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DISTRIBUTION AND CRITICAL CURVES

IN A RIEMANNIAN MANIFOLD

BY Yosio Muτo

Let S) be a C°° distribution in a C°° Riemannian manifold M. In the present
paper a curve of M where every tangent vector lies in $) is called a 3) -curve.
Let P and Q be two points of M such that there exist ^)-curves joining P and Q.
We call a S) -curve C a critical 2) -curve with the fixed end points P, Q if the
length I of C takes a critical value in the set of £p-curves joining P and Q. The
purpose of the present paper is to find differential equations of critical £7)-curves
when n—m=dim g) satisfies n<2(n—m\ where n=dim M, and to study proper-
ties of such critical $) -curves in some special cases.

§ 1. The differential equations of a critical £D -curve.

Let M be an ^-dimensional Riemannian manifold and $) (or £)w~m) an (n—nϊ)~
dimensional distribution given locally by n— m linearly independent C°° vector fields
X(λ=m+l, ~ ,ri).1'> Their components with respect to a local coordinate system

will be denoted by Xh. The distribution 2) will also be represented by m linearly
λ

a a

independent covector fields φ(a=l, ~ ,m) whose components φt satisfy

A <Z)-curve C is by definition a curve xh=xh(f) such that

a /J<γΛ

(1. 1) ψi^ = 0

holds throughout the curve.
We assume that 2m covectors

1 m l m

(l 2) φit •••, φi9 φiy — , φi

Received November 5, 1970.
1) We let the indices h, i , j , ••- run over the range {1, ••-, n}, a, β, γ, ••• over the range

<1, •••, my and AT, λ, μ, -•• over the range {w+1, •••, n}. The summation convention is used
for all such indices.
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364 YOSIO MUTO

are linearly independent at every point of C, where ψt are defined by

a a a ^^J(I. 3) ψi:=(ΰjφi—'diφj)~-.

Let P and Q be the end points of C and the parameter t be such that t— 0 and
t—\ correspond respectively to P and Q. Then the length / of C is given by the
integral

π A^(1.4)

Let us consider an infinitesimal deformation of the curve C with the points
P and Q fixed assuming that any curve obtained is also a ^)-curve. Then the
vector of deformation ξh(t) must satisfy

rJ^ α a Λtl

(1.5) f,

As the points P and Q are fixed, ξh must also satisfy

(1. 6) e*(0)=£*(l)=0.

Then it is a consequence of an ordinary argument in the calculus of variations
that C is a critical $) -curve if and only if

,1 ™(L7)

is satisfied by every set of functions ζh(f) satisfying (I. 5) and (I. 6). Notice that
the arc length 5 is used in (1. 7) as the parameter and that / is the length of C.

Now let f ( t ) (α = l, •••, m) be a set of arbitrary C°° functions. Then we find that
a

S
I r α rfγl a fl& -]

(f(t)djφ^ ^~ +f(t)φί^- \dt=0
o L « at a at J

is equivalent to (1. 5). (1. 8) is also equivalent to

S 1 Γ / / 7 \ «

„ [\W f)W

and again to

a. 9)

If we put
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,~
ψi= -^—(θjψi—as

we can write (1. 9) in the form

(1. 10)

We prove in §2 the following lemma.

LEMMA 1. 1. In an n- dimensional Euclidean space let there be given 2m+l C°°

vector functions Ai(t\ ψi(t\ ψi(t) (a — 1, •••, m) where 2m vectors

1 m l m
φ(t\-,φ(t\ψ(t\ •..,

are linearly independent at each value of t, Q^t^a. If, for every functions ξl(t)
which satisfy

(1. 11)

and

(1. 12) Γ I (~
J o [ V dt

for every choice of C°° functions f(t\ we have
a

(1. 13) {* Ai(f)?(Mt=09
Jo

then there exist functions ι(t\ •••, χ(/) 5^cΛ that

(1. 14) Ai(f)

REMARK. It is easily found that (1. 13) is a consequence of (1. 12) and (1. 14).

Applying Lemma 1. 1 to the case of Q -curves, we easily obtain the following
lemma.

LEMMA 1. 2. Let M be an n- dimensional Riemannian manifold equipped with
a

an (n—m)-dimensional distribution 2) determined locally by m covector fields φt.
Let C be a 2) -curve xh=x\s), O^s^/, such that 2m covectors

J j a a.

Piφj) (α=l, — ,t, -j—as

are linearly independent at each point of C. A necessary and sufficient condition
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for the curve C to be a critical 2) -curve with fixed end points is that there exist
functions χ(s) satisfying the equations

,- -_ N \ h \ dx> dx% Γ/ d(L15) -*r+\j i\ -&"&
Differentiating the equations

(1.16)

covariantly along the curve C, we get

« N dx> dxl , α /dV \ h \ dx>
T~ /ds2 I j i J as

Then applying (1. 15) we obtain

« β // //

Let us consider a system of differential equations composed of (1. 15) and (1. 17)
in the unknown functions xh(s) and χ(s). As far as only these equations are con-

sidered, s may not be the arc length and the curve xh=xh(s) may not be a £D-
curve. But, if the initial condition is chosen in such a way that

dx% dxh . a dx* Λ

hold at 5=0, then we can easily see that 5 is the arc length of the curve xh=xh(s)
and (1. 6) is satisfied by the curve.

Thus we obtain the

THEOREM 1. 3. Let M and g) be the same as those assumed in Lemma 1. 2.
A necessary and sufficient condition for a S)-curve C, for which the same is also
assumed as in Lemma 1. 2 and parametrized by the arc length 5, to be a critical
S)-curve with the fixed end points is that the functions x\s) satisfy with some
functions χ(s) the differential equations (1.15), (1.16) and (1.17). If a solution

α

xh=xh(s), χ=χ(s) of the system of differential equations composed of (1.15) and

(1.17) satisfies the initial condition

dx^dx^Λ f« dx^

and the 2m covectors

j
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are linearly independent at each point x\s) (O^s^/), then the curve xκ—x\s) is a
critical $)-curve with the fixed end points xh(ty, x\l) and s is the arc length.

§ 2. Proof of Lemma 1.1.

Let r be any number such that 0<r<# and put

(2.1) ξh(t)=ahδ(t-τ)

where ah is a constant vector and δ is the Dirac function. Then (1.12) becomes

(2. 2) /(Γ)(Γ)
αΓ « a

As we can take arbitrary C°° functions as f(t\ we get
a

(2.3) φi(τ)tf = 0, 0,(r)0' = 0

from (2. 2).
On the other hand we have

(2. 4) -Ai(r)α*=0

from (1. 13). Since any vector ah satisfying (2. 3) must satisfy (2. 4) by assumption,
there exist 2m numbers p(τ\ σ(τ) such that

Thus we obtain

(2. 5) Ai(t) = p(t)φt(t) +σ(t)φt(t)

a βt

where p(t) and σ(f) are C°° functions, for ψi(t) and ^^(0 are linearly independent.
a a

We now proceed to find a relation between p(t) and σ(t).
a a

From (1. 13) and (2. 5) we get

(2. 6) ΓWίWO^O+^O^Of W]Λ=0.

Let ^ be an arbitrary number, 0<Λ<<z, and ε>0 a sufficiently small number
such that [λ— ε, Λ+ε]c (0, <z) and such that a determinant of order 2m composed

of some components of the 2m covectors φ, ψ does not vanish at any point of
[λ— ε, Λ+ε]. Then we can consider for example
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ψl(t)
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1 m

In this case, if we take C°° functions A(/) such that

A(f)= — =A(f)=0,

and determine ξh(t) by

-~

then ξh(t) satisfy ίΛ(0)=fΛ(α)=0 and (1. 12). On the other hand we get from (2. 6)

and consequently,

0 1

As we can take the positive valued function h(f) arbitrarily, and, as we can take
the number λ ($<λ<ά) arbitrarily, we have

Similarly we have

-~
at

- :at

Hence we get (1.14) and the lemma is proved.
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§3. Some examples.

In §3 some examples are given. Another example which is concerned with
the normal contact metric structure of S271"1 is studied in §4.

1° A distribution which is orthogonal to a Killing vector field of constant
magnitude.

Let X be a Killing vector field in an odd dimensional Riemannian manifold
such that

and such that the rank of the matrix (F,JQ is n— 1. X% satisfies

and, since the rank of (FJXl) is n-1, Y3V3XV does not vanish if Y^^ and
Hence the covectors Xι and Yj(Ϋ3Xi— Pt.X» are linearly independent. Consider the
(?z--l) -dimensional distribution £) determined by the covector field Xτ. Then from
the above argument, for any .0-curve C: xh=xh(s), the covectors

are linearly independent on C.
The differential equations of the a critical £) -curve are

but it is easily seen from (1.17) that χ is a constant. Hence we have

dx3 dx1 dxj

+ ι Λds2 ' [j i ds ds ds

2° A distribution in the Euclidean 3-space.
Let 3) be a distribution orthogonal to a Killing vector field defined by

Then we have

*2L=4c, .Λ-J

_^__^ dx_
ds2 " ds ^ χ ds'

_
ds2 ds
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for (1.15),

_^dx , _ dy , dz

for (1.16) and

y~τ T~ ~ds ds ds

for (1.17). Then we get

and χ is not a constant in general, although there exist some critical ^-curves
where χ is constant.

Suppose

, dx* , Λ x Λtf^ΐ+0 ~3— (yjφi ~ viφj) — 0as

for some βr and b. Then we have

ds ' ds

and consequently

dx dy
o r - — - - .

ds ds

But the latter contradicts

dz __ dx
cis as

Thus we see that

dχJ

are linearly independent for all ^-curves.

3° A distribution in a contact metric manifold.
A contact metric manifold M is a Riemannian manifold of odd dimension

endowed with a vector field φh satisfying the following conditions,

( i ) φiφi=l where φi=gihφ
h

ί

(ii)
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(in)

Let .0 be a distribution which is orthogonal to the vector field ψh. Let
xh=xh(s) be a ̂  -curve.

Suppose

Transvecting ψh we get

*

Transvecting with Vκφ%—^iφh we get

But, as we have

dx*
jY3 ds

for a 3) -curve, we get £=0. Hence

=0

φt,

are linearly independent for all ^-curves.

§4. A (2/ι— 2)-dimensional distribution on S2"'1 and the critical ^-curves of
this distribution.

In their study of normal contact metric structure Sasaki and Hatakeyama [1]
showed that S271"1 is an example of normal contact metric manifolds. A normal
contact metric structure of S27*-1 induces a (2n— 2)-dimensional distribution £) and
it is the purpose of §4 to study critical ^-curves of this distribution. On the
other hand Yano and Ishihara [3] showed that S2rι-1 is a fibred space with invariant
Riemannian metric with a base space M* which is a (2n— 2)-dimensional Kahler
manifold of constant holomorphic sectional curvature.2) A £) -curve is a horizontal
curve with respect to this fibre structure and a critical ^)-curve C has a projec-
tion curve C* on M*. We shall study some properties of 6**.

1° When we regard S271"1 as a hypersphere

2) See also Steenrod [2] where it is shown on page 108 that S2™"1 is a 1-sphere bundle
over the projective space of n homogeneous complex variables.
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in a 2^-dimensional Euclidean space E2n where a rectangular coordinate system
Or1, •••, x2n) is fixed, x1, •••, x2"-1 can be considered as local coordinates of S271"1 in
domains x2n>0 and x2n<0.

There exists on E2n a complex structure induced canonically from the given
rectangular coordinate system, and this complex structure and the metric of E2n

induce on S27*"1 a normal contact metric structure. The contravariant vector field
φ of this structure has components

(4.1)

in the local coordinates (X).3) We consider again the distribution $) which is
orthogonal to the vecor field φ.

As the metric tensor of S271'1 has components

(4.2) gμι=dμλ

μλ

in the local coordinates (xκ), the components φμ of the covector field of the distri-
bution S) are

(4-3) φf=φ> + . ^ .

hence we have

(4.4) φ*φ* = l.

Let {μλ}g be the Christoffel constructed from gμλ and let Vμ be the operator of
covariant differentiation with respect to the Riemannian metric of S2"-1. If indices
a, by c are used in the range {1, •••, 2n— 2},4) the components

have the following values,

φrt=Q except φ12=φu = ... = φ2n_3t2n_2

— — ̂ 21— — ̂ 43— "• = — ̂ 2n-2,2w-3 — 2,

3) In §4 indices K, λ, μ, ~ run over the range {1, •••, 2^—1}. Summation convention
is used m the usual way and also m the following way, A*B*=A1B1-\ M27*"1^2^"1.

4) The summation convention of the following form is also used,

AaBa=A1B1-\
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The rank of (φμλ) is 2n—2.
As we have

(4.5)
μλ

„, κ

=3μlx+
X X X

the differential equation of a critical .φ-curve is

IA IΆ d*x* Λ < Γ <dx*(46) -^+*=c^ι*r
The study of critical ^-curves is facilitated by the use of local coordinates

yl, -~,y2n-1 such that

x1 = y1 cos z+yz sin z,

#2= — y1 sin z+y2 cos z,

(4.7)

where z=y2n'1 and

r2=l-(^)2

(4.8)

=ι-(^)2

Notice that these coordinates are used only in the range

oo, -§-<«<-§-.

Let us define /c& by

(4. 9) Λδ=0 except /12 =/84 = •• =Λn-8, 2^-2 =~ Λι = — /43 = ••• = — /8n-2, 2^-3 = 1.

Then the components Λ^^ of the metric tensor of S2n-1 in local coordinates (yκ) are

2~ ,

(4. 10)
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If we define hμλ by

hμλh*κ=dκ

μ,

we have

(4.11)

* ~'= ̂

When we use the coordinate system (yκ), the corresponding contravariant com-
ponents of the vector φ will be denoted by ψκ, hence

Then we have

(4.12) ψa=Q, φ**-1^-!.

We have for the corresponding covariant components

(4.13) 06= -/WϊΛ 0a»-ι = -1

2° Remember that ^* are the components of a Killing vector of unit length to
which the distribution $) is orthogonal. (4.12) shows that the y2"-1 -curves (curves
on which ya are constant) are fibres of the fibred space S271"1. This fibred space
which has been studied by Yano and Ishihara [3], has a base space M* of dimen-
sion 2n—2 and, if we use the local coordinates (y*\ namely (ya, y*n~l\ in S2*-1,
the projection π: S^-^M* is given by π: (ya, y*n-l}-+(ya}.

Let us introduce a metric into M* by the standard of Yano and Ishihara. If
the metric tensor of M* is written hfb in the coordinate system (ya), hfb are
obtained from

hμλdyμdyλ=h*ύdycdyb

by putting ψκdyκ=Q. The explicit formula is

(4.14) h*b=δcb+ ̂ - -ferf fay*.

The inverse (hba) of the matrix (hfb) has the elements

(4.15) A6β=fcα-y V+ ^-f^fasy8.

The Christoffel {c

α

δ}* is



DISTRIBUTION AND CRITICAL CURVES 375

[c b\

(4.16) +fctytft>a+fbty
tfca-2fctytfι>sysya

On the other hand, if we define ψf' by

we can write the differential equations of a critical $) -curve in the form

(4.17) ^ + Iμ s S ds '

Calculating the Christoffel {/j} of hμί, we get from (4.17)

(4.18)

+ •

where

y ds

and p is defined by

(4.19) p=ftsy
nys.

We can regard (4.18) as a curve C* in M*, the projection of a critical <$)-
curve C. In order to find some properties of C * we use (4.16) and write (4.18)
in the form

(4. 20)

Differentiating (4. 20) covariantly along the curve C * we get after some
straightforward calculation
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(4.21)

This shows that C* is a Riemannian circle of curvature 2|C|.
A Riemannian circle is by definition a curve in a Riemannian space whose

development in a tangent space is a circle. Its global properties are quite various
according to the enveloping manifold. Thus, for example, we cannot even guess
the period of C*.

But, as for the function r(s) only, we can find its period.
As r is given by yaya=l—r2, we have

ycy'c=—rr',

(4. 22)
y'Cy'C + yCy"C = _γtγt_γγl^

We also get from h*by'cyfb=l and (4. 14)

(4.23) y'cy'c+r'r'=l + (>2.

On the other hand, if we substitute (4. 18) into ycy"c, the second equation of (4. 22)
gives

rr"= -r2(l~p2+2Cp)= -r2{l+C2-(p-C)2}.

As we assume r>0, we get

(4. 24) r" = -r{l+σ-(p-Q*}.

We also obtain from (4. 18), (4. 19) and (4. 22)

Hence we have

(4.25) P-C=^Ϊ

where k is a constant. Substituting this into (4. 24) we get

r//=-(l+C2)r+~.

The general solution of this differential equation is
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where

Thus we find that r(s) has period τr/vΊ+C2 or r(s) is reduced to a constant. The
only exceptional cases will occur if k=ΰ. Then we have p=C. Such cases will be
studied in the appendix.

3° It was shown by Yano and Ishihara [3] that the base space M * is a Ka'hler
manifold of constant holomorphic sectional curvature.

Let us turn to the Euclidean space E2n equipped with a fixed rectangular co-
ordinate system (x1, •••, x2n) and introduce a complex coordinate system

(4. 26)

Then we have a complex space Cn. In Cn-{0} we can regard (Z°, Z1, >-,Zn-1)
as a system of homogeneous complex coordinates of the complex projective space
Pn~\C). If we assume Z°^0, we can introduce an inhomogeneous complex co-
ordinate system by

(4.27)
Zn~l

_,..., -̂ -,

and, if we introduce real local coordinates wl, •••, w2w~2 in Pn~l(C) by

(4. 28) z1=

then we obtain

(4.29)

If the ordinary Kahler metric of Pn-\C) is multiplied by a suitable constant,
the corresponding metric tensor has following components gfb in real coordinates
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(4.30) g*6= l+wawa (l+watva)2

which will be easily proved by direct calculation.
The relation between w1, •••, w2n~2 and y1, ••-, y2n~2 is obtained from (4. 7) and

(4. 29) to be

(4. 31) wa= —faty*, wawa= -i- -1.

Hence we can write (4. 30) in the form

(4. 32) <&=f*(3*-ιfvb-fcty'Λ,y').

That the metric tensor whose components are g?δ in local coordinates (wa) is
identical with the metric tensor whose components are hfb in local coordinates (ya)
is immediately shown since we have

because of (4. 14), (4. 31) and (4. 32).
As fcb satisfies

fea /δe~°[c b\ J™1 \c a

on account of (4. 16), (A?δ,/c&) is a Kahler structure of Pn~\C).

4° Let

(4. 33) α°Zβ+α1Z1 + + αn-1Zn-1=0

be the equation of a hyperplane of Pn~1(C). If we use only real numbers, we can
write (4. 33) in the form

(4. 34) Aaya=Kr, Aafat^=Lr

where r is given by (4. 8). Hence, to a complex hyperplane of Pn~l(C) corresponds
a subspace Mr of codimension 2 in M*. The subspace M' determined by (4. 34)
will be denoted by M'(Aa, K, L).

If we define functions ^"(5) and Y(s) by

X(s)=Aaya(s-)-Kr(s),
(4. 35)

Y(s)=Aafaty
t(s)-Lr(s)

along a curve C*> these satisfy
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X"= -

2k

for we get

(4. 36) -
9br'

from (4.18), (4.23) and (4.25). Hence we get X(s)=Y(s)=Q if X(s) and Y(s)
satisfy Jf(0) = F(0) = X'(ΰ) = F7(0) = 0.

This proves the following lemma.

LEMMA 4. 1. L0£ C* be a curve of M* wΛίcΛ zs the projection of a critical
<3)-curve C in S2*"1. Tjf, in the corresponding curve in Pn~1(C), which will also be
denoted by C*, a point P and the tangent of C * at P //0 m # complex hyperplane,
then C* lies completely in this complex hyperplane.

From (4. 20) we observe that a curve C* where C=0 is a geodesic of M* and
that any geodesic of M* is a curve C *. Hence M7(Aα, /£", L) is a totally geodesic
subspace. Notice that M'tfatA*, — L, K) is the same subspace as M'(Aa, K, L).

A subspace M'(Aa, K, L) tangent to a given curve C* at the point 5=0 is
obtained if we take Aa, K, L satisfying

Aaya(Q) - Km=0, Aay'a(Q) - Kr*(ΰ)=0,

(4. 37)

If we define M by

Λf=

y 2U-3 y 271-2 γ 0 \

2W-2 „. 2Π-3-y Zn~* 0 r

\ yf*

the rank of M is 4, since we have

/ I 0 0 -/? v

MMT=
0

Q p 1

\-p 0 0

0

0
, det(MMT)-l
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because of (4. 22) and (4. 23). Hence we have 2n— 4 linearly independent solutions
of (4. 37). We also observe that, if (Aa, K, L) is a solution of (4. 37), (fat A', -L, K)
is also a solution.

Suppose that (Aa, K, L) (f=l, •••, 2/>) are 2^ linearly independent solutions of
Φ (£> (O

(4. 37) where

If (Aα, #, L) is a solution of (4. 37) such that

Aa=k Aa+ -+k Aa,
(1) (1) (2p) (2j>)

then we find immediately that

K=kK+ ~+k
αxυ

L=kL+- +k L,

hence (Aa, K, L) is a linear combination of (Aa, K, L), •••, (Aa, K, L). Then we also
(1) (1) CD (2P) (2p) (2p)

find that the 2p (2n—2)-tuples Aa, ~ , Aa are linearly independent, for a solution
(1) (2ίO

(Aa, K, L) must satisfy K=L=Q if Aa=Q.
From the above result we can deduce that there exists a set of 2^—4 linearly

independent solutions (Aa, K, L) (f=1, —, 2»-4) of (4. 37) where
CO CO (O

/I α _ f /I ί Z^_ _ Γ Γ _ Tζ (». _ 1 ... ^ _ 0\
-ίi y (Xί ^JL t jtJL jt_y , J_/ J.\. \^vV J., > *v «/

(2w) (2w—l) (2w) (2M—l) (%U~) (2u — l)

and such that the (2n—2)-tuples Aa, •••, Aa are linearly independent.
(1) (2W-4)

We can interpret this result geometrically as follows.

LEMMA 4. 2. For any curve C* there exists in M* a totally geodesic subspace
of dimension 2 which contains C* and is determined by a system of equations

Aaya=Kr (f=1, •••, 2«-4)
(O CO

where

Aa=fat A (u=l, -, n-2).

subspace is common to all curves C* passing a point P and having a common
tangent vector at the point P.

The contents of §4 can be resumed in the following theorem.

THEOREM 4. 3. According to Sasaki and Hatakeyama an Szn~l in E2n can be
treated as a normal contact metric manifold. According to Yano and Ishihara S2n~l



DISTRIBUTION AND CRITICAL CURVES 381

can also be treated as a fibred space with invariant Riemannian metric. The base
space M* is a Kάhler space of constant holomorphic sectional curvature. By virtue
of these structures an S2n~l becomes a space equipped with a distribution <3) of
dimension 2n—2 where the <£)-curves are horizontal curves of the fibred space. If
C is a critical 2)-curve, the projection C* on M* of C has following properties.
(I) C* is a Riemannian circle of M*. (II) Let {Mf} be the set of (2n—^-dimen-
sional totally geodesic subspaces of M* such that each subspace Mf is a complex
hypersurface if M* is regarded as a complex projective space. Then any curve C *
passing a point P of a subspace Mr and tangent at P to this M' is contained
completely in this subspace M'. (Ill) For any curve C * there exists in M* a totally
geodesic subspace of dimension 2 which contains C* and is obtained as an inter-
section of n—2 elements of {Mr}. This subspace is common to all curves C*pas-
sing a common point P and having a common tangent at P.

Appendix. The exceptional cases.

In this appendix we study critical ^-curves C of S2n~l where k=Q, p=C.
In this case the differential equation of r is reduced to the form

(A. 1) r" = _(i+c2)r

and the general solution r= r0 cos(vΊ+C*(s-s0)) does not obey the restriction
r>0. Hence, for the study of global properties of such exceptional critical £D-curves
C, we use rectangular coordinates xl, •••, x2n of E2n.

Since the equations (4.18) of the projection curve C * are written in local
coordinates yl, •••, y2n~2, we must use (4. 7) and (4. 8) to return to the coordinates
x1, •••, x2n. C is obtained by the process of lifting in which we use

(A. 2) ψay'a+ψ*n-ιz'=Q,

which becomes

(A. 3) z'=-C

because of (4.13) and p=C.
Differentiating (4. 7) and using (A. 3) we obtain

χn—yfi cosz+y'2 sinz—Cx2,

x'*= -?/'1 sin z+y'2 cos z+Cx1,

(A. 4) ,

a./2n-ι=r/ smz-Cx2n,

x'*n=r' cosz+Cx2"-1,

and
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x"ί=y"
1 cosz+y"2 sinz+2C(yfl smz-y'2 cosz)-C2x\

x»*=-y"i sinz+y"2 cosz+2C(y'1 cosz+y'2 sinz)-C

(A.5) .................................... ,

x//2n~1=r// sinz-2Cr' cosz-C2x2n-\

xf/2n=r" cosz+2O' sinz-CV.

Since r and ya satisfy

r"=-(l+C2)r, y»«=

along C, we obtain

(A. 6)

C satisfies moreover

(A. 7)

"-+ x*n-lx'*n - x2nx'2n~l = 0.

The fourth equation of (A. 7) is obtained from (A. 4) and p=C.
If Fjt is defined by

Fji=0 except Fi8=F84= =Fs»-ιf8n="--F8i==-F48= = --

then we can write the fourth equation of (A. 7) in the form

(A. 8) Fj&'Jx^O.

Now we can write (A. 6) in the form

If in E2n the vector xh is denoted by X and the vector F«a?* by FXy (A. 6) is
written
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(A. 9) X" + 2CFX'+X=Q.

Differentiating repeatedly and eliminating FX, FX' we get

(A. 10) X^+2(2C2+l)X"+X=0.

Let us put

(A. 11) α=v /l+C2+|C|, β=Vl+C2-\C\.

Assuming C^O, we have a>β>Q. -a2 and -β2 are the roots of Λ2 + 2(2C2 + l)λ+l
=0. Hence

(A. 12) X=A! cos as + A2 sin as + Bί. cos βs + B2 sin βs

is the general solution of (A. 10).
Substituting (A. 12) into (A. 7) we can deduce

, » Λ . , Λ * ^ -L O

(B19 ft) - (A, A) - - -

and that Λi, A2, Blt B2 are mutually orthogonal.
Substituting (A. 12) into (A. 9) we can deduce

- - z , = a .

Thus we have

(A. 13) X— A cos as — zFA sin α5 + B cos ^6' + sFB sin

where ε = ± 1 and

If C=0 we have the simplest case,

(A. 14) X= A cos s + Z? sin 5

where (A, A) = (5, £) = !, (Λ, J5) = 0.
Thus we have the following result.
The equations of the exceptional critical ^-curves are (A. 13) or (A. 14) ac-

cording as C^FO or C— 0.
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