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A CHARACTERIZATION OF THE ALMOST *0O-MANIFOLD

By YosHiko Kuo*

Dedicated to Professor Kentaro Yano on his sixtieth birthday

The theory of linear connections in an almost Hermitian manifold has been
studied by Obata [2], Walker [4], Yano [5] and others. One of remarkable results
obtained by these studies is a characterization of the complex manifold by the
existence of a symmetric connection with respect to which the covariant deri-
vative of the structure tensor J vanishes. So it may be expected that a special
almost Hermitian manifold can be characterized by the existence of a certain
linear connection. From this stand-point, we shall try in the present paper, to
give such a characterization for the almost *QO-manifold.

1. Preliminaries.

Let M be an almost complex manifold of real dimension 2, that is, a dif-
ferentiable manifold which admits a tensor field J of type (1,1) satislying

1.1) Ji=—1,
where 1 denotes the identity mapping of the tangent bundle of M. The tensor
field J is called an almost complex structure of M. It is well known that a neces-
sary and sufficient condition for an almost complex manifold to be a complex
manifold is that the Nijenhuis tensor N of / defined by

(1.2) NX, Y)=[JX,JY]I-JIX,JY]-JJX, Y]-1X Y]

vanishes identically.
First of all, for any tensor T of type (0,2), we define operators O and *O as
follows:

20(T)X, V)=T(X, Y)-T(JX,JY),

1.3
49 2%0(T)X, Y)=TX, )+ T(JX,JY).

Then it is easily verified that
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O0+*0=1,
0.0=0, 0-*0=*0-0=0, *0-*0=*0.
Thus the two conditions
O(T)=0 and *O(T)=T
are equivalent to each other. Moreover, the two conditions
*O(T)=0 and OT)=T

are also equivalent to each other. We say that a tensor T is hybrid or pure if it
satisfies

O(T)=0 or *O(T)=0

respectively.
Now we assume that the almost complex manifold M admits a Riemannian
metric ¢ satisfying

(1.5) O(9)=0.

A Riemannian metric ¢ satisfying (1.5) is called a Hermitian metric. An
almost complex manifold with a Hermitian metric is called an almost Hermitian
manifold. In an almost Hermitian manifold the 2-form o defined by

(1.6) o(X, Y)=¢(JX, Y)

is of rank 2#. We now remark that, given an arbitrary positive definite Rieman-
nian metric §, we can construct a Hermitian metric ¢ in the following way:

1
9(X, Y)=*0)(X, ¥)= 5 (0(X, Y)+4(JX, JY)).
A connection F satisfying
1.7 Fg=0

is called a metric connection. Let F be a metric connection and ¥ the Levi-Civita
connection constructed from the given Riemannian metric g. Then we can put

(1.8) VeY=VyY+T(X,Y)

where T denotes a tensor field of type (1, 2).
Equations (1.7) and (1.8) show that for a metric connection 7 we have

9 Pxg)(Y, Z)=—9g(T(X,Y), Z)—9(Y, T(X, Z)).
The connection F, in general, has a torsion, so we put

(1.10) 25(X, Y)=rxY-IyX—[X, Y].
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Using S(X, Y), we find that the metric connection F satisfies
07vZ, X)=9(vZ, X)+¢(S(X, ¥), Z)

1 +4(S(Y, 2), X)+9(S(X, 2), Y)

If an almost Hermitian manifold satisfies

1.12) 77=0,

(1.13) dw=0,

(1.14) Fx)(Y)+ (P )X)=0
or

(1.15) *O(7])(X, Y)=0,

we call the almost Hermitian manifold a Kaehlerian manifold, an almost Kaehlerian
manifold, an almost Tachibana manifold or an almost *O-manifold, respetively.

It is easily verified that a Kaehlerian manifold is an almost Kaehlerian mani-
fold and is also an almost Tachibana manifold and that an almost Kaehlerian mani-
fold and an almost Tachibana manifold are both almost *O-manifolds. We also see
that an almost *O-manifold with vanishing Nijenhuis tensor is a Kaehlerian
manifold. Examples of an almost *O-manifold which is not almost Kaehlerian
and not almost Tachibana are E*XS? and E2?XxS* These examples are given
in [6].

2. A characterization of an almost *O-manifold.

Let M?** be an almost Hermitian manifold and (/, g) the Hermitian structure.
We call an affine connection F/ satisfying Fx/=0, X being an arbitrary vector
fileld, a J-connection. We need the following

LeMMmA 2.1 [2]. In an almost complex manifold, if the torsion tensor of a J-
connection is proportional to the Nijenhuis tensor, then the proportional factor
should be equal to 1/8, that is,

@.1) S(X, ¥)= 5 N(X, V).

Now we suppose that there exists a metric /-connection whose torsion tensor
S(X, Y) is proportional to the Nijenhuis tensor N(X, Y). Then, by the lemma
above we have S(X, Y)=(1/8)N(X, Y) and consequently

2.2)  ovZ, X)=q(lrZ, X)+ %{G(N(Y, 2), X)+9(N(X,Y), Z)+9(N(X, Z), Y)}.

Using this connection, we have
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«(7x))Y, 2)=¢((Px])Y, Z)
(2.3) + %{Q(N(X, JY),2)+9(N(Z, X),JY)+¢(N(Z,]Y), X)
+9(N(X, Y),JZ)+9(N(JZ, X), Y)+9(N(JZ, Y), X)}=0.

On the other hand, using VyxY—VyX=[X, Y], we can write the Nijenhuis
tensor as follows:

(2.4) N&X, V)=T%](X)=JVx] (V) +Frx]) Y =] X.
Thus we have
oY, Z)=g((Vx])Y, Z)
— 5 U =T (X~ Fe] ()~ Py (T, 2)
+0(J0] (X) = JVx](Z)+Vrx](Z)— V2] (X),]Y)
+9(JV2] (JY) = JVar](Z)=Ve](Z)=V72] (JY), X)
+o(JVx](Y) =TV ] (X)+ Vv ] (X)—Vix] (), JZ)
+0(JVr2] (X)=JVx] (JZ)+Vrx] (JZ)+ V2] (X), V)
+o(IVs2] (V) =TV ] (JZ)+ V] (JZ)+ Vel (Y), X)}
=g((Px])Y, Z)
- %{g(fﬁfoY) Ve ] (X)— Vo] (X)=Vrx](JY), Z)
— (= Vo] (X)+Vx] (Z)+ V52T (Z) = V32T (X), V)
+o(JVa] (JY)=TPse](Z) = Vo] (Z)=Vsz] (JY), X)
— (= V] (V) + W] (X)+TVax ] (X) = TVsx](Y), Z)
+0(JVra] (X)=JVx] (JZ)+Vrx] (JZ)+ V2] (X), V)
+9(IVs2] (V)= Ve ](JZ)+ Vi (JZ)+ V2] (V), X))
Since Pyl=—Py]-J—J-VxJ=0, the equation above reduces to
(Y, Z)=o((Vx])Y, Z)
- T (1), )+ o1 (X0, 12)- oI 00, 2)
(2.5) —gUrx] (), JZ)—gFx](Z), Y)—g(Vr2] (X), JY)
+o(Wrx](Z), ]Y)+9(P2] (X), Y)+0(P2] (), X)
+oFr](2), JX) =] (Z), X)=g(Fra] (V), TX)}-
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We need to get further results

LEMMA 2.2. For any X, Y,ZeT(M), we have

(2.6) 972 (), X)=—g(P2] (X), V),

@.7) o772 X, JY )= —g((Vr2]) Y, JX)
Proof. Differentiating

(2.8) g(J(X), Y)=—g(X, J(Y))

covariantly, we have
9P (X), V) +0(J(P2X), V) +a(J(X), P2Y)
==X, J(Y))—o(X, V] (V) —o(X, T (72 V).

Thus, using (2.8) in the above, we have (2. 6).
On the other hand, by (2.6)

o(Pr2) X, JY)=—g(X, (P12])]Y)
=9(X, J(V72])Y)=—g((V;2]) Y, JX),
which proves (2.7).

Making use of (2.6) and (2.7), we can rewrite (2.5) as follows:
(DY, Z)=9((Px])Y, Z)~ %{g«ﬁm Y, Z)=o(Psx](Y), J2))
= S 0(PD)Y, 2)+oPix] V), Z)
= 0T (X, ¥), Z)+oPT (X, TY), Z)

- %gaomxx, Y), 2).

Thus, if the connection F is a J-connection, we have
*O(PJ)=0.

This shows that, if there exists a metric /-connection whose torsion tensor is pro-
portional to the Nijenhuis tensor, then the almost Hermitian manifold must be
an almost *CO-manifold.

Conversely, in an almost *O-manifold, we consider the connection defined by
(2.2). Then this is a metric /-connection whose torsion tensor is proportional to
the Nijenhuis tensor. Thus we get
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THEOREM 2.3. In order that an almost Hermitian manifold M is an almost
*O-manifold it is necessary and sufficient that there exists in M a metric J-connec-
tion whose torsion temsor is proportional to the Nijenhuis tensor.

Since an almost *O-manifold with vanishing Nijenhuis tensor is a Kaehlerian
manifold, as a special case of Theorem 2.3, we have the following well known
result.

CoROLLARY 2.4 [5]. In order that an almost Hermitian manifold M is a
Kaehlerian manifold it is necessary and sufficient that there exists in M a sym-
metric metric J-connection.

3. Metric J-connection in S as an almost Tachibana manifold.

We take a seven dimensional Euclidean space E7 and consider it as the space
of pure imaginary parts of Cayley numbers. In such E” we consider a hyper-
sphere S°® Then, it is well known that the S°® is an almost Tachibana mani-
fold, which is not Kaehlerian. The almost Tachibana structure on S® has been
studied by Fukami and Ishihara [1]. They introduced on S°® a metric J-connection
defined by

(3.1 VyY=PrY+ %(ﬁ” NX.

In the following, we shall show that this connection is identical with the con-
nection introduced by (2. 2).
The torsion tensor S(X, Y) of the connection defined by (3.1) is given by

2S(X, Y)=Vz Y-l X—[X, Y]
3.2)

= 5 FoxDX~rxD) V)
On the other hand, using (2.6), we get
NX, V)=JleJ(X)—=JPx (V) +Frx) Y —Fre])X
=P J(JY) =P JIX)+Frx]) Y —(Vrv) X.

Since S° is an almost Tachibana manifold, substituting /Y in (1.4) for Y, we
have

3.3)

VeJ(JY)=—~eNX
and
Ve J(JX)=—Prx])Y.

Thus, in an almost Tachibana manifold, we get

(3.4) N(X, Y)=2(Vrx])Y—(Pre])X).
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Comparing (3.2) and (3. 4), we find

(3.5)

S(X, ¥)=5 N, T).

The connection /' being metric J-connection, this relation, together with theorem
2.3, shows that F is identical with the connection introduced by (2.2).
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