EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY STOCHASTIC OPERATORS

By Yūjı Sakai and Tetsuya Shimogaki

1. As a continuous version of doubly stochastic matrices, a linear operator T from the real Lebesgue space $\boldsymbol{L}^{1}(0,1)$ into itself is called doubly stochastic (d.s., in short) if

$$
\begin{equation*}
T \mathbf{1}=\mathbf{1}, \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
T^{*} \mathbf{1}=\mathbf{1}, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T \geqq 0, \tag{1.3}
\end{equation*}
$$

where 1 denotes the function whose range is $\{1\}$, and (1.3) means that $T f \geqq 0$ whenever $f \geqq 0$. (1.2) is equivalent to the requirement that $\int_{0}^{1} T f d \mu=\int_{0}^{1} f d \mu$ for all $f \in L^{1}$, where μ denotes the Lebesgue measure on (0,1). As is easily seen, every d.s. operator is a contraction in both \boldsymbol{L}^{1} and \boldsymbol{L}^{∞} norms ($\|T\|_{1} \leqq 1$, and $\|T\|_{\infty} \leqq 1$). Furthermore, $T f<f$ holds for all $f \in \boldsymbol{L}^{\mathbf{1}}$, where $<$ denotes the continuous version of the preorder of Hardy-Littlewood and Póly [2, 8].

In the sequel, we denote by \mathfrak{M} the set of all Lebesgue measurable sets in $I=(0,1)$. $\boldsymbol{e} \equiv \boldsymbol{e}^{\prime}, \boldsymbol{e}, \boldsymbol{e}^{\prime} \in \mathfrak{M}$, means that the measure of the symmetric difference of $\boldsymbol{e}, \boldsymbol{e}^{\prime}$ is zero, or equivarently, that $\chi_{\boldsymbol{e}}$, the characteristic function of \boldsymbol{e}, is identified with $\chi_{\boldsymbol{e}^{\prime}}$ as an element of \boldsymbol{L}^{1}. Let $\boldsymbol{e}_{1}, \boldsymbol{e}_{2} \in \mathfrak{M}$ with $\mu\left(\boldsymbol{e}_{1}\right)=\mu\left(\boldsymbol{e}_{2}\right)$. A mapping σ from \boldsymbol{e}_{1} (exactly speaking, defined a.e. on \boldsymbol{e}_{1}) into \boldsymbol{e}_{2} is called a measure preserving transformation ${ }^{1}$ (m.p. transformation, in short) from \boldsymbol{e}_{1} into \boldsymbol{e}_{2}, if

$$
\begin{equation*}
\sigma^{-1}(\boldsymbol{e}) \in \mathfrak{M} \text { and } \mu\left(\sigma^{-1}(\boldsymbol{e})\right)=\mu\left(\boldsymbol{e} \cap \boldsymbol{e}_{2}\right) \text { for all } \boldsymbol{e} \in \mathfrak{M} . \tag{1.4}
\end{equation*}
$$

If σ^{-1} is a m.p. transformation from \boldsymbol{e}_{2} into \boldsymbol{e}_{1} again, σ is called invertible measure preserving from \boldsymbol{e}_{1} onto \boldsymbol{e}_{2}. For each m.p. transformation σ from I into itself, the operator T_{σ} defined by

$$
\begin{equation*}
T_{\sigma} f(t)=f(\sigma t) \quad(t \in I) \tag{1.5}
\end{equation*}
$$

is a d.s. operator, and is called a d.s. operator induced by σ. In what follows, \mathscr{D} stands for the set of all d.s. operators and $\Sigma\left(\Sigma_{0}\right)$ for the set of all m.p. (resp. invertible m.p.) transformations on I. Then \mathscr{D} is a convex set and each $T_{a}, \sigma \in \Sigma$ is, as is easily verified, multiplicative, that is, $T_{o}(f \cdot g)=T_{o} f \cdot T_{o} g$ for all $f, g \in \boldsymbol{L}^{\infty}$, and is

1) Two such transformations will be identified if they differ on a set of measure zero.
on extreme point of \mathscr{D} [7]. Also $T_{o} f \sim f$ holds, where $f \sim g$ means that f and g are equimeasurable. ${ }^{2)}$ Since every $T \in \mathscr{D}$ acts as a contraction on \boldsymbol{L}^{∞}, we can consider \mathscr{D} as a subset of the operator space of \boldsymbol{L}^{∞}. It is known [8] that, according to a general compactness theorem of Kadison [3], \mathscr{D} is compact in the weak*operator topology.

Let \mathfrak{x} and \mathfrak{y} be n-vetors $\left(x_{1}, \cdots, x_{n}\right)$ and (y_{1}, \cdots, y_{n}) respectively. It is clear that
(1.6) if \mathfrak{y} is a n-vector whose coordinates y_{i} are obtained by a permutation of the coordinates of \mathfrak{x}, then there exists a n-square permutation matrix \boldsymbol{P} such that $\mathfrak{x}=\mathfrak{y} \boldsymbol{P}$.

A continuous version of this statement would be the following:
(1. 7) if $f \sim g, f, g \in \boldsymbol{L}^{1}$, there exists an $\sigma \in \Sigma$ such that $T_{\sigma} f=g$.

Unfortunately, however, the statement (1.7) is not valid in general. It is only known [1,8] that if $f \sim g, f, g \in \boldsymbol{L}^{1}$, there exists an $T \in \mathscr{D}$ such that $T f=g$. More precisely, Ryff [8] has shown that such a T can be chosen from d.s. operators of the form $T_{\sigma_{1}}^{*} T_{\sigma_{2}}, \sigma_{1}, \sigma_{2} \in \Sigma$.

In $\S 2$, we shall present an alternative proof of this Ryff's theorem in a somewhat different form. Namely we shall show that if $f \sim g, f, g \in \boldsymbol{L}^{1}$ there exists an $T \in \mathscr{D}$ such tha $T f=g$ which is a w^{*}-cluster point of a sequence of members of $T_{\sigma}, \sigma \in \Sigma_{0}$.

In §3, some fundamental properties of d.s. operators will be studied. In [6] Mirsky called a d.s. operator T a permutator if $f \sim T f$ holds for all $f \in \boldsymbol{L}^{1}$. We shall show that each permutator T is nothing but a d.s. operator induced by a m.p. transformation σ, i.e., $T=T_{\sigma}$ (Theorem 5). Also some characterizations for the d.s. operators induced by m.p. transformations will be given.

Finally, in $\S 4$, we shall give a necessary and sufficient condition for $f \sim g, f$, $g \in \boldsymbol{L}^{1}$, under which we can find an $\sigma \in \Sigma$ such that $T_{\sigma} f=g$ holds.

The authors of the present paper express their hearty thanks to Professor H. Umegaki for his kind encouragements.
2. We shall give an alternative proof of the Ryff's theorem:

Theorem 1. If f and g are equimeasurable on $I=(0,1)$, then $T f=g$ holds for a d.s. operator T which is a w^{*}-cluster point of a sequence of members of $T_{\sigma}, \sigma \in \Sigma_{0}$.

To prove this theorem we use a lemma due to Lorentz [4, p. 60].
Lemma 1 (Lorentz). Let f and g be eqimeasurabe. If \mathcal{C} is any set of real numbers for which $f^{-1}(\mathcal{C})$ is measurable, then so is $g^{-1}(\mathcal{C})$ and both sets have the same measure.

The following lemma is known. For the convenience of readers, we present here a proof based on the preceeding lemma.
2) f and g are called equimeasurable if d_{f}, the distribution function of f, is equal to d_{g}.

Lemma 2. If $\mu\left(\boldsymbol{e}_{1}\right)=\mu\left(\boldsymbol{e}_{2}\right), \boldsymbol{e}_{1}, \boldsymbol{e}_{2} \in \mathfrak{M}$, then there exists an $\sigma \in \Sigma_{0}$ such that $\sigma\left(\boldsymbol{e}_{1}\right) \equiv \boldsymbol{e}_{2}$.
Proof. Let $k_{i}(t)=\int_{0}^{t} \chi_{e_{i}} d \mu, 0<t<1, i=1,2$. The functions $k_{i}, i=1$, 2, are positive, continuous, and non-decreasing on I. Also denote by f_{i} the function $k_{i} \chi_{e_{i}}$. Then it is easy to see that f_{1} and f_{2} are equimeasurable, and $k_{i}^{-1}(\lambda)$ is a single point or a closed interval in I for any $\lambda \in(0, \alpha), \alpha=\mu\left(\boldsymbol{e}_{1}\right)=\mu\left(\boldsymbol{e}_{2}\right)$. We put J_{2} the set of all $\lambda \in(0, \alpha)$ such that $k_{i}^{-1}(\lambda)$ is not a set of a single point. Then J_{i} is a countable set for each i. Putting $\tilde{\boldsymbol{e}}_{i}=f_{2}^{-1}\left\{(0, \alpha)-J_{1} \cup J_{2}\right\}, i=1,2$, we see that $\tilde{\boldsymbol{e}}_{i} \subset \boldsymbol{e}_{i}$ and $\tilde{\boldsymbol{e}}_{i} \equiv \boldsymbol{e}_{i}$. If we define a mapping σ_{1} from $\tilde{\boldsymbol{e}}_{1}$ onto $\tilde{\boldsymbol{e}}_{2}$ by

$$
\begin{equation*}
\sigma_{1}(s)=f_{2}^{-1}\left\{f_{1}(s)\right\}, s \in \tilde{\boldsymbol{e}}_{1} \tag{2.1}
\end{equation*}
$$

σ_{1} is a one to one mapping from $\tilde{\boldsymbol{e}}_{1}$ onto $\tilde{\boldsymbol{e}}_{2}$. Furthermore, σ_{1} is a m.p. transformation from $\tilde{\boldsymbol{e}}_{1}$ onto $\tilde{\boldsymbol{e}}_{2}$. In fact, for every $\boldsymbol{e} \in \mathfrak{M}$ with $\boldsymbol{e} \subset \tilde{\boldsymbol{e}}_{2}, \sigma_{1}^{-1}(\boldsymbol{e})=f_{1}^{-1}\left\{f_{2}(\boldsymbol{e})\right\}$ is measurable and $\mu\left(\sigma_{1}^{-1}(\boldsymbol{e})\right)=\mu(\boldsymbol{e})$ by Lemma 1 . In the same way we can also verify that σ_{1}^{-1} is a m.p. transformation from $\tilde{\boldsymbol{e}}_{2}$ onto $\tilde{\boldsymbol{e}}_{1}$. Thus σ_{1} is an invertible m.p. transformation from \boldsymbol{e}_{1} onto \boldsymbol{e}_{2}, since $\boldsymbol{e}_{i} \equiv \tilde{\boldsymbol{e}}_{i}, i=1,2$. Now in the same way we can find an invertible m.p. transformation σ_{2} from $\boldsymbol{e}_{1}^{\mathrm{c}}$ to $\boldsymbol{e}_{2}^{\mathrm{c}}$. Consequently, putting $\sigma(s)=\sigma_{1}(s)$ if $s \in \boldsymbol{e}_{1} ; \sigma(s)=\sigma_{2}(s)$ if $s \in \boldsymbol{e}_{1}^{\mathrm{e}}$, we see that σ is an invertible m.p. transformation on I for which $\sigma\left(\boldsymbol{e}_{1}\right) \equiv \boldsymbol{e}_{2}$.

From the proof above, it follows that if $\left\{\boldsymbol{e}_{i}\right\}_{\imath=1}^{n}$ and $\left\{\boldsymbol{e}_{i}^{\prime}\right\}_{\imath=1}^{n}$ are two systems of mutually disjoint sets of \mathfrak{M} with $\mu\left(\boldsymbol{e}_{i}\right)=\mu\left(\boldsymbol{e}_{\imath}^{\prime}\right)$ for all $1 \leqq i \leqq n$, there exists an $\sigma \in \Sigma_{0}$ such that $\sigma\left(\boldsymbol{e}_{i}\right) \equiv \boldsymbol{e}_{\imath}^{\prime}$ for all $1 \leqq i \leqq n$. Now let \mathcal{S} denote the set of all simple functions on I. Then we have immediately

Lemma 3. If $f \sim g, f, g \in \mathcal{S}$, then there exists an $\sigma \in \Sigma_{0}$ for which $T_{\sigma} f=g$ holds.
Proof of Theorem 1. First we prove in the case that $0 \leqq f, g \in \boldsymbol{L}^{1}$, and $f \sim g$. For every $n \in N\left(N\right.$ stands for the set of all integers) let $F_{n, 0}=f^{-1}[n, \infty), G_{n, 0}$ $=g^{-1}[n, \infty), F_{n, k}=f^{-1}\left[2^{-n}(k-1), 2^{-n} k\right)$, and $G_{n, k}=g^{-1}\left[2^{-n}(k-1), 2^{-n} k\right)$, where $k=1, \cdots$, $2^{n} n$. Since $f \sim g$ and both $\left\{F_{n, k}\right\}_{k=0}^{2 n n}$ and $\left\{G_{n, k}\right\}_{k=0}^{2 \eta_{n} n}$ are systems of mutually disjoint sets, Lemma 3 shows that for every $n \in N$ there exists an $\sigma_{n} \in \Sigma_{0}$ such that $T_{o_{n}} \chi_{F_{n, k}}$ $=\chi_{G_{n, k}}$ for all $k=0, \cdots, 2^{n}{ }_{n}$. If we put

$$
f_{n}=\sum_{k=1}^{2^{n_{n}}} 2^{-n}(k-1) \chi_{F_{n, k}}+n \chi_{F_{n, 0}}, \quad g_{n}=\sum_{k=1}^{2 n_{n}} 2^{-n}(k-1) \chi_{G_{n, k}}+n \chi_{G_{n, 0}},
$$

$T_{\sigma_{n}} f_{n}=g_{n}, n \in N$ holds. Moreover, since each $F_{m, k}\left(G_{m, k}\right), 0 \leqq k \leqq 2^{m} m$ is contained in an $F_{n, k}\left(\mathrm{resp} . G_{n, k}\right)$ if $n \leqq m$, we have

$$
\begin{equation*}
T_{\sigma_{m}} f_{n}=g_{n}, \quad \text { if } \quad n \leqq m \tag{2.2}
\end{equation*}
$$

We write $\mathscr{F}_{2}=\left\{T_{\sigma_{i}}, T_{\sigma_{i+1}}, \cdots\right\}^{-w^{*}}$, the closure of $\left\{T_{\sigma_{i}}, T_{\sigma_{i+1}}, \cdots\right\}$ in the w^{*}-operator topology, for each i. Since \mathscr{D}, considered as a subset of the operator space of L^{∞}, is w^{*}-compact, there exists an $T \in \mathscr{D}$ such that $T \in \bigcap_{\imath=1}^{\infty} \mathscr{F}_{r}$. For each fixed $m \in N$, there is a subnet $\left\{T_{\alpha}\right\} \subset\left\{T_{\sigma_{m}}, T_{o_{m+1}}, \cdots\right\}$ such that $T=w^{*}-\lim _{\alpha} T_{\alpha}$. Since $T_{\alpha} f_{m}=g_{m}$ holds for every T_{α}, by (2.2) and $f_{m} \in \boldsymbol{L}^{\infty}$, we have

$$
\int_{0}^{1} u T f_{m} d \mu=\lim _{\alpha} \int_{0}^{1} u T_{\alpha} f_{m} d \mu=\int_{0}^{1} u g_{m} d \mu
$$

for every $u \in \boldsymbol{L}^{1}$. Hence $T f_{m}=g_{m}$ holds for every $m \in N$. Finally, for every m,

$$
\|g-T f\|_{1} \leqq\left\|g-g_{m}\right\|_{1}+\left\|g_{m}-T f_{m}\right\|_{1}+\left\|T f_{m}-T f\right\|_{1} \leqq\left\|g-g_{m}\right\|_{1}+\left\|f_{m}-f\right\|_{1},
$$

which implies $g=T f$.
For a proof in the general case we have only to recall that if $f \sim g \in \boldsymbol{L}^{1}$ we have $f^{+} \sim g^{+}, f^{-} \sim g^{-}$, and if we construct $f_{n}^{+}, g_{n}^{+}, f_{n}^{-}, g_{n}^{-} \in \mathcal{S}$ in a similar way as above, we have $f_{n}^{+}-f_{n}^{-} \sim g_{n}^{+}-g_{n}^{-} \in \mathcal{S}$ and $f_{n}^{+}-f_{n}^{-} \rightarrow f, g_{n}^{+}-g_{n}^{-} \rightarrow g$ in \boldsymbol{L}^{1} norm.
3. In the sequel, we denote by R the set of all real numbers. For each $f \in \boldsymbol{L}^{1}$ and each $\lambda \in R$, we denote by $\boldsymbol{e}(f ; \lambda)$ the λ-spectral set, that is, the set $\{t: f(t)>\lambda\}$ $\subset I$; and we denote by \mathfrak{M}_{f} the σ-algebra generated by these sets. $f^{(a)}$ is the α truncation of f :

$$
\begin{equation*}
f^{(\alpha)}(t)=\alpha(t) \quad \text { if } f(t)>\alpha, \quad f^{(\alpha)}(t)=f(t) \quad \text { if } f(t) \leqq \alpha . \tag{3.1}
\end{equation*}
$$

Each function $f \in \boldsymbol{L}^{1}$ will be called smooth if $\mu\{t: f(t)=\lambda\}=0$ for all $\lambda \in R$.
Lemma 4. Let $T f=g, T \in \mathscr{D}$, and $f, g \in \boldsymbol{L}^{1}$. Then the following statements are equivalent.
(1) $f \sim g$;
(2) $T\left(f^{(\alpha)}\right)=g^{(\alpha)}$ for all $\alpha \in R$;
(3) $T \chi_{e(f ; \lambda)}=\chi_{e(g ; \lambda)}$ for all $\lambda \in R$.

Proof. (1) implies (2): Since $g=T f \geqq T\left(f^{(\alpha)}\right)$ and $\alpha 1 \geqq T\left(f^{(\alpha)}\right)$, we have $g^{(\alpha)}$ $\geqq T\left(f^{(\alpha)}\right)$. Moreover (1) implies

$$
\int_{0}^{1} g^{(\alpha)} d \mu=\int_{0}^{1} f^{(\alpha)} d \mu=\int_{0}^{1} T\left(f^{(\alpha)}\right) d \mu .
$$

Hence we obain (2).
(2) implies (3): For each $f \in \boldsymbol{L}^{1}$ and each $\lambda \in R$, let denote by $\tilde{\boldsymbol{e}}(f ; \lambda)$ the set $\{t: f(t) \geqq \lambda\}$. Then we have

$$
\mu\{t: \eta \leqq f(t)<\xi\}=\mu\left\{t: f^{(\xi)}(t)-f^{(\eta)}(t) \neq(\xi-\eta) \chi_{\tilde{e}\left(f_{;} ; \xi\right)}\right\}
$$

for each $f \in \boldsymbol{L}^{1}$ and each pair $\xi, \eta \in R$ with $\eta<\xi$. Hence we have

$$
\begin{equation*}
\left.\chi_{\tilde{e}\left(f_{j} ; \xi\right)}=\lim _{\eta \uparrow \xi} \frac{f^{(\xi)}-f^{(\eta)}}{\xi-\eta} \quad \text { (in } \boldsymbol{L}^{1} \text { norm }\right) \tag{3.2}
\end{equation*}
$$

for each $f \in \boldsymbol{L}^{1}$ and each $\xi \in R$. Therefore we get

$$
\begin{equation*}
T \chi_{\tilde{e}(f ; \xi)}=\chi_{\tilde{e}(g ; \xi)}, \quad \xi \in R, \tag{3.3}
\end{equation*}
$$

on account of (2). Then we can easily obtain (3) by the equality $\tilde{\boldsymbol{e}}(f ; \lambda)$

EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY STOCHASTIC OPERATORS 207
$=\cup_{1}^{\infty} \widetilde{e}(f ; \lambda+1 / n)$.
Finally, the implication $(3) \Rightarrow(1)$ is clear.
Theorem 2. Let $T f=g, T \in \mathscr{D}$ and $f, g \in \boldsymbol{L}^{1}$. Then $f \sim g$ if and only if $T{ }^{*} g=f$. ${ }^{3)}$
Proof. Since $T f=g, T \in \mathscr{D}$ implies $g<f$, it is easy to see that $T f=g$ and $T^{*} g=f$ imply $f \sim g$. On the other hand, if $T f=g$ and $f \sim g$, applying the statement (3) in Lemma 4, we have

$$
\begin{aligned}
\int_{0}^{1} T * \chi_{e(g ; \lambda)} d \mu=\int_{0}^{1} \chi_{e(g ; \lambda)} d \mu & =\int_{0}^{1} \chi_{e(g ; \lambda)} T \chi_{e(f ; \lambda)} d \mu \\
& =\int_{0}^{1} T * \chi_{e(g ; \lambda)} \cdot \chi_{e(f ; \lambda)} d \mu
\end{aligned}
$$

We also have

$$
T^{*} \chi_{e(g ; \lambda)} \geqq T^{*} \chi_{e(g ; \lambda)} \cdot \chi_{e(f ; \lambda)} .
$$

Therefore

$$
\begin{equation*}
T^{*} \chi_{e(g ; \lambda)}=T^{*} \chi_{e(g ; \lambda)} \cdot \chi_{e(f ; \lambda)} \tag{3.4}
\end{equation*}
$$

holds. (3.4) means $T * \chi_{e(g ; \lambda)} \leqq \chi_{e(f ; \lambda)}$. Hence we obtain

$$
T^{*} \chi_{e(g ; \lambda)}=\chi_{e(f ; \lambda)} .
$$

From this we can show easily that $T^{*} g=f$ holds.
Ryff [8] proved the following:
Theorem 3 (Ryff). To each $f \in \boldsymbol{L}^{1}$ there corresponds a $\sigma \in \Sigma$ such that $T_{\sigma} f^{*}=f .{ }^{4}$
Now we prove the following theorem, which plays an essential role in the rest of the present paper.

Theorem 4. For every smooth functon $f \in \boldsymbol{L}^{1}$, there corresponds one and only one d.s. operator T such that $T f^{*}=f$. This operator T is induced by some $\sigma \in \Sigma$. Moreover, $f^{*}=S f, S \in \mathscr{D}$ implies $S=T^{*}$.

Proof. By virtue of Lemma 4, if $T f^{*}=f$, and $T \in \mathscr{D}$, then we have $T \chi_{e(f * ; \lambda)}$ $=\chi_{e(f ; \lambda)}, \lambda \in R$. And our assumption that f be smooth implies $\mathfrak{M}_{f^{*}}=\mathfrak{M}$. Thus T coincides with T_{o}, where $\sigma \in \Sigma$ is obtained by Theorem 3.

Next, suppose $f^{*}=S f$. Then we have $S^{*} f^{*}=f$ by Theorem 2, we must have $S^{*}=T$, that is, $S=T^{*}$.

In Theorem 5 below, we shall give some simple characterizations of d.s. operators induced by m.p. transformations. Also, some of the statements are

[^0]nearly clear if we use the result due to v. Neumann [6, p. 582, Satz 1]. For completness and because the special case is much simpler than the general case, we intend to prove our Theorem 5 by mere use of the preceeding arguments. ${ }^{5)}$

Theorem 5. Let T be an d.s. operator. Then the following statements are equivalent.
(1) T is a permutator, that is, $f \sim T f$ for all $f \in \boldsymbol{L}^{1}$;
(2) T is truncation invariant, that is, $T f^{(\alpha)}=(T f)^{(\alpha)}$ for all $\alpha \in R$ and all $f \in \boldsymbol{L}^{1}$;
(3) T is multiplicative, that is, $T(f \cdot g)=T f \cdot T g$ for all $f, g \in \boldsymbol{L}^{\infty}$;
(4) T is an isometry in \boldsymbol{L}^{1};
(5) $T * T=I$;
(6) T is induced by a $\sigma \in \Sigma$.

In particular, a d.s. operator T is induced by $a \sigma \in \Sigma_{0}$ if and only if $T T^{*}=T^{*} T=I$.
Proof. First, the equivalence $(1) \Leftrightarrow(2)$ follows from Lemma 4.
Next, we have the implication $(1) \Rightarrow(6) \Rightarrow(3) \Rightarrow(5) \Rightarrow(1)$ as follows: Let T be a permutator. Then, in particular, for smooth $f \in \boldsymbol{L}^{1}$ we have $f^{*} \sim T f^{*}$. Hence follows (6) from Theorem 4. The implication (6) $\Rightarrow(3)$ is obvious. If T is multiplicative, $T \chi_{E}=\left(T \chi_{E}\right)^{2}$. So, $\chi_{E} \sim T \chi_{E}$ holds for each $E \in \mathfrak{M}$. Therefore by virtue of Theorem 2, $T^{*} T \chi_{E}=\chi_{E}$ for all $E \in \mathfrak{M}$, that is, $T^{*} T=I$. Finally, let $T^{*} T=I$. If there exists a function $f \in \boldsymbol{L}^{1}$ such that $f \sim T f$ does not hold, then we can find a numbers $s \in I$ for which

$$
\begin{equation*}
\int_{0}^{s}(T f)^{*} d \mu<\int_{0}^{s} f * d \mu \tag{3.5}
\end{equation*}
$$

holds on account of $T f<f$. Thus we must have

$$
\int_{0}^{s} f^{*} d \mu=\int_{0}^{s}\left(T^{*} T f\right)^{*} d \mu \leqq \int_{0}^{s}(T f)^{*} d \mu<\int_{0}^{s} f^{*} d \mu
$$

by (3. 5), which is a contradiction.
The proof of the implication $(6) \Rightarrow(4) \Rightarrow(5)$ is also given as follows: The implication $(6) \Rightarrow(4)$ is obvious. To prove $(4) \Rightarrow(5)$, we recall an elementary formula that

$$
\begin{equation*}
|a+b|+|a-b|=2(|a|+|b|) \quad a, b \in R \quad \text { if and only if } a \cdot b=0 . \tag{3.6}
\end{equation*}
$$

Now let T be an isometry. Then, for each $E \in \mathfrak{M}$,

$$
\begin{equation*}
\left\|T \chi_{E}+T \chi_{E} \mathrm{c}\right\|_{1}+\left\|T \chi_{E}-T \chi_{E} \mathrm{c}\right\|_{1}=2\left(\left\|T \chi_{E}\right\|_{1}+\left\|T \chi_{E} \mathrm{c}\right\|_{1}\right) \tag{3.7}
\end{equation*}
$$

5) Also, Satz 2 of v. Neumann [7, p. 584] is easily proved by use of Lemma 1, in $(0,1)$ case.
follows from

$$
\left\|\chi_{E}+\chi_{E} \mathrm{c}\right\|_{1}+\left\|\chi_{E}-\chi_{E} \mathrm{c}\right\|_{1}=2\left(\left\|\chi_{E}\right\|_{1}+\left\|\chi_{E} \mathrm{c}\right\|_{1}\right) .
$$

Therefore we have $T \chi_{E} T \chi_{E} \mathrm{C}=0$ by (3.6) and (3.7). Moreover, $T \in \mathscr{D}$ implies $T \chi_{E}$ $+T \chi_{E} \mathrm{c}=1$. It follows that $\chi_{E} \sim T \chi_{E}$ for all $E \in \mathfrak{M}$. Finally by the same argument used for the proof of $(3) \Rightarrow(5)$, we obtain the implication $(4) \Rightarrow(5)$.
4. Two pairs of functions $\left(f, f^{\prime}\right)$ and (g, g^{\prime}) on I are called simultaneously equimeasurable, if for each pair of $\alpha, \beta \in R$, we have

$$
\mu\left\{\boldsymbol{e}(f ; \alpha) \cap \boldsymbol{e}\left(f^{\prime} ; \beta\right)\right\}=\mu\left\{\boldsymbol{e}(g ; \alpha) \cap \boldsymbol{e}\left(g^{\prime} ; \beta\right)\right\}[4, \text { p. 61]. }
$$

We write

$$
\begin{equation*}
\left(f, f^{\prime}\right) \sim\left(g, g^{\prime}\right) \tag{4.1}
\end{equation*}
$$

if $\left(f, f^{\prime}\right)$ and (g, g^{\prime}) are simultaneously equimeasurable.
Now we shall call an f to be strongly equimeasurable with g, and write $f \sim g$, if for each $f^{\prime} \in \boldsymbol{L}^{1}$, there corresponds some g^{\prime} which satisfies $\left(f, f^{\prime}\right) \sim\left(g, g^{\prime}\right)$. It is clear that $f \sim g$ implies $f \sim g$.

TheOrem 6. f is strongly equimeasurable with g if and only if $T_{o} f=g$ holds for some m.p. transformation σ.

Proof. If f is strongly equimeasurable with g, by the definition, there is a function $u \in \boldsymbol{L}^{1}$ which satisfies both $x \sim u$ and

$$
\begin{equation*}
\left.(f, x) \sim(g, u) .{ }^{6}\right) \tag{4.2}
\end{equation*}
$$

Then, by Theorem 4, there is a unique $\sigma \in \Sigma$ so that equality $T_{\sigma} x=u$, and for every $\alpha \in R$,

$$
\begin{equation*}
\int_{\left(\beta, \beta^{\prime}\right]} \chi_{e(f ; \alpha)} d \mu=\int_{\sigma^{-1\left(\beta, \beta^{\prime}\right]}} \chi_{e(g ; \alpha)} d \mu \quad\left(\beta, \beta^{\prime} \in I\right) \tag{4.3}
\end{equation*}
$$

holds. It is easy to see that (4.3) implies

$$
\begin{equation*}
\int_{E} \chi_{e(f ; \alpha)} d \mu=\int_{\sigma^{-1}(E)} \chi_{e(f ; \alpha)} d \mu=\int_{0}^{1} \chi_{e(q ; \alpha)} T_{o} \chi_{E} d \mu, \tag{4.4}
\end{equation*}
$$

for each $E \in \mathfrak{M}$.
Substituting $E=\boldsymbol{e}(f ; \alpha)$ in (4.4), we have, on account of $f \sim g$,

$$
\begin{equation*}
\int_{0}^{1} \chi_{e(g ; \alpha)} d \mu=\int_{0}^{1} \chi_{e(f ; \alpha)} d \mu=\int_{0}^{1} \chi_{e(g ; \alpha)} T_{0} \chi_{e(f ; \alpha)} d \mu . \tag{4.5}
\end{equation*}
$$

(4. 5) means $\chi_{e(g ; \alpha)} \leqq T_{o} \chi_{e(f ; \alpha)}$. Thus we have $\chi_{e(f ; \alpha)}=T_{o} \chi_{e(f ; \alpha)}$, that is, $T_{o} f=g$, since
6) x denote the function $x(t)=t$.
$\alpha \in R$ is arbitrary.
The converse implication is clear; we have only to set $g^{\prime}=T_{o} f^{\prime}$ for each $f^{\prime} \in \boldsymbol{L}^{1}$.

Theorem 7. For each $f \in \boldsymbol{L}^{1}$, the following conditions are quivarent.
(1) $\mathfrak{M}_{f}=\mathfrak{M}$;
(2) for each g with $f \sim g$, there corresponds a unique $T \in \mathscr{D}$ such that $T f=g$;
(3) for each g with $f \sim g$, there corresponds a unique $u \in \boldsymbol{L}^{1}$ such that $(f ; x) \sim(g ; u)$.

Proof. The implication (1$) \Rightarrow(2)$ is an immediate consequence of the statement (1) in Lemma 4.
(2) implies (1): In general, if $f \sim g \in \boldsymbol{L}^{1}$ is not smooth, we can easily construct two d.s. operators $T_{\imath}, i=1,2$ such that $T_{1} \neq T_{2}$ and $T_{\imath} f=g, i=1.2$, since the Lebesgue measure on I is non-atomic. Thus, under the condition (2), f is smooth.

Then, by the condition $f \sim g$, and by use of Theorem 6 , we have

$$
\begin{equation*}
T_{\sigma_{1}} f=g, \quad \text { for a unique } \quad \sigma_{1} \in \Sigma \tag{4.6}
\end{equation*}
$$

On the other hand, we have
(4.7) $T_{o} f^{*}=f$, for a unique $\sigma_{2} \in \Sigma$, by Theorem 4.

Then (4.6) and (4.7) imply
(4. 8)

$$
T_{\sigma_{1}} T_{\sigma_{2}} T_{\sigma_{2}}^{*} f=g
$$

Therefore we must have

$$
\begin{equation*}
T_{\sigma_{1}}=T_{\sigma_{1}} T_{\sigma_{2}} T_{\sigma_{2}}^{*} \tag{4.9}
\end{equation*}
$$

And (4.9) holds if and only if $T_{\sigma_{2}} T_{\sigma_{2}}^{*}=I$, by (5) of Theorem 5; this is equivalent to $\sigma_{2} \in \Sigma_{0}$, by Theorem 5 again.

If $\sigma_{2} \in \Sigma_{0}$, then there exists, for each $E \in \mathfrak{M}$, an $F \in \mathfrak{M}$ such that $\chi_{E}=T_{\sigma_{2}} \chi_{F}$. Since f is smooth, F must belongs to $\mathfrak{M}_{f \text {.. }}$. Consequently, (4.7) implies $\mathfrak{M}_{f}=\mathfrak{M}$.

Finally, the implication $(3) \Leftrightarrow(2)$ is implicit in the proof of Theorem 6.

References

[1] Calderón, A. P., Saces between L^{1} and L^{∞} and the theorem of Marcinkiewictz. Studia Math. 26 (1966), 273-299.
[2] Hardy, G. H., J. E. Littlewood, and G. Pólya, Inequalities. Cambridge Univ. Press, Cambridge, 1952.
[3] Kadison, R. V., The trace in finite operator algebras. Proc. Amer. Math. Soc. 12 (1961) 973-977.
[4] Lorentz, G. G., Bernstein polynomials. Toronto Univ. Press, Toronto (1953).
[5] Mirsky, L., Results and problems in the theory of doubly stochastic matrices. Z. Wahr. 1 (1963), 319-334.

EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY STOCHASTIC OPERATORS 211
[6] von Neumann, J., Einige Sätze über meßbare Abbildungen. Ann. of Math. 33 (1932), 574-586.
[7] Phelps, R. R., Extreme positive operators and homomorphisms. Trans. Amer. Math. Soc. 108 (1963), 265-274.
[8] Ryff, J. V., Orbits of L^{1}-functions under doubly stochastic transformation. Trans. Amer. Math. Soc. 117 (1965), 92-100.

Faculty of Engineering, Shinshu University. Department of Mathematics, Tokyo Institute of Technology.

[^0]: 3) $T \in \mathscr{D}$ implies $T^{*} \in \mathscr{D}$, where T^{*} is a unique extension of the adjoint of T to an operator acting on L^{1}.
 4) f^{*} is the decreasing rearrangement of f.
