KÖDAI MATH. SEM. REP 22 (1970), 401-423

ON (f, g, u, v, λ) -STRUCTURES

By Kentaro Yano and Masafumi Okumura

§0. Introduction.

Tashiro [10] has shown that hypersurfaces of an almost complex manifold carry almost contact structures. In particular, an odd-dimensional hypersphere in an evendimensional Euclidean space carries an almost contact structure.

Blair, Ludden and one of the present authors [3] (see also, Ako [1], Blair and Ludden [2], Goldberg and Yano [4, 5], Okumura [7], Yano and Ishihara [13]) have studied submanifolds of codimension 2 of almost complex manifolds. These submanifolds admit, under certain conditions, what we call an (f, U, V, u, v, λ) -structure and, if the ambient space is an almost Hermitian manifold, the submanifolds admit what we call an (f, g, u, v, λ) -structure. In particular, an even-dimensional sphere of codimension 2 of an even-dimensional Euclidean space carries an (f, g, u, v, λ) -structure.

They also studied hypersurfaces of almost contact manifolds and found that the hypersurfaces also admit the same kind of structure (see also Okumura [8], Watanabe [11], Yamaguchi [12]).

The main purpose of the present paper is to study the (f, g, u, v, λ) -structure and to give characterizations of even-dimensional spheres.

In §1, we define and discuss (f, U, V, u, v, λ) -structure and (f, g, u, v, λ) -structure.

In §2, we prove that a totally umbilical submanifold of codimension 2 of a Kählerian manifold whose connection induced in the normal bundle is flat admits a normal (f, g, u, v, λ) -structure and that the vector fields U and V define infinitesimal conformal transformations of the submanifold.

In §3, we prove that a hypersurface of a Sasakian manifold for which the tensor f and the second fundamental tensor h commute admits a normal (f, g, u, v, λ) -structure and that if the hypersurface is totally umbilical, then the vectors U and V define infinitesimal conformal transformations.

§4 is devoted to prove some identities valid in M with normal (f, g, u, v, λ) -structure for later use.

In §5, we prove that if a manifold M with normal (f, g, u, v, λ) -structure satisfies $du = \phi f$ and dv = f and if $\lambda(1-\lambda^2)$ is an almost everywhere non-zero function, then the vector fields U and V define infinitesimal conformal transformations.

In §6, we prove a formula which gives the covariant derivative of f.

The last §7 is devoted to prove two theorems which characterize even-dimensional spheres.

Received April 9, 1970.

§1. (f, U, V, u, v, λ) -structure.

Let M be an *m*-dimensional differentiable manifold of class C^{∞} . We assume that there exist on M a tensor field of type (1, 1), vector fields U and V, 1-forms u and v, and a function λ satisfying the conditions:

(1.1)
$$f^{2}X = -X + u(X)U + v(X)V$$

for any vector field X,

(1. 2)
$$u \circ f = \lambda v, \qquad f U = -\lambda V,$$

$$(1.3) v \circ f = -\lambda u, f V = \lambda U,$$

where 1-forms $u \circ f$ and $v \circ f$ are respectively defined by

 $(u \circ f)(X) = u(fX), \qquad (v \circ f)(X) = v(fX)$

for any vector field X, and

(1.4)
$$u(U)=1-\lambda^2, \quad u(V)=0,$$

(1.5)
$$v(U)=0, \quad v(V)=1-\lambda^2.$$

In this case, we say that the manifold M has an (f, U, V, u, v, λ) -structure. Examples of manifolds with (f, U, V, u, v, λ) -structure will be given in §§2 and 3.

First of all, we prove

THEOREM 1.1. A differentiable manifold with (f, U, V, u, v, λ) -structure is of even dimension.

Proof. Let P be a point of M at which $\lambda^2 \neq 1$. Then, from (1.4) and (1.5), we see that

 $U \neq 0$, $V \neq 0$

at P. The vectors U and V are linearly independent. For, if there are two numbers a and b such that

$$aU+bV=0,$$

then evaluating u and v at aU+bV and using (1.4) and (1.5), we obtain

$$u(aU+bV)=au(U)=a(1-\lambda^2)=0,$$

and

$$v(aU+bV)=bv(V)=b(1-\lambda^2)=0.$$

Thus we have a=b=0.

Thus U and V being linearly independent at P, we can choose m linearly independent vectors $X_1 = U$, $X_2 = V$, X_3 , \dots , X_m which span the tangent space $T_P(M)$

of M at P and such that $u(X_{\alpha})=0$, $v(X_{\alpha})=0$, for $\alpha=3, \dots, m$. Consequently, we have from (1, 1),

$$f^2 X_{\alpha} = -X_{\alpha}, \qquad \alpha = 3, 4, \cdots, m,$$

which shows that f is an almost complex structure in the subspace V_P of $T_P(M)$ at P spanned by X_3, \dots, X_m and that V_P is even dimensional. Thus $T_P(M)$ is also even dimensional.

Next, let P be a point of M at which $\lambda^2 = 1$. In this case, we see, from (1.4) and (1.5), that

$$u(U)=0,$$
 $u(V)=0,$
 $v(U)=0,$ $v(V)=0.$

We also see, from (1.2) and (1.3), that

if
$$u \neq 0$$
, then $v \neq 0$,
if $u=0$, then $v=0$.

We first consider the case in which $u \neq 0$, $v \neq 0$. In this case, u and v are linearly independent. Because, if there are two numbers a and b such that

$$au+bv=0$$
,

then, from (1.2), (1.3) and

$$(au+bv)\circ f=0,$$

we have

$$\lambda(bu-av)=0,$$

from which

$$bu-av=0$$

 λ being different from zero. Thus from au+bv=0 and bu-av=0 we have

$$(a^2+b^2)u=0,$$

from which a=0, b=0.

Thus, u and v being linearly independent at P, we can choose n linearly independent covectors $w_1=u$, $w_2=v$, w_3 , \cdots , w_m which span the cotangent space ${}^{\circ}T_{\rm P}(M)$ of M at P. We denote the dual basis by $(X_1, X_2, \cdots, X_{m-1}, X_m)$.

If U and V are linearly independent at P, we can assume that

$$X_{m-1}=U, \qquad X_m=V.$$

Then we have

$$f^{2}X_{\alpha} = -X_{\alpha} + u(X_{\alpha})U + v(X_{\alpha})V = -X_{\alpha}, \qquad \alpha = 3, 4, \cdots, m$$

which shows that f is an almost complex structure in the subspace $V_{\rm P}$ of $T_{\rm P}(M)$ at P spanned by X_3, \dots, X_m and that $V_{\rm P}$ is even-dimensional and consequently $T_{\rm P}(M)$ is also even-dimensional.

If U and V are linearly dependent, there exist two numbers a and b such that

$$aU+bV=0$$

and $a^2+b^2 \neq 0$. Applying f to the equation above and using (1.2) and (1.3), we find

$$\lambda(-aV+bU)=0,$$

from which

$$bU-aV=0.$$

Thus, we must have

$$U=V=0.$$

Thus, from (1.1), we have

$$f^{2}X = -X$$

for any vector X in $T_{\mathbf{P}}(M)$. Thus $T_{\mathbf{P}}(M)$ is even dimensional.

The case left to examine is the case in which u=0, v=0. But in this case also we have, from (1.1), $f^2X = -X$ for any vector X in $T_P(M)$ and consequently $T_P(M)$ is even dimensional. Thus we have completed the proof of Theorem 1.1.

DEFINITION. The structure (f, U, V, u, v, λ) is said to be *normal* if the Nijenhuis tensor N of f satisfies

(1.6)
$$S(X, Y) \equiv N(X, Y) + du(X, Y)U + dv(X, Y)V = 0$$

for any vector field X and Y of M.

We consider a product manifold $M \times R^2$, where R^2 is a 2-dimensional Euclidean space. Then, (f, U, V, u, v, λ) -structure gives rise to an almost complex structure J on $M \times R^2$:

(1.7)
$$(J) = \begin{pmatrix} f & U & V \\ -u & 0 & -\lambda \\ -v & \lambda & 0 \end{pmatrix}$$

as we can easily check using $(1, 1) \sim (1, 5)$.

Computing the Nijenhuis tensor of J, we can easily prove

PROPOSITION 1.2. If J is integrable, then (f, U, V, u, v, λ) -structure is normal.

We assume that, in M with (f, U, V, u, v, λ) -structure, there exists a positive definite Riemannian metric g such that

ON (f, g, u, v, λ) -STRUCTURES

(1.8)
$$g(U, X) = u(X),$$

(1.9)
$$g(V, X) = v(X),$$

and

(1.10)
$$g(fX, fY) = g(X, Y) - u(X)u(Y) - v(X)v(Y)$$

for any vector fields X, Y of M. We call such a structure a metric (f, U, V, u, v, λ) -structure and denote it sometimes by (f, g, u, v, λ) .

We prove

PROPOSITION 1.3. Let ω be a tensor field of type (0.2) of M defined by

(1.11)
$$\omega(X, Y) = g(fX, Y)$$

for any vector fields X and Y of M, then we have

(1.2)
$$\omega(X, Y) = -\omega(Y, X),$$

that is, ω is a 2-form.

Proof. From the definition (1.11) of ω , we have

 $\omega(fX, fY) = g(f(fX), fY),$

from which, using (1.10),

$$\omega(fX, fY) = g(fX, Y) - u(fX)u(Y) - v(fX)v(Y),$$

or

$$\omega(fX, fY) = \omega(X, Y) - \lambda v(X)u(Y) + \lambda u(X)v(Y),$$

by virtue of (1. 2) and (1. 3).

On the other hand, using (1.1), we have

$$\begin{split} \omega(fX, fY) &= g(f^2X, fY) \\ &= g(-X + u(X)U + v(X)V, fY) \\ &= -g(X, fY) + u(X)u(fY) + v(X)v(fY), \end{split}$$

by virtue of (1.8) and (1.9) and consequently

$$\omega(fX, fY) = -\omega(Y, X) + \lambda u(X)v(Y) - \lambda v(X)u(Y).$$

Thus we have

$$\omega(X, Y) = -\omega(Y, X).$$

§2. Submanifolds of codimension 2 of an almost Hermitian manifold.

In this section, we study submanifolds of codimension 2 of an almost Hermitian manifold as examples of the manifold with (f, g, u, v, λ) -structure.

Let \tilde{M} be a (2n+2)-dimensional almost Hermitian manifold covered by a system of coordinate neighborhoods { \tilde{U} ; y^{ϵ} }, where here and in this section the indices κ , λ , μ , ν , \cdots run over the range {1, 2, \cdots , 2n+2}, and let $(F_{\lambda}^{\epsilon}, G_{\mu\lambda})$ be the almost Hermitian structure, that is, let F_{λ}^{ϵ} be the almost complex structure:

$$F_{\alpha}{}^{\kappa}F_{\lambda}{}^{\alpha} = -\delta_{\lambda}^{\kappa},$$

and $G_{\mu\lambda}$ a Riemannian metric such that

$$(2.2) G_{\gamma\beta}F_{\mu}{}^{\gamma}F_{\lambda}{}^{\beta} = G_{\mu\lambda}$$

We denote by $\{\mu_{\lambda}\}$ the Christoffel symbols formed with $G_{\mu\lambda}$.

Let M be a 2*n*-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods $\{U; x^h\}$, where here and in the sequel the indices h, i, j, \cdots run over the range $\{1, 2, \dots, 2n\}$ and which is differentiably immersed in \tilde{M} as a submanifold of codimension 2 by the equations

$$(2.3) y^{\kappa} = y^{\kappa}(x^{h}).$$

We put

$$(2.4) B_i{}^{\kappa} = \partial_i y^{\kappa}, (\partial_i = \partial/\partial x^i)$$

then B_i^{ϵ} is, for each fixed *i*, a local vector field of \tilde{M} tangent to *M* and vectors B_i^{ϵ} are linearly independent in each coordinate neighborhood. B_i^{ϵ} is, for each fixed κ , a local 1-form of *M*.

We choose two mutually orthogonal unit vectors C^{ϵ} and D^{ϵ} of \tilde{M} normal to Min such a way that 2n+2 vectors B_i^{ϵ} , C^{ϵ} , D^{ϵ} give the positive orientation of M.

The transforms $F_{\lambda}{}^{\epsilon}B_{i}{}^{\lambda}$ of $B_{i}{}^{\lambda}$ by $F_{\lambda}{}^{\epsilon}$ can be expressed as linear combinations of $B_{i}{}^{\epsilon}$, C^{ϵ} and D^{ϵ} , that is,

(2.5)
$$F_{\lambda}^{\kappa}B_{i}^{\lambda}=f_{i}^{h}B_{h}^{\kappa}+u_{i}C^{\kappa}+v_{i}D^{\kappa},$$

where f_i^h is a tensor field of type (1, 1) and u_i , v_i are 1-forms of M. Similarly the transform $F_i^{t}C^i$ of C^i by F_i^{t} and the transform $F_i^{t}D^i$ by F_i^{t} can be written as

$$F_{\lambda}{}^{\kappa}C^{\lambda} = -u^{i}B_{i}{}^{\kappa} + \lambda D^{\kappa},$$

(2.6)

$$F_{\lambda}^{\kappa}D^{\lambda} = -v^{i}B_{i}^{\kappa} - \lambda C^{\kappa},$$

where

$$u^i = u_t g^{ti}, \quad v^i = v_t g^{ti},$$

 g_{ji} being the Riemannian metric on M induced from that of \tilde{M} .

407

 $g_{ji} = G_{\mu\lambda} B_{j}^{\mu} B_{i}^{\lambda},$

and λ is a function on M. The function λ seems to depend on the choice of normals C^{ϵ} and D^{ϵ} , but we can easily verify that λ is independent of the choise of normals and consequently that λ is a function globally defined on M.

Applying F_{\star}^{μ} again to (2.5) and taking account of (2.5) itself and (2.6), we find

$$(2.7) f_j{}^h f_i{}^j = -\delta_i^h + u_i u^h + v_i v^h$$

(2.8)
$$u_h f_i^h = \lambda v_i, \qquad v_h f_i^h = -\lambda u_i.$$

Applying F_{κ}^{μ} again to (2. 6) and taking account of (2. 5) and (2. 6) itself, we find

(2.9)
$$f_i^h u^i = -\lambda v^h, \qquad u_i u^i = 1 - \lambda^2, \qquad u_i v^i = 0$$

(2.10)
$$f_i^h v^i = \lambda u^h, \quad v_i u^i = 0, \quad v_i v^i = 1 - \lambda^2.$$

On the other hand, we have, from (2.2),

 $G_{\gamma\beta}F_{\mu}{}^{\gamma}F_{\lambda}{}^{\beta}B_{j}{}^{\mu}B_{i}{}^{\lambda}=G_{\mu\lambda}B_{j}{}^{\mu}B_{i}{}^{\lambda},$

from which

$$g_{kh}f_j{}^kf_i{}^h+u_ju_i+v_jv_i=g_{ji},$$

or

(2. 11)
$$g_{kh}f_{j}^{k}f_{i}^{h} = g_{ji} - u_{j}u_{i} - v_{j}v_{i}.$$

Equations (2. 7), (2. 8), (2. 9), (2. 10) and (2. 11) show that a submanifold of codimension 2 of an almost Hermitian manifold admits a (f, g, u, v, λ) -structure.

We denote by $\{j^h_i\}$ and \mathcal{V}_i the Christoffel symbols formed with g_{ji} and the operator of covariant differentiation with respect to $\{j^h_i\}$ respectively.

The so-called van der Waerden-Bortolotti covariant derivative of B_i^{κ} is given by

(2. 11)
$$\nabla_j B_i^{\kappa} = \partial_j B_i^{\kappa} + \{\mu_{\lambda}\} B_j^{\mu} B_i^{\lambda} - B_h^{\kappa} \{j^h_i\}$$

and is orthogonal to M and consequently can be written as

$$(2.12) \nabla_j B_i^{\kappa} = h_{ji} C^{\kappa} + k_{ji} D^{\kappa},$$

which are equations of Gauss, where h_{ji} and k_{ji} are the second fundamental tensors of M with respect to the normals C^{ϵ} and D^{ϵ} respectively.

For the covariant derivatives of C^{ϵ} and D^{ϵ} along M, we have equations of Weingarten

$$\nabla_j C^{\kappa} = -h_j{}^i B_i{}^{\kappa} + l_j D^{\kappa},$$

(2.13)

$$\nabla_j D^{\kappa} = -k_j {}^{\imath} B_i {}^{\kappa} - l_j C^{\kappa},$$

where

$$\nabla_{j}C^{\kappa} = \partial_{j}C^{\kappa} + \{\mu_{\lambda}\}B_{j}^{\mu}C^{\lambda}, \qquad \nabla_{j}D^{\kappa} = \partial_{j}D^{\kappa} + \{\mu_{\lambda}\}B_{j}^{\mu}D^{\lambda},$$

 $h_{j^{\imath}} = h_{js}g^{s\imath}, \qquad k_{j^{\imath}} = k_{js}g^{s\imath}$

and l_{J} is the so-called third fundamental tensor.

As we see from (2.13), equations

(2. 14)
$$\begin{array}{c} {}^{\prime} \nabla_{j} C^{\kappa} = l_{j} D^{\kappa}, \\ {}^{\prime} \nabla_{j} D^{\kappa} = -l_{j} C^{\kappa} \end{array}$$

define the connexion induced in the normal bundle. If this induced connexion is flat, then we can choose C^{ϵ} and D^{ϵ} in such a way that we have $l_{J}=0$.

Differentiating (2.5) covariantly along M, we have, taking account of equations of Gauss and those of Weingarten,

$$(\nabla_{\mu}F_{\lambda}^{\kappa})B_{j}^{\mu}B_{i}^{\lambda} + F_{\lambda}^{\kappa}(h_{ji}C^{\lambda} + k_{ji}D^{\lambda})$$

$$= (\nabla_{j}f_{i}^{h})B_{h}^{\kappa} + f_{i}^{t}(h_{ji}C^{\kappa} + k_{ji}D^{\kappa})$$

$$+ (\nabla_{j}u_{i})C^{\kappa} + u_{i}(-h_{j}^{h}B_{h}^{\kappa} + l_{j}D^{\kappa})$$

$$+ (\nabla_{j}v_{i})D^{\kappa} + v_{i}(-k_{j}^{h}B_{h}^{\kappa} - l_{j}C^{\kappa}),$$

or

$$(\nabla_{\mu}F_{\lambda}^{*})B_{j}^{\mu}B_{i}^{\lambda} - (h_{ji}u^{h} + k_{ji}v^{h})B_{h}^{*} - \lambda k_{ji}C^{*} + \lambda h_{ji}D^{*}$$

$$= (\nabla_{j}f_{\lambda}^{h} - h_{j}^{h}u_{i} - k_{j}^{h}v_{i})B_{h}^{*}$$

$$+ (\nabla_{j}u_{i} + h_{ji}f_{i}^{*} - l_{j}v_{i})C^{*}$$

$$+ (\nabla_{j}v_{i} + k_{ji}f_{i}^{*} + l_{j}u_{i})D^{*}.$$

Thus, if \tilde{M} is a Kählerian manifold, that is, if $\mathcal{P}_{\mu}F_{\lambda}^{*}=0$, then we have

(2.15)
$$\nabla_{j} f_{i}^{h} = -h_{ji} u^{h} + h_{j}^{h} u_{i} - k_{ji} v^{h} + k_{j}^{h} v_{i}$$

(2.16)
$$\nabla_j u_i = -h_{jt} f_i^t - \lambda k_{ji} + l_j v_i,$$

(2. 17)
$$\overline{V}_j v_i = -k_{ji} f_i^{\ t} + \lambda h_{ji} - l_j u_i.$$

Using (2.15), (2.16) and (2.17) to compute

$$S_{ji^h} = N_{ji^h} + (\nabla_j u_i - \nabla_i u_j)u^h + (\nabla_j v_i - \nabla_i v_j)v^h,$$

we find

$$S_{ji^{h}} = (f_{j}^{r}h_{r^{h}} - h_{j}^{r}f_{r^{h}})u_{i} - (f_{i}^{r}h_{r^{h}} - h_{i}^{r}f_{r^{h}})u_{j}$$
$$+ (f_{j}^{r}k_{r^{h}} - k_{j}^{r}f_{r^{h}})v_{i} - (f_{i}^{r}k_{r^{h}} - k_{i}^{r}f_{r^{h}})v_{j}$$
$$+ u^{h}(l_{j}v_{i} - l_{i}v_{j}) - v^{h}(l_{j}u_{i} - l_{i}u_{j}).$$

Thus we have

PROPOSITION 3.1. Let M be a submanifold of codimension 2 of a Kählerian manifold whose connection induced in the normal bundle is flat. If f commutes with both of h and k, M admits a normal (f, g, u, v, λ) -structure.

COROLLARY 3.2 A totally umbilical submanifold of codimension 2 of a Kählerian manifold whose connection induced in the normal bundle is flat admits a normal (f, g, u, v, λ) -structure.

Corollary 3. 2. holds of course for a totally geodesic submanifold. A plane or a sphere of codimension 2 in an even-dimensional Euclidean space are examples for which the corollary holds.

For a totally umbilical submanifold whose connection induced in the normal bundle is flat, we have, for suitably chosen unit normals C and D,

$$h_{ji} = hg_{ji}, \qquad k_{ji} = kg_{ji}, \qquad l_j = 0$$

and consequently (2.16) and (2.17) become

$$(2.18) \nabla_j u_i = h f_{ji} - \lambda k g_{ji},$$

and

respectively. These equations give

$$(2. 20) \nabla_j u_i + \nabla_i u_j = -2\lambda k g_{ji}$$

and

(2. 21)
$$\nabla_j v_i + \nabla_i v_j = 2\lambda h g_{ji}$$

which show that u^h and v^h define infinitesimal conformal transformations in M.

§3. Hypersurfaces of an almost contact metric manifold.

In this section, we study hypersurfaces of an almost contact metric manifold as examples of the manifold with (f, g, u, v, λ) -structure.

Let \tilde{M} be a (2n+1)-dimensional almost contact metric manifold covered by a system of coordinate neighborhoods { \tilde{U} ; y^{ϵ} }, where here and in this section, the indices κ , λ , μ , ν , \cdots run over the range {1, 2, \cdots , 2n+1} and let $(F_{\lambda}^{\epsilon}, G_{\mu\lambda}, v_{\lambda})$ be the almost contact metric structure, that is [9],

$$v_{\kappa}F_{\lambda}^{\kappa}=0, \qquad F_{\lambda}^{\kappa}v^{\lambda}=0,$$

$$(3.3) v_{\lambda}v^{\lambda}=1$$

and

$$(3. 4) G_{\gamma\beta}F_{\mu}{}^{\gamma}F_{\lambda}{}^{\beta} = G_{\mu\lambda} - v_{\mu}v_{\lambda}.$$

Let M be a 2*n*-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods $\{U; x^h\}$, and which is differentiably immersed in \tilde{M} as a hypersurface by the equations

$$(3.5) y^{\kappa} = y^{\kappa}(x^{h}).$$

We put $B_i^{\epsilon} = \partial_i y^{\epsilon}$ and choose a unit vector C^{ϵ} of \tilde{M} normal to M in such a way that 2n+1 vectors B_i^{ϵ} and C^{ϵ} give the positive orientation of M.

The transforms $F_{\lambda}^{*}B_{i}^{\lambda}$ of B_{i}^{λ} by F_{λ}^{*} can be expressed as linear combinations of B_{i}^{*} and C^{*} , that is

$$F_{\lambda}^{\kappa}B_{i}^{\lambda}=f_{i}^{h}B_{h}^{\kappa}+u_{i}C^{\kappa},$$

where f_i^h is a tensor field of type (1, 1) and u_i is a 1-form of M. Similarly, the transform $F_i^*C^i$ of C^i by F_i^* can be written as

$$F_{\lambda}^{\kappa}C^{\lambda} = -u^{i}B_{i}^{\kappa},$$

where

$$u^i = u_f g^{fi}$$
,

 g_{ji} being the Riemannian metric on M induced from that of \tilde{M} . We put

$$(3.8) v^{\kappa} = B_i^{\kappa} v^i + \lambda C^{\kappa},$$

where v^i is a vector field of M and λ a function of M.

Applying F_{ϵ}^{μ} again to (3. 6) and taking account of (3. 6) itself, (3. 7) and (3. 8), we find

$$(3.9) f_i^t f_i^h = -\delta_i^h + u_i u^h + v_i v^h,$$

$$(3.10) u_t f_i^t = \lambda v_i$$

Applying F_{κ}^{μ} again to (3.7) and taking account of (3.6), (3.7) and (3.8), we obtain

$$(3.11) f_i^h u^i = -\lambda v^h,$$

$$(3. 12) u_i u^i = 1 - \lambda^2.$$

Finally applying F_{\star}^{μ} to (3.8), we find

$$(3.13) f_i^h v^i = \lambda u^h,$$

(3. 14)
$$u_i v^i = 0.$$

Since u^{*} is a unit vector, we have, from (3.8),

 $(3.15) v_i v^i = 1 - \lambda^2.$

On the other hand, we have, from (3.4)

$$G_{\gamma\beta}F_{\mu}{}^{\gamma}F_{\lambda}{}^{\beta}B_{j}{}^{\mu}B_{i}{}^{\lambda}=G_{\mu\lambda}B_{j}{}^{\mu}B_{i}{}^{\lambda}-u_{\mu}B_{j}{}^{\mu}u_{\lambda}B_{i}{}^{\lambda},$$

from which

$$g_{kh}f_j{}^kf_i{}^h+u_ju_i=g_{ji}-v_jv_i,$$

that is

(3.16)
$$g_{kh}f_{j}^{k}f_{i}^{h} = g_{ji} - u_{j}u_{i} - v_{j}v_{i}.$$

Equations (3. 9)~(3. 16) show that a hypersurface of an almost contact metric manifold admits a (f, g, u, v, λ) -structure.

For the hypersurface M, the equations of Gauss and those of Weingarten are

$$(3. 17) V_j B_i^{\kappa} = h_{ji} C^{\kappa},$$

and

$$(3.18) \nabla_j C^* = -h_j{}^i B_i{}^*$$

respectively.

Differentiating (3.6) covariantly along M, we have, taking account of (3.17) and (3.18),

$$(\nabla_{\mu}F_{\lambda}^{\kappa})B_{j}^{\mu}B_{i}^{\lambda}+F_{\lambda}^{\kappa}h_{ji}C^{\lambda}$$
$$=(\nabla_{j}f_{i}^{h})B_{h}^{\kappa}+f_{i}^{t}h_{ji}C^{\kappa}+(\nabla_{j}u_{i})C^{\kappa}-u_{i}h_{j}^{h}B_{h}^{\kappa}$$

or

$$(\nabla_{\mu}F_{\lambda}^{*})B_{j}^{\mu}B_{i}^{\lambda}-h_{ji}u^{h}B_{h}^{*}$$
$$=(\nabla_{j}f_{i}^{h}-h_{j}^{h}u_{i})B_{h}^{*}+(\nabla_{j}u_{i}+h_{ji}f_{i}^{t})C^{*}.$$

Thus, if \tilde{M} is a Sasakian manifold, that is, if

$$\nabla_{\mu}F_{\lambda}^{\kappa} = -g_{\mu\lambda}v^{\kappa} + \delta_{\mu}^{\kappa}v_{\lambda},$$

then we have

$$-g_{ji}(B_{h}^{\epsilon}v^{h}+\lambda C^{\epsilon})+B_{j}^{\epsilon}v_{i}-h_{ji}u^{h}B_{h}^{\epsilon}$$
$$=(V_{j}f_{i}^{h}-h_{j}^{h}u_{i})B_{h}^{\epsilon}+(V_{j}u_{i}+h_{ji}f_{i}^{t})C^{\epsilon},$$

from which

(3. 19)
$$\nabla_{j} f_{i}{}^{h} = -h_{ji} u^{h} + h_{j}{}^{h} u_{i} - g_{ji} v^{h} + \delta_{j}^{h} v_{i},$$

$$(3. 20) \nabla_j u_i = -h_{jt} f_i^t - \lambda g_{ji}.$$

On the other hand, differentiating (3.8) covariantly along M and taking account of (3.17), (3.18), and

$$\nabla_{\lambda}v^{\kappa}=F_{\lambda}^{\kappa},$$

we find

$$F_{\lambda}^{\kappa}B_{j}^{\lambda} = h_{ji}v^{i}C^{\kappa} + B_{i}^{\kappa}\nabla_{j}v^{i} + (\nabla_{j}\lambda)C^{\kappa} + \lambda(-h_{j}^{h}B_{h}^{\kappa}),$$

or

$$f_j{}^hB_h{}^\kappa + u_jC{}^\kappa = (\nabla_j v^h - \lambda h_j{}^h)B_h{}^\kappa + (\nabla_j \lambda + h_{ji}v^i)C{}^\kappa,$$

from which

$$(3. 21) \nabla_j v^h = f_j^h + \lambda h_j^h,$$

or

$$(3. 22) V_j v_i = f_{ji} + \lambda h_{ji}$$

and

$$(3. 23) \nabla_j \lambda = u_j - h_{ji} v^i$$

Thus, computing S_{ji}^{h} we obtain

(3. 24)
$$S_{ji}^{h} = (f_{j}^{t}h_{t}^{h} - h_{j}^{t}f_{t}^{h})u_{i} - (f_{i}^{t}h_{t}^{h} - h_{i}^{t}f_{t}^{h})u_{j}.$$

Now we prove

PROPOSITION 4.1. In order that the induced (f, g, u, v, λ) -structure on a hypersurface of a Sasakian manifold be normal it is necessary and sufficient that f commutes with h.

Proof. The sufficiency of the condition is trivially seen from (3. 24). So we prove the necessity of the condition.

Suppose that the (f, g, u, v, λ) -structure be normal, then we have, from $S_{ji}^{h}=0$,

$$(3. 25) (f_j^t h_t^h - h_j^t f_t^h) u_i = (f_i^t h_t^h - h_i^t f_t^h) u_j.$$

Thus, for some vector field w^h , we have

(3. 26)
$$f_{j}^{t}h_{t}^{h} - h_{j}^{t}f_{t}^{h} = w^{h}u_{j}.$$

Since the covariant components of the tensor defined by the left hand members of the above equation are symmetric, it follows that w is proportional to u, that is,

$$f_j^t h_{th} + f_h^t h_{tj} = \alpha u_j u_h,$$

 α being a function, from which, by transvection of g^{jh} , $\alpha = 0$ or $u_j = 0$. This, together with (3. 26), shows that f commutes with h.

It is known [12] that if f commutes with h and $\lambda^2 \neq 1$ almost everywhere, the hypersurface is totally umbilical. So we get

PROPOSITION 4.2. If the (f, g, u, v, λ) -structure induced on a hypersurface of a Sasakian manifold is normal, the hypersurface is totally umbilical.

For a hypersurface with the induced normal (f, g, u, v, λ) -structure, we have from (3. 20),

and from (3.22)

which show that u^{h} and v^{h} define infinitesimal conformal transformations in M.

§4. Identities in manifolds with normal (f, g, u, v, λ) -structure.

In this section we shall prove some identities in manifolds with normal (f, g, u, v, λ) -structure for later use.

Let M be a manifold with normal (f, g, u, v, λ) -structure. The structure being normal, we have

$$f_j{}^t \nabla_t f_i{}^h - f_i{}^t \nabla_t f_j{}^h - (\nabla_j f_i{}^t - \nabla_i f_j{}^t) f_i{}^h$$

(4.1)

$$+(\nabla_j u_i-\nabla_i u_j)u^h+(\nabla_j v_i-\nabla_i v_j)v^h=0.$$

We first prove

LEMMA 4.1. In a manifold M with normal (f, g, u, v, λ) -structure, we have

$$\lambda(f_j^t u_{ti} - f_i^t u_{tj}) + f_j^t f_i^s v_{ts} - v_{ji}$$

(4.2)

+
$$(f_{j}^{t}u_{i}-f_{i}^{t}u_{j})\nabla_{t}\lambda-\lambda\{(\nabla_{j}\lambda)v_{i}-(\nabla_{i}\lambda)v_{j}\}=0,$$

and

$$\lambda(f_j^t v_{ti} - f_i^t v_{tj}) - f_j^t f_i^s u_{ts} + u_{ji} + (f_j^t v_i - f_i^t v_j) \nabla_t \lambda$$

(4. 3)

 $+\lambda\{(\nabla_j\lambda)u_i-(\nabla_i\lambda)u_j\}=0,$

where

$$u_{ji} = \nabla_j u_i - \nabla_i u_j, \qquad v_{ji} = \nabla_j v_i - \nabla_i v_j.$$

Proof. Transvecting (4.1) with v_h , we find

KENTARO YANO AND MASAFUMI OKUMURA

$$f_{j}^{t}(\nabla_{t}f_{i}^{h})v_{h} - f_{i}^{t}(\nabla_{t}f_{j}^{h})v_{h} + \lambda(\nabla_{j}f_{i}^{t} - \nabla_{i}f_{j}^{t})u_{h} + (1 - \lambda^{2})(\nabla_{j}v_{i} - \nabla_{i}v_{j}) = 0$$

by virtue of (1.3) and (1.5), or

$$\begin{split} f_{j}{}^{t} \{ \nabla_{t}(f_{i}{}^{h}v_{h}) - f_{i}{}^{h}\nabla_{t}v_{h} \} - f_{i}{}^{t} \{ \nabla_{t}(f_{j}{}^{h}v_{h}) - f_{j}{}^{h}\nabla_{t}v_{h} \} \\ + \lambda \{ \nabla_{j}(f_{i}{}^{t}u_{t}) - f_{i}{}^{t}\nabla_{j}u_{t} - \nabla_{i}(f_{j}{}^{t}u_{t}) + f_{j}{}^{t}\nabla_{i}u_{t} \} + (1 - \lambda^{2})(\nabla_{j}v_{i} - \nabla_{i}v_{j}) = 0, \end{split}$$

from which

$$\begin{split} f_{j}^{t} \{ &- (\nabla_{t}\lambda)u_{i} - \lambda\nabla_{t}u_{i} - f_{i}^{h}\nabla_{t}v_{h} \} + f_{i}^{t} \{ (\nabla_{t}\lambda)u_{j} + \lambda\nabla_{t}u_{j} + f_{j}^{h}\nabla_{t}v_{h} \} \\ &+ \lambda \{ (\nabla_{j}\lambda)v_{i} + \lambda\nabla_{j}v_{i} - f_{i}^{t}\nabla_{j}u_{t} - (\nabla_{i}\lambda)v_{j} - \lambda\nabla_{i}v_{j} + f_{j}^{t}\nabla_{i}u_{t} \} \\ &+ (1 - \lambda^{2})(\nabla_{j}v_{i} - \nabla_{i}v_{j}) = 0, \end{split}$$

by virtue of (1.2) and (1.3), from which

$$\lambda \{ f_j^t (\mathcal{V}_t u_i - \mathcal{V}_i u_t) - f_i^t (\mathcal{V}_t u_j - \mathcal{V}_j u_t) \} + f_j^t f_i^s (\mathcal{V}_t v_s - \mathcal{V}_s v_t) - (\mathcal{V}_j v_i - \mathcal{V}_i v_j)$$
$$+ (f_j^t u_i - f_i^t u_j) \mathcal{V}_t \lambda - \lambda \{ (\mathcal{V}_j \lambda) v_i - (\mathcal{V}_i \lambda) v_j \} = 0,$$

which proves (4.2)

Similarly, transvecting (4.1) with u_h , we can prove (4.3).

In order to get further results on manifolds with normal (f, g, u, v, λ) -structure, we put the condition

(4.4) $v_{ji}=2f_{ji}$.

As we have seen in the preceding section, for a hypersurface of Sasakian manifold, we have

$$\nabla_j v_i = f_{ji} + \lambda h_{ji}$$

and consequently the condition (4.4) is always satisfied.

LEMMA 4.2. Let M be a manifold with normal (f, g, u, v, λ) -structure satisfying (4.4). If the function $\lambda(1-\lambda^2)$ is almost everywhere non-zero, then we have

$$(4.5) u^t V_t \lambda = 1 - \lambda^2.$$

Proof. Transvecting (4.2) with $u^j v^i$ and using (1.2) (1.5), we find

$$\lambda(-\lambda u_{ji}v^jv^i-\lambda u_{ij}u^iu^j)+\lambda^2 v_{ts}u^tv^s-v_{ji}u^jv^i$$

$$-\lambda(1-\lambda^2)u^t\nabla_t\lambda-\lambda(1-\lambda^2)u^j\nabla_j\lambda=0,$$

or, using $v_{ts}=2f_{ts}$,

ON
$$(f, g, u, v, \lambda)$$
-STRUCTURES 415
 $2\lambda(1-\lambda^2)^2 - 2\lambda(1-\lambda^2)u^t V_t \lambda = 0,$

which proves (4.5)

LEMMA 4.3. Let M be a manifold with normal (f, g, u, v, λ) -structure satisfying (4.4), then we have

(4.6)
$$f_j^t \nabla_h f_{\iota i} - f_i^t \nabla_h f_{\ell j} = u_j (\nabla_i u_h) - u_i (\nabla_j u_h) + v_j (\nabla_i v_h) - v_i (\nabla_j v_h).$$

Proof. Since f_{ji} is given by

$$f_{ji} = \frac{1}{2} (\nabla_j v_i - \nabla_i v_j),$$

we have

On the other hand, (4.1) can be written as

$$f_{j}^{t} \nabla_{t} f_{ih} - f_{i}^{t} \nabla_{t} f_{jh} + (\nabla_{j} f_{ii} - \nabla_{i} f_{ji}) f_{h}^{t} + (\nabla_{j} u_{i} - \nabla_{i} u_{j}) u_{h} + (\nabla_{j} v_{i} - \nabla_{i} v_{j}) v_{h} = 0,$$

and consequently

$$-f_{j}{}^{t}(\nabla_{t}f_{ht}+\nabla_{h}f_{it})+f_{i}{}^{t}(\nabla_{j}f_{ht}+\nabla_{h}f_{tj})$$
$$+(\nabla_{j}f_{it}-\nabla_{i}f_{jt})f_{h}{}^{t}+(\nabla_{j}u_{i}-\nabla_{i}u_{j})u_{h}+(\nabla_{j}v_{i}-\nabla_{i}v_{j})v_{h}=0,$$

that is,

$$-\nabla_i(f_j{}^tf_{ht}) - f_j{}^t\nabla_h f_{ti} + \nabla_j(f_i{}^tf_{ht}) + f_i{}^t\nabla_h f_{tj}$$
$$+ (\nabla_j u_i - \nabla_i u_j)u_h + (\nabla_j v_i - \nabla_i v_j)v_h = 0.$$

Substituting

$$f_j^t f_{ht} = g_{jh} - u_j u_h - v_j v_h,$$

we obtain

$$u_j(\nabla_i u_h) + v_j(\nabla_i v_h) - f_j^{t} \nabla_h f_{ti} - u_i(\nabla_j u_h) - v_i(\nabla_j v_h) + f_i^{t} \nabla_h f_{tj} = 0,$$

which gives (4.6).

§5. Vector fields U and V.

In §3, we have seen that a totally umbilical submanifold of codimension 2 of a Kählerian manifold whose connection induced on the normal bundle is flat admits a normal (f, g, u, v, λ) -structure and that the vector fields U and V define

infinitesimal conformal transformations.

Also in §4, we have seen that a totally umbilical hypersurface of a Sasakian manifold admits a normal (f, g, u, v, λ) -structure and that the vector fields U and V define infinitesimal conformal transformations.

In this section, we prove that, under certain conditions, the vector fields U and V of a normal (f, g, u, v, λ) -structure both define infinitesimal conformal transformations.

In the sequel, we assume that

416

$$(5.2) \nabla_j v_i - \nabla_i v_j = 2f_{ji},$$

where ϕ is a differentiable function on *M*.

LEMMA 5.1. Let M be a manifold with normal (f, g, u, v, λ) -structure satisfying (5.1) and (5.2). If the function $\lambda(1-\lambda^2)$ is almost everywhere non-zero, then we have

$$(5.3) v^t V_t \lambda = -\phi(1-\lambda^2).$$

Proof. Transvecting (4.3) with $u^{j}v^{i}$ and using (1.2)~(1.5), we find

 $\lambda(-\lambda v_{ji}v^jv^i+\lambda v_{ji}u^ju^i)-\lambda^2 u_{ts}u^tv^s+u_{ji}u^jv^i$

 $-\lambda(1-\lambda^2)v^t\nabla_t\lambda-\lambda(1-\lambda^2)v^i\nabla_i\lambda=0,$

or, using $u_{ts} = 2\phi f_{ts}$,

 $-2\lambda(1-\lambda^2)^2\phi-2\lambda(1-\lambda^2)v^i\nabla_i\lambda=0,$

which proves (5.3).

LEMMA 5.2. Under the same assumptions as those in Lemma 5.1, we have

$$(5. 4) \nabla_i \lambda = u_i - \phi v_i.$$

Proof. From (4.2), (5.1) and (5.2), we have

$$2f_j^t f_i^s f_{ts} - 2f_{ji} + (f_j^t u_i - f_i^t u_j) \nabla_t \lambda - \lambda \{ (\nabla_j \lambda) v_i - (\nabla_i \lambda) v_j \} = 0,$$

or

$$2\lambda(u_jv_i-u_iv_j)+(f_j^tu_i-f_i^tu_j)\nabla_t\lambda-\lambda\{(\nabla_j\lambda)v_i-(\nabla_i\lambda)v_j\}=0.$$

Transvecting this equation with v^{j} , we find

$$-2\lambda(1-\lambda^2)u_i+\lambda u_iu^t\nabla_t\lambda-\lambda(v^j\nabla_j\lambda)v_i+\lambda(1-\lambda^2)\nabla_i\lambda=0,$$

from which, substituting (4.5) and (5.3),

$$-2\lambda(1-\lambda^2)u_i+\lambda(1-\lambda^2)u_i+\lambda(1-\lambda^2)\phi v_i+\lambda(1-\lambda^2)\nabla_i\lambda=0$$

which proves (5.4).

LEMMA 5.3. Under the same assumptions as those in Lemma 5.1, ϕ is constant.

Proof. Differentiating (5.4) covariantly, we have

$$\nabla_j \nabla_i \lambda = \nabla_j u_i - \phi \nabla_j v_i - v_i \nabla_j \phi,$$

from which, using (5.1) and (5.2),

$$v_j \nabla_i \phi = v_i \nabla_j \phi$$

which implies that

$$\nabla_i \phi = \alpha v_i$$

for some scalar function α .

Differentiating the equation above covariantly, we get

$$\nabla_j \nabla_i \phi = v_i \nabla_j \alpha + \alpha \nabla_j v_i,$$

from which, using (5.1)

$$2\alpha f_{ji} = v_j \nabla_i \alpha - v_i \nabla_j \alpha.$$

Thus, if n>2, we have $\alpha=0$, because the rank of f_{ji} is almost everywhere maximum. This shows that ϕ is constant.

LEMMA 5.4. Under the same assumptions as those in Lemma 5.1, we have

$$(5.6) \qquad (\nabla_j u_i + \nabla_i u_j) u^i = -2\lambda u_j$$

and

(5.7)
$$(\nabla_j v_i + \nabla_i v_j) v^i = 2\lambda \phi v_j.$$

Proof. Differentiating

$$u_i u^i = 1 - \lambda^2$$

covariantly and using (5.4), we find

$$2(\nabla_j u_i)u^i = -2\lambda(u_j - \phi v_j).$$

Substituting this into

$$2(\nabla_j u_i)u^i = \{(\nabla_j u_i + \nabla_i u_j) + (\nabla_j u_i - \nabla_i u_j)\}u^i,$$

or

$$2(\nabla_j u_i)u^i = (\nabla_j u_i + \nabla_i u_j)u^i + 2\lambda\phi v_j,$$

we find

$$-2\lambda(u_j-\phi v_j)=(\nabla_j u_i+\nabla_i u_j)u^i+2\lambda\phi v_j,$$

which proves (5.6).

Similarly, we can prove (5.7).

THEOREM 5.1. Under the same assumptions as those in Lemma 5.1, both of the vector fields u^h and v^h define infinitesimal conformal transformations.

Proof. Transvecting (4. 6) with v^{i} and using (1. 3), we find

$$f_j{}^t(\nabla_h f_{ti})v^i - \lambda u^t \nabla_h f_{tj}$$

= $u_j(v^i \nabla_i u_h) + v_j(v^i \nabla_i v_h) - (1 - \lambda^2) \nabla_j v_h,$

from which

$$\begin{split} f_j{}^t \{ \nabla_h (f_i{}^i v_i) - f_i{}^i \nabla_h v_i \} + \lambda \{ \nabla_h (f_j{}^t u_i) - f_j{}^t \nabla_h u_i \} \\ = & u_j (v^i \nabla_i u_h) + v_j (v^i \nabla_i v_h) - (1 - \lambda^2) \nabla_j v_h, \end{split}$$

or, again using (1.2) and (1.3),

$$-f_{j}^{t}\{(\overline{V}_{h}\lambda)u_{t}+\lambda\overline{V}_{h}u_{t}+f_{i}^{t}\overline{V}_{h}v_{i}\}$$
$$+\lambda\{(\overline{V}_{h}\lambda)v_{j}+\lambda\overline{V}_{h}v_{j}-f_{j}^{t}\overline{V}_{h}u_{t}\}$$
$$=u_{j}(v^{t}\overline{V}_{i}u_{h})+v_{j}(v^{t}\overline{V}_{i}v_{h})-(1-\lambda^{2})\overline{V}_{j}v_{h},$$

that is,

$$-2\lambda f_j{}^t V_h u_t + (\delta_j^i - u_j u^i - v_j v^i) V_h v_i + \lambda^2 V_h v_j$$

= $u_j (v^i V_i u_h) + v_j (v^i V_i v_h) - (1 - \lambda^2) V_j v_h,$

or

$$-2\lambda f_j{}^t \nabla_h u_t + (\nabla_h v_j + \nabla_j v_h) + \lambda^2 (\nabla_h v_j - \nabla_j v_h)$$

$$= u_j v^i (\nabla_i u_h - \nabla_h u_j) + v_j v^i (\nabla_i v_h + \nabla_h v_i),$$

or

$$-2\lambda f_j{}^t \nabla_h u_t + (\nabla_h v_j + \nabla_j v_h) + 2\lambda^2 f_{hj}$$

$$= 2\lambda\phi u_j u_h + v_j v^i (\nabla_i v_h + \nabla_h v_i).$$

Substituting

 $2\nabla_h u_t = (\nabla_h u_t + \nabla_t u_h) + (\nabla_h u_t - \nabla_t u_h)$ $= \nabla_h u_t + \nabla_t u_h + 2\phi f_{ht}$

and (5.7) into the equation above, we find

ON
$$(f, g, u, v, \lambda)$$
-STRUCTURES 419
 $-\lambda f_j^{\iota} (\nabla_h u_{\iota} + \nabla_l u_h) - 2\lambda \phi (g_{jh} - u_j u_h - v_j v_h)$
 $+ (\nabla_h v_j + \nabla_j v_h) + 2\lambda^2 f_{hj}$
 $= 2\lambda \phi u_j u_h + 2\lambda \phi v_j v_h,$

or

(5.8)
$$\overline{V}_h v_j + \overline{V}_j v_h = \lambda f_j^t (\overline{V}_h u_l + \overline{V}_l u_h) + 2\lambda \phi g_{hj} - 2\lambda^2 f_{hj}$$

Similarly, we have

(5.9)
$$\overline{V}_h u_j + \overline{V}_j u_h = -\lambda f_j^t (\overline{V}_h v_t + \overline{V}_i v_h) - 2\lambda g_{hj} - 2\lambda^2 \phi f_{hj}.$$

Substituting (5.8) into (5.9), we obtain, using (5.6),

(5. 10)
$$(1-\lambda^2)(\nabla_h u_j + \nabla_j u_h) = -2\lambda(1-\lambda^2)g_{hj} - 2\lambda^3 v_h v_j - \lambda^2 v^t (\nabla_h u_t + \nabla_t u_s) v_j.$$

Transvecting (5.10) with v^{j} , we find

$$(1-\lambda^2)(\nabla_h u_j + \nabla_j u_h)v^j = -2\lambda(1-\lambda^2)v_h - 2\lambda^3(1-\lambda^2)v_h - \lambda^2(1-\lambda^2)v^t(\nabla_h u_t + \nabla_t u_h),$$

or

$$(1+\lambda^2)(1-\lambda^2)(\nabla_h u_j+\nabla_j u_h)v^j=-2\lambda(1+\lambda^2)(1-\lambda^2)v_h,$$

from which

(5. 11)
$$(\nabla_h u_j + \nabla_j u_h) v^j = -2\lambda v_h.$$

Substituting (5.11) into (5.10), we obtain

$$(5. 12) \nabla_j u_i + \nabla_i u_j = -2\lambda g_{ji}.$$

Substituting (5.12) into (5.8), we find

Equations (5.12) and (5.13) show that both of the vector fields u^h and v^h define infinitesimal conformal transformations.

Using (5.12), (5.3) and

 $\nabla_j u_i - \nabla_i u_j = 2\phi f_{ji}, \qquad \nabla_j v_i - \nabla_i v_j = 2f_{ji},$

we have

(5. 14)
$$\nabla_j u_i = -\lambda g_{ji} + \phi f_{ji},$$

$$(5.15) \nabla_j v_i = \lambda \phi g_{ji} + f_{ji}.$$

§6. Covariant derivative of 2-form f_{ji} .

THEOREM 6.1 If a manifold with normal metric (f, g, u, v, λ) -structure satisfies (5.1) and (5.2), and if $\lambda(1-\lambda^2)$ is an almost everywhere non-zero function, then we have

(6.1)
$$\nabla_{j} f_{ih} = -g_{ji}(\phi u_{h} + v_{h}) + g_{jh}(\phi u_{i} + v_{i}).$$

Proof. Substituting (5.14) and (5.15) into (4.6), we find

$$f_{j}{}^{t}\nabla_{h}f_{ii} - f_{i}{}^{t}\nabla_{h}f_{ij}$$

= $u_{j}(-\lambda g_{ih} + \phi f_{ih}) - u_{i}(-\lambda g_{jh} + \phi f_{jh})$
+ $v_{j}(\lambda\phi g_{ih} + f_{ih}) - v_{i}(\lambda\phi g_{jh} + f_{jh}),$

or

420

$$\begin{aligned} \nabla_h(f_j^t f_{ii}) &- (\nabla_h f_j^t) f_{ii} - f_i^t \nabla_h f_{ij} \\ &= -\lambda (u_j - \phi v_j) g_{ih} + \lambda (u_i - \phi v_i) g_{jh} \\ &+ (\phi u_j + v_j) f_{ih} - (\phi u_i + v_i) f_{jh}, \end{aligned}$$

from which

$$\begin{aligned} \nabla_h(-g_{ji}+u_ju_i+v_jv_i)+2f_i \nabla_h f_{ij} \\ &=-\lambda(u_j-\phi v_j)g_{ih}+\lambda(u_i-\phi v_i)g_{jh} \\ &+(\phi u_j+v_j)f_{ih}-(\phi u_i+v_i)f_{jh}, \end{aligned}$$

or, using (5.14) and (5.15),

(6.2)
$$f_j{}^t \nabla_h f_{it} = \lambda (u_j - \phi v_j) g_{ih} + (\phi u_i + v_i) f_{jh}.$$

Transvecting (6. 2) by $f_{k^{j}}$ and using (1. 1), we find

$$-\nabla_h f_{ik} + u_k u^t \nabla_h f_{it} + v_k v^t \nabla_h f_{it}$$
$$= \lambda^2 (\phi u_k + v_k) g_{ih} - (\phi u_i + v_i) (g_{hk} - u_h u_k - v_h v_k),$$

or

$$-\nabla_{h}f_{ik} + u_{k}\{\nabla_{h}(f_{i}^{t}u_{l}) - f_{i}^{t}\nabla_{h}u_{l}\} + v_{k}\{\nabla_{h}(f_{i}^{t}v_{l}) - f_{i}^{t}\nabla_{h}v_{l}\}$$

= $\lambda^{2}(\phi u_{k} + v_{k})g_{ih} - (\phi u_{i} + v_{i})(g_{hk} - u_{h}u_{k} - v_{h}v_{k}),$

from which, using (1.2) and (1.3),

$$\begin{split} &-\nabla_h f_{ik} + u_k \{ (\nabla_h \lambda) v_i + \lambda (\nabla_h v_i) - f_i{}^t \nabla_h u_l \} \\ &- v_k \{ (\nabla_h \lambda) u_i + \lambda (\nabla_h u_i) + f_i{}^t \nabla_h v_l \} \\ &= \lambda^2 (\phi u_k + v_k) g_{ih} - (\phi u_i + v_i) g_{hk} + (\phi u_i + v_i) (u_h u_k + v_h v_k). \end{split}$$

Substituting (5.4), (5.14) and (5.15) into this equation, we find

$$\begin{split} &- \nabla_{h} f_{ik} + u_{k} \{ (u_{h} - \phi v_{h}) v_{i} + \lambda (\lambda \phi g_{hi} + f_{hi}) - f_{i}{}^{t} (-\lambda g_{hi} + \phi f_{hi}) \} \\ &- v_{k} \{ (u_{h} - \phi v_{h}) u_{i} + \lambda (-\lambda g_{hi} + \phi f_{hi}) + f_{i}{}^{t} (\lambda \phi g_{hi} + f_{hi}) \} \\ &= \lambda^{2} (\phi u_{k} + v_{k}) g_{ih} - (\phi u_{i} + v_{i}) g_{hk} + (\phi u_{i} + v_{i}) (u_{h} u_{k} + v_{h} v_{k}), \end{split}$$

which proves (6.1).

We have seen that if a manifold with normal (f, g, u, v, λ) -structure satisfies

$$\nabla_j u_i - \nabla_i u_j = 2\phi f_{ji}, \qquad \nabla_j v_i - \nabla_i v_j = 2f_{ji},$$

then

$$V_{j}f_{ih} = -g_{ji}(\phi u_h + v_h) + g_{jh}(\phi u_i + v_i)$$

Conversely, we have

THEOREM 6.2. If a (f, g, u, v, λ) -structure satisfies (5.1), (5.2) and (6.1) then the structure is normal.

Proof. Substituting (6.1) into

$$S_{ji^{h}} = f_{j^{t}} \nabla_{t} f_{i^{h}} - f_{i^{t}} \nabla_{t} f_{j^{h}} - (\nabla_{j} f_{i^{t}} - \nabla_{i} f_{j^{t}}) f_{i^{h}}$$
$$+ (\nabla_{j} u_{i} - \nabla_{i} u_{j}) u^{h} + (\nabla_{j} v_{i} - \nabla_{i} v_{j}) v^{h},$$

we have

$$\begin{split} S_{ji}{}^{h} =& f_{j}{}^{t} \{ -g_{\ell i}(\phi u^{h} + v^{h}) + \delta_{\ell}^{h}(\phi u_{i} + v_{i}) \} \\ & -f_{i}{}^{t} \{ -g_{\ell j}(\phi u^{h} + v^{h}) + \delta_{\ell}^{h}(\phi u_{j} + v_{j}) \} \\ & - \{ \delta_{j}^{t}(\phi u_{i} + v_{i}) - \delta_{i}^{t}(\phi u_{j} + v_{j}) \} f_{\iota}{}^{h} + 2\phi f_{ji} u^{h} + 2f_{ji} v^{h} \\ = 0, \end{split}$$

and consequently the structure is normal.

§7. Characterizations of even dimensional spheres.

We prove

THEOREM 7.1. Let M be a complete manifold with normal (f, g, u, v, λ) -structure satisfying (5.1) and (5.2). If $\lambda(1-\lambda^2)$ is an almost everywhere non-zero function and n>2 then M is isometric with an even dimensional sphere.

Proof. Differentiating (5.4) covariantly, we have

$$\nabla_j \nabla_i \lambda = \nabla_j u_i - \phi \nabla_j v_i,$$

 ϕ being a constant, from which, using (5.14) and (5.15),

(7.1)
$$\nabla_{j}\nabla_{i}\lambda = -(1+\phi^{2})\lambda g_{ji}.$$

Thus, λ being not identically zero, by a famous theorem of Obata [6], M is isometric with a sphere.

We next prove

THEOREM 7.2. Let M be a complete manifold with normal (f, g, u, v, λ) -structure satisfying

$$(7.2) \nabla_j v_i = f_{ji}.$$

If $\lambda(1-\lambda^2)$ is an almost everywhere non-zero function, then M is isometric with an even dimensional sphere.

Proof. Differentiating

$$v_i v^i = 1 - \lambda^2$$

covariantly and using (7.2), we find

$$f_{ji}v^i = -\lambda \nabla_j \lambda$$

or

 $\lambda(\nabla_j\lambda-u_j)=0,$

from which

This shows that

$$\nabla_i u_i - \nabla_i u_j = 0.$$

 $\nabla_{j\lambda} = u_{j}$.

Equation (7.2) shows that

$$\nabla_j v_i - \nabla_i v_j = 2f_{ji}.$$

Thus all the assumptions of Theorem 7.1 are satisfied, and consequently M is isometric with an even dimensional sphere.

BIBLIOGRAPHY

- Aкo, M., Submanifolds in Fubinian manifolds. Ködai Math. Sem. Rep. 19 (1967), 103-125.
- [2] BLAIR, D. E., AND G, D. LUDDEN, Hypersurfaces in almost contact manifolds. Tôhoku Math. J. 22 (1969), 354-362.
- [3] BLAIR, D. E., G. D. LUDDEN, AND K. YANO, Induced structures on submanifolds. Kodai Math. Sem. Rep. 22 (1970), 188-198.
- [4] GOLDBERG, S. I., AND K. YANO, Variétés globalement repérées. C. R. Paris 269 (1969), 920–922.
- [5] GOLDBERG, S. I., AND K. YANO, Polynomial structures on manifolds. Kodai Math.

Sem. Rep. 22 (1970), 199-218.

- [6] OBATA, M., Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962), 333-340.
- [7] OKUMURA, M., Totally umbilical submanifolds of a Kählerian manifold. J. Math. Soc. Japan 19 (1967), 317-327.
- [8] OKUMURA, M., Certain hypersurfaces of an odd dimensional sphere, Tôhoku Math. J. 19 (1967), 381-395.
- [9] SASAKI, S., On differentiable manifolds with certain structure which are closely related to almost contact structure I. Tôhoku Math. J. 12 (1960), 450-476.
- [10] TASHIRO, Y., On contact structure of hypersurfaces in complex manifolds, I. Tôhoku Math. J. 15 (1963), 62–78.
- [11] WATANABE, Y., Totally umbilical surfaces in normal contact Riemannian manifolds. Kodai Math. Sem. Rep. 19 (1967), 474-487.
- [12] YAMAGUCHI, S., On hypersurfaces in Sasakian manifold. Kōdai Math. Sem. Rep. 21 (1969), 64–72.
- [13] YANO, K., AND S. ISHIHARA, The f-structure induced on submanifolds of complex and almost complex spaces. Ködai Math. Sem. Rep. 18 (1966), 120-160.

Tokyo Institute of Technology and Saitama University.