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DISTRIBUTION AND CRITICAL CURVES
IN A RIEMANNIAN MANIFOLD

By Yosio Muto

Let @ be a C= distribution in a C* Riemannian manifold M. In the present
paper a curve of M where every tangent vector lies in & is called a g@-curve.
Let P and Q be two points of M such that there exist 9-curves joining P and Q.
We call a @-curve C a critical @-curve with the fixed end points P, Q if the
length [ of C takes a critical value in the set of ¢@-curves joining P and Q. The
purpose of the present paper is to find differential equations of critical @-curves
when n—m=dim ¢ satisfies n»<2(n—m), where n=dim M, and to study proper-
ties of such critical g@-curves in some special cases.

§1. The differential equations of a critical 9-curve.

Let M be an »n-dimensional Riemannian manifold and @ (or 9* ™) an (n—m)-
dimensional distribution given locally by z—m linearly independent C* vector fields
X (A=m+1, .-, m).> Their components with respect to a local coordinate system
2

will be denoted by X* The distribution ¢ will also be represented by m linearly
2

independent covector fields g; (a=1, .-+, m) whose components ggz satisfy
01 X0 =0.
Pi g
A 9-curve C is by definition a curve z*=z"(#) such that

a dxz
1.1) e =0

holds throughout the curve.

We assume that 2 covectors

m 1 m

1
(1° 2) Diy ***y Piy ¢i) AR ¢'1:

Received November 5, 1970.

1) We let the indices 4, 4, j, --- run over the range {1, ---, #}, a, 8, 7, --- over the range
{1, -+, m} and «, 4, g, --- over the range {m+1, ---, #}. The summation convention 1s used
for all such indices.
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364 YOSIO MUTO

are linearly independent at every point of C, where {Zi are defined by

a a a dx
L3 ey
1.3) $i=(05¢0 ?5) at

Let P and Q be the end points of C and the parameter # be such that #=0 and
t=1 correspend respectively to P and Q. Then the length / of C is given by the
integral

1.4 J(O)= SC ds= S: [gﬁ fld—f— %]I/Zdt.

Let us consider an infinitesimal deformation of the curve C with the points
P and Q fixed assuming that any curve obtained is also a g-curve. Then the
vector of deformation &*(#) must satisfy

d.Z' a a dEt

dt dr =0.

(1. 5)

As the points P and Q are fixed, &* must also satisfy
1. 6) EM0)=¢"(1)=0.

Then it is a consequence of an ordinary argument in the calculus of variations
that C is a critical 9-curve if and only if

amn S:[%;+{kf

is satisfied by every set of functions &£*(¢) satisfying (1.5) and (1.6). Notice that
the arc length s is used in (1. 7) as the parameter and that / is the length of C.
Now let f(#) (a=1, -+, m) be a set of arbitrary C= functions. Then we find that

dx* dx’

s ds ]gmfh(s)ds

1.9 ) [(f(t)a]gme——+f(t>§m L =0
is equivalent to (1.5). (1.8) is also equivalent to

L[(5 7)ot fosm—a) 2 |ear=0
and again to
1.9 L[(5 7)ot ro0m—06 22 Jeoas—o.

If we put
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a d.l'] a a
hi= W(ajﬂoi_aiﬂﬂj),
we can write (1. 9) in the form

I a d a
(1.10) | [0 5 476 (s)]s«s)ds:o.
0 a a
We prove in §2 the following lemma.
LemMmA 1. 1. In an n-dimensional Euclidean space let there be given 2m+1 C*

vector functions A;(t), g;i(l‘), gzi(t) (a=1, -+, m) where 2m vectors

é(t)y ) 7‘;(1)’ sll)(t)’ R ;Z(t)

are linearly independent at each value of t,0=t=a. If, for every functions £t)
which satisfy

(L. 11) £(0)=8(@) =0
and
1.12) S { (7‘; {)éxt)+J:<t>§bi<t>‘sl<t>dt=0

Jfor every choice of C* functions f(f), we have

(1.13) S“Aiu)st(t)dt:a

then there exist functions y(8), -, x(¢) such that
1 m

(1. 14) At = (% §>éi<t>+ o0

RemArk. It is easily found that (1.13) is a consequence of (1.12) and (1. 14).

Applying Lemma 1.1 to the case of g-curves, we easily obtain the following
lemma.

LemMMA 1.2. Let M be an n-dimensional Riemannian manifold equipped with

an (n—m)-dimensional distribution 9 determined locally by m covector fields ;,
Let C be a D-curve x"=2x"(s), 0=s=I, such that 2m covectors

« dx’ a @
Piy d-'l; (‘7]901,—‘71,()0‘,) (a=1, -+, m)

are linearly independent at each point of C. A mecessary and sufficient condition
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for the curve C to be a critical QD-curve with fixed end points is that theve exist
Sfunctions y(s) satisfying the equations

a2z h) dx' dx* d dz’ @ )
- . —_ i V. 1‘_’7 R ih
(1. 15) 7 + {j z} 7 ds [( 7 a>g0 +x s — (e MJ)]Q

Differentiating the equations

a dx’b

1. 16) P =0

covariantly along the curve C, we get

« dg? dxt ¢ [ d%xt h ) de dx*
S il h<—dsz {JTE ds>_

Then applying (1. 15) we obtain

Az’ dw' d
(1. 17) digt L G Zso])x+~f— ;

ds ¥ s Fipn=0.

Let us consider a system of differential equations composed of (1. 15) and (1. 17)
in the unknown functions z*(s) and x(s). As far as only these equations are con-

sidered, s may not be the arc length and the curve z*=z"(s) may not be a 9-
curve. But, if the initial condition is chosen in such a way that

d e
9 gs ds 0 Pgs

hold at s=0, then we can easily see that s is the arc length of the curve z*=z"(s)
and (1. 6) is satisfied by the curve.
Thus we obtain the

THEOREM 1. 3. Let M and 9 be the same as those assumed in Lemma 1. 2.
A mnecessary and sufficient condition for a 9D-curve C, for which the same is also
assumed as in Lemma 1.2 and parametrvized by the arc length s, to be a critical
D-curve with the fixed end points is that the functions x™(s) satisfy with some
Sfunctions y(S) the diffevential equations (1.15), (1.16) and (1.17). If a solution

zh=2xM(s), y=x(s) of the system of differential equations composed of (1.15) and
(1. 17) satisfies the initial condition

) )
Vg "as ) \Pas )T

and the 2m covectors

* d «
o —— (Vipi—Vip;
o Fipi=Vips)
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are linearly independent at each point x™(s) (0=s=l), then the curve z"=2z"(s) is a
critical D-curve with the fixed end points x™0), () and s is the arc length.

§2. Proof of Lemma 1. 1.
Let = be any number such that 0<r<e and put
2.1 ) =a"o(t—7)

where @ is a constant vector and ¢ is the Dirac function. Then (1. 12) becomes
d a ] @ A

@2 = F@pi)at+f @)l)at=0.

As we can take arbitrary C* functions as f(¢), we get

@.3) o =0,  Ji(c)ai=0

from (2. 2).
On the other hand we have

@. 4) Ay0)a*=0

from (1.13). Since any vector ¢® satisfying (2. 3) must satisfy (2. 4) by assumption,
there exist 2 numbers p(c), o(c) such that

Ale)= ple)pie) +o(D)le).
Thus we obtain

2.5) A= pOpd+o(O(0

where p(f) and ¢(¢) are C functions, for ;ai(t) and ;/;i(t) are linearly independent.

We now proceed to find a relation between p(¢) and a(?).
From (1. 13) and (2. 5) we get

(2.6) |\ e +oeinena=o.

Let 2 be an arbitrary number, 0<1<e, and ¢>0 a sufficiently small number
such that [21—e, 2+¢]C (0, @) and such that a determinant of order 2z composed

of some components of the 2m covectors ;,92 does not vanish at any point of
[2—e, 2+¢]. Then we can consider for example
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o) = o) Bt - Guld)

...........................

--------------------------- #0'
1 m 1 m
SDzm(t) {Dzm(t) ¢2m(t) e ¢2m(t)
In this case, if we take C functions ha(t) such that
h(t)=--=h(t)=0,
h(t)=0 0=t=i—s 1+est=a,
Mt)>0  a—e<t<ite
and determine £*(¥) by
EmH(f)=-..=&"#)=0,
gt)y=--=mt)=0 0=t=1—e, I+e=t=ag,

it =),
« d = A—e<t<A+s,
P ()= ¥ h(?)
then &*(#) satisfy £*(0)=£"(a)=0 and (1.12). On the other hand we get from (2. 6)
S“[p(t)ii(t)+a(t)ié(t)]dz=o.
ol e « dt
and consequently,
0

S {,lz(t)—_%f(t)}}z(t)dt:o.

1
As we can take the positive valued function #4(#) arbitrarily, and, as we can take
the number A (0<A1<ea) arbitrarily, we have

_d
o= o).
Similarly we have
d
=—uqa(d).
0= 0

Hence we get (1. 14) and the lemma is proved.
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§3. Some examples.

In §3 some examples are given. Another example which is concerned with
the normal contact metric structure of S?*-! is studied in §4.

1° A distribution which is orthogonal to a Killing vector field of constant
magnitude.
Let X be a Killing vector field in an odd dimensional Riemannian manifold
such that
gjinXi=1
and such that the rank of the matrix (F,X,) is n—1. X, satisfies
r,Xi—rX)Xi=2X,X,=0

and, since the rank of (F,X,) is n—1, Y7V, X, does not vanish if YX,=0and Y=0.
Hence the covectors X, and Y¥(V,X;—F,X;) are linearly independent. Consider the
(rn—1)-dimensional distribution ¢ determined by the covector field X,. Then from
the above argument, for any @-curve C: x*=z"(s), the covectors

di?
X., —dxs—(VJXt—VzXf)

are linearly independent on C.
The differential equations of the a critical g-curve are
dz dz’
ds? ds

7,X",

k) dx? dxz d
LN = — h
N { ji } ds ds <ds >X 2

but it is easily seen from (1.17) that y is a constant. Hence we have

d*z" h | dx drt _ dx .
R

2° A distribution in the Euclidean 3-space.

Let @ be a distribution orthogonal to a Killing vector field defined by

O1=—Y, Y2=2, §03=1.
Then we have
d*x _ dy dy
dy _ dy dx
T T as ST
iliz_ _dy

dst  ds
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for (1.15),

dz dy
—-yds—l_ —+-—-— 0

for (1. 16) and
dy dx dy
2 2 L —_— _— =
@+ 422 52 +y T )z=0
for (1.17). Then we get

c

1=

and y is not a constant in general, although there exist some critical g-curves
where y is constant.

Suppose
d§0i+b (ajgoi—azgoj) 0

for some @ and b. Then we have

dy _ dx _ _
——ay—Zbd—s =0, ax+2b—d—§—0, a=0,

and consequently
_ de _dy _
b=0 or a5 = ds =0.

But the latter contradicts

dz _ dx dy dzx dz

ds ¥Vas st (ds) +(ds> +<ds> =1
Thus we see that

dx’
i —— (00— 0igpj)

are linearly independent for all g-curves.

3° A distribution in a contact metric manifold.
A contact metric manifold M is a Riemannian manifold of odd dimension
endowed with a vector field ¢* satisfying the following conditions,

(i) ¢'pi=1 where ¢;=gino",

(ii) (Pspi—Vip)¢* =0,
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1
(iif) 1 Vie' Vo Tip" =V pi) = —0+ps0".

Let @ be a distribution which is orthogonal to the vector field ¢* Let
z"=x"(s) be a g-curve.
Suppose

dxd
agh+b = (g —PPg))=0.

Transvecting ¢, we get
a=0.
Transvecting with Vp*—Fip, we get
dz* dz’
oG+ G rw)=0
But, as we have

dx?
¢i—gs =0

for a g-curve, we get b=0. Hence
dx’
D1y —ds—(Vjsoi—-Vi%)

are linearly independent for all g-curves.

§4. A (2n—2)-dimensional distribution on S?"~! and the critical 9-curves of
this distribution.

In their study of normal contact metric structure Sasaki and Hatakeyama [1]
showed that S2"-! is an example of normal contact metric manifolds. A normal
contact metric structure of S*»-! induces a (2z—2)-dimensional distribution ¢ and
it is the purpose of §4 to study critical ¢@-curves of this distribution. On the
other hand Yano and Ishihara [3] showed that S?*-!is a fibred space with invariant
Riemannian metric with a base space M* which is a (2n—2)-dimensional Ké&hler
manifold of constant holomorphic sectional curvature. A ¢-curve is a horizontal
curve with respect to this fibre structure and a critical @-curve ¢ has a projec-
tion curve C* on M*. We shall study some properties of C*.

1° When we regard S?"~! as a hypersphere

2) See also Steenrod [2] where it 1s shown on page 108 that S2"~! s a l-sphere bundle
over the projective space of # homogeneous complex variables.
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(xl)z_i_(xZ)z_'_,,,+(w2n—1)2+(x2n)2=1
in a 2x-dimensional Euclidean space E?** where a rectangular coordinate system

(z, -+, 2®*) is fixed, !, ---, ! can be considered as local coordinates of S**-! in

domains z?**>0 and z*"<0.
There exists on E?" a complex structure induced canonically from the given

rectangular coordinate system, and this complex structure and the metric of E*"
induce on S2*~! a normal contact metric structure. The contravariant vector field
¢ of this structure has components

@1

2n—1 - 27
., Q= g

in the local coordinates (z*).» We consider again the distribution ¢ which is

orthogonal to the vecor field ¢.
As the metric tensor of S2"~! has components

X" 2t

(4 2) =0ut s (w22

in the local coordinates (z), the components ¢, of the covector field of the distri-
bution g are

Z

(4’ 3) ¢ + ( 2n)2 ”‘

hence we have
4.4 opt=1.

Let {.*;}, be the Christoffel constructed from g¢,; and let 7, be the operator of
covariant differentiation with respect to the Riemannian metric of S?*-1. If indices
a, b, ¢ are used in the range {1, ---, 2»—2},9 the components

Cu=Vup2—V10u=0up2—0:,

have the following values,

=0 except P12 =Q34= """ = Pan-3,2n-2
=T P21 = Q3= = "‘902n—2.2n—3=2,
3) In §4 indices &, 2, g, --- run over the range {l, -+, 2»—1}. Summation convention

1s used 1n the usual way and also in the following way, AtBi=A1Bl{| ...+ Azr-1pen-1,
4) The summation convention of the following form 1s also used,

A®Be=A1Bl | ... | A2n-2B2n-2,
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2x¢
Pe,2n~1= —Pan-1,c = ;2‘72‘ .
The rank of (p,;) is 2n—2.
As we have
., T2 .
4. 5) { /jl }ﬂ’:aplx + W =0ml,

the differential equation of a critical @-curve is

Pt |, ., dat
(4- 6) W-}—x —CgD” ds

The study of critical @-curves is facilitated by the use of local coordinates
v, -+, ¥ such that

x'=y' cos z+? sin 2,
x?=—y! sin z+y? cos z,

4.7
x2"=3 =923 cos z+y*"~? sin z,

2*"=t= —y?"-3 sin z+y*"~? Ccos 2,

x?"1=r sin 2, x*"=y COS 2,
where z=y*""! and
1’2=1—(J)1)2— __(xzn-z)z
4.8)
=1—-@")— =)

Notice that these coordinates are used only in the range
>0, — <2< 5.

Let us define fi by
(4- 9) feo=0 except Sre=fs="=fon-3,20-2= —fu=—fu==—fu-s,ms=L
Then the components 4,, of the metric tensor of S?"-! in local coordinates (y") are
Co b
/lcb=5cb+ % )

(4. 10)
kc.Zn—1=fth/Ly han-1.2n-1=1.
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If we define 4** by

R b =055,
we have
h*=0pa—y"y*+ —rlz—fmy‘fasy’,
(4.11)
Jpoo2n-1— ;21 Fott, J2n—1.2n—1— %_

When we use the coordinate system (y*), the corresponding contravariant com-
ponents of the vector ¢ will be denoted by ¢, hence

.0y
¢'= ozt

Then we have

4.12) ¢*=0, ¢nl=—1.
We have for the corresponding covariant components
(4. 13) Po=—Tu¥/", Pen-1=—1

2° Remember that ¢ are the components of a Killing vector of unit length to
which the distribution ¢ is orthogonal. (4.12) shows that the y?*~!-curves (curves
on which y* are constant) are fibres of the fibred space S?*-!. This fibred space
which has been studied by Yano and Ishihara [3], has a base space M* of dimen-
sion 2%2—2 and, if we use the local coordinates (¥*), namely (%, ¥%*-!), in S2*-1,
the projection =: S*~'—-M* is given by = (¥% y?* )—(y%).

Let us introduce a metric into M* by the standard of Yano and Ishihara. If
the metric tensor of M* is written 4% in the coordinate system (y%), 4% are
obtained from

h,dy*dy* = hdy°dy’

by putting ¢.dy*=0. The explicit formula is
Yoy’
4.14) I =0s+ i —fey fos¥’.
The inverse (£°*) of the matrix (4%) has the elements
1
(4. 15) = Gpq—yPyo+ ) JoeY' Fasy’.

The Christoffel {.%}* is
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al* Cosd
{C b} =(50b+ yrz; )ya

(4- 16) + ety foat+ri sy S ca—2f e o5y

1
—(fet'y® +Soyy") f_zf asy’.
On the other hand, if we define ¢, by

3 a a £
(G-

we can write the differential equations of a critical @-curve in the form

axy ( . }dy“ ﬂ—c . dy"

@17 ast Tl alas as = g

Calculating the Christoffel {,%;} of %,:, we get from (4.17)

Cn/C\2
,ylla.= { _ylc,ylc_ @j/_ZL + sz —*ZC‘O ,ya,
(4.18)
2ycylc . 1
+= (0—C)Vfury)* +2(0—C) fusy
where
yo Y
ds

and p is defined by
4.19) o=rfusy'"y".

We can regard (4.18) as a curve C* in M%*, the projection of a critical 9-
curve C. In order to find some properties of C* we use (4.16) and write (4.18)
in the form

y//a+ {Cab} *yicylb
(4. 20)
1
= —2C<py"+ - YY" fars’ +fat?/”>-

Differentiating (4. 20) covariantly along the curve C* we get after some
straightforward calculation
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d
E<y//a _|_ {Cab}*ylcylb>

4. 21) +{ e }*(W +{ c }*y/tyu)yu,
cb ts
= —4C?y’°,

This shows that C* is a Riemannian circle of curvature 2|C|.

A Riemannian circle is by definition a curve in a Riemannian space whose
development in a tangent space is a circle. Its global properties are quite various
according to the enveloping manifold. Thus, for example, we cannot even guess
the period of C*.

But, as for the function 7(s) only, we can find its period.

As 7 is given by y*y®=1—7% we have

yy'e=—rr,
4. 22)
y/cy1c+ ycy//cz —y —yy,
We also get from A¥y’¢y’°=1 and (4. 14)
. 23) Yy =1+ p%

On the other hand, if we substitute (4. 18) into y°y”¢, the second equation of (4. 22)
gives

17" =—1*(1—p*+2Cp)= —r*{14+C*—(p—C)?3.
As we assume 7>0, we get
4. 24) 7" =—r{l+C*—(o—C)%.
We also obtain from (4. 18), (4.19) and (4. 22)

,__ 2p=C)
=—=—
Hence we have
(. 25) p—C= %

where k£ is a constant. Substituting this into (4. 24) we get

2

7= —(1+CHr+ %.

The general solution of this differential equation is



DISTRIBUTION AND CRITICAL CURVES 377
7*=C1+C, sin (£24/TFC (s—s0))
where
E=1+C)CP—Cy).

Thus we find that #(s) has period z/+/T4-C? or 7(s) is reduced to a constant. The
only exceptional cases will occur if £=0. Then we have p=C. Such cases will be
studied in the appendix.

3° It was shown by Yano and Ishihara [3] that the base space M* is a Kihler
manifold of constant holomorphic sectional curvature.

Let us turn to the Euclidean space E*" equipped with a fixed rectangular co-
ordinate system (z!, ---, z**) and introduce a complex coordinate system

lexl_l_ixz’ ey Zn-lzxZn—3+ix2n—2’
(4. 26)
Zo=x2n—l +i$2n-
Then we have a complex space C* In C"—{0} we can regard (Z° Z%, ..., Z*1)
as a system of homogeneous complex coordinates of the complex projective space

P»(C). If we assume Z°x0, we can introduce an inhomogeneous complex co-
ordinate system by

Zl Zn—l

ey 2= o

4. 27) 2

and, if we introduce real local coordinates w!, ---, w?"~% in P™Y(C) by
(4. 28) z1=w1+iw2, e, zn-1=w2n—3+l‘w2n—2’
then we obtain

x1x2n—l +x2x2n

1
- (xZn—l)Z+(x2n)2 ’

_ p2pn—l_ plgen
- (x2"‘1)2+(x2")2 ’

@29) e, ,

223 g2n-1q p2n-252n
(.’L‘Z"")2+(x2")2 4

w2

-2 p2n-1_ g2n—3,2n

(xZn—1)2 + (xZn)Z

w2t =

If the ordinary K#hler metric of P*-!(C) is multiplied by a suitable constant,
the corresponding metric tensor has following components ¢# in real coordinates
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wh, e, w2,

Ocp ww® +fe" fos0®
* _
(4. 30) Jeo 1+ ww® LT+ ww®)?

which will be easily proved by direct calculation.
The relation between w?, ---, w?**~% and %%, ---, ¥**% is obtained from (4.7) and
(4. 29) to be

(4. 31) we= % Sayt,  ww= % —1.

Hence we can write (4. 30) in the form
(4. 32) 9% =700 — VY —f et/ Fos¥®)-

That the metric tensor whose components are g¢¥ in local coordinates (w?®) is
identical with the metric tensor whose components are /4% in local coordinates (y%)
is immediately shown since we have

gl w =h&y'"y"
because of (4.14), (4. 31) and (4. 32).
As fo satisfies
wr | €1* e | * _
chba—{c b} fea+{c d} fbe 0

on account of (4. 16), (%, f«) is a Kéhler structure of P*-(C).
4° Let
4. 33) 70t Z e f g1 21 =()

be the equation of a hyperplane of P**(C). If we use only real numbers, we can
write (4. 33) in the form

(4. 34) A%*=Kr, A%uy'=Lr

where 7 is given by (4. 8). Hence, to a complex hyperplane of P™~!(C) corresponds
a subspace M’ of codimension 2 in M*. The subspace M’ determined by (4. 34)
will be denoted by M’(A® K, L).

If we define functions X(s) and Y(s) by

X(s)=A%*s)—Kr(s),
(4. 35)
Y (s)= A% uy'(s)— Lr(s)

along a curve C*, these satisfy
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2k’ o, 2%

" —
X= 78 72

kz
—(1+C2)+—1;4—}X— Y,

2 /
Y”={—(1+c2)+ %} Y+2’:+,’ Y- —i—f—X',
for we get
R 2%k 2
(4. 36) y”a={—<1+02)+ F}yﬂ— 5ttt 2 fu

from (4.18), (4.23) and (4.25). Hence we get X(s)=Y(s)=0 if X(s) and Y(s)
satisfy X(0)=Y (0)=X'(0)=Y"’(0)=0.
This proves the following lemma.

LemmMA 4.1. Let C* be a curve of M* which is the projection of a critical
D-curve C in S If, in the corresponding curve in P™*(C), which will also be
denoted by C*, a point P and the tangent of C* at P lie in a complex hyperplane,
then C* lies completely in this complex hyperplane.

From (4. 20) we observe that a curve C* where C=0 is a geodesic of M* and
that any geodesic of M* is a curve C*. Hence M’'(A% K, L) is a totally geodesic
subspace. Notice that M'(fe:A?, —L, K) is the same subspace as M’(A% K, L).

A subspace M’(A% K, L) tangent to a given curve C* at the point s=0 is
obtained if we take A% K, L satisfying

Ay*(0)—-Kn(0)=0,  A%'%0)—Kr'(0)=0,
(4.37)
AY%ay"(0)—Lr(0)=0,  A%ay"*(0)—Lr'(0)=0.

If we define M by

?/ ,y -y 2n-8 Y 2n-2 r 0
Yyt gyt g 0
M= y? —yle. gy n-2 —y m-8 () g ’
ylz _y/1 yrzn—z —y'tn=3 (O o
the rank of M is 4, since we have
1 0 O —p
0 1+p0* p 0
MMT™= 0, 1 o I’ det (MMT)=1
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because of (4.22) and (4. 23). Hence we have 2z—4 linearly independent solutions
of (4.37). We also observe that, if (A% K, L) is a solution of (4. 37), (fu:A', —L, K)
is also a solution.

Suppose that ((zg“, (]g,(g) (=1, ---, 2p) are 2p linearly independent solutions of

(4. 37) where

Aa':fat At (u:l, "'rp)'
2u) Qu—1)

If (A% K, L) is a solution of (4. 37) such that

Av=k A%tk A?,
[CON¢H] (p) (2p)

then we find immediately that

K=k K+-+k K,
@ (2p) (2p)

L=k L+-+Ek L,
@ @p)(2p)

hence (A% K, L) is a linear combination of (4% K, L), --+, (A% K, L). Then we also
@ W W @p) (2p) (2p)

find that the 2p (2n—2)-tuples A%, ---, A* are linearly independent, for a solution
[€)) @p)

(A% K, L) must satisfy K=L=0 if A*=0.
From the above result we can deduce that there exists a set of 2»—4 linearly
independent solutions ({1)“, (K), (L)) (&=1, -+, 2n—4) of (4. 37) where
O (©

Aa=fat At K=— L L= K (u:]_’ v, n—2)

W Gu-1> (e @w Gu-1)

. Ae )are linearly independent.
2n—4

We can interpret this result geometrically as follows.

and such that the (2n—2)-tuples (f%“, .
1

LEMMA 4. 2. For any curve C* there exists in M* a totally geodesic subspace
of dimension 2 which contains C* and is determined by a system of equations
A=Ky =1, -, 2n—4)
©® ®
where
At=fy At (u=1, -+, n—2).
Qu) Qu—-1)
This subspace is common to all curves C* passing a point P and having a common
tangent vector at the point P.

The contents of §4 can be resumed in the following theorem.

THEOREM 4. 3. According to Sasaki and Hatakeyama an S*"' in E*" can be
treated as a normal contact metric manifold. According to Yano and Ishihara S*!
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can also be treated as a fibred space with invariant Riemannian metric. The base
space M* is a Kdhler space of constant holomorphic sectional curvature. By virtue
of these structures an S*' becomes a space equipped with a distribution 9 of
dimension 2n—2 where the 9-curves are horizontal curves of the fibred space. If
C is a critical Q)-curve, the projection C* on M* of C has following properties.
) C* is a Riemannian circle of M*. (II) Let {M’} be the set of (2n—4)-dimen-
sional totally geodesic subspaces of M* such that each subspace M’ is a complex
hypersurface if M* is regarded as a complex projective space. Then any curve C*
bassing a point P of a subspace M’ and tangent at P to this M' is contained
completely in this subspace M’'. (II) For any curve C* there exists in M* a totally
geodesic subspace of dimension 2 which contains C* and is obtained as an inter-
section of n—2 elements of {M’}. This subspace is common to all curves C* pas-
sing a common point P and having a common tangent at P.

Appendix. The exceptional cases.

In this appendix we study critical @-curves ¢ of S?"~! where k=0, p=C.
In this case the differential equation of 7 is reduced to the form

(A. 1) 7' =—1+Cr

and the general solution 7=7, cos(+/I+C?(s—s,)) does not obey the restriction
r>0. Hence, for the study of global properties of such exceptional critical 9-curves
C, we use rectangular coordinates z?, ---, z*® of E*".

Since the equations (4.18) of the projection curve C* are written in local
coordinates o, ---, "%, we must use (4.7) and (4. 8) to return to the coordinates
z!, -+, 2*™. (C is obtained by the process of lifting in which we use

(A' 2) Sbayla+ ¢2n-lz, =0:
which becomes
(A.3) Z=-C

because of (4.13) and p=C.
Differentiating (4. 7) and using (A. 3) we obtain

z''=y’" cos z+y’? sin z—Cz?,
z'?=—y"* sin z+y’% cos z+Cx?,
(Acd) e ,
/> 1=y’ sin z—Cx*",
z'? =y’ cos z+Cx?"1,

and
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2" =y"* cos z+y"? sin z+2C(y"* sin z—y’% cos 2)—C%z?,
"= —y"* sin z+y"2 cos z+2C(y’* cos z+y’? sin z)—C?x?,
(A.B) s
z"?"1=¢" sin z—2Cr’ cos z—C?z*"",
x"*=y¢" cos z+2Cr’ sin z—C?x®".
Since 7 and y* satisfy
r"=—14+C%r, y"?=—(14+C*y"
along ¢, we obtain
"1 4-2Cx"?+ ' =0,
2" —2Cz" + 22 =0,
(A B) e
Z"#=14-2Cx 3+ g1 =0,
%" —2Cx"*14 g*n =(),
C ‘satisfies moreover
(@) + -+ (2?2 =1,

(z")2 4o+ (/272 =1,
A.7

x‘x’1+ vee +x2nx/2n=0’
2l? — 22 e 2120 p2np2n-1 (),

The fourth equation of (A.7) is obtained from (A. 4) and p=C.
If Fj; is defined by

Fji=0 except Fis=Fy="=Fu13=—Fu=—Fu==—=Funm1=1,
then we can write the fourth equation of (A.7) in the form
(A.8) Fya'12t=0.
Now we can write (A. 6) in the form
"""+ 2CFpx"t + 2" =0.

If in E? the vector z* is denoted by X and the vector Fp2* by FX, (A.6) is
written
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(A.9) X"4+2CFX'+ X=0.

Differentiating repeatedly and eliminating FX, FX’ we get

(A. 10) X®L22C*+H1) X"+ X=0.
Let us put
(A.11) a=~1+C*+|C|, f=+V1+C—|C|.

Assuming C=0, we have a>j5>0. —a® and —j? are the roots of 224-2(2C*+1)a+1
=0. Hence

(A.12) X=A, cosas+ A, sin as+ B, cos s+ B, sin s

is the general solution of (A. 10).
Substituting (A. 12) into (A.7) we can deduce

_ S S S
(A, A)=(A,, A= 2T 9leCt

- _1 ICl
(Bl’ Bl)—(BZ’ BZ)— 9 + 2\/1+C2

and that A,, As, B,, B, are mutually orthogonal.
Substituting (A. 12) into (A. 9) we can deduce

ra=-ta,  rB=Yp,
Thus we have
(A. 13) X=Acosas—:zI'A sin as+ 13 cos 3s+ I3 sin s
where e==+1 and
“, A):—‘%—_'f—;, B, B):%::%, (A, B)=0.
If C=0 we have the simplest case,
(A. 14) N=Acoss+Dsins

where (A, A)=(B, B)=1, (A, B)=0.

Thus we have the following result.

The equations of the exceptional critical ¢-curves are (A.13) or (A.14) ac-
cording as Cx0 or C=0.
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