SUBMANIFOLDS UMBILICAL WITH RESPECT TO A NON-PARALLEL NORMAL SUBBUNDLE

By Bang-Yen Chen and Kentaro Yano
Dedicated to Professor S. Ishihara on his fiftieth birthday

Let V_{n} be an n-dimensional submanifold of an m-dimensional Riemannian manifold V_{m} and C be a unit normal vector field of V_{n} in V_{m}. If the second fundamental tensor in the normal direction C is proportional to the first fundamental tensor of the submanifold V_{n}, then V_{n} is said to be umbilical with respect to the normal direction C. Let N be a subbundle of the normal bundle of V_{n} in V_{m}. If the submanifold V_{n} is umbilical with respect to every normal direction in N, then V_{n} is said to be umbilical with respect to N. If the covariant derivative of every unit normal direction in N has no component in the complementary normal subbundle N^{\perp} orthogonal to N, then the subbundle N is said to be parallel. If there exists, in N, a unit normal direction C such that the covariant derivative of C has nonzero component in the subbundle N^{\perp} everywhere, the subbundle is said to be non-parallel.

In this paper, we shall study submanifolds of a space form which are umbilical with respect to a non-parallel normal subbundle.

§ 1. Preliminaries.

Let V_{m} be an m-dimensional Riemannian manifold of constant curvature c with the metric $d s^{2}=g_{\mu \lambda} d \xi^{\mu} d \xi^{2}, \kappa, \lambda, \mu, \cdots=1,2, \cdots, m$, where $\left\{\xi^{\kappa}\right\}$ is a local coordinate system in V_{m}. We denote by $\left\{\left\{_{\mu}\right\}\right.$ the Christoffel symbols formed with $g_{\mu \lambda}$ and by $K_{\nu \mu \lambda}{ }^{\text {k }}$ the Riemann-Christoffel curvature tensor of V_{m} :

$$
\begin{equation*}
K_{\nu \mu \lambda}{ }^{\kappa}=c\left(\delta_{\nu}^{\kappa} g_{\mu \lambda}-\delta_{\mu}^{\kappa} g_{\nu \lambda}\right) . \tag{1}
\end{equation*}
$$

Let V_{n} be an n-dimensional submanifold of V_{m} and the parametric equations of V_{n} be

$$
\xi^{x}=\xi^{x}\left(\eta^{h}\right),
$$

where $\left\{\eta^{h}\right\}$ is a local coordinate system in V_{n} and, here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1,2, \cdots, n\}$.

We put
Received June 26, 1972.

$$
\begin{equation*}
B_{i}{ }^{\kappa}=\partial_{i} \xi^{\kappa}, \quad \hat{o}_{i}=\partial / \partial \eta^{2} . \tag{2}
\end{equation*}
$$

The fundamental metric tensor of V_{n} is then given by

$$
\begin{equation*}
g_{j i}=g_{\mu \lambda} B_{j}{ }^{\mu} B_{i}{ }^{2} . \tag{3}
\end{equation*}
$$

We denote by $\left\{\begin{array}{l}h \\ \left.j_{i}\right\}\end{array}\right.$ the Christoffel symbols formed with $g_{j i}$ and by ∇_{j} the operator of covariant differentiation along V_{n}. The van der Waerden-Bortolotti covariant derivative of $B_{i}{ }^{*}$ is then given by

$$
\nabla_{j} B_{i}{ }^{\kappa}=\partial_{j} B_{i}{ }^{\kappa}+\left\{\begin{array}{c}
\kappa \tag{4}\\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} B_{i}{ }^{\lambda}-B_{h}{ }^{\kappa}\left\{\begin{array}{c}
h \\
j i
\end{array}\right\} .
$$

From (3) and (4) we see that $\nabla_{j} B_{i}{ }^{*}$ are orthogonal to the submanifold V_{n}. We choose $m-n$ mutually orthogonal unit vectors $C_{y}{ }^{e}$ which are normal to V_{n}. Then we have

$$
\begin{equation*}
g_{\mu \lambda} B_{j}{ }^{\mu} C_{y}{ }^{2}=0, \quad g_{\mu \lambda} C_{z}{ }^{\mu} C_{y}{ }^{2}=\delta_{z y}, \tag{5}
\end{equation*}
$$

where $\delta_{z y}$ are the Kronecker deltas and the indices x, y, z run over the range $\{1,2, \cdots, m-n\}$.

The equations of Gauss are then given by

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{\kappa}=h_{j i}{ }^{x} C_{x}{ }^{k}, \tag{6}
\end{equation*}
$$

where $h_{j i}{ }^{x}$ are the second fundamental tensors of V_{n} in the normal direction $C_{x}{ }^{\kappa}$. The equations of Weingarten are given by

$$
\begin{equation*}
\nabla_{j} C_{y}{ }^{k}=-h_{j}{ }^{2}{ }_{y} B_{i}{ }^{*}+l_{y y}{ }^{x} C_{x}{ }^{*}, \tag{7}
\end{equation*}
$$

where $h_{j}{ }^{2} y=h_{j t}{ }^{y} g^{t i}$ and $l_{y y}{ }^{x}=-l_{j x}{ }^{y}$ are the third fundamental tensors. The mean curvature vector of V_{n} is given by

$$
H^{\varepsilon}=\frac{1}{n} g^{j i} \nabla_{j} B_{i}{ }^{\kappa} .
$$

Since the curvature tensor of V_{n} is of the form (1), the equations of Gauss are given by

$$
\begin{equation*}
K_{k j i}^{h}=c\left(\partial_{k}^{h} g_{j i}-\delta_{j g}^{h} g_{k i}\right)+h_{k}{ }^{h} x h_{j i}{ }^{x}-h_{y}^{h}{ }_{x} h_{k i}{ }^{x}, \tag{8}
\end{equation*}
$$

the equations of Codazzi by

$$
\begin{equation*}
\nabla_{k} h_{j i}{ }^{x}-\nabla_{j} h_{k i}{ }^{x}+l_{k y}{ }^{x} h_{j i}{ }^{y}-l_{j y} x h_{k i}{ }^{y}=0, \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{k} h_{y^{h}{ }_{y}-\nabla_{j} h_{k}{ }^{h}{ }_{y}-l_{k y}{ }^{x} h_{j}{ }^{h}{ }_{x}+l_{y y}{ }^{x} h_{k}{ }^{h}{ }_{x}=0, ~}^{\text {, }} \tag{10}
\end{equation*}
$$

and the eqnations of Ricci by

$$
\begin{equation*}
\nabla_{k} l_{y y}{ }^{x}-\nabla_{j} l_{k y}{ }^{x}-h_{k t}{ }^{x} h_{j}{ }_{y}{ }_{y}+h_{j t}{ }^{x} h_{k}{ }^{t} y+l_{k z} l_{l_{y}{ }^{z}}-l_{y z}{ }^{x} l_{k y}{ }^{z}=0 \tag{11}
\end{equation*}
$$

If there exist, on the submanifold V_{n}, two functions α, β and a unit vector field u_{j} such that

$$
\begin{equation*}
h_{j i}^{x}=\alpha g_{j i}+\beta u_{j} u_{i} \tag{12}
\end{equation*}
$$

for a fixed x, then V_{n} is said to be quasi-umbilical with respect to the normal direction $C_{x}{ }^{x}$. In particular, if $\alpha=0$ identically, then V_{n} is said to be cylindrical with respect to $C_{x}{ }^{\text {}}$, if $\beta=0$ identically, then V_{n} is said to be umbilical with respect to $C_{x}{ }^{2}$, and if $\alpha=\beta=0$ identically, then V_{n} is said to be geodesic with respect to $C_{x}{ }^{*}$. If N is a normal subbundle, i.e., if N is a subbundle of the normal bundle, and the submanifold V_{n} is umbilical with respect to every normal direction in N, then V_{n} is said to be umbilical with respect to the normal subbundle N.

For a given normal subbundle N of V_{n}, if the covariant derivative of every unit normal direction in N has no component in the complementary normal subbundle N^{\perp} orthogonal to N, then the subbundle N is said to be parallel. If there exists, in N, a unit normal direction C such that the covariant derivative of C has nonzero component everywhere in the complementary normal subbundle N^{\perp} orthogonal to N, then the subbundle N is said to be non-parallel.

Let C and D be two unit normal directions of V_{n} in V_{m}. If the covariant derivative of C has no normal component excep: in the normal direction D, then C is said to be quasi-parallel with respect to D.

For a normal subbundle N of V_{n} in V_{m}, the dimension of the fibres of N is called the dimension of the subbundle N.

§ 2. Lemmas.

In this section, we prove the following lemmas.
Lemma 1. Let N be a normal subbundle of V_{n} in V_{m}. If N is non-parallel, then the complementary normal subbundle N^{\perp} orthogonal to N is also non-parallel.

Proof. Suppose that N is non-parallel, then there exists a unit normal direction C in N such that the covariant derivative of C has non-zero component in N^{\perp}. We choose unit normal $C_{x}{ }^{x}$ in such a way that we have

$$
C_{1}{ }^{\kappa}=C^{\kappa}, C_{2}{ }^{\kappa}, \cdots, C_{a}{ }^{\kappa} \in N, \quad C_{a+1}{ }^{\kappa}, \cdots, C_{m-n}{ }^{\kappa} \in N^{\perp},
$$

where a denotes the dimension of the normal subbundle N. Then we have, putting $y=1$ in (7),

$$
\begin{equation*}
\nabla_{j} C_{1}{ }^{k}=-h_{j}{ }^{2}{ }_{1} B_{i}{ }^{k}+l_{j 1}{ }^{u} C_{u}{ }^{k}+l_{j 1}{ }^{r} C_{r}{ }^{k}, \tag{13}
\end{equation*}
$$

where

$$
l_{j_{1}{ }^{r} C_{r}{ }^{k} \neq 0,}
$$

and here and in the sequel the indices u, v, w run over the range $\{1,2, \cdots, a\}$ and
the indices r, s, t run over the range $\{a+1, a+2, \cdots, m-n\}$.
Since $l_{j 1}{ }^{r} C_{r}{ }^{r} \neq 0$, we have $l_{j 1}{ }^{r} \neq 0$ for some fixed \jmath. We put, for that j,
where $\left|l_{j 1}{ }^{r} C_{r}{ }^{*}\right|$ denotes the length of $l_{j 1}{ }^{r} C_{r}{ }^{*}$. Then D^{*} is a unit normal direction in N^{\perp}. From $g_{\mu \lambda} C_{1}{ }^{\mu} D^{\lambda}=0$, we find

$$
\begin{equation*}
g_{\mu \lambda}\left(\nabla_{j} C_{1}{ }^{\mu}\right) D^{\lambda}+g_{\mu \lambda} C_{1}{ }^{\mu}\left(\nabla_{j} D^{\lambda}\right)=0, \tag{15}
\end{equation*}
$$

or, using (13),

$$
\begin{equation*}
g_{\mu 2} C_{1}{ }^{\mu} \nabla_{j} D^{2}=-\left|l_{j 1}{ }^{r} C_{r}{ }^{*}\right| \neq 0 . \tag{16}
\end{equation*}
$$

This implies that the normal subbundle N^{\perp} is also non-parallel.
Lemma 2. Let N be a normal subbundle of V_{n} in V_{m}. If N is parallel, then the complementary normal subbundle N^{\perp} orthogonal to N is also parallel.

This lemma follows immediately from Lemma 1.
Lemma 3. Let N be a non-parallel normal subbundle of V_{n} in V_{m} of dimension $m-n-1$. If the submanifold V_{n} is umbilical with respect to N, then the submanifold V_{n} is quasi-umbilical with respect to the normal direction in N^{+}.

Proof. Since N is a non-parallel normal subbundle of dimension $m-n-1$, the subbundle N^{\perp} is, by Lemma 1, also non-parallel and of dimension one. If we choose $C_{x}{ }^{k}$ in such a way that $C_{m-n}{ }^{k}=D^{k}$ with D^{k} as the unit normal direction in N^{\perp}, then by the umbilicity of V_{n} with respect to N, we have

$$
\begin{equation*}
h_{j i}{ }^{u}=\alpha^{u} g_{j i} \tag{17}
\end{equation*}
$$

for some functions α^{u} and

$$
\begin{equation*}
l_{y_{m-n}}{ }^{u}=l_{j}{ }^{u} \tag{18}
\end{equation*}
$$

do not vanish simultaneously.
Under these assumptions, (6) becomes

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{\kappa}=\alpha^{u} g_{j i} C_{u^{x}}+k_{j i} D^{\kappa}, \tag{19}
\end{equation*}
$$

where $k_{j i}=k_{j i}{ }^{m-n}$ and (7) becomes

$$
\begin{equation*}
\nabla_{j} C_{v}{ }^{k}=-\alpha_{v} B_{j}{ }^{k}+l_{j v}{ }^{u} C_{u}{ }^{\varepsilon}+l_{j v} D^{\kappa}, \tag{20}
\end{equation*}
$$

where $\alpha_{v}=\alpha^{v}$ and

$$
\begin{equation*}
l_{j v}=l_{j v}^{m-n}=-l_{j m-n}{ }^{v}=-l_{j}{ }^{n} . \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{j} D^{k}=-k_{j}{ }^{i} B_{i}{ }^{k}+l_{j}{ }^{u} C_{u}{ }^{k} . \tag{22}
\end{equation*}
$$

Equations (9) of Codazzi beeome

$$
\begin{equation*}
\left(\nabla_{k} \alpha^{u}\right) g_{j i}-\left(\nabla_{j} \alpha^{u}\right) g_{k i}+l_{k v}{ }^{u} \alpha^{v} g_{j i}-l_{j v}{ }^{u} \alpha^{v} g_{k i}+l_{k}{ }^{u} k_{j i}-l_{j}{ }^{u} k_{k v}=0 \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{k} k_{j i}-\nabla_{j} k_{k i}-l_{k}{ }^{u} \alpha_{u} g_{j i}+l_{j}{ }^{u} \alpha_{u} g_{k i}=0 \tag{24}
\end{equation*}
$$

Equations (11) of Ricci becomes

$$
\begin{equation*}
\nabla_{k} l_{j v}{ }^{u}-\nabla_{j} l_{k v}{ }^{u}+l_{k w}{ }^{u} l_{\jmath v}{ }^{w}-l_{\rho w}{ }^{u} l_{k v}{ }^{w}-l_{k}{ }^{u} l_{j}{ }^{v}+l_{j}{ }^{u} l_{k}{ }^{v}=0 \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{j} l_{k}{ }^{u}-\nabla_{k} l_{j}^{u}+l_{k v}{ }^{u} l_{j}{ }^{v}-l_{j v}{ }^{u} l_{k}{ }^{v}=0 . \tag{26}
\end{equation*}
$$

Since $C_{m-n}{ }^{s}=D^{k}$ is non-parallel, without loss of generality, we can assume that

$$
\begin{equation*}
l_{\imath}{ }^{1}=l_{i} \neq 0 . \tag{27}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\nabla_{k} \alpha^{1}+l_{k v}{ }^{1} \alpha^{v}=\alpha_{k} \tag{28}
\end{equation*}
$$

we have, from (23),

$$
\alpha_{k} g_{j i}-\alpha_{j} g_{k i}+l_{k}{ }^{k}{ }_{j i}-l_{j} k_{k i}=0
$$

Consequently, in exactly the same way as in the proof of Theorem 1 of [1], we can conclude that

$$
\begin{equation*}
k_{j i}=\lambda g_{j i}+\mu l_{j} l_{2}, \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=-\frac{\alpha_{t} l^{t}}{l^{2}}, \quad l^{2}=l_{t} l^{t}, \quad \mu=\frac{n \lambda-k_{t}^{t}}{l^{2}} . \tag{30}
\end{equation*}
$$

This proves the lemma.
Lemma 4. Let N be a non-parallel normal subbundle of V_{n} in V_{m} of dimension $m-n-1$. If the submanifold V_{n} is geodesic with respect to N, then the submanifold V_{n} is cylindrical with respect to the normal direction of N^{\perp}. Consequently, the submanifold V_{n} is of constant curvature c. In particular, if V_{n} is complete and V_{n} is euclidean, then V_{n} is a cylinder.

Proof. Since V_{n} is geodesic with respect to N, by (28), we have $\alpha_{k}=0$. Thus, by Lemma 3, we see that V_{n} is quasi-umbilical with respect to the normal direction N^{\perp} satisying (29). This implies that V_{n} is cylindrical with respect to the normal direction of N^{\perp}. In particular, by equations (8) of Gauss, we see that V_{n} and V_{m} has the same constant curvature c. Hence if V_{n} is complete and V_{m} is complete and V_{m} is euclidean, then V_{n} is a cylinder.

Lemma 5. Let $C_{m-n}{ }^{*}=D^{x}$ be a non-parallel unit normal direction of V_{n} in V_{m}
and N be the $(m-n-1)$-dimensional normal subbundle generated by $C_{1}{ }^{*}, C_{2}{ }^{*}, \cdots$, $C_{m-n-1}{ }^{5}$. If the submanifold V_{n} is umbilical with respect to N, then all of the third fundametal tensors $l_{j}{ }^{5}$ are proportional. In particular, if $l_{0}{ }^{1} \neq 0$, then we have

$$
\begin{equation*}
l_{j}{ }^{x}=v^{x} l_{j}{ }^{1} \tag{31}
\end{equation*}
$$

for some functions v^{x}, where $l_{\rho}^{x}=l_{\rho_{m-n}}$.
Proof. By Lemma 3, we see that the submanifold V_{n} is quasi-umbilical with respect to $C_{m-n}{ }^{\kappa}=D^{c}$ and if we assume that $l_{j}=l_{j}{ }^{1} \neq 0$, then the second fundamental tensor $k_{j i}$ is given by

$$
k_{j i}=\lambda g_{j i}+\mu l_{j} l_{2}
$$

and consequently, this conclusion may be written as

$$
k_{j i}=\lambda^{1} g_{j i}+\mu^{1} l_{j}{ }^{1} l_{2}{ }^{1}
$$

Thus, if $l_{2}{ }^{2}$ never vanishes, then we have

$$
k_{j i}=\lambda^{2} g_{j i}+\mu^{2} l_{j}{ }^{2} l_{2}{ }^{2}
$$

and consequently,

$$
\left(\lambda^{1}-\lambda^{2}\right) g_{j i}=-\mu^{1} l_{j}{ }^{1} l_{i}{ }^{1}+\mu^{2} l_{j}{ }^{2} l_{i}{ }^{2} .
$$

Thus

$$
\begin{equation*}
l_{J}{ }^{2}=v^{2} l_{J}{ }^{1}=v^{2} l_{J} \tag{32}
\end{equation*}
$$

for some function v^{2}. This implies that all the third fundamental tensors $l_{0}{ }^{x}$ are proportional and proves the lemma.

From Lemma 5, we have immediately the following
Proposition 1. Let D^{x} be a non-parallel unit normal direction of V_{n} in V_{m} and N be the $(m-n-1)$-dimensional normal subbundle orthogonal to D^{*}. If the submanifold V_{n} is umbilical with respect to N, then the normal direction D^{κ} is quasiparallel with respect to a normal direction in N.

Lemma 6. Under the hypothesis of Lemma 5, we have

$$
\begin{equation*}
\nabla_{k} l_{j}-\nabla_{j} l_{k}=0 . \tag{33}
\end{equation*}
$$

Proof. Putting $u=1$ in equation (26), we find

$$
\begin{equation*}
\nabla_{k} l_{j}-\nabla_{j} l_{k}+l_{k v}{ }^{1} l_{j}{ }^{v}-l_{j v}{ }^{1} l_{k}{ }^{v}=0, \tag{34}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\nabla_{k} l_{j}-\nabla_{j} l_{k}-l_{k} v_{j}^{v}+l_{j}{ }^{v} l_{k}^{v}=0 . \tag{35}
\end{equation*}
$$

By substituting (31) of Lemma 5 into (35), we obtain (33).

Lemma 7. Under the hypothesis of Lemma 5, we have

$$
\begin{equation*}
\mu \nabla_{j} l_{2}=\frac{\lambda_{t} l^{l}-l^{l} l_{t}{ }^{u} \alpha_{u}}{l^{2}} g_{j i}-\left(\mu_{j} l_{i}+\mu_{i} l_{j}\right)+2 r l_{j} l_{\imath}, \tag{36}
\end{equation*}
$$

where $\lambda_{k}=\nabla_{k} \lambda, \mu_{k}=\nabla_{k} \mu, r$ is a function and λ and μ are given by (29).
Proof. Substituting (29) into (24) and applying Lemma 6, we find

$$
\begin{equation*}
\lambda_{k} g_{j i}-\lambda_{j} g_{k i}+\mu_{k} l_{j} l_{i}-\mu_{j} l_{k} l_{i}+\mu l_{j}\left(\nabla_{k} l_{\imath}\right)-\mu l_{k}\left(\nabla_{j} l_{i}\right)-l_{k}{ }^{u} \alpha_{u} g_{j i}+l_{j}{ }^{u} \alpha_{u} g_{k \imath}=0, \tag{37}
\end{equation*}
$$

from which, by transvecting l^{k},

$$
\begin{align*}
\lambda_{t} l^{t} g_{j i} & -\lambda_{j} l_{i}+\mu_{l} l^{l} l_{j} l_{i}-\mu_{j} l^{2} l_{i}+\mu l_{j}\left(l^{l} \nabla_{t} l_{i}\right) \\
& -\mu l^{2}\left(\nabla_{j} l_{i}\right)-\left(l^{l} l_{t}^{u} \alpha_{u}\right) g_{j i}+l_{j}^{u} \alpha_{u} l_{\imath}=0 . \tag{38}
\end{align*}
$$

Equation (38) shows that $\mu \nabla_{j} l_{2}$ is of the form

$$
\begin{equation*}
\mu \nabla_{j} l_{2}=p g_{j i}+q_{j} l_{i}+q_{i} l_{j}, \tag{39}
\end{equation*}
$$

where

$$
p=\frac{\lambda_{t} l^{t}-l^{l} l_{t}^{u} \alpha_{u}}{l^{2}}
$$

$\mu \nabla_{j} l_{\imath}$ being symmetric by Lemma 6. Substituting (39) into (37), we find

$$
\begin{equation*}
\left(\lambda_{k}-p l_{k}-l_{k}{ }^{u} \alpha_{u}\right) g_{j i}-\left(\lambda_{j}-p l_{j}-l_{j}{ }^{u} \alpha_{u}\right) g_{k i}+\left(\mu_{k} l_{j}-\mu_{j} l_{k}+q_{k} l_{j}-q_{j} l_{k}\right) l_{i}=0, \tag{40}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
\lambda_{k}=p l_{k}+l_{k}{ }^{u} \alpha_{u} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{j}+q_{j}=r l_{j}, \tag{42}
\end{equation*}
$$

r being a function. Thus, by (39) and (42), we obtain the lemma.

§ 3. Locus of $(n-1)$-spheres.

Theorem 1. Let V_{n} be an n-dimensional submanifold of a euclidean m-space E_{m} and N be an ($m-n-1$)-dimensional normal subbundle of the normal bundle of V_{n} in E_{m}. If the subbundle N is non-parallel and the submanifold V_{n} is umbilical with respect to N, then V_{n} is a locus of ($n-1$)-spheres, where an $(n-1)$-sphere means a hypersphere or a hyperplane of a euclidean n-space.

Proof. Let D^{x} denote the unit normal direction in the complementary normal subbundle N^{\perp} orthogonal to N. Then D^{k} is non-parallel. Thus the formulas in $\S 1$ and $\S 2$ hold. By Lemma 6, the distribution $l_{j} d \eta^{i}=0$ is integrable. We represent one of the integral submanifolds V_{n-1} by

$$
\eta^{h}=\eta^{h}\left(\zeta^{a}\right)
$$

and put

$$
\begin{aligned}
B_{b}{ }^{h}=\partial_{b} \eta^{h}, \quad \partial_{b} & =\frac{\partial}{\partial \zeta^{b}}, \quad N^{h}=\frac{1}{l} l^{h}, \\
g_{c b} & =g_{j i} B_{c}{ }^{j} B_{b}{ }^{2}
\end{aligned}
$$

and

$$
\nabla_{c} B_{b}{ }^{h}=H_{c b} N^{h},
$$

$\nabla_{c} B_{b}{ }^{h}$ denoting the van der Waerden-Bortolotti covariant differentiation of $B_{b}{ }^{h}$ along V_{n-1} and $H_{c b}$ the second fundamental tensor of V_{n-1}. Here and in the sequel, the indices b, c, d run over the range $\{1,2, \cdots, n-1\}$. From

$$
l_{i} B_{b}{ }^{2}=0
$$

and Lemma 7, we have

$$
\mu l^{3} H_{c b}=\beta g_{c b}
$$

with $\beta=\lambda_{t} l^{t}-l^{l} l_{t}{ }^{u} \alpha_{u}$. Thus, on the open subset $U=\left\{p \in V_{n} ; \mu \neq 0\right.$ at $\left.p\right\}$, we have

$$
\begin{aligned}
\nabla_{c} B_{b}{ }^{\varepsilon} & =\nabla_{c}\left(B_{b}{ }^{i} B_{i}{ }^{\varepsilon}\right)=H_{c b} N^{i} B_{i}{ }^{6}+B_{c}{ }^{j} B_{b}{ }^{i}\left(\nabla_{j} B_{i}{ }^{*}\right) \\
& =\alpha^{u} g_{c b} C_{u}{ }^{\varepsilon}+\frac{\beta}{\mu l^{3}} g_{c b} N^{\varepsilon},
\end{aligned}
$$

where $N^{k}=N^{i} B_{i}{ }^{\text {c }}$. This shows that V_{n-1} is totally umbilical in E_{m} and hence the closure \bar{U} of U is a locus of $(n-1)$-spheres. On the open subset $V_{n}-\bar{U}$, we have $\mu=0$. Hence every component of $V_{n}-\bar{U}$ is contained either in a hypersphere or in a hyperplane of a linear $(n+1)$-subspace of E_{m}. Thus, the subset $V_{n}-\bar{U}$ is also a locus of $(n-1)$-spheres. This completes the proof of the theorem.

Bibliography

[1] Chen, Bang-Yen, and Kentaro Yano, Submanifolds umbilical with respect to a non-parallel normal direction. To appear in J. of Differential Geometry.

