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AN ARCLENGTH PROBLEM FOR m-FOLD SYMMETRIC

UNIVALENT FUNCTIONS

BY SANFORD S. MILLER

1. Introduction. Let S denote the class of functions

f(z)=z+Σanz
n

71 = 2

which are analytic and univalent in the unit disk Δ: | z | < l . Let S* denote the
subclass of S for which f{z) is starlike, that is

Let C denote the subclass of S for which f(z) is convex, that is

Let K denote the subclass of S for which f{z) is close-to-convex, that is

where h{z) is starlike. These classes are related by the proper inclusions C c S *
czKcS.

A function f(z) analytic in Δ is said to be m-ίolά symmetric (w=l, 2, •) if

In particular, every f(z) is 1-fold symmetric and every odd f(z) is 2-fold sym-
metric. Let Sm denote the subclass of S for which f(z) is w-fold symmetric. A
simple argument shows that / e S m is characterized by having a power series of
the form

f(z)=z+am+1z
m+1+a2m+iz2m+1+ .

We similarly define S$, Cm and Km.
For feS and 0 < r < l , let

rτ(f)=[ \f'(z)\\dz
J\z\=r
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denote the arclength of the image of the circle \z\=r. Since Lr(f) is a conti-
nuous functional and S is a normal and compact family, a solution of the ex-
tremal problem

max Lr{f)
/es

exists and is in the class S. The problem of finding the extremal function re
mains unsolved. The problem

max Lr{f)
f£Ci

has been solved by Keogh [5] who showed that

The problem

max Lr(f)

has been solved by Marx [7] who showed that

maxLr(f)=Lr(k)

where k(z) is the Koebe function

k(z) =
( I - * ) 2

Clunie and Duren [1J have solved the extremal problem within the class K and
have shown that

max Lr(f)=Lr(k).

Duren [2] also obtained an evaluation of Lr(k) in terms of standard elliptic
integrals.

In §2 we deal with extending these results to m-ίo\ά symmetric functions
(m=l, 2, •) and solve the extremal problems

I: max L r(/),

II : max Lr(f),

III: maxL r(/),

We shall need the following lemmas.

LEMMA 1. ( a ) f(z)zCm if and only if zf'(z)eS%;

(b) /(z)eS* if and only if



ARCLENGTH PROBLEM FOR SYMMETRIC UNIVALENT FUNCTIONS 197

LEMMA 2. /(*)€S* if and only if [f(zm)]1/m£S*.

LEMMA 3. f(z)eSm if and only if f(z) = [g(zm)]1/m where g(z)eS.

LEMMA 4. /(*)€S ί if and only if

f(z)=zexp Γ Ί n (l-zme-ίφ)-2/mdμ(φ),
Jo

where μ{φ) is non-decreasing on [0, 2π] and μ(2π)—μ(0) = l.

LEMMA 5. Let μ{φ) be non-decreasing on [0, 2π] and μ(2π)—μ(0)=l. If h{φ)
is positive and integrable with respect to μ{φ) on [0, 2π\ then

exp Γ Ί n h(φ) dμ{φ)^ ^*h{φ) d{φ).
Jo Jo

LEMMA 6. If f(z)ςKm then

where g(z)eS&, ReP(z)>0 and

P(z)=e-ia+bmzm+b2mz2m+'~.

Lemma 1 is well known for the case m=l, Lemma 2 and Lemma 3 for m—2.
The proofs in the general case are straightforward. Lemma 4 for the case m=l
may be found in [2; p. 758] and the general case is easily handled using this
result and Lemma 3. Lemma 5 is in [3; Thm. 208] while Lemma 6 may be
found in [6].

2. The arclength extremal problem.

THEOREM 1. // feCm, then Lr(f)^Lr(hm) for 0 < r < l , where

Jo ς

Proof If / e C m , then by Lemma 1 (a) and Lemma 4 we have

(1) zf\z)-zexp [ In (l-zme~^)-2/mdμ(φ)y

Jo
which yields

l*/'(2)l = l*l exp

where μ{φ) is non-decreasing and μ(2π)—μ(0)=l.
By Lemma 5 we obtain
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(2) \zf'{z)m

and consequently

Jo

where z=reiθ. Changing the order of integration and using the identity,

[2*\l-zme-i*\-2/mdθ= [2*\l-zm\-2/mdθ,
Jo Jo

we obtain

( 3 ) Um
Jo

Since k(z)sS*, by Lemma 2 we have [k(zm)]1/m€S*, and by Lemma l(b),

A simple calculation yields

Hence (3) becomes L r(/)^L r(Λm) and we see that hm(z) is a solution of the ex
tremal problem I.

REMARKS, ( i ) For m—\

— and L(Λ)

(see Keogh [5]).

(ii) For m—2 (odd functions)

and

which can be expressed in terms of standard elliptic integrals,

(iii) For m=3, 4, ••-,

r«r*(f»)r» r

maps J onto the interior of a regular convex polygon Pm of order m with peri-
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meter of length

Γ ( l
m

[8; p. 196]. Since hm(z) maps |-ε |^r<l onto a convex subdomain of Pm we must
have Lr(hm)^Lm for all 0 < r < l . Hence

m)

for /€Cm, where nι=2, 3, ••• and 0 < r < l .

COROLLARY. If fζCm and p(f;r,θ) is the radius of curvature of the image
of |<r|=r(0<r<l) at f(reiθ) then

and this bound is sharp.

Proof. The radius of curvature p{f r, θ) is given by

(4) p { f ' ' r ' θ ) = f β

[4; p. 359]. Using (1) we can show that

From (2) we have

\l-zm

 e-^\-2/m dμ{φ)
o

and consequently

(6) \zf/(z)\

From (4), (5) and (6) we obtain
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A simple calculation shows that

γ(Λ _j_ γ
p(hm; r, πlm) = -

and since hm€Cm we see that the bound in the corollary is sharp.

THEOREM 2. / / feKm then Lr(f)^Lr([k(zm)]1/m) for 0 < r < l .

Proof. Let

g? = {P(z) regular in

|P(0)|=l, and

If fsKm, then by Lemma 6 we have

where g(z)eSS and P(z)ξζ£. Since g<z)€S*, from Lemma 4 we obtain

g(^)=^ exp \ In (l-zme-tφ)~2/mdμ(φ)yJo

where μ(φ) is non-decreasing and μ(2π)—μ(0)—l. Applying Lemma 5, we obtain
the inequality

Thus

\zf'(z)\ = \g(z)P

and for z=rev (0<r<l ) we have

Lr(f)=["\zf

On interchanging the order of integration and making the change of variable
θ=φ+φjmf we obtain

S 2π r\p(reiCΦ+φ/m)\

If we let ζ=rezφ, then we obtain
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Jo

Since P(ζ)s<£, we have P(eίφ/mζ)€<£ for 0<,φ<L2π, and consequently

S 2π f\P(Γ)\

Now P(ζ) has a Herglotz representation given by

P(ζ)=cos a \ ' Λ__rm -u ^ffl~~*' s ^ n α

= ^ ~ t α \ — i rm - i t — ^ W >

where P(0) — e'ta} v(f) is non-decreasing and v(2π)—v(0)=l. T h u s

Jo

and (7) can be replaced by

S 2rt γ ( 2*

S 2ar f 2ac y

B i0 n - f i ^

If we let ψ=θJttjmi we obtain

S 2τr \

0 | l - r * β C«

It now follows from a result on rearrangements of functions given in [1; p.
182] that

/(α, 0^/(0,0).

Therefore

S
2π r\-\\rmpιmθ\

Since [^(^m)]1/m€SS by Lemm 2, and S*ciΓm, we see from (8) that the function
[k(zm)]1/m is a solution of the extremal problem III. This also indicates that it is
a solution of problem II.
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