AN ARCLENGTH PROBLEM FOR m-FOLD SYMMETRIC UNIVALENT FUNCTIONS

By Sanford S. Miller

1. Introduction. Let S denote the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic and univalent in the unit disk $\Delta: |z| < 1$. Let S^* denote the subclass of S for which f(z) is starlike, that is

$$\operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] > 0$$
 $(z \in \Delta).$

Let C denote the subclass of S for which f(z) is convex, that is

$$\operatorname{Re}\left[\frac{zf''(z)}{f'(z)}+1\right]>0 \quad (z\in\Delta).$$

Let K denote the subclass of S for which f(z) is close-to-convex, that is

$$\operatorname{Re}\left[\frac{zf'(z)}{h(z)}\right] > 0$$
 $(z \in \Delta).$

where h(z) is starlike. These classes are related by the proper inclusions $C \subset S^* \subset K \subset S$.

A function f(z) analytic in Δ is said to be *m*-fold symmetric $(m=1, 2, \cdots)$ if

$$f(e^{2\pi i/m}z) = e^{2\pi i/m} f(z).$$

In particular, every f(z) is 1-fold symmetric and every odd f(z) is 2-fold symmetric. Let S_m denote the subclass of S for which f(z) is m-fold symmetric. A simple argument shows that $f \in S_m$ is characterized by having a power series of the form

$$f(z)=z+a_{m+1}z^{m+1}+a_{2m+1}z^{2m+1}+\cdots$$

We similarly define S_m^* , C_m and K_m .

For $f \in S$ and 0 < r < 1, let

$$L_r(f) = \int_{|z|=r} |f'(z)| |dz|$$

Received September 10, 1971.

denote the arclength of the image of the circle |z|=r. Since $L_r(f)$ is a continuous functional and S is a normal and compact family, a solution of the extremal problem

$$\max_{f \in S} L_r(f)$$

exists and is in the class S. The problem of finding the extremal function re mains unsolved. The problem

$$\max_{f \in C_1} L_r(f)$$

has been solved by Keogh [5] who showed that

$$\max_{f \in C_1} L_r(f) = L_r\left(\frac{z}{1-z}\right) = \frac{2\pi r}{1-r^2}.$$

The problem

$$\max_{f \in S_{\bullet}^*} L_r(f)$$

has been solved by Marx [7] who showed that

$$\max_{f \in S_1^*} L_r(f) = L_r(k)$$

where k(z) is the Koebe function

$$k(z) = \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + \cdots$$

Clunie and Duren [1] have solved the extremal problem within the class K and have shown that

$$\max_{f \in K_1} L_r(f) = L_r(k).$$

Duren [2] also obtained an evaluation of $L_r(k)$ in terms of standard elliptic integrals.

In §2 we deal with extending these results to m-fold symmetric functions $(m=1, 2, \cdots)$ and solve the extremal problems

I:
$$\max_{f \in C_m} L_r(f),$$

II: $\max_{f \in S_m^*} L_r(f),$

III: $\max_{f \in S_m^*} L_r(f),$

We shall need the following lemmas.

LEMMA 1. (a) $f(z) \in C_m$ if and only if $zf'(z) \in S_m^*$;

(b)
$$f(z) \in S_m^*$$
 if and only if $\int_0^z \frac{f(\xi)}{\xi} d\xi \in C_m$.

LEMMA 2. $f(z) \in S^*$ if and only if $[f(z^m)]^{1/m} \in S_m^*$.

LEMMA 3. $f(z) \in S_m$ if and only if $f(z) = [g(z^m)]^{1/m}$ where $g(z) \in S$.

LEMMA 4. $f(z) \in S_m^*$ if and only if

$$f(z) = z \exp \int_0^{2\pi} \ln (1 - z^m e^{-i\phi})^{-2/m} d\mu(\phi),$$

where $\mu(\phi)$ is non-decreasing on $[0, 2\pi]$ and $\mu(2\pi) - \mu(0) = 1$.

LEMMA 5. Let $\mu(\phi)$ be non-decreasing on $[0, 2\pi]$ and $\mu(2\pi) - \mu(0) = 1$. If $h(\phi)$ is positive and integrable with respect to $\mu(\phi)$ on $[0, 2\pi]$ then

$$\exp \int_0^{2\pi} \ln h(\phi) \, d\mu(\phi) \leq \int_0^{2\pi} h(\phi) \, d(\phi).$$

LEMMA 6. If $f(z) \in K_m$ then

$$f'(z) = e^{i\alpha} \frac{g(z)}{z} P(z),$$

where $g(z) \in S_m^*$, Re P(z) > 0 and

$$P(z) = e^{-i\alpha} + b_m z^m + b_{2m} z^{2m} + \cdots$$

Lemma 1 is well known for the case m=1, Lemma 2 and Lemma 3 for m=2. The proofs in the general case are straightforward. Lemma 4 for the case m=1 may be found in [2; p. 758] and the general case is easily handled using this result and Lemma 3. Lemma 5 is in [3; Thm. 208] while Lemma 6 may be found in [6].

2. The arclength extremal problem.

THEOREM 1. If $f \in C_m$, then $L_r(f) \leq L_r(h_m)$ for 0 < r < 1, where

$$h_m(z) = \int_0^z \frac{[k(\xi^m)]^{1/m}}{\xi} d\xi \in C_m.$$

Proof. If $f \in C_m$, then by Lemma 1 (a) and Lemma 4 we have

(1)
$$zf'(z) = z \exp \int_0^{2\pi} \ln (1 - z^m e^{-i\phi})^{-2/m} d\mu(\phi),$$

which yields

$$|zf'(z)| = |z| \exp \int_0^{2\pi} \ln |1 - z^m e^{-i\phi}|^{-2/m} d\mu(\phi),$$

where $\mu(\phi)$ is non-decreasing and $\mu(2\pi) - \mu(0) = 1$.

By Lemma 5 we obtain

(2)
$$|zf'(z)| \leq |z| \int_{0}^{2\pi} |1 - z^{m} e^{-i\phi}|^{-2/m} d\mu(\phi),$$

and consequently

$$L_r(f) = \int_0^{2\pi} |zf'(z)| \ d\theta \leq |z| \int_0^{2\pi} \int_0^{2\pi} |1 - z^m e^{-i\phi}|^{-2/m} \ d\mu(\phi) \ d\theta,$$

where $z=re^{i\theta}$. Changing the order of integration and using the identity,

$$\int_0^{2\pi} |1 - z^m e^{-i\phi}|^{-2/m} d\theta = \int_0^{2\pi} |1 - z^m|^{-2/m} d\theta,$$

we obtain

(3)
$$L_r(f) \leq |z| \int_{0}^{2\pi} |1 - z^m|^{-2/m} d\theta.$$

Since $k(z) \in S^*$, by Lemma 2 we have $[k(z^m)]^{1/m} \in S_m^*$, and by Lemma 1(b),

$$h_m(z) \equiv \int_0^z \frac{[k(\xi^m)]^{1/m}}{\xi} d\xi \in C_m.$$

A simple calculation yields

$$L_r(h_m) = |z| \int_0^{2\pi} |1 - z^m|^{-2/m} d\theta.$$

Hence (3) becomes $L_r(f) \leq L_r(h_m)$ and we see that $h_m(z)$ is a solution of the extremal problem I.

Remarks. (i) For m=1

$$h_1(z) = \frac{z}{1-z}$$
 and $L_r(h_1) = \frac{2\pi r}{1-r^2}$

(see Keogh [5]).

(ii) For m=2 (odd functions)

$$h_2(z) = \frac{1}{2} \log \frac{1+z}{1-z}$$

and

$$L_r(h_2) = \int_0^{2\pi} \frac{r}{|1 - r^2 e^{i2\theta}|} d\theta$$

which can be expressed in terms of standard elliptic integrals.

(iii) For $m=3, 4, \dots,$

$$h_m(z) = \int_0^z \frac{[k(\xi^m)]^{1/m}}{\xi} d\xi = \int_0^z \frac{d\xi}{(1 - \xi^m)^{2/m}}$$

maps Δ onto the interior of a regular convex polygon P_m of order m with peri-

meter of length

$$L_{m} = 2^{1-4/m} \frac{\Gamma^{2} \left(\frac{1}{2} - \frac{1}{m}\right)}{\Gamma \left(1 - \frac{2}{m}\right)}$$

[8; p. 196]. Since $h_m(z)$ maps $|z| \le r < 1$ onto a convex subdomain of P_m we must have $L_r(h_m) \le L_m$ for all 0 < r < 1. Hence

$$L_r(f) \le 2^{1-4/m} \frac{\Gamma^2\left(\frac{1}{2} - \frac{1}{m}\right)}{\Gamma\left(1 - \frac{2}{m}\right)}$$

for $f \in C_m$, where $m=2, 3, \cdots$ and 0 < r < 1.

COROLLARY. If $f \in C_m$ and $\rho(f; r, \theta)$ is the radius of curvature of the image of |z| = r(0 < r < 1) at $f(re^{i\theta})$ then

$$\rho(f; r, \theta) \leq \frac{r(1+r^m)^{2-2/m}}{1-r^{2m}}$$

and this bound is sharp.

Proof. The radius of curvature $\rho(f; r, \theta)$ is given by

(4)
$$\rho(f; r, \theta) = \frac{|zf'(z)|}{\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)}\right]}$$

[4; p. 359]. Using (1) we can show that

(5)
$$\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)}\right] = \int_{0}^{z} \frac{1 - r^{2m}}{|1 - z^{m}e^{-i\phi}|^{2}} d\mu(\phi).$$

From (2) we have

$$\begin{split} |zf'(z)| & \leq r \int_0^{2\pi} |1 - z^m \, e^{-i\phi}|^{-2/m} \, d\mu(\phi) \\ & = r \int_0^{2\pi} |1 - z^m \, e^{-i\phi}|^{-2} \, |1 - z^m \, e^{-i\phi}|^{2-2/m} \, d\mu(\phi) \\ & \leq r [\max_{\phi} |1 - z^m \, e^{-\phi}|^{2-2/m}] \int_0^{2\pi} |1 - z^m \, e^{-i\phi}|^{-2} \, d\mu(\phi), \end{split}$$

and consequently

(6)
$$|zf'(z)| \leq r(1+r^m)^{2-2/m} \int_0^{2\pi} |1-z^m e^{-i\phi}|^{-2} d\mu(\phi).$$

From (4), (5) and (6) we obtain

$$\rho(f; r, \theta) \leq \frac{r(1+r^m)^{2-2/m}}{1-r^{2m}}.$$

A simple calculation shows that

$$\rho(h_m; r, \pi/m) = \frac{r(1+r^m)^{2-2/m}}{1-r^{2m}},$$

and since $h_m \in C_m$ we see that the bound in the corollary is sharp.

THEOREM 2. If $f \in K_m$ then $L_r(f) \leq L_r([k(z^m)]^{1/m})$ for 0 < r < 1.

Proof. Let

$$\mathcal{Q} = \{P(z) \text{ regular in } \Delta | \text{Re } P(z) > 0,$$

 $|P(0)| = 1, \text{ and } P(z) - P(0) = b_m z^m + b_{2m} z^{2m} + \cdots \}.$

If $f \in K_m$, then by Lemma 6 we have

$$zf'(z) = e^{i\alpha}g(z)P(z),$$

where $g(z) \in S_m^*$ and $P(z) \in \mathcal{P}$. Since $g(z) \in S_m^*$, from Lemma 4 we obtain

$$g(z) = z \exp \int_0^{2\pi} \ln (1 - z^m e^{-i\phi})^{-2/m} d\mu(\phi),$$

where $\mu(\phi)$ is non-decreasing and $\mu(2\pi)-\mu(0)=1$. Applying Lemma 5, we obtain the inequality

$$|g(z)| \leq |z| \int_0^{2\pi} |1-z^m e^{-i\phi}|^{-2/m} d\mu(\phi).$$

Thus

$$|zf'(z)| = |g(z)P(z)| \le |z| \int_0^{2\pi} \frac{d\mu(\phi)}{|1 - z^m e^{-i\phi}|^{2/m}} |P(z)|$$

and for $z=re^{i\theta}$ (0<r<1) we have

$$L_r(f) = \int_0^{2\pi} |zf'(z)| d\theta \le \int_0^{2\pi} \int_0^{2\pi} \frac{|z| |P(z)|}{|1 - z^m e^{-i\phi}|^{2/m}} d\mu(\phi) d\theta.$$

On interchanging the order of integration and making the change of variable $\theta = \psi + \phi/m$, we obtain

$$L_r(f) \leq \int_0^{2\pi} \frac{r |P(re^{i(\phi + \phi/m)})|}{|1 - r^m e^{im\phi}|^{2/m}} d\phi d\mu(\phi).$$

If we let $\zeta = re^{i\phi}$, then we obtain

$$L_r(f) \leq \int_0^{2\pi} \int_0^{2\pi} \frac{r |P(e^{i\phi/m}\zeta)|}{|1 - \zeta^m|^{2/m}} d\phi d\mu(\phi)$$

$$\leq \max_{0 \leq \phi \leq 2\pi} \int_0^{2\pi} \frac{r |P(e^{i\phi/m}\zeta)|}{|1 - \zeta^m|^{2/m}} d\phi.$$

Since $P(\zeta) \in \mathcal{P}$, we have $P(e^{i\phi/m\zeta}) \in \mathcal{P}$ for $0 \le \phi \le 2\pi$, and consequently

(7)
$$L_r(f) \leq \max_{P \in \mathcal{P}} \int_0^{2\pi} \frac{r|P(\zeta)|}{|1 - \zeta^m|^{2/m}} d\phi.$$

Now $P(\zeta)$ has a Herglotz representation given by

$$\begin{split} P(\zeta) &= \cos \alpha \int_{0}^{2\pi} \frac{1 + \zeta^{m} e^{-it}}{1 - \zeta^{m} e^{-it}} d\nu(t) - i \sin \alpha \\ &= e^{-i\alpha} \int_{0}^{2\pi} \frac{1 + \zeta^{m} e^{-i(t-2\alpha)}}{1 - \zeta^{m} e^{-it}} d\nu(t), \end{split}$$

where $P(0)=e^{-i\alpha}$, $\nu(t)$ is non-decreasing and $\nu(2\pi)-\nu(0)=1$. Thus

$$|P(\zeta)| \leq \int_0^{2\pi} \frac{|1 + \zeta^m e^{-\iota(t-2\alpha)}|}{|1 - \zeta^m e^{-it}|} d\nu(t),$$

and (7) can be replaced by

$$\begin{split} L_r(f) &\leq \max_{\nu} \int_{0}^{2\pi} \frac{r}{|1 - \zeta^m|^{2/m}} \int_{0}^{2\pi} \frac{|1 + \zeta^m e^{-\iota(t - 2\alpha)}|}{|1 - \zeta^m e^{-it}|} \, d\nu(t) \, d\phi \\ &= \max_{\nu} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{r}{|1 - \zeta^m|^{2/m}} \, \frac{|1 + \zeta^m e^{-\iota(t - 2\alpha)}|}{|1 - \zeta^m e^{-it}|} \, d\phi \, d\nu(t) \\ &\leq \max_{0 \leq \iota \leq 2\pi} \int_{0}^{2\pi} \frac{r}{|1 - \zeta^m|^{2/m}} \, \frac{|1 + \zeta^m e^{-\iota(t - 2\alpha)}|}{|1 - \zeta^m e^{-it}|} \, d\phi. \end{split}$$

If we let $\phi = \theta + t/m$, we obtain

$$\begin{split} L_r(f) & \leq r \max_{0 \leq t \leq 2\pi} \int_0^{2\pi} \frac{1}{|1 - r^m e^{\imath (m\theta + t)}|^{2/m}} \frac{|1 + r^m e^{\imath (m\theta + 2\alpha)}|}{|1 - r^m e^{\imath m\theta}|} d\theta \\ & \equiv r \max_{0 \leq t \leq 2\pi} I(\alpha, t). \end{split}$$

It now follows from a result on rearrangements of functions given in [1; p. 182] that

$$I(\alpha, t) \leq I(0, 0)$$
.

Therefore

(8)
$$L_r(f) \leq \int_0^{2\pi} \frac{r|1+r^m e^{\imath m\theta}|}{|1-r^m e^{\imath m\theta}|^{2/m+1}} d\theta = L_r([k(z^m)]^{1/m}).$$

Since $[k(z^m)]^{1/m} \in S_m^*$ by Lemm 2, and $S_m^* \subset K_m$, we see from (8) that the function $[k(z^m)]^{1/m}$ is a solution of the extremal problem III. This also indicates that it is a solution of problem II.

REFERENCES

- [1] Clunie, J., and P. L. Duren, Addendum: An arclength problem for close-toconvex function. Journal London Math. Soc. 41 (1966), 181-182.
- [2] Duren, P. L., An arclength problem for close-to-convex functions. Journal London Math. Soc. 39 (1964), 757-761.
- [3] HARDY, G. H., J. E. LITTLEWOOD AND G. PÓLYA, Inequalities. Second Edition, Cambridge University Press, London (1952).
- [4] HILLE, E., Analytic function theory, Vol. II. Blaisdell Publishing Co., Waltham, Mass.—Toronto—London (1962).
- [5] Keogh, F. R., Some inequalities for convex and starshaped domains. Journal London Math. Soc. 29 (1954), 121-123.
- [6] Maksimov, Y. D., Estimation of coefficients for certain classes of analytic functions. Dokl, Akad. Nauk SSSR (N.S.) 110 (1956), 507-510.
- [7] MARX, A., Untersuchungen über schlichte Abbildungen. Math. Annalen 107 (1932), 40-67.
- [8] Nehari, Z., Conformal mapping. McGraw-Hill Book Co., New York (1952).

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BROCKPORT, NEW YORK 14420 U.S.A.