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REMARKS ON EXCEPTIONAL VALUES OF
MEROMORPHIC FUNCTIONS

By KOKICHI SHIBAZAKI

§1. In the present paper we are concerned with exceptional values of mero-
morphic functions. Throughout this paper we use the well-known symbols in
Nevanlinna’s theory.

Let f(z) be a meromorphic function of order p (finite positive or infinite). A
number A (finite or infinite) is said to be a Borel exceptional value of f(2) if either
the exponent of convergence of the A-points, p(A), is less than p for p<+oo or
o(A)<+oo for p=-+oo.

Valiron [8] had proved the following

TuoeoreM A. Let f(2) be a mervomorphic function of finite ovder p. If two
numbers A and B are Borel exceptional values of f(2), then (4, f)=06(B, f)=1 and
f(2) is completely regular growth and p is a positive integer. Further A and B are
asymptotic values of f(z).

Here we note that it follows from Edrei and Fuchs [2] that A and B are two
asymptotic values in the last part of Theorem A. Also Cartwright [1] has shown
that for entire functions the similar theorem as above holds.

On the other hand for an arbitrary p, 1<p= +oo, Goldberg [3] has constructed
a meromorphic function f(z) of order p, for which d(co, f)=1 and oo is not an
asympotic value. Morover the ratio T'(, f)/»* for any »>7#, is bounded from above
and from below by positive constants, if 1<p<+4oco and log r=o{log T(r, f)} if
p=oc0; while N(7, co, f)~Cr#, p/(20—1)<p<1, 0<C<+oo. Thus o is also a non-
asymptotic Borel exceptional value. From this example we see that A is not always
an asymptotic value, when a meromorphic function ¢(z) has only one Borel ex-
ceptional value A.

We shall say in the sequel that a set {I",} is a sequence of arcs if it satisfies
the following conditions:

1) {I',} is a countable set of arcs.
@) I''nl'y=¢ for ixj if n=2.

(3) For an arbitrary >0 there exist one arc I', or two arcs Iy and I'mi:
such that, for some 6, 0=0=2x,
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I'woz=re®
or for some 6, and 6., 0=6,, 0,=2r,

I'm3z=re" and [I'n.132=re'", respectively.

Then we shall prove the followings.

TueoreM 1. Let f(z) be a meromorphic function of lower order p. If a number
A is a Borel exceptional value of f(2) such that p(A)<p, then there exists a sequence
of arcs {I'x} such that

lim f(2)=A (uniformly).

2—00
2€UTly

THEOREM 2. Let f(2) be @ meromorphic function of non-integral finite order
and of very regular growth, i.e.,
0< lim infﬂ%ﬁ =lim Sup_"l‘%’;ﬁ < oo

If 8(A, f)=1, then there exists a sequence of arcs {['n} such that
lim f(2)=A (uniformly).

2€Uly,

Goldberg’s example shows that the sequence of arcs {I",} in Theorem 1 or
Theorem 2 cannot be replaced by a suitable curve.

We note that if a number A is an asymptotic value of f(z), then there exists
a sequence of arcs {I's} such that

lim f(2)=A.

20Ty,
Thus the number of such values is at least that of asymptotic values. However
for meromorphic functions of lower order less than 1/2 we have the following
corollary.

COROLLARY. Under the assumption of Theorem 1 (or Theorem 2) if f(2) is of

lower ovder p, p<1/2, then the value A is a unique value for which there exists a
sequence of arcs {I'n} in Theovem 1 (or Theovem 2, respectively).

We do not know whether for entire functions there exists a non-asymptotic
value for which a sequence of arcs exists.

2. Lemmas. From a theorem on the maximum modulus of an entire function
in Varilon [7] we have the following

LemMA 1. If ¢(z) is an entive function, then therve exists a sequence of arcs
{I'y} such that

lg@@)|=M(r,9) for any  z=re"’eUln,
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where M(r, g)=max 5=, |9(2)|.

Hardy [4] had constructed examples showing that the curve of the maximum
modulus can actually show discontinuities.
The followings are well known.

LemMmA 2. ([5]). Let f(2) be an entire function. Then
T(r, f)= log M(r, £)=3T(2r, f).

LemMA 3. Let f(z) be a mevomorphic function of order p and of lower order
po If p<Hoo, then lim T(r, /)[r'=0 for any 2>p. If p>0, then lim T(r, f)/r*
=-+to0 for any 21<p.

Lemma 4. ([5]). Let a, be a sequence of nom-zero complex number and let q
the least integer such that Y,3,|a,|~% converges. Then the product 112,E(z/a,, g—1)
converges absolutely and uniformly in any bounded part of the plane to an entire
Sunction n(2) having the same ovder p as the sequence a, and the same type-class
if p is not an integer.

By Ostrovskii [6] we have the following

LeEmMA 5. Let f(2) be a meromorphic function of lower order p (p<1/2). If
6(co, f)>1—cos ny, then there exists a sequence of circles |z|=r, (rn—o0), on which
the function f(2) uniformly converges to infinity.

3. Proof of Theorem 1. From Lemma 4 we can construct an entire function
E(z) of order p(A) such that {f(2)—A}/E(z) has no zeros. We put

B
(3. 1) f(Z)—A— R(Z) ’

where R(2) is entire and of lower order p because of our assumption.
We apply Lemma 1 to R(z). Then there exists a sequence of arcs {I',} such

that
M(r, R)=|R(2)| for any zeUI,.

Hence it follows from (3.1) and Lemma 2 that, for large r=|z| and ze U,

M(r, E)

— — 777 =T (r,R)+3T (27, E)
3.2 HESIER S .
Further we have by Lemma 3
_ T(@r, E)
—T(r, R)+3Tr, E)=—Tr, R){l— 3 e }
_ T@r, E) ) 7 }
3.3) =—T(, R){1—3-2‘- TR

——00
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as r¥—+oo, for p(A)<a<p since p(A)<p=co. Thus by (3.2) and (3. 3) we have
|f)—A|—0 as z—oo0, zeUIl,.

Hence the proof of Theorem 1 is completed.

4. Proof of Theorem 2. Since §(4, f)=1 and f(2) is of very regular growth
we have

N A
v

@1 lim

If o(A)<p, by Theorem 1 there is nothing to prove. Thus we may assume that
o(A) is not an integer. Hence by Lemma 4 we can construct an entire function
E(2) such that {f(z)—A}/E(2) has no zeros and by (4. 1)

. TrE
4.2 tim 2028 _

im 0 (o=p(A)).
Thus by the same discussion as in the proof of theorem 1 with (4.1), (4.2) and
our assumption lim inf, ., T'(#, f)/**>0 we have Theorem 2.

5. Proof of Corollary. By our assumption we have (A4, f)=1. If |A]=4co,
by Lemma 5 Corollary is valid. If |A]<+oo, then we consider f(2)=1/{f(z)— A}
instead of f(z). We also have d(co, F)=1, so that by Lemma 5 Corollary is valid.
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