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EQUIMEASURABILITY OF FUNCTIONS AND DOUBLY

STOCHASTIC OPERATORS

BY YUJI SAKAI AND TETSUYA SHIMOGAKI

1. As a continuous version of doubly stochastic matrices, a linear operator T
from the real Lebesgue space L\0,1) into itself is called doubly stochastic (d.s., in
short) if

(1.1) ΪΊ=1,

(1.2) Γ * l = l ,

and

(1.3) Γ^O,

where 1 denotes the function whose range is {1}, and (1. 3) means that T/i^O
whenever / ^ 0 . (1. 2) is equivalent to the requirement that SlTfdμ=Jlfdμ for all
/eL 1 , where μ denotes the Lebesgue measure on (0,1). As is easily seen, every
d.s. operator is a contraction in both L1 and L°° norms ( | |Γ | | i^ l , and ||Γ||oo^l).
Furthermore, T / < / holds for all feL\ where < denotes the continuous version
of the preorder of Hardy—Little wood and Poly [2, 8].

In the sequel, we denote by Tt the set of all Lebesgue measurable sets in
/=(0,1). e=er, e, e'e^ft, means that the measure of the symmetric difference of
e, ef is zero, or equivarently, that Xe, the characteristic function of e, is identified
with Xe, as an element of L1. Let βi, e2s$R with μ(ei)=μ(e2). A mapping σ from
βi (exactly speaking, denned a.e. on βi) into e2 is called a measure preserving trans-
formation1^ {m.p. transformation, in short) from βi into e2, if

(1. 4) σ-\e)zm and μ{σ-\e))=μ{eΐ]e2) for all

If σ~λ is a m.p. transformation from e2 into ei again, σ is called invertible measure
preserving from βi onto e2. For each m.p. transformation σ from / into itself, the
operator Tσ defined by

(1.5) Tσf(t)=f(σt) (tel)

is a d.s. operator, and is called a d.s. operator induced by σ. In what follows, g)
stands for the set of all d.s. operators and Σ(Σ0) for the set of all m.p. (resp. inver-
tible m.p.) transformations on /. Then Q is a convex set and each Tσ, σ£Σ is, as
is easily verified, multiplicative, that is, Tσ(f-g)=Tσf Tσg for all / , g€L°°, and is
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1) Two such transformations will be identified if they differ on a set of measure zero.
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on extreme point of 3) [7]. Also Tσf~f holds, where / ~ g means that / and g
are equimeasurable.2) Since every Te£) acts as a contraction on L°°, we can con-
sider 3) as a subset of the operator space of L°°. It is known [8] that, according
to a general compactness theorem of Kadison [3], 3) is compact in the weak*-
operator topology.

Let i and t) be /2-vetors (xlt •••, xn) and (ylf •••, yn) respectively. It is clear that

(1. 6) if t) is a n-vector whose coordinates y% are obtained by a permutation of the
coordinates of £, then there exists a n-square permutation matrix P such that £=t)P.

A continuous version of this statement would be the following:

(1. 7) if /~g, /, geL1, there exists an σ£Σ such that Tσf=g.
Unfortunately, however, the statement (1. 7) is not valid in general. It is only

known [1,8] that if f~g, f, geL1, there exists an TQ£) such that Tf—g. More
precisely, Ryff [8] has shown that such a T can be chosen from d.s. operators of
the form T*Tϋ2, σl9 σ^Σ.

In §2, we shall present an alternative proof of this Ryff's theorem in a some-
what different form. Namely we shall show that if f^g, f.g^L1 there exists an
Tz<3) such tha Tf=g which is a &;*-cluster point of a sequence of members
of Tσ, σ€Σ0.

In §3, some fundamental properties of d.s. operators will be studied. In [6]
Mirsky called a d.s. operator T a permutator if f~Tf holds for all /eZΛ We
shall show that each permutator T is nothing but a d.s. operator induced by a
m.p. transformation σ, i.e., T=Tσ (Theorem 5). Also some characterizations for the
d.s. operators induced by m.p. transformations will be given.

Finally, in § 4, we shall give a necessary and sufficient condition for / ~ g., f,
under which we can find an σGΣ such that Tσf=g holds.

The authors of the present paper express their hearty thanks to Professor H.
Umegaki for his kind encouragements.

2. We shall give an alternative proof of the Ryff's theorem:

THEOREM 1. If f and g are equimeasurable on /=(0,1), then Tf=g holds for
a d.s. operator T which is a w*-cluster point of a sequence of members of Tσ, σ£Σ0.

To prove this theorem we use a lemma due to Lorentz [4, p. 60].

LEMMA 1 (Lorentz). Let f and g be eqimeasurabe. If C is any set of real
numbers for which f~ι(C) is measurable, then so is g~λ{C) and both sets have the
same measure.

The following lemma is known. For the convenience of readers, we present
here a proof based on the preceeding lemma.

2) / and g are called equimeasurable if df, the distribution function of /, is equal to dg.
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LEMMA 2. If μ(ei)=μ(e2), eu e2£Wl, then there exists an σ£Σ0 such that σ{βι)=e2.

Proof. Let ki(t) = S\Xeidμ, 0 < * < l , i = l , 2. The functions ki9 ι = l, 2, are posi-
tive, continuous, and non-decreasing on /. Also denote by f% the function kύίei

Then it is easy to see that fx and f2 are equimeasurable, and kΐι{X) is a single
point or a closed interval in / for any Λ€(0, α), a=μ(ei)=μ(e2). We put Λ the set
of all ΛG(0, α) such that ^Γ1^) is not a set of a single point. Then Λ is a count-
able set for each i. Putting ei=fϊ1{(0, α) — /1U/2}, f=l , 2, we see that e^ce* and
§j=ei. If we define a mapping <n from eα onto e2 by

(2.1) σ1(s)=fτ1{f1(s)}y s€&,

(7i is a one to one mapping from &i onto £2. Furthermore, σx is a m.p. trans-
formation from βι onto e2. In fact, for every e€9ft with ece 2 , ^Γ1(β)=/f1{/2(β)} is
measurable and μ(σϊ1(e))=μ{e) by Lemma 1. In the same way we can also verify
that σΓ1 is a m.p. transformation from e2 onto ex. Thus <τi is an invertible m.p.
transformation from eλ onto e2, since ei=eiy i=l, 2. Now in the same way we
can find an invertible m.p. transformation σ2 from e\ to e\. Consequently, putting
σ(s)=σi(s) if seβij σ(s)=σ2(s) if see?, we see that σ is an invertible m.p. trans-
formation on / for which σ(ei)=e2.

From the proof above, it follows that if {e^i and {e*}?=i are two systems of
mutually disjoint sets of 9Jΐ with μ{ei)=μ{ef

ι) for all l^i^n, there exists an σeΣ0

such that σ(ei)=ei for all l^i^n. Now let S denote the set of all simple func-
tions on /. Then we have immediately

LEMMA 3. // f~g, f,g£S, then there exists an σ€Σ0 for which Tσf=g holds.

Proof of THEOREM 1. First we prove in the case that 0 ^ / , geL1, and f~g.
For every n&N (N stands for the set of all integers) let Fn,o=f~1[n, oo)f Gn,o
= g~1[n, oo), F n , t=/- 1 [2-»(*-l), 2-»A), and G B l f c = r 1 l ? - n ( * - l ) , 2-»A), where k = l, - ,
2nn. Since f~g and both {FWifc}f4 and {Gw,*ffi are systems of mutually disjoint
sets, Lemma 3 shows that for every ncN there exists an σneΣ0 such that TσnXFn}Jc

=XGnΛ for all A=0, •••, 2\. If we put

/„= Σ
0,

Tσnfn=gn, nQN holds. Moreover, since each F m , *(Gm, Λ), 0^k^2mm is contained
in an F ^ (resp. Gn,fc) if ^ ^ m , we have

(2.2) Tσmfn=gn, if n^m.

We write £p\={Γσi, Γσi+1, •• }-w*, the closure of {Γσ., TH+V •••} in the ^-operator
topology, for each i. Since <D, considered as a subset of the operator space of Z/°,
is ^-compact, there exists an TeW such that TGΠΓ=I2 ? ' I For each fixed meΛJ,
there is a subnet {Γβ}c{ϊ;m, ΓffTO+1, •••} such that T=w*-\imaTa. Since Tafm=gm

holds for every Γα, by (2. 2) and fm€L°°, we have
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\ uTfmdμ=\im\ uTafmdμ=\ ugmdμ,
Jo « Jo Jo

for every UGL1. Hence Tfm=gm holds for every niεN. Finally, for every m>

which implies g=Tf.
For a proof in the general case we have only to recall that if f^geL1 we

have f+^g+, f~~g~, and if we construct /+, ςr+, fή, g^S in a similar way as
above, we have /ί—/»~0i—0«€<S and fi—fn-*f, gi-Qn-»g in L1 norm.

3. In the sequel, we denote by R the set of all real numbers. For each
and each λεR, we denote by e(f)λ) the ^-spectral set, that is, the set {t:f(t)>λ}
c / ; and we denote by Wlf the σ-algebra generated by these sets. fw is the α-
truncation of / :

(3.1) /w(0=«(0 if f(t)>a, fc°\t)=f(t) if

Each function fsL1 will be called smooth if μ{t:f(f)=λ}=0 for all λsR.

LEMMA 4. Let Tf=g, TeW, and f, geL1. Then the following statements are
equivalent.

(1) /-</;

(2) Γ(/ W )=g c α ) for all asR;

(3) Γχβ(/.2)=%β(ffίi) for all λcR.

Proof (1) implies ( 2 ) : Since g=Tf^T(f<*>) and αl^Γ(/ ( α ) ) , we have
). Moreover (1) implies

Hence we obain (2).
(2) implies ( 3 ) : For each fεL1 and each λeR, let denote by e(f;X) the set

{t:f(t)^λ}. Then we have

μίt : V^

for each fsL1 and each pair ξ,ηξR with )?<£. Hence we have

(3.2) χ-c/. e) = lim - Λ (in L1 norm)

for each / e L 1 and each ί€i?. Therefore we get

(3.3) TX^(f; O—^eCΰ; Ot

on account of (2). Then we can easily obtain (3) by the equality e(f; λ)
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= Όΐe(f;λ+llή).
Finally, the implication (3)φ(l) is clear.

THEOREM 2. Let Tf=g, Tsg) and f, gsL1. Then f^g if and only if T*g=f^

Proof. Since Tf=g, T€$) implies g < / , it is easy to see that Tf=g and
T*g=f imply f^g. On the other hand, if Tf=g and / ~ g , applying the state-
ment (3) in Lemma 4, we have

S i r»i r»i

T*Xecg., ndμ=\ Xecg; >{) dμ= \ Xecgi x)Tle(f;o dμ
o Jo Jo

= \ T*X
Jo

We also have

T*Xe(g.t χ ) ^ T*Xe(g. x) 'XeCf; «•

Therefore

(3.4) T*X9<g.χ> = T*X9<g.χ>*X9if.x>

holds. (3.4) means T^Xecg , λ^Xec/ , χ> Hence we obtain

T*Xe(g. ft =Xe(f; X).

From this we can show easily that T*g—f holds.

Ryff [8] proved the following:

THEOREM 3 (Ryff). To each fςL1 there corresponds a σεΣ such

Now we prove the following theorem, which plays an essential role in the
rest of the present paper.

THEOREM 4. For every smooth functon feL1, there corresponds one and only
one d.s. operator T such that Tf*=f. This operator T is induced by some GQΣ.
Moreover, /* = S/, Ss£D implies S=T*.

Proof. By virtue of Lemma 4, if Tf*=f, and TsQ, then we have TXecf*;λ^
=Xecf;λϊ, λ$R. And our assumption that / be smooth implies 9Jl/*=sIft. Thus T
coincides with Tσ, where σGΣ is obtained by Theorem 3.

Next, suppose f* = Sf. Then we have S * / * = / by Theorem 2, we must have
S* = Γ, that is, S = Γ * .

In Theorem 5 below, we shall give some simple characterizations of d.s.
operators induced by m. p. transformations. Also, some of the statements are

3) Te<£) implies 7"*€^}, where Γ* is a unique extension of the adjoint of T to an
operator acting on L1.

4) /* is the decreasing rearrangement of /,
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nearly clear if we use the result due to v. Neumann [6, p. 582, Satz 1]. For com-
pletness and because the special case is much simpler than the general case, we
intend to prove our Theorem 5 by mere use of the preceeding arguments.5)

THEOREM 5. Let T be an d.s. operator. Then the following statements are
equivalent.

(1) T is a permutator, that is, f~Tf for all feL1;

(2) T is truncation invariant, that is, Tf^ = (Tf)w for all aeR and all

(3) T is multiplicative, that is, T(f g)= Tf- Tg for all f, geL°°;

(4) T is an isometry in L1;

(5) T*T=I;

(6) T is induced by a σ€Σ.

In particular, a d.s. operator T is induced by a σGΣ0 if and only if TT*=T*T=I.

Proof. First, the equivalence (1)<==>(2) follows from Lemma 4.

Next, we have the implication (1)4>(6) =>(3)i>(5) =>(1) as follows: Let T be a
permutator. Then, in particular, for smooth feL1 we have / * ~ T / * . Hence
follows (6) from Theorem 4. The implication (β)=>(3) is obvious. If T is multi-
plicative, TXE=(TXE)2. SO, XE^TXE holds for each EeWl. Therefore by virtue
of Theorem 2, T*TXE=XE for all EsW, that is, T*T=L Finally, let T*T=L If
there exists a function / e L 1 such that f—Tf does not hold, then we can find a
numbers SG/ for which

(3.5) [\τf)*dμ<['f*dμ
Jo Jo

holds on account of T / < / . Thus we must have

\'f*dμ= [\τ*Tf)*dμ^ [\τf)*dμ< ['f*dμ
Jo Jo Jo Jo

by (3. 5), which is a contradiction.
The proof of the implication (6) => (4) => (5) is also given as follows: The

implication (6)φ(4) is obvious. To prove (4)=>(5), we recall an elementary for-
mula that

(3. 6) \a+b\ + \a-b\=2(\a\ + \b\) a, bsR if and only if a b=0.

Now let T be an isometry. Then, for each

(3.7)

5) Also, Satz 2 of v. Neumann [7, p. 584] is easily proved by use of Lemma 1, in
(0, 1) case.
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follows from

Therefore we have TXETXEc=0 by (3. 6) and (3. 7). Moreover, Teg) implies TXE

+ TXEc=l. It follows that XE^TXE for all EGTI. Finally by the same argument
used for the proof of (3)=>(5), we obtain the implication (4)z>(5).

4. Two pairs of functions (/, / ' ) and (g, gr) on / are called simultaneously
equimeasurable, if for each pair of a, β&Ry we have

μ{e(f a) n e(f' β)} = μ{e(g a) n e{gf β)} [4, p. 61].

We write

(4.1) (/,/ 'W<7, </')

if (/, f) and (g, gf) are simultaneously equimeasurable.

Now we shall call an / to be strongly equimeasurable with gr, and write /~*gr,
if for each f'eL1, there corresponds some gr which satisfies (/, f')~(g, gF). It is
clear that /~>g implies f~q.

THEOREM 6. / is strongly equimeasurable with g if and only if Tσf—g holds
for some m.p. transformation σ.

Proof. If / is strongly equimeasurable with g, by the definition, there is a
function UGL1 which satisfies both x^u and

(4.2) (f,χ)~(g,u)<>

Then, by Theorem 4, there is a unique σ$Σ so that equality Tax=u, and for
every α€i?,

(4.3) [ XeCf;«)dμ=[ XeCg aldμ (β, β'Si)

holds. It is easy to see that (4. 3) implies

(4. 4) \ XeCf.a )dμ=\ Xetf.a)dμ=\ Xecg ,α)TσXEdμ,
JE Jσ-l(^) JO

for each EeWt.
Substituting E-e(f\ a) in (4. 4), we have, on account of /~g,

',d) dμ.(4. 5) \ XeCg aϊ dμ=\ Xetf cO dμ—\ Xeig',aϊTβXe(f',
Jo Jo Jo

(4. 5) means Xe^a^TσXeif,a> Thus we have Xecg;^ = TσXecf]a^ that is, Tσf=g, since

6) x denote the function x(t)=t.
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is arbitrary.
The converse implication is clear; we have only to set g' = Tσf for

each /'eZΛ

THEOREM 7. For each feL1, the following conditions are quivarent.

(2) for each g with f^g, there corresponds a unique TG£) such that Tf=g;

(3) for each g with f^»g, there corresponds a unique UGL1 such that

Proof. The implication (1) i> (2) is an immediate consequence of the statement
(1) in Lemma 4.

(2) implies (1): In general, if f^g^L1 is not smooth, we can easily con-
struct two d.s. operators Tt,i=l,2 such that T^T2 and Tzf=g, £=1.2, since the
Lebesgue measure on / is non-atomic. Thus, under the condition (2), / is smooth.

Then, by the condition f^>g, and by use of Theorem 6, we have

(4.6) Tσif=g, for a unique

On the other hand, we have

(4. 7) Tσf*=f, for a unique σ2eΣ, by Theorem 4.

Then (4. 6) and (4. 7) imply

(4.8) TσiTσ,T%f=g.

Therefore we must have

(4.9) Tσi = TσiTσ2T*.

And (4. 9) holds if and only if Tσ2T* = I, by (5) of Theorem 5; this is equivalent
to (72€2Ό, by Theorem 5 again.

If σ2e2τ

0, then there exists, for each EeWl, an FsWl such that XE=Tσ2XF. Since
/ is smooth, F must belongs to Wlf*. Consequently, (4. 7) implies W/=^l.

Finally, the implication (3)<=>(2) is implicit in the proof of Theorem 6.
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