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CERTAIN COEFFICIENT INEQUALITIES
FOR UNIVALENT FUNCTIONS

By Mitsuru OzAwA

1. Let S be the family of normalized regular functions f(z) univalent in the
unit circle |z]<1

f@)=z+ 3] a,2".
n=2
In this paper we shall prove the following theorems.

THEOREM 1. In S

3
as—2a,a4,~ — @i+ 4dka,—as| =

2

w[;

Equality occurs only for z/(1—e*z)?% & real.
THEOREM 2. In S

3 1

23 1
<“§+§To+'m

as—2a,a,— %ag +4ata, — 6 a

where v, is the root of 2r*—4r=1 satisfying 1.5256<r,<<1.5257.

Both theorems are proved by Bombieri’s method [1] together with Schiffer’s
variational method. Theorem 2 does not assert its exactness. A similar inequality
can be proved for

3
as— 20,0, — 0} ai+4ata,— Das,

when 1<D<23/16. However it is not again best possible. For D=79/54 we have
proved already

3
as—2a,0,— 5024—40203 -
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2 MITSURU OZAWA

[9]. For D=3/2 Grunsky's inequality gives the result. For 1<D=23/16 Koebe’s
function is not extremal.

THEOREM 3. In S

1- 1—
as—2a,0,+ 1= ai+oaias+ Rl

1
4 25/ (4—8)
2 2 @)= 2 ¢

for 0=06=4. This is best possible.

It is known as Garabedian-Schiffer’s inequality [4] if 6=3. For 6=0 it is
Gérsky-Poole’s inequality [6]. 6=4 gives a Grunsky inequality. Jenkins [8] had
given another proof in the case =3 as a corollary of his coefficient theorem.
Gérsky-Poole stated a conjecture for general § (0<5<4). However Jenkins’ theorem
includes the result, although he did not state it explicitly. We state it explicitly
in Theorem 3.

THEOREM 4. In S

3
as—4a,0,— + at+9dkas — pas

3
—(165+675), p=— %5,

<

= %(R2+4R+3), —?;3—5</3<ﬁ*,
168--67.5, Be=5,

where 39+2B8)R*=R+1, R>0 and By is defined by
3(9+26) Ra=Ry+1,
4+4R%+30R%—16R,—16=0, 0.95< R4 <0.96.

These estimations are sharp. When B=-—35/8 or B>px, equality occurs only for
z[(1+e¥2)% e real. If B=Px an extremal function is z|(L+e'z)% e real.

A special case |a@s— 4@, — 33232+ 9aia, — 9ai/2| <9/2 is an extension of
|a,—3a,a,+ 20| =2. There are formal analogies between the corresponding
Schiffer’s differential equations. The method of proof of Theorem 4 has a wide
range of applicability, although we do not know its general theory at all. We
shall give examples for which the method of proof of Theorem 4 is applicable.

THEOREM 5. For 6=-1

| as—4a0,+oai+8aia,—4as | = —5—90.
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Equality occurs only for z/(1—e¥z2)?, e real.
THEOREM 6.

|@y—3a,a,+ Ba}|

8B—14 for Bz—?,

2 1 22—A/5 23
== a4 YT Y —
=V3twe—n M7 T =Pl

14—-8B for B<~2—2-_T;/—5.

These estimations are best possible. Equality occurs omly for z/(l—e*2)?, ¢ real
when B=23[12 and B<(22—~'5)/12. For B=(22—~'5)/12 there is an extremal
Sfunction other than z/(1—e*z)? & real.

We cannot give the extremal functions explicitly for (22—+/5)/12=<B<23/12,
which involve a hyperelliptic integral and an elliptic integral with unknown
coefficients. For B=2 we already proved it in [9].

THEOREM 7.

R {44—302034-30;4—2‘8(@3_ %CZ%) + ﬁzdz}
=—14+8B+28"
if B=(23—p)/12 and p=3. Equality occurs only for z[(1—z)%

For f<3 we do not have any effective method excepting the use of Grunsky’s
inequality. We do not enter into this method.

THEOREM 8. If Ra,=1.8, then

3 5 5
R <a5—aza4—— 7a§+2a§a3— E—aé) = o

Equality occurs only for z|(1—z)%

This inequality can be proved starting from the Garabedian inequality [3].
In view of the method employed here we can prove several other inequalities
involving some parameters.

By the way we shall give a proof of

’

| o

la—2a,a, +ail =
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which had been proved by Schiffer [10] and Golusin [5]. Jenkins [8] also had
given another proof of it by his method. Recently Duren [2] has given its ele-
mentary proof.

2. Proof of Theorem 1. Recently Bombieri [1] has considered the following
problem: Let Q({)d¢* be a quadratic differential on the {-sphere. Let be given
a good subset 7, of the set T of critical trajectories of Qd{%, a continuously
differentiable Jordan arc J on the {-sphere. Under which conditions on J can we
assert that JN 7, is either empty or a single point? His answer is given in his
Theorem 1 and its corollary and its Remark. We make use of his method. We
consider the extremal problem

max RF,
N

3
F=a,—2a,a,— 5 a:+4aia,—as.

In this problem we may assume that |arg @;|==z/4. By Schiffer’s variational
method the image of |z]=1 by any extremal function w satisfies

-
(»%”2’-) - (aa+ 1)+ 1) +1=0

with a suitable parameter #£. This implies

12
’;’06 QCaw+1) (@ +1) = ;17 (1+ R +4F2+ Rz 4 2%),

ZZ

(1)
R=2a,—4a,a,+4a3.

Let @*w)dw® be the associated quadratic differential

d 2
- Qago+ 1)@ +1).

Let Q)d¢* be Q*(1/0)d(1/¢)?.. Then
dg?
QA= —(2a+al +2a,L+ () N3k
Assume that Ja@.x0. We put @¢,==x,+iy.. Let { be real. Then

2
SR = — (23— 1) + 2yl + 20,00 i"% :

In our case the right hand side does not vanish, since yi<z2 Now we can apply
Bombieri’s Theorem 1, Corollary. Then we have that the image I" of |z|=1 by ¢
and the real axis intersect only at the origin. Further {=0 is a simple pole of
Q)dc?, since a@,x0. Hence £=0 is an end point of I". Hence I’ should lie in
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either the upper half-plane or the lower half-plane. Further I” has the tangent
vector with the argument —arg(—a}) at the origin. Since —J(—a)Ia,>0, I" lies
in the same half-plane as @, does. However it is known that

1 (e
——S L(e?)db = —a,.
ZTE 0

Hence the mean of I lies in the opposite half-plane as @. does. This contradic-
tion gives that y,=0 for extremal functions. Thus we may seek for the extremal
functions among univalent functions with real @, Further then the critical
trajectories of Q({)d¢® are symmetric with respect to the real axis.

Assume that @,=0. Then by our earlier result in [9]

3 79 1
as— 20,0, — §a§+4a§a3 ~ &7 al = 0}
or
3 3 1
as—20,a,— —2—a§+4a§a3— Tz—a; = 5
we have
rl=lo B

=22

Hence we may omit the case a,=0.

Thus @,%0, which implies that the origin is a simple pole of Q)d¢®. There-
fore I' starts from the origin along the negative real axis. Since I' has the
mapping radius 1, I" should meet to —2a, which is a simple zero of Q({)d{>
Then I' should fork at —2g, into two curves, whose tangent vectors at —2a.
have the arguments 2z/3 and 4r/3. If a,=2, then I" stops at —4. In every case
we have the second representation of (1)

72
(2) zz% Qaw+1)(adw*+1) = —21—4-(z2+Pz+Q)2(z“+ Uz + V224 Wz+M).
Originally the right hand side of (2) or of (1) satisfies

;(ZT) =g(2).

Hence |Q|=|M|=1, QP=P, U=WM, V=VM, MQ*=1 and

(3) 2PQM+Q*W=0,
(4) (PE+2Q)M+2PQW+Q* V=0,
(95) 2PM+(P*4+-2Q)WH2PQV+Q*U=R,

(6) M+2PW+(P*+2Q)V+2PQU+Q*=4F.
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Let Q=¢', M=e %%, P=ret*, W=se?’, V=te"’. Then e**=¢%, ¢ % =¢**. By (3)
s+2r cos (a—3¢—p)=0,
7 sin (a—3¢— p)=0.
Assume r=0. Then s=0. By 4)
27 - te?irir=(,
Hence ¢=2, cos 3¢+7)=—1. Since U=WM, U=0 in this case. By (6)
4F =g~ 4 Dpett+ir | g?d
=2 c0s 2¢+ 2tet**i,
Hence
4F=2.

For the Koebe function z/(1—z)* 4F=30. Hence we may omit this case. Next we
assume that r=0. Then sin (3¢+p—a)=0. This implies that s=2r, cos (a—3¢—p)
=-—1. Hence we have e#=—¢@¥r=—¢ % We now divide into two cases:
i) efr=e"%, ii) e'=—¢",

Case i). In this case we have
Q=e*",  P=ret", M=e, W= —2re*t,
V=te™s, U=WM=se 4= —2reic,
By (4) we have
(—3r2+2)e 2+ te?t* =0,
which implies
(—3r2+2+1) cos 2a=0,
(=3r*+2—1) sin 2a=0.
If cos2a=0, then #=2—3r%. By (6) we have
4F=2 cos 4a—8r* cos da+r*t+2¢
=2+4r*—3r.
This shows that

4F = 1—3? = max (2+4r*—3r*).
osr
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Here max is attained at r2=2/3. Again 4F=10/3<30. Hence we may omit
this case. If sin2x=0, then #=3r?—2. In this case 4F=-—2—47+3r'. Since
P=—z—2z, Q=22 with |z;|=|z]=1, we have r=2. Here equality occurs only
for z;=2,. In this case
4F=30= max (3rt—4r*—2).
0sr=2

Equality occurs only for r=2. Hence z;=z,. Returning to the image I" of |z]=1
by {=1/w, I' has only two end points and I contains —2g,. If —2a, is not
an end point of I, two end points other than the origin, one of which may
degenerate to —2a,, appear. In any case z;%z, which is a contradiction. Hence
I" reduces to a single segment [—2a., 0], which must have the mapping radius 1.

Hence —2a,=-4. This implies that equality occurs only for the Koebe function
z/[(1—2)% 1If t+=3r*—2 and ¢=2-3¢% then #=0, r*=2/3. By (6)

4F=(2—8r* cos da=

[y
w| =

Hence this may be omitted.
Case ii). er=—e"%. Similarly by (4) we have
(—3r2+2—1¢) cos 2a=0,
(—3r*+2+1) sin 2a=0.

When cos 2a=0, then t=3r>—2 and 4F=<10/3. When sin 2¢=0, then #=2-3»* and
4F=<30. Here equality occurs only for z/(1—z)%. When ¢=372—2 and ¢t=2-3r%
then 4F=<10/3, which may be omitted. Therefore the proof of Theorem 1 has
been completed.

3. Proof of Theorem 2. We consider the extremal problem

max RF,
S

3 23
F=a;—2a,a,— 5 ai+4ata, — 16 a.

By Schiffer’s variational method every extremal function satisfies

2 _
22 Z:vs <% G+ + 2a00 + 1> = % (A+4+2Rz*+4Fz*+2R2°+2°),

R=a,—2a,a,+ % as.
Let Q)d¢® be

2
_ dg @ a§+a§C+2a2C2+C3>.
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Here we may assume that x2=4% a,=x,+iy,. In this case we can make use of
Bombieri’s theorem 1, Corollary and its Remark, assuming y,=0. { real. Then
similarly we have a contradiction. Hence @, must be real non-negative. If a,=0,
then we can again use our earlier result as in Theorem 1. We, then, have
RF=1/2, which may be omitted, if we can show the existence of functions in S
satisfying RF>1/2. If @,>0, then the image I' of |z|=1 by {=1/w starts from
the origin along the negative real axis. Then I' should meet to a simple zero
—zo of Q)% since xy<<3a/2. And then I' forks into two curves at —u,.
Further there is only one zero of @}/4+a¥+2a{*+¢ in the open interval (—4,0).
Hence we have the second expression

2 wlz 1 3,193 24102 2 1
?— s\ g aw + a2+ 2aw+

= ;1;(22+P2+Q)2(z‘+ Uz + Va2l + Wz+ M),

IQ|=|M|=1, QP=P, U=WM, V=VM, MQ*=1.

Hence we have (3), (4), (5), (6) in the proof of Theorem 1. Now we can use the
process in the proof of Theorem 1. In what follows we shall make use of the
same notations as in the proof of Theorem 1.

Firstly the case »=0 appears. Then /=2 and s=0, ¢*¥*"=—1. Hence

4F=2 cos 2¢ + 2ter+%"
=208 2¢—2¢ cos 2¢p=—2 cos 29 =2.

Thus F=1/2.
Secondly we have the case =0, cos(a—3¢—p)=—1, s=2r and r=¢+2pr. If
cos 2a=0, then t=2—3r%. By (6) we have 4F=2-+4r*—3r%. In this case by (5)

2Re™*=8r—4r®.

By Grunsky’s inequality

13 2
a,—2a,0, + 1—202 é—g—.
Hence
9 3
|R|= a,—2a,0,+ §a2
13 1
=la,—2a,a,+ Eag + ﬁlaglgl.

Here equality occurs only for z/(1—e*z)?, By (5)
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|87 —4r®| =2|Re~%| = 2.
This gives two admissible intervals of r

[0’ 7‘2], Irly 70]’

where r, and 7, are two roots of 2r(2—7%) =1 satisfying 0.258 <r;<0.259, 1.26 <r,;<1.27
and 7, has been defined already. Since 4F=2+4x—3z% x=+® is symmetric with
respect to x=2/3 and is monotone increasing for x<2/3, 4F takes the maximum
value at x=7% by r2+7>1.2640.256>>4/3 and its value is 2+4472—3r}.

If sin2a=0, then ¢=3r2—2 and 4F=—-2—4r*+3r". By (5) we have 2Re™*"
=4r*—8r. Hence |2/°—4r|=<1. In this case again we have two admissible in-
tervals [0, 7], [ri, 7o]. However 4F=-—2—4x+43z2, x=7* is negative for [0, 4/3]
and is monotone increasing for x>2/3. Therefore 4F=<-2—4r%+ 375 Since
2ri—47,=1, we have

4F=<2+ i1’o-l- 1 .
2 70

If t=2—-37% and ¢t=3r2—2, then ¢=0, #*=2/3. Since |R|=1, |87—4r%|=2. Hence
r*=2/3 should be excluded.
The above results hold in both cases i) and ii). Now we shall compare the
results. Since
3

24 7o+ 1 >24+4r2—3ri>2,
2 %o

we have

3 1
—8—1'o+ —m

1
F= o) +
Assume that equality occurs. Then R=1 and 2r3*—4r=1, which leads us to the
Koebe function z/(1—e?*z)? e real. Then |F|=1/2, which is a contradiction.

If @,>0, then I' should fork at —ux,, 2,<3@:/2=3. Hence the extremal func-
tion in this case does not coincide with the Koebe function. Moreover we can
say that max RF>1/2. If not, then the Koebe function should satisfy the cor-
responding Schiffer’s differential equation, which has been just excluded.

Therefore the proof of Theorem 2 has been completed.

Since the same reasoning as in the above goes through for

3
as—2a,0,— 5 ai+4ata,— Dat

with 1<D<23/16, the Koebe function is not an extremal function.

4. Proof of Theorem 3. Let X be the family of functions univalent for
|z]>1, regular apart from a simple pole at the point at infinity and having expan-
sion at that point
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©o cn
g(@)=z+co+ 2 —f.
n=1 &
Jenkins [8] proved the following result:
Let g belong to 2. Then for ¢ real and 0=¢=2

1 1 3 1 2
%{e““’(ca+ —z—cf—oze“*’cl) } =— E‘ - ‘1‘6—044‘ —8-‘04 log 14-.

This is best possible.

Jenkins, using this result, proved Garabedian-Schiffer’s inequality |cs|=<1/2+e~°.
Evidently we have

Co=—@y, C,;=03—s, C;=—ay+20,0,— a5,
Cy= — Q5+ 2a,0,+ a3~ 3aia,+ as.

Jenkins’ method does work for

ot %ci, —3=¢=1.

Firstly we put

%{e“f¢<ca+ %ci) } =—|c3+ —g-cf .
Then
4 2 —
¢+ —%cf = 5+ —i% ot— %— —log UT + 1—2£ R(e*ct) — o™ R(e*c,)

1 3 . a* a? 1—¢ =219 2 __ ~2R( o214,
5 t g0~ g log— + —5—Re ey —oR(e¥c)).

=

We may assume that R(e?%c,)>0. Then there is a ¢ in (0, 2] satisfying

2
(e rcy)= 7 o (1 —log -"4—)

If 9i(e~*%c,)=0, then we put ¢=0. Using this g,

ca+—§—c}

1 3 , d a2 1—¢ ot _ i)z__ 04( _ i)

1 1+4c ,, l4c o 1-c 10"\
:_2___32__04_'_76_0410g71_+_T2_g(10g4 =6(g, ).
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(o, c) is increasing for 0<o <o, and decreasing for ¢, <o, where oo
=2exp(—(3+¢)/(2—2¢)). Let O(so, ¢) be max 6(s, ¢). Then with

@(0-0’ C)= %_ +e—2(3+c)/(1—0)

c
Cs+ _cf

D) =6(oy, ).

Let 6 be 3+c¢ and ¢; ¢: be represented by a, s, a., a5, then we have the desired
result. The equality statement is similar as in Jenkins’.

5. Proof of Theorem 4. Let us consider the extremal problem

max R7,
S

T=a,—4a,a,— —g— @&+ 9%+ fat.

Then any extremal functions satisfy the differential equation

’2
[~ 2046z, (144 4)aus +1]

22

= % {1-2a,2+a3z*+ (18 +4B)a3z* +4 T2

+ (184-4p)a,°2° + @,22° — 252" + 2°).

We have the second expression of the right hand side

zl—4(z2+2Pz+P2)(z“+Azﬁ+Bz4+Czs+Dz2+Ez+F),

|P|=|F|=1, A=FE, B=FD, C=FC.
Hence we have
P2F=1,
P*E+2PF=—2a,,
P2D+4-2PE+ F=aj,
P*C+2PD+E=(18+4p)a3,
P2B+2PC+D=4T.

Let P=e¢¥, E=te’, D=se*, C=re**. Then e **=¢*’ and
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tei—t L o0 = — 2,030
set? 42ttt e~ =qle™*,
reit+iay Osoth 4 fotr=10 = (18 +-4p)aje*,
4T=2s cos B+2ret’*é=,
Hence
AT=R[4(94+2p)ase " — 2a%e %" — 4ap 31" — 2417,
First we consider the case 94+25=0. Then
AT<—2(184+4p)|a3| +2|a3| +4|a,| +2
=-—270—648.
However for the function z/(1+e%z)? e real
4| T| = —270—645.

Thus max RT=—675—165. Equality occurs only for z/(1—e™z2)?, z[(1—e®/z),
z2J(L—et/z), z/(1—e~#z)%, Secondly we consider the case 9+23>0. In this case

AT=2(18+4p)|a,|® cos (3p—0)—2|a,|? cos (20— 26)
—4]a,| cos (p—36)—2 cos (—46),
as=|a.|e*.
For simplicity’s sake we put |¢:]=R and
F(R, 0, 9)=2(184-45)R? cos (3p—0) —2R? cos (20— 20)
—4R cos (p—30)—2 cos (—46).

We now seek for the maximum value of F(R,0,¢) in 0=R=2, 0=<60=<2r, 0<¢=2r.
For the inner maximum we have

oF oF oF
R G =0 5 =0

By 9FjoR=0 and F]ap=0,
6(18+4B)R? cos (3p—0)=4R cos (290 —26)+4 cos (p—30),
6(18+45)R® sin (3¢ —0)=4R* sin (2p—20)+4R sin (p—30).
If R=0, then F(0,0, p)=—2cos(—40)=2. If Rx0, then
6(18+4) Reei o= =4 Retr=20 4 40~
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Hence
6(18+4f) R7ei e+ =4Re's+0 44,

which implies

6(18+48)R? cos (2¢p+20)=4R cos (p+0)+4,

6(18+4B)R* sin (2p+20)=4R sin (p-+0).

If 6(18-+45)R cos (p+0)=2, then

4R cos (¢p+0)—6(18+48)R*=4R cos (p+0)+4,

which is a contradiction. Hence 6(18+48)Rcos (p+0)2. Thus we have sin (p+0)
=0. Thus e!“*?=41 and

6(18+4B)R?=+4R+4.
We divide into two cases: i) e*=e~%, ii) e*=—e %,

Case i). 3(9+2B)R*—R—1=0. If this has no solution in (0, 2), we may omit
this case. This implies that f=<-—35/8. So we may assume that §>—35/8. In
this case by 9F/06=0

3{2(18+4B)Raei(310—0) _4Rzei(2¢—20) — 12Rei(v’—-30) _ 88_“0} =0‘
Then

_ %Rz_ 332— R—8%0 for 0=R=2

shows that sin 40=0. Hence cos 40=+1. When cos 40=1,
F(R; 0, p)=2(18+45)R*—2R*—4R -2
—_— 2 2 8
= §R - §R 2<0,
which may be omitted. When cos 46=-1,
F(R,0, p)=2R*+4R+2—-2(18+45)R?
2 2
=§(R +4R+3).
Case ii). Then 3(9+25)R?+R—1=0. By 0F/dp=0,
3{—2(18+4B)R3e‘“”—l—4Rze"‘”+12Re““—-86‘“”}:O.

Hence by 2R*—4R+3=0 sin 44=0. When cos 46=1,
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F(R,0, )=~ 2 (R*~4R+3).

If 0=R=1, F(R,0,p)<0, which may be omitted. Hence 1<R=2. In this case
F(R, 0, ¢) attains its maximum at R=2 and F(2, 0, ¢)=2/3, which may be omitted,
since we have already max F=2. When cos 40=—1,

F(®,0,0)= 2 (R~1)(R~3).

In this case we have 0=<R<1. Hence

_V1+1209+2p)—1

R 6(94-2p)

<1.

This implies
(28+9)2<0,

which is a contradiction. Hence case ii) may be omitted. Further we must
consider two end points of (0,2). If R=0, then 4T=F=—2cos40=2. If R=2,
then

RAT<4/67.5+16f).
Summing up the results, we have for —9/2<f=—35/8
max R4 T=max (2, 4/67.5+168|)

and for >—35/8 with 3(9+25)R?—~R—1=0
max R4 T=max <§ (R®+4R+3), 2, 4[67.5+16ﬁ|>

Hence for —9/2<f=-35/8
RAT=< —4(163+67.5).
Equality occurs only for

K4 2
(1 __e:timz)z ’ (1 — etumz)z ¢

We now consider the case §>—35/8. First the solution R(f) of 3(9+2‘§)R2——!€‘—1=0
is monotone decreasing for increasing f. Further 2(R?+4R+3)/3>2. If B lies in
[—34/8, —33.5/8], then 4]|67.5+165|<2. Hence in this case

42RT§%(R2+4R+3).
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This is exact. Thus

B 3

max {—g—(R2+4R+3), —4(67.5+16[§)}, - <<

max 4R T=
max {%(R2+4R+3), 4(67.5+16/§)}, —% <.

By 3(9+2B)R*~R—1=0 we compare
%(R2+4R+3), +4(67.5+16p).
If —35/8<f<—34/8, then (14+4/7)/3<R<2. In this case put
R)= 2 {%(R2+4R+3)+4(67.5+161§)}

=R*+4R*—24R*+16R +16.

It is very easy to prove ¢(R)>0 for (1+4/7)/3<R<2. Hence
max 4RT'= o (R +4R+3).
This is of course sharp. If f>—33.5/8, then 0=R<(4+24/34)/15. Put
H(R) = 3’; {%(R2+4R+3)—4(67.5+16/§)}

=R*4+4R*+30R*—16R—16.

There is only one solution Ry of ¢(R)=0 for [0, (4+24/34)/15) and ¢(R)<0 for
Ry>R and ¢(R)>0 for R>R,. Further we have 0.95<R*<0.96. We put

Ry +1

R —27.

6‘3* =

Then we have

—i—(R2+4R+3) for —%qkﬁ*,

max 4RT=
4(67.5+16p) for B=p4,

where f and R satisfy 3(9+2B)R*=R+1. These estimations are sharp. If g8y,
" equality occurs only for

z z
e A =7
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If B=p4, equality occurs only for the above four functions and a function satisfy-
ing the differential equation. Together with this case —35/8<f< 8s leads to the
extremal function, for which we cannot give any explicit expression, because the
corresponding differential equation still involves a hyperelliptic integral with un-
known coefficients and an elliptic integral with unknown coefficients. However
our process together with Schiffer’s variational method gives the exactness of our

estimation.

6. Proof of Theorem 5. The proof of this theorem depends upon the process
of section 5. However we only need its simplified version. Let us consider

ng R(as—4a.a,+0ai+8aia,— 4ab)
for —3/2=0=-—1. The extremal functions satisfy the differential equation

wlZ
" [{—2a,+(10—40)a.a,—4astw?

22

+{(3+20)a,— azw*+1]

1 [1—2a,2+(3+20)a,2* + (4 +40)a,a:2°

ra
+4(as—4a,a,+0a%+8atas,—4ab)z
+(4+40)a,d,2°+ (34 20)a,2° — 2a,2" + 2°1.

We have the second expression of the right hand side
-le(z2+2Pz+PZ)(z°+Az5+Bz4+Czs+Dz2+Ez+F).

We now make use of the same notations as in the proof of Theorem 4. Then
Aas—4a0,+0ai+8aia,—4as)
=25 cos B+ 2reti+te
=—2(3+20)|as| cos (¢p—20)+2(4+46)| az||as| cos (p+¢p—0)
—4|a,| cos (p—30)—2 cos (—40),
where a,=|a;|e®, as=|a;sle?. Hence
4(a;— 4,0+ 0a2+8aia, —4at)
=2(34-20)|as| —2(4+49)| @) |as| +4|a:] +2
=-20-360.
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Here equality occurs only for

z z
(1+etni/4z)z ’ (1+eiani/4z)z *

Hence in general

R(as—4a,a,+ 0+ 8ata,— dat) < —5—99.

For 6< —3/2 an easy algebraic consideration leads to the result immediately.

d>—1 we do not have any effective method.
7. Proof of Theorem 6. Let us consider the problem

mgx Rla,—3a,a,+ Bas).
This gives the differential equation satisfied by any extremal functions

2 w/2 2
&~ l(— et BB-5)aut+1}

= % {1— a2+ (BB—6)az*+(3a,—9a,a,+3Bad)z

+(BB—6)azt—a,z*+ 2.

This allows the second expression
L@ 2Pe PYE Qe+ RE 4524 T),

|T|=|P|=1, @Q=TsS, R=TR.

Hence we have

PT=1,

PS5+ 2PT=—a,

P?R+2PS+T=3(B-2)d,

P?Q+2PR+S=3a,—9%a,a;+3Ba;.
Putting P=e?, T=e¢%’, S=se¢**, R=re*,

e P =g,

s +2e = — g™,

ret'* 1 4 250* + ¢~ =3(B—2)aje”",

2s cos a+2re?+¥ =3(a,— 3a,a;+ Baj).

17

For
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Hence
3(a,—3a,a;+ Ba)
=6(B—2)|a,|* cos (2p—0)+2|a,| cos (p—20)+2 cos 36.

If B=2,

3(ay—3a,a:+ Ba3) =6(B—2)|a,|*+2|a,| +2

=24B—42.
Equality occurs only for z/(1—e**iz)? k=0,1,2. We put
F(R, 0, p)=6(B—2)R* cos (2¢0—0)+2R cos (p—20)+2 cos 36.

Assume that B<2 and 0<R<2. We now consider max F.

0= aiRF(R, 0, ) =12(B—2)R cos (29— ) +2 cos (p—20),

0= —a";— F(R, 0, p)=—12(B—2)R* sin (2p—0)—2R sin (¢p—26).

Hence

6(3__ Z)Re(zv—o)t Fetmr=(),
which implies

6(B—2)R=-1, eft=e",

If B=23/12, then R=2. Hence if B=23/12, there is no maximum in 0<R<2.
Hence we may compare F(0,0, ¢) and F(2,0, ¢), for which

F(0, 0, p)=2cos 30=2,
F(2,0, p)=38B—14)Re** =3(8B—14) cos 3¢.
Hence in general for 23/12=B<2
R(a,—3a,a,+ Bai) <8 B—14.
If 12B<23, then

1

R=4a—5 <

2, et =g~

at the points giving the maximum of F(R, 6, ¢). Then
F(R, 0, 9)={6(B—2)R*+2R+2} cos 3¢
=(R+2)cos 3¢
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at the maximum points. Therefore
max F(R, 0, p)=R+2.

On the other hand

FQ,0, p)=2cos 30=2,

F(2,0, p)=3(8B—14) cos 3¢.
Hence

max 3R(a,—3a,a,+ Baj)
=max (max F(&, 0, ), max F(0, 0, ¢), max F (2,0, ¢))

=max (R+2, 3|8B—14)).

19

If 4B=7, then R+2=3(8B—14). Here equality does not occur, since 12B<23. If
4B<7, then R+2=-3(8B—14) has the solution By in B<7/4. The value of By
is (22—4/5)/12. This implies that if By=B<7/4 the maximum is R+2. If B< By
the maximum is —24B+42. Equality occurs in every case. Especially equality
occurs only for z/(1-+e*2? k=0,1,2, if B<By If B=B,, the functions men-

tioned above are extremal.

8. Proof of Theorem 7. We need a lemma.

LemMma. For =3

3‘%(613—- %aé +ﬁa2) =28.
Equality occurs only for z[(1—2)%

Proof. Let us consider the problem

max $R<as— %a§+ ,Baz>,

which leads to the differential equation satisfied by any extremal functions

/2
22 24 {(%az—l—ﬁ)u&l}

1 1 3 2 2 1 5 3
= 5 {1+<‘§az+ﬁ>z+(2d3“ —2—a2+ﬂaz>z +<7a2+[8>z +z‘}.

Let Q©)d¢* be
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- icci (%az+,8+C),

for which we are able to use Bombieri’s method as in the second section. We shall
omit its detail. Then we may assume that a, is real positive or zero. I @,=0, then
las|=1. If a, is real positive, then the image of |z|=1 by {=1/w starts from the
origin along the negative real axis. If @./2+ =4, then the image of |z|=1 by ¢ forks
at {=—a,/2—p into two curves. In this case we have the second representation

1 -
“2—2(22+PZ+Q)2, QI=1, P=QP.
Thus Q*=1, 2PQ=as/2+p,

2Q+P2=Zaa——§—a§+ﬁaz.

Hence

3 2 (72 ﬁ z
§R2<d3—z(12+‘802>=i‘2+%<—4— +—2"> +mﬁdz-

This implies that for the extremal functions with coefficients as, a@s
3
2R( a¥ — Za;“’+ﬁa;"

B

1., 2
=2+ E%az + g Raet+ 7 + Ry,

for every ¢ with coefficients of, a¥. If p=3, then the above phenomena occurs
always. Therefore

2R (as— % ai+ ,Baz> =12.

Equality occurs only for z/(1—z)% This gives the desired fact for the general $=3.

Now we return to the proof of Theorem 7. Let us consider the extremal problem

max ER{m—Sazag + 2—31—;—/3—a§+25<a3- %ag) + ﬁzaz}.

Then the extremal functions satisfy the differential equation

5

/2
&=l a+ BB—5)di+ pas-+ B+ 20-+1]

_ _21_ [+ @f—a)s+B(B-2a+ fant F)2°
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+(3a,—9a,a;+ 3Bai+4pa,— 3pai+ fay)z
+{8(B—2)a3+ pa,+ f2* + (28— ,)2°+ 2°]

with B=(23—p)/12. This has the second expression
%; (22+2Pz+ P?)(2*+Qz*+ Rz +Sz+ 1),
|P|=|T|=1, @Q=TS, R=TR.
Thus we have
prT=1,
P2S+2PT=28—a,,
P?R+42PS+T=3(B—-2)ai+ fa,+ B,
P*Q+2PR+S=3a,—9a,04,+3Ba}+4pa,—3pai+ fFa,=A.
We put P=e¥, S=se', R=7e¥. Then T'=¢™, ¢~**=¢"",
set*+2e730 = — 070} D Re=2
7e*"* 9 Dser 4 e =3(B—2)ale V" 4 e + fre~ Y,
A=2s cos a+2ret’*?
=R{6(B—2)ate=""+ 2a,e™ " + 2P0~ "+ 26~ — 4 fe~2" + 2%}
=6(B—2)|a:|? cos (20— 0)+2|a.| cos (p—20)+28|a,| cos (¢—0)
+2p% cos §—4p cos 20+ 2 cos 36.

Our problem is to seek for the maximum of

3F=§RA+2/32R<a,— —Z-a;> +2pRa,.

By Lemma for =3
?R{ag— %a§+ﬁa2}§2ﬁ.

Equality occurs only for z/(1—z)%. Hence if max RA is given by z/(1—2z)% then
max F is given by z/(1—2)%. So we shall consider RA for the extremal functions.
In this case A is real. Let |@;] be R. For 0<R<2

0A

0= R =12(B—2)R cos (2p—0)+2 cos (p—26)+28 cos (p—0),



22 MITSURU OZAWA

0= -%% =—12(B—2)R* sin (20— 0)— 2R sin (p—20)— 28R sin (p—0).

Thus at the points at which the maximum of A is attained
6(B—2)Re*® =0 g~ 4 Bei®-0=(),
which implies
6(B—2)R+cos (p+0)+ p cos =0,

sin (p+0)+ g sin =0,

or
6(B—2)R cos p+cos 0+ =0,
6(B—2)R sin p=sin 4.
Further
0= % =6(B—2)R?sin (20— 0)+4R sin (p—20)+2pR sin (p—0)

—2p% sin 0+8p sin 20 —6 sin 30
=3R sin (¢p—20)+ R sin (¢p—0)—24* sin 0488 sin 20— 6 sin 30
=3R sin ¢ cos 20— 3R cos ¢ sin 20+ R sin ¢ cos 0 — R cos ¢ sin
— 2% sin 0488 sin 20—6 sin 30

__ sing _ . Bsin g
= WB=2) cos 20 —6R cos ¢ cos 0 sin 0+ B=2)

cos §—BR.cos p sin g

—2p%sin 0416 cos 6 sin §—24 sin 6 cos? 0+ 6 sin 0.
Hence sin #=0 or

cos 20 Bcosd
) —6R cos ¢ cos 0+ 6(B—2)

—24%+16p cos §—24 cos® 0+6=0.

—pBRcos ¢

If the second alternative occurs, then eliminating R cos ¢ by
6(B—2)R cos ¢+cos 0+ =0
we have

cos? 6(300—144B) + 8 cos 0(96B—184)+(8*—3)(25—12B) =0,
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Since B=(23—p)/12, p=3, we have
4(—2pt—1242—-38°+365+36)<0  for B=3,
which implies that
cos? §(300—144B) + g cos (96 B—184)+ (52— 3)(25—12p) *0.
Hence sin #=0, which implies sin ¢=0 and cos ¢=1, since
6(2— B)R cos p=p+cos 0>0.
Evidently cos§=+1. Hence
62—B)R=g+1 or p-1.
If cos §=-—1, then
A=6(2—B)R*+2R—2BR—2p*—4p—2
=R—pR—-2p*—48—2<0.
Hence this does not give the maximum. If cos#=1, then

__B+l
R= 6(2— B) =2

23

which contradicts 0<R<2. Hence we may consider the values of A at R=0 and

R=2. For R=2 we have simply for the extremal functions
A={(4-2p)e" +2p%"}
=(4—2p) cos 3p+24* cos ¢.
We now consider dA/dp=0. Then either sin ¢=0 or
12(2—p) cos® p+p*+3p—6=0.
If sin =0, then cosp==+1. Hence
A=+(2p2—28+4).
In this case

3F=2p—2p+4+452 =65 —25+4.

Equality occurs only for z/(1—z)%. If the second alternative occurs, then cos? p=1
implies 3=<p=6. Hence for §>6 the second case does not hold. If p=6 or g=3,

then cos® =1, which gives

A=+ —28+4),
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3F=6p2—24+4.
If 3<p<6 holds, then
A=8(2—p) cos® p+2(p*4-38—6) cos ¢
= —;1)—(‘82 +38—6) cos .

In this case 4a,—34a2=0 implies

3F= —(ﬁz+3ﬁ 6) cos p+4p4% cos ¢

= %(4‘824—3/3—6) COS ¢.
We now compare this with 65*—28+4. We consider

—192 (48%+38—6)* cos? p— (652 —25+4)*
4 B (161—171p + 5855 —10725-+972).
=27 P2 pro858

It is very easy to show that the above expression is surely negative for 3<g<6.
Therefore for R=2, §=3

3F=6p—28+4.
For R=0 we have @,=0. Thus

w| o

lal =+, las|=1.

Hence
A=2+44p,
3F=2+6p.
Evidently for =3
65 —2p-+4>2+6p.

This completes the proof of Theorem 7.

Our Lemma can be completed for 0=8<3. This is implicitly included in
Jenkin’s results [8].

9. Proof of Theorem 8. Let f(z) be in S. We put
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f (Z) =@ _ 3
then
Cn=0as—a,

Cn=a,— 20,05+ a3,

3
— s

3
Cop=0;—20,0,— = a2+ 4aia,— 5

2
Garabedian [3] proved the following inequality:

R{coa+ 2212+ (24 p)ci+glaz+ 2, 1)}

2
+ ﬁ—log 6,

2 2
+|Z| + 5 fR(ﬂ)'l‘ 16,& ]

das+1, p)= (025-22)4 + ﬂ(dz +2) + [ (@242)° 5#((12"‘2) ]'\/(———_—dz-f-l)z 3

2
+ £ log [avt 2+ V(@ T 27 =37,
where 2=&+iy is restricted to lie inside or on the involute
2.(0)=4(cos® 6+ sin® §)— (3 cos 20 — %y) e, 0=0<2z

of the hypocycloid
&y 7]2/3 — 423

and —12=,=12. This is best possible.
Here we need the following fact: If A=1+p/4, then the extremal function is
the Koebe function z/(1—z)%. Now we put A=1, p=0. Then

1) 3
m{czz‘l'zclz‘l‘cu'l“—'—(az,z ) }ég
This is just

3
ER{05"‘2"2&'4 - -2—d§+4a§(2'3 - -2—5;;

4
+2(a,—2a,0,+ @) +a,—ai+ M} = %

27

Let us introduce the following notations:
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a,=p+ix' =2—zx+iz’,
3 .
@— g G=y+iy’,
3 5 .
a,— 7aza,+-§a§=7y+m’.
Then we have

*

Il

m{as'—azar‘ %a§+2a§as— %ag}

3
2

lIA

+Ra, (a. —2a,0,+ %g— ag) —2R(a,—2a,0,+ a3)

1
-—-fR(as—ai)— ﬁ §R(a2+1)‘.
by Garabedian’s inequality. We now rewrite this inequality

5 _gpyla 19, (3 1\,
*éz 3x+2x T8—x+(16 27).2:

—xn— (1—x+ —;—x2>y+ —;—x’zy

11 19 9 6 3 1
—pl2 = Y — e 2 /2 —_ Lot — !
T <4 6 :c+<8 27):0 (16 27):17 )+(1 )’y —z'y .
By the area theorem
5772+577’2+3y2+3y'2+x’2§4x—x2,

we have

1 2__l /72
1—x+—2—m 2@'

=1l—2z+ %x2—2x+ %x2=1—3x+x2>0

for 0=x=0.3. We now divide into two cases: i) y=0, ii) y=0.
Case i). In this case we have for 0=2x=0.3

*=

5 1 2 B_ 3 (_%___ 1 4__
§—3x+—2—x—18x+ 16 —27).19 xn
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11 19 /9 6 3 1
—_—pt2y —_— o 2 _ . R, 12
@ [4 6 “(8 27)” (16 27)“’ }
+A—z)2’y —a'y.

By the trivial inequality

a ., 1
2x+2a77, a>0.

—xn=
and by the area theorem we have

5 3-2-2 , 19 (3_1 . (1_15)2
sy () ()

14 19 65 65 9 15
—_ /2y - 7 2= el 1 1o 1 a2 1.0 B} ]
[x{4 6.7c+72x 432:0} 1 x)xy+4y +x77+477].

Now we put Ct’——2/15. Then
5 2

19 65

13
P(x)= 66-+ ®E 1B

— 14 19 65 2 65 ’2 ’2 conl oy 9 ’2 ’.! l5_ ’2
Q= T—Tx+—7?x ~qap O —(1—2)2'y + gy

It is very easy to prove
P(z)>0, Q=0

for 0=x=1.

Case ii). In this case
Further by |ai—a;| =<1

Hence

5 1, 19 | _65_4_
*§5—2x+—4—x-—T8—x+432x xn
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10 19 65
_x/2<___x 2
4776

75 20— % x'2> +2'y(l—x)—2'y.
By the trivial inequality and the area theorem

5 1-2¢ , 19 ., 65 5 1

< — a8 4 __ 2__
* B8 T3’ <2 2a)’7 @
10 19 65 , 65 3 5
—ar2f Y =Y A S 2 _(1_ Iot O e 11O e
Q‘x(4 6 T ” 4wx> A=a)a'y'+ 5y +aly + 50"
Now we put a=1/5. Then

5 2

5 P(z)—Q,

_ 3 19 65 |,

P@=o5 +1go- 33 =

Again it is very easy to prove P(x)>0 and Q=0 for 0=2=0.23.
Summing up the results, we have the desired result.

10. A proof of |@,—2a,a,+a3|<2/3. By Schiffer’s variational method any ex-
tremal functions w(z) for the problem maxgs R(e,—2a,a,+a}) satisfy

wl2

22 " (@:w+1)

= 213— {1+ (as— @222+ 3(a,— 2a,0,+ 3) 22 + (G, — a2)2* + 2°}.

Let ¢ be 1/w and consider the quadratic differential

- (dz +C)d§2.

Let I' be the image of |z|=1 by . Let {=&+iyp and @:=x>+iy.. Then on the
trajectories

(24 E)(—dE*+dy?) +2dsdn(y=+1)>0,

(Y2 +7) (—dE2+dy?) — 2dedy(x2+€) =0.
If z,4+£&%0. Then

()10

On the other hand we have
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dy
+2) ==>0.
(y2+7) de

Now we may assume that |Jarge.]=z/3. In what follows we make use of the
term ‘“the first quadrant, the second ---around a point A” as if we set a coordi-
nate system, being parallel to the original coordinate axis, at A.

1) O0<l|arga;|=rn/4. We treat only 0<arga.==/4. If (£ ) belongs to the
first quadrant I, around —a,, then dp/dé>1. Hence I', which has tangent vector
at the origin with the argument #/2—(arg «.)/2, does meet the open segment join-
ing two points —y,—iys, —iy.. I" does not meet the closed segment joining —a.
and —y.—iys,. This fact can be deduced by dp/dé>1 in the first quadrant I,
around —a, and by

1 (2=

— Q= 5— S L(e?)do.
27!' 0

Thus I' enter into the fourth quadrant 7, around —a,. Then we have —oo<dy/dé

<=1 in I,, since dy/dé=co implies that I' should be a segment parallel to the
imaginary axis. Hence

2n
9%—21—8 Le")do> —
T Jo

which is a contradiction.

2) arga,=0. Then I" is tangent to the imaginary axis at the origin. Then
I’ does not enter into the second and the third quadrants around the origin.
This is again a contradiction.

3) n/d<arg a;=n/3. The case —r/4>arg a,=—nx/3 is similar. If I" intersects
to the open segment joining —a, and —iy, then the situation is the same as in
1). Thus I' should meet the segment joining —a@. and —xz;—x.. Then we have
two subcases: I' meets —a. or I' does not meet —a,. Assume that I" does not
meet —a.. Then I' enter into the second quadrant I, around —a., in which
0<dpldé<l. If I' does not meet the straight line y=-—y,, then I" lies in the
upper half plane of the straight line z=—a,+te*”, —oo<i<oo. This con-
tradicts

1 (=
—d2= —2-— S C(ew)dﬁ.
T Jo

Hence I' must meet y=—y, Consider dy/dé around this intersection point. In
the upper half-plane 0<dy/dé<1 and in the lower half plane dy/dé<—1. This
contradicts the continuity of dp/dé or the analyticity of I’. Hence we have
a contradiction. Thus I' should meet —a,. Since —a, is a simple zero of
—(a=+0)d¢?, I', then, forks at —a,. Returning to w, we have the second ex-
pression
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/2

1':)5 (azw + 1)

z2

1
= ;s—(z3+Pz2+Qz+R)"’Eg(z).

Further ¢(1/2)=g(2). Thus we have

R=1, P=RQ,

2QR=0,

2PR+Q*=a,—a3,
2R+2PQ=3(a,~ 2,0, +&).

This shows that @=P=0. Hence a,—a:=0 and

a¢-—2czza3+a§=i—32,—.

This gives the desired result. The equality statement is easily obtained by in-
tegrating the equation.

In the above discussion we have assumed that @,x0. If @,=0, then the
origin is a simple zero of —{df{®. Hence the similar second expression remains

true.

[1]
[2]
[31]
[4]
[5]
[6]
[71
[8]
[91]

Hence we have the desired result.
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