji} = \lambda^1 g_{ji} + \mu^1 l_j^{\ 1} l_i^{\ 1}$$
.

Thus, if l_i^2 never vanishes, then we have

$$k_{ji} = \lambda^2 g_{ji} + \mu^2 l_j^2 l_i^2$$

and consequently,

$$(\lambda^1 - \lambda^2)g_{ji} = -\mu^1 l_j^{\ 1} l_i^{\ 1} + \mu^2 l_j^{\ 2} l_i^{\ 2}.$$

Thus

$$(32) l_{j}^{2} = v^{2}l_{j}^{1} = v^{2}l_{j}$$

for some function v^2 . This implies that all the third fundamental tensors l_j^x are proportional and proves the lemma.

From Lemma 5, we have immediately the following

Proposition 1. Let D^{ϵ} be a non-parallel unit normal direction of V_n in V_m and N be the (m-n-1)-dimensional normal subbundle orthogonal to D^{ϵ} . If the submanifold V_n is umbilical with respect to N, then the normal direction D^{ϵ} is quasiparallel with respect to a normal direction in N.

LEMMA 6. Under the hypothesis of Lemma 5, we have

Proof. Putting u=1 in equation (26), we find

$$(34) V_k l_j - V_j l_k + l_{kv}^1 l_j^{\ v} - l_{jv}^1 l_k^{\ v} = 0,$$

that is,

$$(35) V_{k}l_{j} - V_{i}l_{k} - l_{k}v l_{j}v + l_{j}v l_{k}v = 0.$$

By substituting (31) of Lemma 5 into (35), we obtain (33).

LEMMA 7. Under the hypothesis of Lemma 5, we have

(36)
$$\mu \nabla_{j} l_{i} = \frac{\lambda_{i} l^{i} - l^{i} l_{i}^{u} \alpha_{u}}{l^{2}} g_{ji} - (\mu_{j} l_{i} + \mu_{i} l_{j}) + 2r l_{j} l_{i},$$

where $\lambda_k = \nabla_k \lambda$, $\mu_k = \nabla_k \mu$, r is a function and λ and μ are given by (29).

Proof. Substituting (29) into (24) and applying Lemma 6, we find

(37)
$$\lambda_k g_{ji} - \lambda_j g_{ki} + \mu_k l_j l_i - \mu_j l_k l_i + \mu l_j (\nabla_k l_i) - \mu l_k (\nabla_j l_i) - l_k{}^u \alpha_u g_{ji} + l_j{}^u \alpha_u g_{ki} = 0,$$
 from which, by transvecting l^k ,

(38)
$$\lambda_{l} l^{l} g_{ji} - \lambda_{j} l_{i} + \mu_{l} l^{l} l_{j} l_{i} - \mu_{j} l^{2} l_{i} + \mu l_{j} (l^{l} V_{i} l_{i})$$

$$- \mu l^{2} (V_{j} l_{i}) - (l^{l} l_{i}^{u} \alpha_{u}) g_{ji} + l_{j}^{u} \alpha_{u} l_{i} = 0.$$

Equation (38) shows that $\mu \nabla_j l_i$ is of the form

$$\mu \nabla_j l_i = p g_{ji} + q_j l_i + q_i l_j,$$

where

$$p = \frac{\lambda_t l^t - l^t l_t^u \alpha_u}{l^2},$$

 $\mu V_i l_i$ being symmetric by Lemma 6. Substituting (39) into (37), we find

$$(40) (\lambda_k - pl_k - l_k{}^u \alpha_u) g_{ji} - (\lambda_j - pl_j - l_j{}^u \alpha_u) g_{ki} + (\mu_k l_j - \mu_j l_k + q_k l_j - q_j l_k) l_i = 0,$$

from which we obtain

$$\lambda_{k} = p l_{k} + l_{k}^{u} \alpha_{u}$$

and

r being a function. Thus, by (39) and (42), we obtain the lemma.

§ 3. Locus of (n-1)-spheres.

Theorem 1. Let V_n be an n-dimensional submanifold of a euclidean m-space E_m and N be an (m-n-1)-dimensional normal subbundle of the normal bundle of V_n in E_m . If the subbundle N is non-parallel and the submanifold V_n is umbilical with respect to N, then V_n is a locus of (n-1)-spheres, where an (n-1)-sphere means a hypersphere or a hyperplane of a euclidean n-space.

Proof. Let D^{ϵ} denote the unit normal direction in the complementary normal subbundle N^{\perp} orthogonal to N. Then D^{ϵ} is non-parallel. Thus the formulas in §1 and §2 hold. By Lemma 6, the distribution $l_{j}d\eta^{i}=0$ is integrable. We represent one of the integral submanifolds V_{n-1} by

$$\eta^h = \eta^h(\zeta^a)$$

and put

$$B_b{}^h = \partial_b \eta^h, \qquad \partial_b = \frac{\partial}{\partial \zeta^b}, \qquad N^h = \frac{1}{l} l^h,$$
 $g_{cb} = g_{jl} B_c{}^j B_b{}^i$

and

$$\nabla_c B_b{}^h = H_{cb} N^h$$

 $V_cB_b{}^h$ denoting the van der Waerden-Bortolotti covariant differentiation of $B_b{}^h$ along V_{n-1} and H_{cb} the second fundamental tensor of V_{n-1} . Here and in the sequel, the indices b, c, d run over the range $\{1, 2, \dots, n-1\}$. From

$$l_i B_b{}^i = 0$$

and Lemma 7, we have

$$\mu l^{8}H_{cb} = \beta g_{cb}$$

with $\beta = \lambda_l l^l - l^l l_l^u \alpha_u$. Thus, on the open subset $U = \{ p \in V_n; \mu \neq 0 \text{ at } p \}$, we have

$$\begin{split} & V_c B_{b^\epsilon} \!=\! V_c (B_b{}^i B_{i^\epsilon}) \!=\! H_{cb} N^i B_{i^\epsilon} \!+\! B_c{}^j B_b{}^i (V_j B_{i^\epsilon}) \\ &=\! \alpha^u g_{cb} C_u{}^\epsilon \!+\! \frac{\beta}{\mu l^3} g_{cb} N^\epsilon, \end{split}$$

where $N^{\epsilon}=N^{i}B_{i}^{\epsilon}$. This shows that V_{n-1} is totally umbilical in E_{m} and hence the closure \bar{U} of U is a locus of (n-1)-spheres. On the open subset $V_{n}-\bar{U}$, we have $\mu=0$. Hence every component of $V_{n}-\bar{U}$ is contained either in a hypersphere or in a hyperplane of a linear (n+1)-subspace of E_{m} . Thus, the subset $V_{n}-\bar{U}$ is also a locus of (n-1)-spheres. This completes the proof of the theorem.

BIBLIOGRAPHY

[1] Chen, Bang-Yen, and Kentaro Yano, Submanifolds umbilical with respect to a non-parallel normal direction. To appear in J. of Differential Geometry.

MICHIGAN STATE UNIVERSITY.