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EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY
STOCHASTIC OPERATORS

By Y0j1 SakAl AND TETSUYA SHIMOGAKI

1. As a continuous version of doubly stochastic matrices, a linear operator 7'
from the real Lebesgue space L'(0, 1) into itself is called doubly stochastic (d.s., in
short) if

1.1 T1=1,
1.2 T#1=1,
and

1.3 T=0,

where 1 denotes the function whose range is {1}, and (1.3) means that 7/ =0
whenever f=0. (1. 2) is equivalent to the requirement that [(7fdp=/[;fdy for all
feL?, where p denotes the Lebesgue measure on (0,1). As is easily seen, every
d.s. operator is a contraction in both L' and L* norms (||T|:=1, and ||T|l.=1).
Furthermore, 7/ <f holds for all felL!, where < denotes the continuous version
of the preorder of Hardy—Littlewood and Pély [2, 8].

In the sequel, we denote by I the set of all Lebesgue measurable sets in
I=(0,1). e=e’, e, e’eM, means that the measure of the symmetric difference of
e, e’ is zero, or equivarently, that X, the characteristic function of e, is identified
with X, as an element of L. Let e, e;€M with ple))=p(es). A mapping ¢ from
e, (exactly speaking, defined a.e. on e;) into e, is called a measure preserving trans-
Jormation® (m.p. transformation, in short) from e, into e, if

1. 4) o (e)eM and plo~'(e))=pleNes) for all ecIN.

If ¢! is a m.p. transformation from e, into e; again, ¢ is called invertible measure
preserving from e, onto e,. For each m.p. transformation ¢ from I into itself, the
operator T, defined by

1.5) Lf)=/flet)  (tel)

is a d.s. operator, and is called a d.s. operator induced by o. In what follows, g
stands for the set of all d.s. operators and 3(2,) for the set of all m.p. (resp. inver-
tible m.p.) transformations on /. Then ¢ is a convex set and each 7,, s€2 is, as
is easily verified, multiplicative, that is, 7,(f-¢9)=7,f-T,¢ for all f, geL>, and is
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1) Two such transformations will be identified if they differ on a set of measure zero.
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on extreme point of @ [7]. Also T,f~f holds, where f~g¢g means that f and ¢
are equimeasurable.? Since every T€ 9 acts as a contraction on L®, we can con-
sider @ as a subset of the operator space of L*. It is known [8] that, according
to a general compactness theorem of Kadison [3], @ is compact in the weak*-
operator topology.

Let ¢ and Yy be #n-vetors (1, -+, x,) and (yi, -+, ¥») respectively. It is clear that

(1. 6) if vy is a n-vector whose coordinates y; are obtained by a permutation of the
coordinates of x, then there exists a n-square permutation matrix P such that g=yP.
A continuous version of this statement would be the following:

A7) if f~gq, f, geL?, there exists an o€l such that T,f=qg.

Unfortunately, however, the statement (1. 7) is not valid in general. It is only
known [1, 8] that if f~yg, f, geL?, there exists an 7€9 such that Tf=g. More
precisely, Ryff [8] has shown that such a T' can be chosen from d.s. operators of
the form TX7T,, o1, 0:€2.

In §2, we shall present an alternative proof of this Ryff’s theorem in a some-
what different form. Namely we shall show that if f~g, f, geL* there exists an
Teqg such tha Tf=g which is a w*-cluster point of a sequence of members
of T,, 6eZ.

In §3, some fundamental properties of d.s. operators will be studied. In [6]
Mirsky called a d.s. operator T a permutator if f~Tf holds for all feL:. We
shall show that each permutator 7' is nothing but a d.s. operator induced by a
m.p. transformation ¢, i.e., T=7T, (Theorem 5). Also some characterizations for the
d.s. operators induced by m.p. transformations will be given.

Finally, in §4, we shall give a necessary and sufficient condition for f~g, f,
geL!, under which we can find an ¢e2 such that 7,f =g holds.

The authors of the present paper express their hearty thanks to Professor H.
Umegaki for his kind encouragements.

2. We shall give an alternative proof of the Ryff’s theorem:

TurorREM 1. If f and g are equimeasurable on I=(0, 1), then Tf =g holds for
a d.s. operator T which is a w*-cluster point of a sequence of members of T,, 6€2,.

To prove this theorem we use a lemma due to Lorentz [4, p. 60].

LemMaA 1 (Lorentz). Let f and g be egimeasurabe. If C is any set of real
numbers for which f~(C) is measurable, then so is g~ (C) and both sets have the
same measure.

The following lemma is known. For the convenience of readers, we present
here a proof based on the preceeding lemma.

2) f and g are called equimeasurable if dy, the distribution function of f, is equal to dj.



EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY STOCHASTIC OPERATORS 205
LEMMA 2. If ple))=ples), e, e:€R, then there exists an o€ Xy such that o(e;)=e,.

Proof. Let ki(t)=f{%,dy, 0<t<1, i=1, 2. The functions &;, i=1, 2, are posi-
tive, continuous, and non-decreasing on I. Also denote by f, the function kX,
Then it is easy to see that f; and f, are equimeasurable, and k;'(2) is a single
point or a closed interval in I for any 1€(0, a), a=p(e.)=p(es;). We put J, the set
of all 2¢€(0, @) such that £;!() is not a set of a single point. Then J; is a count-
able set for each i. Putting &=r;{0, a)—/1UJ:}, i=1, 2, we see that &cCe; and
é:=e;. If we define a mapping ¢; from & onto & by

@0 ai(S)=f7Yfi(s)}, seéy,

g1 is a one to one mapping from & onto &. Furthermore, ¢, is a m.p. trans-
formation from &, onto &. In fact, for every eet with eCé, o7 (e)=s7{fae)} is
measurable and p(o7'(e))=p(e) by Lemma 1. In the same way we can also verify
that ¢7! is a m.p. transformation from &, onto &. Thus ¢; is an invertible m.p.
transformation from e; onto e, since e;=é&;, i=1, 2. Now in the same way we
can find an invertible m.p. transformation ¢, from e{ to e;. Consequently, putting
a(s)=0.(s) if seces; a(s)=0s(s) if sce, we see that ¢ is an invertible m.p. trans-
formation on [ for which o(e;)=e,.

From the proof above, it follows that if {e;}?.. and {e}?., are two systems of
mutually disjoint sets of M with w(e;)=p(e;) for all 1=i=#n, there exists an g€,
such that g(e;)=e! for all 1=i=un. Now let S denote the set of all simple func-
tions on I. Then we have immediately

Lemma 3. If f~g, f,g€S, then there exists an o€y for which T,f =g holds.

Proof of THEOREM 1. First we prove in the case that 0=f, geL!, and f~g.
For every meN (IN stands for the set of all integers) let F,, o=/f"![1n, ), Gn,o
=g[n, 00), Fox=s"[2""(k—1), 2-"k), and G r=g-'[2-"(k—1), 2-"k), where k=1, -,
2"n. Since f~g¢g and both {F, % and {Gn, 1} are systems of mutually disjoint
sets, Lemma 3 shows that for every neN there exists an ¢,€2, such that T, Xr, ,
=Xa,,;, for all k=0, -+, 2",. If we put

2nn

2nn
Ja= Zl 27 k—1Ap, yH+1hr, 0 Gn= kZ1 27 k—De, +nay,
k= =

T.,fn=gn, n€N holds. Moreover, since each Fy, «(Gm.r), 0=k=2"m is contained
in an F,, 1, (resp. Gn,r) if #=m, we have

2. 2) Lot n=0n, if n=m.

We write &F,={T,, Tu;,,, -}™", the closure of {T,, T, -} in the w*-operator
topology, for each i. Since &), considered as a subset of the operator space of L=,
is w*-compact, there exists an 7€g such that T'eny; F,.. For each fixed meN,
there is a subnet {T.}c{T,,, Top 1 -} such that T=w*—lim,T.. Since Tofn=gm

am

holds for every T,, by (2.2) and f,€L>, we have
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1 . 1 1
S qumthmS uTafmd,u=S g
0 « 0 0

for every weL'. Hence Tfn=gn» holds for every meN. Finally, for every m,
llg— Tl =llg—gnlli+llgmn— T wll s+ Tf =T 1= lg— gl s+ fn— fll1s

which implies g=T7.
For a proof in the general case we have only to recall that if f~geL' we
have f+~g*, f~~¢-, and if we construct f3%, g3, fn, 92€S in a similar way as

above, we have fi—fn~gt—gn€S and fit—fa—f, gs—gn—g¢ in L' norm.

3. In the sequel, we denote by R the set of all real numbers. For each feL!
and each 1€R, we denote by e(f; A) the A-spectral set, that is, the set {£:f#)>2}
cI; and we denote by M, the g-algebra generated by these sets. f is the a-
truncation of f:

@1 FOBO=a®) if fO>a, [fOO=70) if f)=a.
Each function feL! will be called smooth if p{¢: f(#)=2}=0 for all 2eR.

LeMMA 4. Let Tf =g, T€D, and f,gel*. Then the following statements are
equivalent.

(1) f~g;

(2) T(f)=g¢g for all a€R;

( 3 ) Txe(f; 2) =xe(g; 2) fOr all /IGR.

Proof. (1) implies (2): Since ¢g=Tf=T(f) and al=T(f*), we have ¢
=T(f). Moreover (1) implies
1 1 1
[ooau= roap={ 107 d
0 0 0

Hence we obain (2).
(2) implies (3): For each feL! and each 1€R, let denote by &(f; 1) the set

{t: f@=2}. Then we have
plt 2 n=fO<&=plt : fOG—FPE)*E—NXecs; 0}
for each feL! and each pair £ »eR with <. Hence we have
f(é)_f(ﬂ)

3. 2) Xecrio= 1711?51 '—? (in L' norm)

for each feL' and each éeR. Therefore we get
(3' 3) Tx;(f; & =X'E(g; & SGR,
on account of (2). Then we can easily obtain (3) by the equality é(f; 2)
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= UTe(f; 2+1/n).
Finally, the implication (3)=>(1) is clear.

THEOREM 2. Let Tf =g, TeD and f,geL'. Then f~gq if and only if T*g=f.>

Proof. Since Tf=g, Teqg implies ¢g<f, it is easy to see that Tf=g and
T*¢=f imply f~g. On the other hand, if Tf=¢ and f~g¢, applying the state-
ment (3) in Lemma 4, we have

1 1 1
SOT*Xe(g; »dp= Soxe(g; »dp= Soxe(g; o TXecr; » dpe

= (14t e
We also have
T*Xecg; 0 Z T* e > Xetr; -
Therefore
(3.4) T*ecg;0=T*Xecg; > Xecr; »
holds. (3. 4) means T*Xeey, » =Xecr,»n- Hence we obtain
T*Xecg; » =Xecr; -
From this we can show easily that T#g=f holds.
Ryff [8] proved the following:
TueoreM 3 (Ryff). To each feL® there corresponds a o€l such that T,f*=f2

Now we prove the following theorem, which plays an essential role in the
rest of the present paper.

THEOREM 4. For every smoolh functon feL', there corresponds one and only
one d.s. operator T such that Tr*=f. This operator T is induced by some oelX.
Moreover, f*=Sf, Se D implies S=T*.

Proof. By virtue of Lemma 4, if Tf*=f, and Teq, then we have T¥ecse,»
=Xecsr,», A€R. And our assumption that f be smooth implies M=M. Thus T
coincides with T,, where s¢Y is obtained by Theorem 3.

Next, suppose f*=Sf. Then we have S*f*=f by Theorem 2, we must have
S*=T, that is, S=T*.

In Theorem 5 below, we shall give some simple characterizations of d.s.
operators induced by m.p. transformations. Also, some of the statements are

3) Te implies T*e9), where T* is a unique extension of the adjoint of T to an
operator acting on L1
4) f* 1s the decreasing rearrangement of f.
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nearly clear if we use the result due to v. Neumann [6, p. 582, Satz 1]. For com-
pletness and because the special case is much simpler than the general case, we
intend to prove our Theorem 5 by mere use of the preceeding arguments.®

THEOREM 5. Let T be an d.s. opervator. Then the following statements are
equivalent.

(1) T is a permutator, that is, f~Tf for all feL;
(2) T is truncation invariant, that is, Tf > =(Tf)® for all a€R and all
feL
(3) T is multiplicative, that is, T(f-q)=Tf Ty for all f, geL>;
(4) T is an isometry in LY
(5) I*T=I;
(6) T is induced by a cel.
In particular, a d.s. operator T is induced by a o€y if and only if TT*=T*T=1I.

Proof. First, the equivalence (1)¢&(2) follows from Lemma 4.

Next, we have the implication (1)=(6)=>(3)=>(5)=>(1) as follows: Let T be a
permutator. Then, in particular, for smooth feL' we have f*~Tf* Hence
follows (6) from Theorem 4. The implication (6)=>(3) is obvious. If T is multi-
plicative, TXz=(T2g)%. So, Xz~TXz holds for each EeIR. Therefore by virtue
of Theorem 2, T*TXz=1z for all EeI, that is, T*T=1. Finally, let T*T=1. If
there exists a function feL! such that f~Tf does not hold, then we can find a
numbers sel for which

3.5) {@ryau< reay
holds on account of 7f<f. Thus we must have
sz* dy= SS(T*Tf)* du= Ss(Tf)*dp< S"f*d#
0 0 0 0

by (3. 5), which is a contradiction.

The proof of the implication (6)=>(4)=>(5) is also given as follows: The
implication (6)=>(4) is obvious. To prove (4)=(5), we recall an elementary for-
mula that

(8. 6) la+b|+|a—b|=2(|a|+|b]) @, beR if and only if @-b=0.
Now let T be an isometry. Then, for each EeR,
6.7 1 Txz+ Txzclli+1Txe— T2sc |y =2(| T2z ||+ T2zc|l)

5) Also, Satz 2 of v. Neumann [7, p. 584] is easily proved by use of Lemma 1, in
0, 1) case. -
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follows from
[[Xz+2zc|li+ X e—Xec |1 =2(X sl +||XzC[|1).

Therefore we have T2zTXzc=0 by (3.6) and (3.7). Moreover, Te 9 implies TXz
+Txzc=1. It follows that Xz~ TXz for all EeMM. Finally by the same argument
used for the proof of (3)=(5), we obtain the implication (4)=>(5).

4. Two pairs of functions (f, f’) and (g,¢’) on I are called simultancously
equimeasurable, if for each pair of «, feR, we have

we(f; e)ne(f”; Pi=plelg; a)Neld’; B)} [4, p. 61].
We write

(41) (fs f)~ (0, d)

if (f, f/) and (g, ¢’) are simultaneously equimeasurable.

Now we shall call an f to be strongly equimeasurable with g, and write f~g,
if for each f’eL!, there corresponds some ¢’ which satisfies (f, f/)~(g, ¢’). It is
clear that f~»¢ implies f~g.

THEOREM 6. f is strongly equimeasurable with g if and only if T.f=g holds
for some m.p. transformation o.

Proof. If f is strongly equimeasurable with ¢, by the definition, there is a
function #eL* which satisfies both z ~# and

4.2) (f5 &)~ (9, w)."

Then, by Theorem 4, there is a unique ¢€X so that equality T,x=w, and for
every a€R,

*.9) { tgwde={  twode gD
@81 =18, '3

holds. It is easy to see that (4. 3) implies

4. 4) [ 2o =
E

for each Ee.
Substituting E=e(f; a) in (4. 4), we have, on account of f~ug,

1
Xecr;m dpp= S Xecio» Tokp dp,
e 0

o

1 1 1
(4 5) Soxe(q; ) d{,t: S Xe(f; ) dﬂz Soxe(g; @) Tvxe(f; a) d,u~
0

(4. 5) meanS Xe(g; a) é T.,Xe(f; a)e Thus We have Xe(g; a) = Taxe(f; a)y that isi T0f=g? Since

6) x denote the function x(#)=t,
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a€R is arbitrary.
The converse implication is clear; we have only to set ¢’=7,f" for
each fel*

THEOREM 7. For each felL', the following conditions are quivarent.

(1) M=

(2) for each g with f~gq, there corresponds a unique Te€q) such that Tf=g;

(3) for each g with f~»g, there corresponds a wunique ueL' such that
(fs ®)~(g; u).

Proof. The implication (1)=>(2) is an immediate consequence of the statement
(1) in Lemma 4.

(2) implies (1): In general, if f~geL! is not smooth, we can easily con-
struct two d.s. operators 7, i=1, 2 such that Tv=xT, and T,f =g, i=1.2, since the
Lebesgue measure on I is non-atomic. Thus, under the condition (2), f is smooth.

Then, by the condition f~g¢g, and by use of Theorem 6, we have

4. 6) T..f=y, for a unique o,€2.

On the other hand, we have
4.7 T,f*=f, for a unique ¢,€%, by Theorem 4.
Then (4. 6) and (4. 7) imply

4. 8) 1,1, Tk f=g.
Therefore we must have
4.9 T,,=T.,T,T%

And (4.9) holds if and only if T,,T%=1I, by (5) of Theorem 5; this is equivalent
to 0:€2y, by Theorem 5 again.
If 0,€%0, then there exists, for each FeM, an FeM such that Xz=T,,Xr. Since
f is smooth, F' must belongs to M. Consequently, (4. 7) implies M =M.
Finally, the implication (3)&>(2) is implicit in the proof of Theorem 6.

REFERENCES

[1] CALDERON, A. P, Saces between L' and L~ and the theorem of Marcinkiewictz.
Studia Math. 26 (1966), 273-299.

[2] Harpy, G. H, J. E. LirtLEwooD, AND G. POLva, Inequalities. Cambridge Univ.
Press, Cambridge, 1952.

[3] Kabison, R. V., The trace in finite operator algebras. Proc. Amer. Math. Soc.
12 (1961) 973-977.

[4] Lorentz, G. G., Bernstein polynomials. Toronto Univ. Press, Toronto (1953).

[5] Mirsky, L., Results and problems in the theory of doubly stochastic matrices.
Z. Wahr. 1 (1963), 319-334.



EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY STOCHASTIC OPERATORS 211

[6] von Neumann, J., Einige Sdtze iiber meBbare Abbildungen. Ann. of Math. 33
(1932), 574-586.

[7] Puevrps, R. R, Extreme positive operators and homomorphisms. Trans. Amer.
Math. Soc. 108 (1963), 265-274.

[81 Ryrr, J. V., Orbits of Li-functions under doubly stochastic transformation. Trans.

Amer. Math. Soc. 117 (1965), 92-100.

FacuLTy oF ENGINEERING,

SHINSHU UNIVERSITY.

DEPARTMENT OF MATHEMATICS,
Tokyo INSTITUTE oF TECHNOLOGY.





