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AN ARCLENGTH PROBLEM FOR m-FOLD SYMMETRIC
UNIVALENT FUNCTIONS

By SANFOrRD S. MILLER

1. Introduction. Let S denote the class of functions
f@)=z+ 2 ay2"
n=2

which are analytic and univalent in the unit disk 4: |2|<1. Let S* denote the
subclass of S for which f(z) is starlike, that is

| 2f7(2)
Re_ 7 ]>0 (zed).

Let C denote the subclass of S for which f(z) is convex, that is

Re z}f,’;(? +1]>0 (zed).

Let K denote the subclass of S for which f(z) is close-to-convex, that is

[ zf ’(Z)]
R >0 zed).
) (ze4)
where A(z) is starlike. These classes are related by the proper inclusions CcS*

cKcS.
A function f(z) analytic in 4 is said to be m-fold symmetric m=1, 2, ---) if

Slerima)=enim (@),

In particular, every f(z) is 1-fold symmetric and every odd f(z) is 2-fold sym-
metric. Let S, denote the subclass of S for which f(z) is m-fold symmetric. A
simple argument shows that feS,, is characterized by having a power series of
the form

F(@)=z+am12™ + Qomi 122 o oL

We similarly define S¥, C,, and Kp.
For feS and 0<7<1, let

Lin)={  17@) il
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denote the arclength of the image of the circle |z|]=7. Since L.(f) is a conti-
nuous functional and S is a normal and compact family, a solution of the ex-
tremal problem

max L.(f)
Jes

exists and is in the class S. The problem of finding the extremal function re
mains unsolved. The problem

max L,(f)
fec1

has been solved by Keogh [5] who showed that

z 2nr
‘fré%f‘L'(f>=L'<1—z>“ T

The problem
max L,(f)
*

res]

has been solved by Marx [7] who showed that
max L,(f)=L.(k)
*

sesy

where k(z) is the Koebe function

k(z)= 5 =23+222 4328+,

_*
(1-2)
Clunie and Duren [1] have solved the extremal problem within the class K and
have shown that

max L(f)=L(k).

Duren [2] also obtained an evaluation of L.(k) in terms of standard elliptic
integrals.

In §2 we deal with extending these results to m-fold symmetric functions
(m=1,2, ---) and solve the extremal problems

I: max L,(f),
7€Cm

II: max L.(f),
resk

III: max L,(f),
J€Kp,

We shall need the following lemmas.
LeMMA 1. (a) f(2)eCn if and only if zf'(2)eS¥k;
(b) f(2)eSk if and only if S’f—g)—dsecm.

0



ARCLENGTH PROBLEM FOR SYMMETRIC UNIVALENT FUNCTIONS 197
LEMMA 2. f(2)eS* if and only if [f(z™)]"™eSk.
LemMA 3. f(2)eSn if and only if f(2)=[g(™]V™ where g(z)€S.
LemMma 4. f(2)eSE if and only if

f@=zexp | In (12" du(p),

wheve p(¢) is non-decreasing on [0, 2] and p(2r)— pu(0)=1.

Lemma 5. Let w(¢) be non-decreasing on [0, 2z] and p(2r)—p0)=1. If ki)
is positive and integrable with respect to p(@) on [0, 2x] then

exp | “in 1) dutp)= i) )

LemMma 6. If f(2)eK, then

r@=ef2 pea),

where ¢(2)eS¥, Re P(2)>0 and
P)=e %+ bpz™+bamz®™+ .

Lemma 1 is well known for the case m=1, Lemma 2 and Lemma 3 for m=2.
The proofs in the general case are straightforward. Lemma 4 for the case m=1
may be found in [2; p. 758] and the general case is easily handled using this
result and Lemma 3. Lemma 5 is in [3; Thm. 208] while Lemma 6 may be
found in [6].

2. The arclength extremal problem.

THEOREM 1. If feCn, then L.(f)=L.(hn) for 0<vr<1, where

2 [k(sm)]l/m
o &

Proof. If feCy, then by Lemma 1(a) and Lemma 4 we have

fonl2)= S deCo.

2r

(1) Zf’(2)=zeXpS In (1—2me=#)-2/™ d(g),
0

which yields

|2f"(2)| =|z| exp Sz In |1 —zme=i#|-*™ du(g),

where p(¢) is non-decreasing and p(2x)—p(0)=1.
By Lemma 5 we obtain
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2z
(2) e @I=lel | 1L—2m et )
and consequently
2z 2z P2z
L= "ler@l ao=ial (| 1—zmeseim dyig) o,
[1] 0 0
where z=re¢. Changing the order of integration and using the identity,
2z 2r
{ |1-z'»e—w|—2fmdo=s |L—zm|-2/m g,
0 0
we obtain

(3) L=l S:"Il—zfﬂl—m 0.

Since k(z)eS*, by Lemma 2 we have [k(z™)]"™eS¥, and by Lemma 1 (b),

z [k(em)]l/m

him(2)= So A deec.

A simple calculation yields
2z
Loh)=12] S |1—zm|-2m dp,
0
Hence (3) becomes L.(f)=L.(h,) and we see that 4,(z) is a solution of the ex
tremal problem I.

ReMARKs. (i) For m=1

z 2nr
h(z =12 and L,(h)= T
(see Keogh [5]).

(ii) For m=2 (odd functions)

_1 14z
hz(Z)-—E log IT
and
I 2z P
= e

which can be expressed in terms of standard elliptic integrals.
(iii) For m=3, 4, -,

z [k(&m)] 1/m
0 §

fon(2) = S de= S e

0 (1 _Em)Z/m

maps 4 onto the interior of a regular convex polygon P, of order m with peri-



ARCLENGTH PROBLEM FOR SYMMETRIC UNIVALENT FUNCTIONS 199

meter of length
(-3
Lp=21-4/m 2 Zm
P(l————)
m

[8; p. 196]. Since Zn(z) maps |z]=<r<1 onto a convex subdomain of P, we must
have L,(hn)<L, for all 0<r<1. Hence

(5=%)
r<1—-§7>

CoRrROLLARY. If fe€Cn and o(f; v, 0) is the radius of curvature of the image
of |z|=r(0<r<1) at f(re?) then

Lr(f)§21_4/m

for feC,, where m=2,3, --- and 0<r<1.

. r(1+rm)2-—2/m
ofsnO=——m—

and this bound is sharp.
Proof. The radius of curvature o(f; 7, §) is given by

() wrin o=
[

[4; p. 359]). Using (1) we can show that

zf//(z) _ z 1_1,2,,”
() —So [I—zmei#[? au().

(5) Re[1+
From (2) we have
2n

|zf/(z)‘§rg ll_zme—i¢l—2/mdp(¢)

0
2n
=rS '1 _zm e—w,—z Il_zm e—i¢]2-2/md#(¢)
0
2z
=rimax [1—2m e~ | "1z -] du(y),
14 0
and consequently
2r
(6) e/ @l =r e [ —zm et ),
0

From (4), (5) and (6) we obtain
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7’(1 +rm)2-2/m

oAfsn =———rm

A simple calculation shows that

7’(1 +rm)2—2/m

05 7, [m)= Ti_pm

and since 4,€C, We see that the bound in the corollary is sharp.

THEOREM 2. If feKn then L,(f)=L.([k(™]"™) for 0<r<1.
Proof. Let
P={P(z) regular in 4|Re P(z)>0,
|P(0)]=1, and P(z)— P(0)="bmz™+bem2®™+-+-}.
If feKn,, then by Lemma 6 we have
zf'(2)=e"g(2)P(2),

where ¢(2)eS¥ and P(z)e. Since g(z)eSk, from Lemma 4 we obtain
2n
g9(z)=z exp S In (1—2™e¥)">™du(g),
0

where p(¢) is non-decreasing and u(27)—p(0)=1. Applying Lemma 5, we obtain
the inequality

() =l2] S [1—2m ¢4 |-5/m du().
Thus
|27 =10) P(2)| = 2] S“—df‘@—mzn

0 |1_zme—i¢|2/m
and for z=re” (0<r<1l) we have

o lzl1PR)

0 ll——zme“ﬂz/m

2n 2z
L=\ ler@ian={" ) db.
On interchanging the order of integration and making the change of variable
0=¢-+¢/m, we obtain

2 y| P(ret@ts/m)|
0 X |L—7m gimé|2/m

Lr(f)ég dg dp(p).

If we let {=re*, then we obtain

(2 1P|
L=\ "SR e
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Szfr 7’[ P(ew/mc)l d

< max
= osgzendo 107"

0s¢=2x
Since P({)e P, we have P(e?*™)e P for 0<¢$=2r, and consequently

Sz” 7| P©Q)]

(7) L,(f)£max . deb

PeP
Now P({) has a Herglotz representation given by

2z ] + Cm et

. W(lu(t)—l Sin «

PO)=cosa S

e 2n 1+Cm e—'l.(t—Zu)
—e So e a0,
where P(0)=e~*, v(¢) is non-decreasing and v(2z)—y(0)=1. Thus

2r Il+cm e—z(::—Za),

ol |,

and (7) can be replaced by

2n 7 2n !1+Cm e—z(z—za)l
< - dv(t)d
L'r(f)_—muax SO ll_cle/m So Il_cm e—n' y( ) gb
2z (*2zx ¥ l1+Cm e—z(t—-Za)l
= - dg du(t
mflx So So [I—gm]2/m [1—Cme¥| ¢ av(t)

SZ;: 7 Il+cm e—z(t—Za) |

< max . Il_cmlz/m Il_cme—itl S[}-

0sts2n

If we let ¢=60+¢/m, we obtain

2 1 |14y grcmasam)
<

Lr(f)_rogi}; So [1—7m grcmtits [2/m [1—7m gvmo|
=y max [(a, ).

0st<2rm

201

It now follows from a result on rearrangements of functions given in [1; p.

182] that
Ia, t)<1(0, 0).
Therefore
T m ,1meé
(8) AGELY B Al S PR ) N
° Il_rm ezmalz m+1

Since [k(z™)]V™eSk by Lemm 2, and S¥cK,, we see from (8) that the function
[k(z™)]*™ is a solution of the extremal problem III. This also indicates that it is

a solution of problem II.
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