EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY STOCHASTIC OPERATORS

By Yūji Sakai and Tetsuya Shimogaki

1. As a continuous version of doubly stochastic matrices, a linear operator T from the real Lebesgue space $L^{1}(0, 1)$ into itself is called *doubly stochastic* (*d.s.*, in short) if

(1.1) T1=1,

(1.2) T*1=1,

and

 $(1.3) T \ge 0,$

where 1 denotes the function whose range is {1}, and (1.3) means that $Tf \ge 0$ whenever $f \ge 0$. (1.2) is equivalent to the requirement that $\int_0^1 Tf d\mu = \int_0^1 f d\mu$ for all $f \in L^1$, where μ denotes the Lebesgue measure on (0, 1). As is easily seen, every d.s. operator is a contraction in both L^1 and L^{∞} norms ($||T||_1 \le 1$, and $||T||_{\infty} \le 1$). Furthermore, $Tf \prec f$ holds for all $f \in L^1$, where \prec denotes the continuous version of the preorder of Hardy—Littlewood and Póly [2, 8].

In the sequel, we denote by \mathfrak{M} the set of all Lebesgue measurable sets in I=(0, 1). $e \equiv e', e, e' \in \mathfrak{M}$, means that the measure of the symmetric difference of e, e' is zero, or equivarently, that χ_e , the characteristic function of e, is identified with $\chi_{e'}$ as an element of L^1 . Let $e_1, e_2 \in \mathfrak{M}$ with $\mu(e_1) = \mu(e_2)$. A mapping σ from e_1 (exactly speaking, defined a.e. on e_1) into e_2 is called a measure preserving transformation¹ (m.p. transformation, in short) from e_1 into e_2 , if

(1.4)
$$\sigma^{-1}(e) \in \mathfrak{M} \text{ and } \mu(\sigma^{-1}(e)) = \mu(e \cap e_2) \text{ for all } e \in \mathfrak{M}.$$

If σ^{-1} is a m.p. transformation from e_2 into e_1 again, σ is called *invertible measure* preserving from e_1 onto e_2 . For each m.p. transformation σ from I into itself, the operator T_{σ} defined by

(1.5)
$$T_{\sigma}f(t) = f(\sigma t) \qquad (t \in I)$$

is a d.s. operator, and is called a *d.s. operator induced by* σ . In what follows, \mathcal{D} stands for the set of all d.s. operators and $\Sigma(\Sigma_0)$ for the set of all m.p. (resp. invertible m.p.) transformations on *I*. Then \mathcal{D} is a convex set and each T_{σ} , $\sigma \in \Sigma$ is, as is easily verified, multiplicative, that is, $T_{\sigma}(f \cdot g) = T_{\sigma}f \cdot T_{\sigma}g$ for all f, $g \in L^{\infty}$, and is

Received April 13, 1971.

¹⁾ Two such transformations will be identified if they differ on a set of measure zero.

on extreme point of \mathcal{D} [7]. Also $T_{\sigma}f \sim f$ holds, where $f \sim g$ means that f and g are equimeasurable.²⁾ Since every $T \in \mathcal{D}$ acts as a contraction on L^{∞} , we can consider \mathcal{D} as a subset of the operator space of L^{∞} . It is known [8] that, according to a general compactness theorem of Kadison [3], \mathcal{D} is compact in the weak*-operator topology.

Let \mathfrak{x} and \mathfrak{y} be *n*-vetors (x_1, \dots, x_n) and (y_1, \dots, y_n) respectively. It is clear that

(1.6) if y is a n-vector whose coordinates y_i are obtained by a permutation of the coordinates of y, then there exists a n-square permutation matrix \mathbf{P} such that $y=y\mathbf{P}$. A continuous version of this statement would be the following:

(1.7) if $f \sim g$, f, $g \in L^1$, there exists an $\sigma \in \Sigma$ such that $T_{\sigma}f = g$.

Unfortunately, however, the statement (1, 7) is not valid in general. It is only known [1, 8] that if $f \sim g$, $f, g \in L^1$, there exists an $T \in \mathcal{D}$ such that Tf = g. More precisely, Ryff [8] has shown that such a T can be chosen from d.s. operators of the form $T_{e_1}^* T_{e_2}, \sigma_1, \sigma_2 \in \Sigma$.

In §2, we shall present an alternative proof of this Ryff's theorem in a somewhat different form. Namely we shall show that if $f \sim g$, $f, g \in L^1$ there exists an $T \in \mathcal{D}$ such tha Tf = g which is a w^* -cluster point of a sequence of members of $T_{\sigma}, \sigma \in \Sigma_0$.

In §3, some fundamental properties of d.s. operators will be studied. In [6] Mirsky called a d.s. operator T a *permutator* if $f \sim Tf$ holds for all $f \in L^1$. We shall show that each permutator T is nothing but a d.s. operator induced by a m.p. transformation σ , i.e., $T = T_{\sigma}$ (Theorem 5). Also some characterizations for the d.s. operators induced by m.p. transformations will be given.

Finally, in §4, we shall give a necessary and sufficient condition for $f \sim g$, f, $g \in L^1$, under which we can find an $\sigma \in \Sigma$ such that $T_{\sigma}f = g$ holds.

The authors of the present paper express their hearty thanks to Professor H. Umegaki for his kind encouragements.

2. We shall give an alternative proof of the Ryff's theorem:

THEOREM 1. If f and g are equimeasurable on I=(0, 1), then Tf=g holds for a d.s. operator T which is a w^{*}-cluster point of a sequence of members of T_{a} , $\sigma \in \Sigma_{0}$.

To prove this theorem we use a lemma due to Lorentz [4, p. 60].

LEMMA 1 (Lorentz). Let f and g be eqimeasurable. If C is any set of real numbers for which $f^{-1}(C)$ is measurable, then so is $g^{-1}(C)$ and both sets have the same measure.

The following lemma is known. For the convenience of readers, we present here a proof based on the preceeding lemma.

²⁾ f and g are called equimeasurable if d_f , the distribution function of f, is equal to d_g .

LEMMA 2. If $\mu(\mathbf{e}_1) = \mu(\mathbf{e}_2)$, $\mathbf{e}_1, \mathbf{e}_2 \in \mathfrak{M}$, then there exists an $\sigma \in \Sigma_0$ such that $\sigma(\mathbf{e}_1) \equiv \mathbf{e}_2$.

Proof. Let $k_i(t) = \int_0^t \chi_{e_i} d\mu$, 0 < t < 1, i=1, 2. The functions k_i , i=1, 2, are positive, continuous, and non-decreasing on *I*. Also denote by f_i the function $k_i \chi_{e_i}$. Then it is easy to see that f_1 and f_2 are equimeasurable, and $k_i^{-1}(\lambda)$ is a single point or a closed interval in *I* for any $\lambda \in (0, \alpha)$, $\alpha = \mu(e_1) = \mu(e_2)$. We put J_i the set of all $\lambda \in (0, \alpha)$ such that $k_i^{-1}(\lambda)$ is not a set of a single point. Then J_i is a countable set for each *i*. Putting $\tilde{e}_i = f_i^{-1}\{(0, \alpha) - J_1 \cup J_2\}$, i=1, 2, we see that $\tilde{e}_i \subset e_i$ and $\tilde{e}_i \equiv e_i$. If we define a mapping σ_1 from \tilde{e}_1 onto \tilde{e}_2 by

(2.1)
$$\sigma_1(s) = f_2^{-1} \{ f_1(s) \}, \ s \in \tilde{e}_1,$$

 σ_1 is a one to one mapping from \tilde{e}_1 onto \tilde{e}_2 . Furthermore, σ_1 is a m.p. transformation from \tilde{e}_1 onto \tilde{e}_2 . In fact, for every $e \in \mathfrak{M}$ with $e \subset \tilde{e}_2$, $\sigma_1^{-1}(e) = f_1^{-1}\{f_2(e)\}$ is measurable and $\mu(\sigma_1^{-1}(e)) = \mu(e)$ by Lemma 1. In the same way we can also verify that σ_1^{-1} is a m.p. transformation from \tilde{e}_2 onto \tilde{e}_1 . Thus σ_1 is an invertible m.p. transformation from e_2 , since $e_i \equiv \tilde{e}_i$, i=1, 2. Now in the same way we can find an invertible m.p. transformation σ_2 from e_1° to e_2° . Consequently, putting $\sigma(s) = \sigma_1(s)$ if $s \in e_1$; $\sigma(s) = \sigma_2(s)$ if $s \in e_1^\circ$, we see that σ is an invertible m.p. transformation on I for which $\sigma(e_1) \equiv e_2$.

From the proof above, it follows that if $\{e_i\}_{i=1}^n$ and $\{e'_i\}_{i=1}^n$ are two systems of mutually disjoint sets of \mathfrak{M} with $\mu(e_i) = \mu(e'_i)$ for all $1 \leq i \leq n$, there exists an $\sigma \in \Sigma_0$ such that $\sigma(e_i) \equiv e'_i$ for all $1 \leq i \leq n$. Now let \mathcal{S} denote the set of all simple functions on I. Then we have immediately

LEMMA 3. If $f \sim g$, $f, g \in S$, then there exists an $\sigma \in \Sigma_0$ for which $T_\sigma f = g$ holds.

Proof of THEOREM 1. First we prove in the case that $0 \leq f$, $g \in L^1$, and $f \sim g$. For every $n \in N$ (N stands for the set of all integers) let $F_{n,0} = f^{-1}[n, \infty)$, $G_{n,0} = g^{-1}[n, \infty)$, $F_{n,k} = f^{-1}[2^{-n}(k-1), 2^{-n}k)$, and $G_{n,k} = g^{-1}[2^{-n}(k-1), 2^{-n}k)$, where $k = 1, \dots, 2^n n$. Since $f \sim g$ and both $\{F_{n,k}\}_{k=0}^{2nn}$ and $\{G_{n,k}\}_{k=0}^{2nn}$ are systems of mutually disjoint sets, Lemma 3 shows that for every $n \in N$ there exists an $\sigma_n \in \Sigma_0$ such that $T_{\sigma_n} \chi_{F_{n,k}} = \chi_{G_{n,k}}$ for all $k=0, \dots, 2^n$. If we put

$$f_n = \sum_{k=1}^{2^n n} 2^{-n} (k-1) \chi_{F_{n,k}} + n \chi_{F_{n,0}}, \quad g_n = \sum_{k=1}^{2^n n} 2^{-n} (k-1) \chi_{G_{n,k}} + n \chi_{G_{n,0}},$$

 $T_{\sigma_n}f_n = g_n$, $n \in N$ holds. Moreover, since each $F_{m,k}(G_{m,k})$, $0 \leq k \leq 2^m m$ is contained in an $F_{n,k}$ (resp. $G_{n,k}$) if $n \leq m$, we have

$$(2.2) T_{\sigma_m} f_n = g_n, \quad \text{if} \quad n \leq m.$$

We write $\mathcal{F}_i = \{T_{\sigma_i}, T_{\sigma_{i+1}}, \cdots\}^{-w^*}$, the closure of $\{T_{\sigma_i}, T_{\sigma_{i+1}}, \cdots\}$ in the *w**-operator topology, for each *i*. Since \mathcal{D} , considered as a subset of the operator space of L^{∞} , is *w**-compact, there exists an $T \in \mathcal{D}$ such that $T \in \bigcap_{i=1}^{\infty} \mathcal{F}_i$. For each fixed $m \in N_i$, there is a subnet $\{T_a\} \subset \{T_{\sigma_m}, T_{\sigma_{m+1}}, \cdots\}$ such that $T = w^* - \lim_{\alpha} T_{\alpha}$. Since $T_a f_m = g_m$ holds for every T_a , by (2. 2) and $f_m \in L^{\infty}$, we have

YŪJI SAKAI AND TETSUYA SHIMOGAKI

$$\int_{0}^{1} u T f_{m} d\mu = \lim_{\alpha} \int_{0}^{1} u T_{\alpha} f_{m} d\mu = \int_{0}^{1} u g_{m} d\mu,$$

for every $u \in L^1$. Hence $Tf_m = g_m$ holds for every $m \in N$. Finally, for every m,

$$||g - Tf||_1 \le ||g - g_m||_1 + ||g_m - Tf_m||_1 + ||Tf_m - Tf||_1 \le ||g - g_m||_1 + ||f_m - f||_1,$$

which implies g = Tf.

For a proof in the general case we have only to recall that if $f \sim g \in L^1$ we have $f^+ \sim g^+$, $f^- \sim g^-$, and if we construct f_n^+ , g_n^+ , f_n^- , $g_n^- \in S$ in a similar way as above, we have $f_n^+ - f_n^- \sim g_n^+ - g_n^- \in S$ and $f_n^+ - f_n^- \rightarrow f$, $g_n^+ - g_n^- \rightarrow g$ in L^1 norm.

3. In the sequel, we denote by R the set of all real numbers. For each $f \in L^1$ and each $\lambda \in R$, we denote by $e(f; \lambda)$ the λ -spectral set, that is, the set $\{t: f(t) > \lambda\}$ $\subset I$; and we denote by \mathfrak{M}_f the σ -algebra generated by these sets. $f^{(\alpha)}$ is the α truncation of f:

(3.1)
$$f^{(\alpha)}(t) = \alpha(t) \quad \text{if} \quad f(t) > \alpha, \quad f^{(\alpha)}(t) = f(t) \quad \text{if} \quad f(t) \leq \alpha.$$

Each function $f \in L^1$ will be called smooth if $\mu\{t: f(t) = \lambda\} = 0$ for all $\lambda \in R$.

LEMMA 4. Let Tf = g, $T \in \mathcal{D}$, and $f, g \in L^1$. Then the following statements are equivalent.

- (1) $f \sim g;$
- (2) $T(f^{(\alpha)})=g^{(\alpha)}$ for all $\alpha \in R$;
- (3) $T\chi_{e(f;\lambda)} = \chi_{e(g;\lambda)}$ for all $\lambda \in \mathbb{R}$.

Proof. (1) implies (2): Since $g = Tf \ge T(f^{(\alpha)})$ and $\alpha 1 \ge T(f^{(\alpha)})$, we have $g^{(\alpha)} \ge T(f^{(\alpha)})$. Moreover (1) implies

$$\int_0^1 g^{(\alpha)} d\mu = \int_0^1 f^{(\alpha)} d\mu = \int_0^1 T(f^{(\alpha)}) d\mu.$$

Hence we obain (2).

(2) implies (3): For each $f \in L^1$ and each $\lambda \in R$, let denote by $\tilde{e}(f; \lambda)$ the set $\{t: f(t) \ge \lambda\}$. Then we have

$$\mu\{t:\eta \leq f(t) < \xi\} = \mu\{t: f^{(\xi)}(t) - f^{(\eta)}(t) \neq (\xi - \eta) \chi_{\tilde{e}(f;\xi)}\}$$

for each $f \in L^1$ and each pair $\xi, \eta \in R$ with $\eta < \xi$. Hence we have

(3.2)
$$\chi_{\widetilde{e}(f; \epsilon)} = \lim_{\eta \uparrow \epsilon} \frac{f^{(\epsilon)} - f^{(\eta)}}{\xi - \eta} \quad (\text{in } L^1 \text{ norm})$$

for each $f \in L^1$ and each $\xi \in R$. Therefore we get

$$(3.3) T\chi_{\widetilde{e}(f;\xi)} = \chi_{\widetilde{e}(g;\xi)}, \quad \xi \in \mathbb{R},$$

on account of (2). Then we can easily obtain (3) by the equality $\tilde{e}(f; \lambda)$

206

 $= \bigcup_{1}^{\infty} \tilde{e}(f; \lambda + 1/n).$

Finally, the implication $(3) \Rightarrow (1)$ is clear.

THEOREM 2. Let Tf = g, $T \in \mathcal{D}$ and $f, g \in L^1$. Then $f \sim g$ if and only if $T^*g = f^{3}$

Proof. Since Tf=g, $T \in \mathcal{D}$ implies $g \prec f$, it is easy to see that Tf=g and $T^*g=f$ imply $f \sim g$. On the other hand, if Tf=g and $f \sim g$, applying the statement (3) in Lemma 4, we have

$$\int_{0}^{1} T^{*} \chi_{e(g; \lambda)} d\mu = \int_{0}^{1} \chi_{e(g; \lambda)} d\mu = \int_{0}^{1} \chi_{e(g; \lambda)} T \chi_{e(f; \lambda)} d\mu$$
$$= \int_{0}^{1} T^{*} \chi_{e(g; \lambda)} \cdot \chi_{e(f; \lambda)} d\mu.$$

We also have

$$T^*\chi_{e(g;\lambda)} \geq T^*\chi_{e(g;\lambda)} \cdot \chi_{e(f;\lambda)}.$$

Therefore

 $(3. 4) T^* \chi_{e(g; \lambda)} = T^* \chi_{e(g; \lambda)} \cdot \chi_{e(f; \lambda)}$

holds. (3. 4) means $T^*\chi_{e(g;\lambda)} \leq \chi_{e(f;\lambda)}$. Hence we obtain

$$T^*\chi_{e(g;\lambda)} = \chi_{e(f;\lambda)}.$$

From this we can show easily that $T^*g = f$ holds.

Ryff [8] proved the following:

THEOREM 3 (Ryff). To each $f \in L^1$ there corresponds a $\sigma \in \Sigma$ such that $T_{\sigma}f^* = f^{4}$

Now we prove the following theorem, which plays an essential role in the rest of the present paper.

THEOREM 4. For every smooth function $f \in L^1$, there corresponds one and only one d.s. operator T such that $Tf^*=f$. This operator T is induced by some $\sigma \in \Sigma$. Moreover, $f^*=Sf$, $S \in \mathcal{D}$ implies $S=T^*$.

Proof. By virtue of Lemma 4, if $Tf^*=f$, and $T \in \mathcal{D}$, then we have $T\chi_{e(f^*;\lambda)} = \chi_{e(f;\lambda)}, \lambda \in \mathbb{R}$. And our assumption that f be smooth implies $\mathfrak{M}_{f^*} = \mathfrak{M}$. Thus T coincides with T_{σ} , where $\sigma \in \Sigma$ is obtained by Theorem 3.

Next, suppose $f^*=Sf$. Then we have $S^*f^*=f$ by Theorem 2, we must have $S^*=T$, that is, $S=T^*$.

In Theorem 5 below, we shall give some simple characterizations of d.s. operators induced by m.p. transformations. Also, some of the statements are

³⁾ $T \in \mathcal{D}$ implies $T^* \in \mathcal{D}$, where T^* is a unique extension of the adjoint of T to an operator acting on L^1 .

⁴⁾ f^* is the decreasing rearrangement of f.

YŪJI SAKAI AND TETSUYA SHIMOGAKI

nearly clear if we use the result due to v. Neumann [6, p. 582, Satz 1]. For completness and because the special case is much simpler than the general case, we intend to prove our Theorem 5 by mere use of the preceeding arguments.⁵

THEOREM 5. Let T be an d.s. operator. Then the following statements are equivalent.

- (1) T is a permutator, that is, $f \sim Tf$ for all $f \in L^1$;
- (2) T is truncation invariant, that is, $Tf^{(\alpha)} = (Tf)^{(\alpha)}$ for all $\alpha \in \mathbb{R}$ and all $f \in L^1$;
- (3) T is multiplicative, that is, $T(f \cdot g) = Tf \cdot Tg$ for all $f, g \in L^{\infty}$;
- (4) T is an isometry in L^1 ;
- (5) $T^*T=I;$
- (6) T is induced by a $\sigma \in \Sigma$.

In particular, a d.s. operator T is induced by a $\sigma \in \Sigma_0$ if and only if $TT^* = T^*T = I$.

Proof. First, the equivalence $(1) \Leftrightarrow (2)$ follows from Lemma 4.

Next, we have the implication $(1) \Rightarrow (6) \Rightarrow (3) \Rightarrow (5) \Rightarrow (1)$ as follows: Let T be a permutator. Then, in particular, for smooth $f \in L^1$ we have $f^* \sim Tf^*$. Hence follows (6) from Theorem 4. The implication $(6) \Rightarrow (3)$ is obvious. If T is multiplicative, $T\chi_E = (T\chi_E)^2$. So, $\chi_E \sim T\chi_E$ holds for each $E \in \mathfrak{M}$. Therefore by virtue of Theorem 2, $T^*T\chi_E = \chi_E$ for all $E \in \mathfrak{M}$, that is, $T^*T = I$. Finally, let $T^*T = I$. If there exists a function $f \in L^1$ such that $f \sim Tf$ does not hold, then we can find a numbers $s \in I$ for which

(3.5)
$$\int_{0}^{s} (Tf)^{*} d\mu < \int_{0}^{s} f^{*} d\mu$$

holds on account of $Tf \prec f$. Thus we must have

$$\int_{0}^{s} f^{*} d\mu = \int_{0}^{s} (T^{*}Tf)^{*} d\mu \leq \int_{0}^{s} (Tf)^{*} d\mu < \int_{0}^{s} f^{*} d\mu$$

by (3.5), which is a contradiction.

The proof of the implication $(6) \Rightarrow (4) \Rightarrow (5)$ is also given as follows: The implication $(6) \Rightarrow (4)$ is obvious. To prove $(4) \Rightarrow (5)$, we recall an elementary formula that

(3.6)
$$|a+b|+|a-b|=2(|a|+|b|)$$
 a, $b \in R$ if and only if $a \cdot b=0$.

Now let T be an isometry. Then, for each $E \in \mathfrak{M}$,

(3.7)
$$||T\chi_{E}+T\chi_{E}c||_{1}+||T\chi_{E}-T\chi_{E}c||_{1}=2(||T\chi_{E}||_{1}+||T\chi_{E}c||_{1})$$

208

⁵⁾ Also, Satz 2 of v. Neumann [7, p. 584] is easily proved by use of Lemma 1, in (0, 1) case.

follows from

$$||\chi_E + \chi_E c||_1 + ||\chi_E - \chi_E c||_1 = 2(||\chi_E||_1 + ||\chi_E c||_1).$$

Therefore we have $T\chi_E T\chi_E c=0$ by (3.6) and (3.7). Moreover, $T \in \mathcal{D}$ implies $T\chi_E + T\chi_E c=1$. It follows that $\chi_E \sim T\chi_E$ for all $E \in \mathfrak{M}$. Finally by the same argument used for the proof of (3) \Rightarrow (5), we obtain the implication (4) \Rightarrow (5).

4. Two pairs of functions (f, f') and (g, g') on I are called *simultaneously* equimeasurable, if for each pair of α , $\beta \in R$, we have

$$\mu\{\boldsymbol{e}(f;\alpha) \cap \boldsymbol{e}(f';\beta)\} = \mu\{\boldsymbol{e}(g;\alpha) \cap \boldsymbol{e}(g';\beta)\} \quad [4, p. 61]$$

We write

$$(4.1) (f, f') \sim (g, g')$$

if (f, f') and (g, g') are simultaneously equimeasurable.

Now we shall call an f to be strongly equimeasurable with g, and write $f \sim g$, if for each $f' \in L^1$, there corresponds some g' which satisfies $(f, f') \sim (g, g')$. It is clear that $f \sim g$ implies $f \sim g$.

THEOREM 6. f is strongly equimeasurable with g if and only if $T_{\sigma}f = g$ holds for some m.p. transformation σ .

Proof. If f is strongly equimeasurable with g, by the definition, there is a function $u \in L^1$ which satisfies both $x \sim u$ and

$$(4.2) (f, x) \sim (g, u).^{6}$$

Then, by Theorem 4, there is a unique $\sigma \in \Sigma$ so that equality $T_{\sigma}x = u$, and for every $\alpha \in R$,

(4.3)
$$\int_{(\beta,\beta']} \chi_{e(f;\alpha)} d\mu = \int_{\sigma^{-1}(\beta,\beta']} \chi_{e(g;\alpha)} d\mu \qquad (\beta,\beta' \in I)$$

holds. It is easy to see that (4.3) implies

(4.4)
$$\int_E \chi_{e(f;\alpha)} d\mu = \int_{\sigma^{-1}(E)} \chi_{e(f;\alpha)} d\mu = \int_0^1 \chi_{e(g;\alpha)} T_\sigma \chi_E d\mu,$$

for each $E \in \mathfrak{M}$.

Substituting $E = e(f; \alpha)$ in (4.4), we have, on account of $f \sim g$,

(4.5)
$$\int_{0}^{1} \chi_{e(g; \alpha)} d\mu = \int_{0}^{1} \chi_{e(f; \alpha)} d\mu = \int_{0}^{1} \chi_{e(g; \alpha)} T_{\sigma} \chi_{e(f; \alpha)} d\mu.$$

(4.5) means $\chi_{e(g;\alpha)} \leq T_{\sigma} \chi_{e(f;\alpha)}$. Thus we have $\chi_{e(g;\alpha)} = T_{\sigma} \chi_{e(f;\alpha)}$, that is, $T_{\sigma} f = g$, since

⁶⁾ x denote the function x(t) = t,

 $\alpha \in R$ is arbitrary.

The converse implication is clear; we have only to set $g' = T_{\sigma}f'$ for each $f' \in L^1$.

THEOREM 7. For each $f \in L^1$, the following conditions are quivarent.

- (1) $\mathfrak{M}_f = \mathfrak{M};$
- (2) for each g with $f \rightarrow g$, there corresponds a unique $T \in \mathcal{D}$ such that Tf = g;
- (3) for each g with $f \rightarrow g$, there corresponds a unique $u \in L^1$ such that $(f; x) \sim (g; u)$.

Proof. The implication $(1) \Rightarrow (2)$ is an immediate consequence of the statement (1) in Lemma 4.

(2) implies (1): In general, if $f \sim g \in L^1$ is not smooth, we can easily construct two d.s. operators T_i , i=1, 2 such that $T_1 \neq T_2$ and $T_i f = g$, i=1.2, since the Lebesgue measure on I is non-atomic. Thus, under the condition (2), f is smooth.

Then, by the condition $f \sim g$, and by use of Theorem 6, we have

(4.6)
$$T_{\sigma_1}f = g$$
, for a unique $\sigma_1 \in \Sigma$.

On the other hand, we have

(4.7) $T_{\sigma}f^*=f$, for a unique $\sigma_2 \in \Sigma$, by Theorem 4.

Then (4.6) and (4.7) imply

(4.8) $T_{\sigma_1}T_{\sigma_2}T^*_{\sigma_2}f = g.$

Therefore we must have

$$(4.9) T_{\sigma_1} = T_{\sigma_1} T_{\sigma_2} T_{\sigma_2}^*.$$

And (4.9) holds if and only if $T_{\sigma_2}T^*_{\sigma_2}=I$, by (5) of Theorem 5; this is equivalent to $\sigma_2 \in \Sigma_0$, by Theorem 5 again.

If $\sigma_2 \in \Sigma_0$, then there exists, for each $E \in \mathfrak{M}$, an $F \in \mathfrak{M}$ such that $\chi_E = T_{\sigma_2} \chi_F$. Since f is smooth, F must belongs to \mathfrak{M}_{f^*} . Consequently, (4.7) implies $\mathfrak{M}_f = \mathfrak{M}$.

Finally, the implication $(3) \iff (2)$ is implicit in the proof of Theorem 6.

References

- [1] CALDERÓN, A. P., Saces between L^1 and L^{∞} and the theorem of Marcinkiewictz. Studia Math. 26 (1966), 273-299.
- [2] HARDY, G. H., J. E. LITTLEWOOD, AND G. PÓLYA, Inequalities. Cambridge Univ. Press, Cambridge, 1952.
- [3] KADISON, R. V., The trace in finite operator algebras. Proc. Amer. Math. Soc. 12 (1961) 973-977.
- [4] LORENTZ, G. G., Bernstein polynomials. Toronto Univ. Press, Toronto (1953).
- [5] MIRSKY, L., Results and problems in the theory of doubly stochastic matrices.
 Z. Wahr. 1 (1963), 319-334.

210

EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY STOCHASTIC OPERATORS 211

- [6] VON NEUMANN, J., Einige Sätze über meßbare Abbildungen. Ann. of Math. 33 (1932), 574–586.
- [7] PHELPS, R. R., Extreme positive operators and homomorphisms. Trans. Amer. Math. Soc. 108 (1963), 265-274.
- [8] RYFF, J. V., Orbits of L¹-functions under doubly stochastic transformation. Trans. Amer. Math. Soc. 117 (1965), 92–100.

Faculty of Engineering, Shinshu University. Department of Mathematics, Tokyo Institute of Technology.