ON ($f, \boldsymbol{g}, \boldsymbol{u}, \boldsymbol{v}, \lambda)$-STRUCTURES

By Kentaro Yano and Masafumi Okumura

§ 0. Introduction.

Tashiro [10] has shown that hypersurfaces of an almost complex manifold carry almost contact structures. In particular, an odd-dimensional hypersphere in an evendimensional Euclidean space carries an almost contact structure.

Blair, Ludden and one of the present authors [3] (see also, Ako [1], Blair and Ludden [2], Goldberg and Yano [4, 5], Okumura [7], Yano and Ishihara [13]) have studied submanifolds of codimension 2 of almost complex manifolds. These submanifolds admit, under certain conditions, what we call an (f, U, V, u, v, λ) -structure and, if the ambient space is an almost Hermitian manifold, the submanifolds admit what we call an (f, g, u, v, λ)-structure. In particular, an even-dimensional sphere of codimension 2 of an even-dimensional Euclidean space carries an (f, g, u, v, λ)structure.

They also studied hypersurfaces of almost contact manifolds and found that the hypersurfaces also admit the same kind of structure (see also Okumura [8], Watanabe [11], Yamaguchi [12]).

The main purpose of the present paper is to study the (f, g, u, v, λ)-structure and to give characterizations of even-dimensional spheres.

In §1, we define and discuss (f, U, V, u, v, λ)-structure and (f, g, u, v, λ)-structure.
In $\S 2$, we prove that a totally umbilical submanifold of codimension 2 of a Kählerian manifold whose connection induced in the normal bundle is flat admits a normal (f, g, u, v, λ)-structure and that the vector fields U and V define infinitesimal conformal transformations of the submanifold.

In $\S 3$, we prove that a hypersurface of a Sasakian manifold for which the tensor f and the second fundamental tensor h commute admits a normal (f, g, u, v, λ)structure and that if the hypersurface is totally umbilical, then the vectors U and V define infinitesimal conformal transformations.
$\S 4$ is devoted to prove some identities valid in M with $\operatorname{normal}(f, g, u, v, \lambda)$-structure for later use.

In $\S 5$, we prove that if a manifold M with normal (f, g, u, v, λ)-structure satisfies $d u=\phi f$ and $d v=f$ and if $\lambda\left(1-\lambda^{2}\right)$ is an almost everywhere non-zero function, then the vector fields U and V define infinitesimal conformal transformations.

In $\S 6$, we prove a formula which gives the covariant derivative of f.
The last $\S 7$ is devoted to prove two theorems which characterize even-dimensional spheres.

Received April 9, 1970.

§1. ($f, U, V, u, v, \lambda)$-structure.

Let M be an m-dimensional differentiable manifold of class C^{∞}. We assume that there exist on M a tensor field of type (1,1), vector fields U and $V, 1$-forms u and v, and a function λ satisfying the conditions:

$$
\begin{equation*}
f^{2} X=-X+u(X) U+v(X) V \tag{1.1}
\end{equation*}
$$

for any vector field X,

$$
\begin{array}{ll}
u \circ f=\lambda v, & f U=-\lambda V, \\
v \circ f=-\lambda u, & f V=\lambda U, \tag{1.3}
\end{array}
$$

where 1 -forms $u \circ f$ and $v \circ f$ are respectively defined by

$$
(u \circ f)(X)=u(f X), \quad(v \circ f)(X)=v(f X)
$$

for any vector field X, and

$$
\begin{array}{ll}
u(U)=1-\lambda^{2}, & u(V)=0 \tag{1.4}\\
v(U)=0, & v(V)=1-\lambda^{2} .
\end{array}
$$

In this case, we say that the manifold M has an (f, U, V, u, v, λ)-structure. Examples of manifolds with (f, U, V, u, v, λ)-structure will be given in $\S \S 2$ and 3.

First of all, we prove
Theorem 1.1. A differentiable manifold with (f, U, V, u, v, λ)-structure is of even dimension.

Proof. Let P be a point of M at which $\lambda^{2} \neq 1$. Then, from (1.4) and (1.5), we see that

$$
U \neq 0, \quad V \neq 0
$$

at P . The vectors U and V are linearly independent. For, if there are two numbers a and b such that

$$
a U+b V=0,
$$

then evaluating u and v at $a U+b V$ and using (1.4) and (1.5), we obtain

$$
u(a U+b V)=a u(U)=a\left(1-\lambda^{2}\right)=0,
$$

and

$$
v(a U+b V)=b v(V)=b\left(1-\lambda^{2}\right)=0 .
$$

Thus we have $a=b=0$.
Thus U and V being linearly independent at P , we can choose m linearly independent vectors $X_{1}=U, X_{2}=V, X_{3}, \cdots, X_{m}$ which span the tangent space $T_{\mathrm{P}}(M)$
of M at P and such that $u\left(X_{\alpha}\right)=0, v\left(X_{\alpha}\right)=0$, for $\alpha=3, \cdots, m$. Consequently, we have from (1.1),

$$
f^{2} X_{\alpha}=-X_{\alpha}, \quad \alpha=3,4, \cdots, m
$$

which shows that f is an almost complex structure in the subspace V_{P} of $T_{\mathrm{P}}(M)$ at P spanned by X_{3}, \cdots, X_{m} and that V_{P} is even dimensional. Thus $T_{\mathrm{P}}(M)$ is also even dimensional.

Next, let P be a point of M at which $\lambda^{2}=1$. In this case, we see, from (1.4) and (1.5), that

$$
\begin{array}{ll}
u(U)=0, & u(V)=0, \\
v(U)=0, & v(V)=0 .
\end{array}
$$

We also see, from (1.2) and (1.3), that

$$
\begin{array}{llll}
\text { if } & u \neq 0, & \text { then } & v \neq 0, \\
\text { if } & u=0, & \text { then } & v=0 .
\end{array}
$$

We first consider the case in which $u \neq 0, v \neq 0$. In this case, u and v are linearly independent. Because, if there are two numbers a and b such that

$$
a u+b v=0
$$

then, from (1.2), (1.3) and

$$
(a u+b v) \circ f=0
$$

we have

$$
\lambda(b u-a v)=0,
$$

from which

$$
b u-a v=0
$$

λ being different from zero. Thus from $a u+b v=0$ and $b u-a v=0$ we have

$$
\left(a^{2}+b^{2}\right) u=0
$$

from which $a=0, b=0$.
Thus, u and v being linearly independent at P , we can choose n linearly independent covectors $w_{1}=u, w_{2}=v, w_{3}, \cdots, w_{m}$ which span the cotangent space ${ }^{\circ} T_{\mathrm{P}}(M)$ of M at P . We denote the dual basis by ($X_{1}, X_{2}, \cdots, X_{m-1}, X_{m}$).

If U and V are linearly independent at P , we can assume that

$$
X_{m-1}=U, \quad X_{m}=V
$$

Then we have

$$
f^{2} X_{\alpha}=-X_{\alpha}+u\left(X_{\alpha}\right) U+v\left(X_{\alpha}\right) V=-X_{\alpha}, \quad \alpha=3,4, \cdots, m
$$

which shows that f is an almost complex structure in the subspace V_{P} of $T_{\mathrm{P}}(M)$ at P spanned by X_{3}, \cdots, X_{m} and that V_{P} is even-dimensional and consequently $T_{\mathrm{P}}(M)$ is also even- dimensional.

If U and V are linearly dependent, there exist two numbers a and b such that

$$
a U+b V=0
$$

and $a^{2}+b^{2} \neq 0$. Applying f to the equation above and using (1.2) and (1.3), we find

$$
\lambda(-a V+b U)=0
$$

from which

$$
b U-a V=0 .
$$

Thus, we must have

$$
U=V=0
$$

Thus, from (1.1), we have

$$
f^{2} X=-X
$$

for any vector X in $T_{\mathrm{P}}(M)$. Thus $T_{\mathrm{P}}(M)$ is even dimensional.
The case left to examine is the case in which $u=0, v=0$. But in this case also we have, from (1.1), $f^{2} X=-X$ for any vector X in $T_{\mathrm{P}}(M)$ and consequently $T_{\mathrm{P}}(M)$ is even dimensional. Thus we have completed the proof of Theorem 1.1.

Definition. The structure (f, U, V, u, v, λ) is said to be normal if the Nijenhuis tensor N of f satisfies

$$
\begin{equation*}
S(X, Y) \equiv N(X, Y)+d u(X, Y) U+d v(X, Y) V=0 \tag{1.6}
\end{equation*}
$$

for any vector field X and Y of M.
We consider a product manifold $M \times R^{2}$, where R^{2} is a 2 -dimensional Euclidean space. Then, (f, U, V, u, v, λ)-structure gives rise to an almost complex structure J on $M \times R^{2}$:

$$
(J)=\left(\begin{array}{ccc}
f & U & V \tag{1.7}\\
-u & 0 & -\lambda \\
-v & \lambda & 0
\end{array}\right)
$$

as we can easily check using (1.1)~(1.5).
Computing the Nijenhuis tensor of J, we can easily prove
Proposition 1.2. If J is integrable, then (f, U, V, u, v, λ)-structure is normal.
We assume that, in M with (f, U, V, u, v, λ)-structure, there exists a positive definite Riemannian metric g such that

$$
\text { on }(f, g, u, v, \lambda) \text {-Structures }
$$

(1. 8)

$$
\begin{equation*}
g(U, X)=u(X) \tag{1.9}
\end{equation*}
$$

$g(V, X)=v(X)$,
and
(1. 10)

$$
g(f X, f Y)=g(X, Y)-u(X) u(Y)-v(X) v(Y)
$$

for any vector fields X, Y of M. We call such a structure a metric (f, U, V, u, v, λ)structure and denote it sometimes by (f, g, u, v, λ).

We prove
Proposition 1. 3. Let ω be a tensor field of type (0.2) of M defined by

$$
\begin{equation*}
\omega(X, Y)=g(f X, Y) \tag{1.11}
\end{equation*}
$$

for any vector fields X and Y of M, then we have

$$
\begin{equation*}
\omega(X, Y)=-\omega(Y, X) \tag{1.2}
\end{equation*}
$$

that is, ω is a 2 -form.
Proof. From the definition (1.11) of ω, we have

$$
\omega(f X, f Y)=g(f(f X), f Y)
$$

from which, using (1.10),

$$
\omega(f X, f Y)=g(f X, Y)-u(f X) u(Y)-v(f X) v(Y)
$$

or

$$
\omega(f X, f Y)=\omega(X, Y)-\lambda v(X) u(Y)+\lambda u(X) v(Y)
$$

by virtue of (1.2) and (1.3).
On the other hand, using (1.1), we have

$$
\begin{aligned}
\omega(f X, f Y) & =g\left(f^{2} X, f Y\right) \\
& =g(-X+u(X) U+v(X) V, f Y) \\
& =-g(X, f Y)+u(X) u(f Y)+v(X) v(f Y),
\end{aligned}
$$

by virtue of (1.8) and (1.9) and consequently

$$
\omega(f X, f Y)=-\omega(Y, X)+\lambda u(X) v(Y)-\lambda v(X) u(Y)
$$

Thus we have

$$
\omega(X, Y)=-\omega(Y, X) .
$$

§ 2. Submanifolds of codimension 2 of an almost Hermitian manifold.

In this section, we study submanifolds of codimension 2 of an almost Hermitian manifold as examples of the manifold with (f, g, u, v, λ)-structure.

Let \tilde{M} be a $(2 n+2)$-dimensional almost Hermitian manifold covered by a system of coordinate neighborhoods $\left\{\tilde{U} ; y^{\kappa}\right\}$, where here and in this section the indices $\kappa, \lambda, \mu, \nu$, \cdots run over the range $\{1,2, \cdots, 2 n+2\}$, and let ($F_{\lambda}{ }^{\kappa}, G_{\mu \lambda}$) be the almost Hermitian structure, that is, let $F_{2}{ }^{k}$ be the almost complex structure:

$$
\begin{equation*}
F_{\alpha}{ }^{\alpha} F_{\lambda}^{\alpha}=-\delta_{\alpha}^{\kappa}, \tag{2.1}
\end{equation*}
$$

and $G_{\mu \lambda}$ a Riemannian metric such that

$$
\begin{equation*}
G_{\gamma \beta} F_{\mu}{ }^{\gamma} F_{\lambda}^{\beta}=G_{\mu \lambda} . \tag{2.2}
\end{equation*}
$$

We denote by $\left\{{ }^{\prime}{ }^{\kappa}{ }^{\kappa}\right\}$ \} the Christoffel symbols formed with $G_{\mu \lambda}$.
Let M be a $2 n$-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, where here and in the sequel the indices h, i, j, \ldots run over the range $\{1,2, \cdots, 2 n\}$ and which is differentiably immersed in \tilde{M} as a submanifold of codimension 2 by the equations

$$
\begin{equation*}
y^{k}=y^{k}\left(x^{h}\right) . \tag{2.3}
\end{equation*}
$$

We put

$$
\begin{equation*}
B_{i}{ }^{k}=\partial_{i} y^{k}, \quad\left(\partial_{i}=\partial / \partial x^{i}\right) \tag{2.4}
\end{equation*}
$$

then $B_{i}{ }^{\text {e }}$ is, for each fixed i, a local vector field of \tilde{M} tangent to M and vectors $B_{i}{ }^{\text { }}$ are linearly independent in each coordinate neighborhood. $B_{i}{ }^{\kappa}$ is, for each fixed κ, a local 1-form of M.

We choose two mutually orthogonal unit vectors C^{k} and D^{c} of \tilde{M} normal to M in such a way that $2 n+2$ vectors $B_{i}{ }^{k}, C^{k}, D^{\kappa}$ give the positive orientation of M.

The transforms $F_{\lambda}{ }^{k} B_{i}{ }^{\lambda}$ of $B_{i}{ }^{\lambda}$ by $F_{\lambda}{ }^{k}$ can be expressed as linear combinations of $B_{i}{ }^{\kappa}, C^{\kappa}$ and D^{κ}, that is,

$$
\begin{equation*}
F_{i}{ }^{\kappa} B_{i}{ }^{2}=f_{i}{ }^{h} B_{h}{ }^{\kappa}+u_{i} C^{k}+v_{i} D^{\kappa}, \tag{2.5}
\end{equation*}
$$

where $f_{i}{ }^{h}$ is a tensor field of type (1.1) and u_{i}, v_{i} are 1 -forms of M. Similarly the transform $F_{\lambda}{ }^{k} C^{k}$ of C^{λ} by $F_{\lambda}{ }^{\kappa}$ and the transform $F_{\lambda}{ }^{k} D^{\lambda}$ by $F_{\lambda}{ }^{k}$ can be written as

$$
F_{\lambda}{ }^{\kappa} C^{\lambda}=-u^{i} B_{i}{ }^{\kappa}+\lambda D^{\kappa},
$$

$$
\begin{equation*}
F_{\lambda}{ }^{k} D^{\lambda}=-v^{i} B_{i}{ }^{k}-\lambda C^{k} \tag{2.6}
\end{equation*}
$$

where

$$
u^{2}=u_{t} g^{t i}, \quad v^{2}=v_{t} g^{t i},
$$

$g_{j i}$ being the Riemannian metric on M induced from that of \tilde{M}.

$$
\begin{aligned}
& \text { ON }(f, g, u, v, \lambda) \text {-STRUCTURES } \\
& \quad g_{j i}=G_{\mu \lambda} B_{j}{ }^{\mu} B_{i}{ }^{\lambda}
\end{aligned}
$$

and λ is a function on M. The function λ seems to depend on the choice of normals $C^{\boldsymbol{c}}$ and D^{κ}, but we can easily verify that λ is independent of the choise of normals and consequently that λ is a function globally defined on M.

Applying $F_{\kappa}{ }^{\mu}$ again to (2.5) and taking account of (2.5) itself and (2.6), we find

$$
\begin{equation*}
f_{j}^{h} f_{i}{ }^{3}=-\delta_{i}^{h}+u_{i} u^{h}+v_{i} v^{h} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
u_{h} f_{i}^{h}=\lambda v_{i}, \quad v_{h} f_{i}^{h}=-\lambda u_{i} . \tag{2.8}
\end{equation*}
$$

Applying $F_{k}{ }^{\mu}$ again to (2.6) and taking account of (2.5) and (2.6) itself, we find

$$
\begin{equation*}
f_{i}^{h} u^{\imath}=-\lambda v^{h}, \quad u_{i} u^{\imath}=1-\lambda^{2}, \quad u_{i} v^{2}=0 \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
f_{i}^{h} v^{2}=\lambda u^{h}, \quad v_{i} u^{2}=0, \quad v_{i} v^{i}=1-\lambda^{2} \tag{2.10}
\end{equation*}
$$

On the other hand, we have, from (2.2),

$$
G_{\gamma \beta} F_{\mu}{ }^{r} F_{\lambda}{ }^{\beta} B_{j}{ }^{\mu} B_{i}{ }^{\lambda}=G_{\mu \lambda} B_{j}{ }^{\mu} B_{i}{ }^{2},
$$

from which

$$
g_{k h} f_{j}^{k} f_{i}^{h}+u_{j} u_{i}+v_{j} v_{i}=g_{j i}
$$

or

$$
\begin{equation*}
g_{k h} f_{j}^{k} f_{i}^{h}=g_{j i}-u_{j} u_{i}-v_{j} v_{i} . \tag{2.11}
\end{equation*}
$$

Equations (2.7), (2.8), (2.9), (2.10) and (2.11) show that a submanifold of codimension 2 of an almost Hermitian manifold admits a (f, g, u, v, λ)-structure.

We denote by $\left\{j^{h_{i}}\right\}$ and ∇_{i} the Christoffel symbols formed with $g_{j i}$ and the operator of covariant differentiation with respect to $\left\{{ }_{j}{ }^{h}{ }_{i}\right\}$ respectively.

The so-called van der Waerden-Bortolotti covariant derivative of $B_{i}{ }^{\kappa}$ is given by

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{\kappa}=\partial_{j} B_{i}{ }^{\kappa}+\left\{{ }_{\mu}{ }^{\kappa}{ }_{k}\right\} B_{j}{ }^{\mu} B_{i}{ }^{\alpha}-B_{h}{ }^{k}\left\{{ }_{j}{ }^{h}{ }_{i}\right\} \tag{2.11}
\end{equation*}
$$

and is orthogonal to M and consequently can be written as

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{\kappa}=h_{j i} C^{\kappa}+k_{j i} D^{\kappa}, \tag{2.12}
\end{equation*}
$$

which are equations of Gauss, where $h_{j i}$ and $k_{j i}$ are the second fundamental tensors of M with respect to the normals C^{κ} and D^{κ} respectively.

For the covariant derivatives of C^{κ} and D^{κ} along M, we have equations of Weingarten

$$
\begin{equation*}
\nabla_{j} C^{\kappa}=-h_{j}{ }^{i} B_{i}{ }^{\kappa}+l_{j} D^{\kappa} \tag{2.13}
\end{equation*}
$$

$$
\nabla_{j} D^{\kappa}=-k_{j}{ }^{2} B_{i}{ }^{\kappa}-l_{j} C^{\kappa},
$$

where

$$
\left.\left.\nabla_{j} C^{\kappa}=\partial_{j} C^{\kappa}+\left\{\mu_{\mu}{ }^{\kappa}\right\}\right\} B_{j}{ }^{\mu} C^{\lambda}, \quad \nabla_{j} D^{\kappa}=\partial_{j} D^{\kappa}+\left\{\begin{array}{l}
\mu \\
\end{array}{ }_{\lambda}\right\}\right\} B_{j}{ }^{\mu} D^{\lambda},
$$

$$
h_{j}{ }^{2}=h_{J g} g^{g^{\imath}}, \quad k_{j}{ }^{2}=k_{J s} g^{s \imath}
$$

and l_{l} is the so-called third fundamental tensor.
As we see from (2.13), equations

$$
\begin{gather*}
\nabla_{j} C^{\kappa}=l_{j} D^{\kappa}, \\
\nabla_{j} D^{\kappa}=-l_{j} C^{k} \tag{2.14}
\end{gather*}
$$

define the connexion induced in the normal bundle. If this induced connexion is flat, then we can choose C^{k} and D^{k} in such a way that we have $l_{j}=0$.

Differentiating (2.5) covariantly along M, we have, taking account of equations of Gauss and those of Weingarten,

$$
\begin{aligned}
& \left(\nabla_{\mu} F_{\lambda}{ }^{k}\right) B_{j}{ }^{\mu} B_{i}{ }^{\lambda}+F_{\lambda}{ }^{k}\left(h_{j i} C^{\lambda}+k_{j i} D^{\lambda}\right) \\
& =\left(\nabla_{j} f_{i}{ }^{h}\right) B_{h}{ }^{\kappa}+f_{i}{ }^{t}\left(h_{j t} C^{k}+k_{j t} D^{c}\right) \\
& +\left(\nabla_{j} u_{i}\right) C^{x}+u_{i}\left(-h_{j}{ }^{h} B_{h}{ }^{k}+l_{j} D^{x}\right) \\
& +\left(\nabla_{j} v_{i}\right) D^{\kappa}+v_{i}\left(-k_{j}{ }^{h} B_{h}{ }^{\kappa}-l_{j} C^{\kappa}\right),
\end{aligned}
$$

or

$$
\begin{aligned}
& \left(\nabla_{\mu} F_{i}{ }^{\kappa}\right) B_{j}{ }^{\mu} B_{i}{ }^{2}-\left(h_{j i} u^{h}+k_{j i} v^{h}\right) B_{h}{ }^{\kappa}-\lambda k_{j i} C^{\kappa}+\lambda h_{j i} D^{\kappa} \\
= & \left(\nabla_{j} f_{i}{ }^{h}-h_{j}{ }^{h} u_{i}-k_{j}{ }^{{ }^{k}} v_{i}\right) B_{h}{ }^{\kappa} \\
& +\left(\nabla_{j} u_{i}+h_{j t} f_{i}{ }^{t}-l_{j} v_{i}\right) C^{x} \\
& +\left(\nabla_{j} v_{i}+k_{j t} f_{i}{ }^{t}+l_{j} u_{i}\right) D^{\kappa} .
\end{aligned}
$$

Thus, if \tilde{M} is a Kählerian manifold, that is, if $\nabla_{\mu} F_{\lambda}{ }^{\kappa}=0$, then we have

$$
\begin{align*}
& \nabla_{j} f_{\imath}{ }^{h}=-h_{j i} u^{h}+h_{\jmath}{ }^{h} u_{i}-k_{j i} v^{h}+k_{j}{ }^{h} v_{i}, \tag{2.15}\\
& \nabla_{j} u_{i}=-h_{j t} f_{\imath}{ }^{t}-\lambda k_{j i}+l_{j} v_{i}, \tag{2.16}\\
& \nabla_{j} v_{i}=-k_{j t} f_{\imath}+\lambda h_{j i}-l_{j} u_{i} . \tag{2.17}
\end{align*}
$$

Using (2.15), (2.16) and (2.17) to compute

$$
S_{j i}{ }^{h}=N_{j i}{ }^{h}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h},
$$

we find

$$
\begin{aligned}
S_{j i}{ }^{h}= & \left(f_{\jmath}{ }^{r} h_{r}{ }^{h}-h_{\jmath}{ }^{r} f_{r}{ }^{h}\right) u_{i}-\left(f_{2}{ }^{r} h_{r}{ }^{h}-h_{i}{ }^{r} f_{r}{ }^{h}\right) u_{\jmath} \\
& +\left(f_{\jmath}{ }^{r} k_{r}{ }^{h}-k_{\jmath}{ }^{r} f_{r}{ }^{h}\right) v_{i}-\left(f_{2}{ }^{r} k_{r}{ }^{h}-k_{i}{ }^{r} f_{r}{ }^{h}\right) v_{j} \\
& +u^{h}\left(l_{j} v_{i}-l_{i} v_{j}\right)-v^{h}\left(l_{j} u_{i}-l_{i} u_{j}\right) .
\end{aligned}
$$

Thus we have

Proposition 3.1. Let M be a submanifold of codimension 2 of a Kählerian manifold whose connection induced in the normal bundle is flat. If f commutes with both of h and k, M admits a normal ($f, g, u, v, \lambda)$-structure.

Corollary 3.2 A totally umbilical submanifold of codimension 2 of a Kählerian manifold whose connection induced in the normal bundle is flat admits a normal (f, g, u, v, λ)-structure.

Corollary 3.2. holds of course for a totally geodesic submanifold. A plane or a sphere of codimension 2 in an even-dimensional Euclidean space are examples for which the corollary holds.

For a totally umbilical submanifold whose connection induced in the normal bundle is flat, we have, for suitably chosen unit normals C and D,

$$
h_{j i}=h g_{j i}, \quad k_{j i}=k g_{j i}, \quad l_{j}=0
$$

and consequently (2.16) and (2.17) become

$$
\begin{equation*}
\nabla_{j} u_{i}=h f_{j i}-\lambda k g_{j i}, \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{j} v_{i}=k f_{j i}+\lambda h g_{j i} \tag{2.19}
\end{equation*}
$$

respectively. These equations give

$$
\begin{equation*}
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda k g_{j i} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \lambda h g_{j i} \tag{2.21}
\end{equation*}
$$

which show that u^{h} and v^{h} define infinitesimal conformal transformations in M.

§ 3. Hypersurfaces of an almost contact metric manifold.

In this section, we study hypersurfaces of an almost contact metric manifold as examples of the manifold with (f, g, u, v, λ)-structure.

Let \tilde{M} be a $(2 n+1)$-dimensional almost contact metric manifold covered by a system of coordinate neighborhoods $\left\{\tilde{U} ; y^{k}\right\}$, where here and in this section, the indices $\kappa, \lambda, \mu, \nu, \cdots$ run over the range $\{1,2, \cdots, 2 n+1\}$ and let ($F_{\lambda}{ }^{\kappa}, G_{\mu \lambda}, v_{\lambda}$) be the almost contact metric structure, that is [9],

$$
\begin{equation*}
F_{\mu}{ }^{{ }^{k}} F_{\lambda}{ }^{\mu}=-\delta_{\lambda}^{\varepsilon}+v_{\lambda} v^{k}, \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
v_{k} F_{\lambda}{ }^{\kappa}=0, \quad F_{\lambda}{ }^{\kappa} v^{2}=0 \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
v_{v} v^{2}=1 \tag{3.3}
\end{equation*}
$$

and
(3. 4)

$$
G_{\gamma \beta} F_{\mu}{ }^{\gamma} F_{\lambda}{ }^{\beta}=G_{\mu \lambda}-v_{\mu} v_{\lambda} .
$$

Let M be a $2 n$-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, and which is differentiably immersed in \tilde{M} as a hypersurface by the equations

$$
\begin{equation*}
y^{k}=y^{k}\left(x^{h}\right) \tag{3.5}
\end{equation*}
$$

We put $B_{i}{ }^{k}=\partial_{i} y^{k}$ and choose a unit vector C^{k} of \tilde{M} normal to M in such a way that $2 n+1$ vectors $B_{i}{ }^{c}$ and C^{k} give the positive orientation of M.

The transforms $F_{\lambda}{ }^{k} B_{i}{ }^{2}$ of $B_{i}{ }^{2}$ by $F_{\lambda}{ }^{k}$ can be expressed as linear combinations of $B_{i}{ }^{\kappa}$ and C^{k}, that is

$$
\begin{equation*}
F_{\lambda}{ }^{k} B_{i}{ }^{2}=f_{i}{ }^{h} B_{h}{ }^{\kappa}+u_{i} C^{\kappa} \tag{3.6}
\end{equation*}
$$

where $f_{i}{ }^{h}$ is a tensor field of type $(1,1)$ and u_{i} is a 1 -form of M. Similarly, the transform $F_{\lambda}{ }^{\kappa} C^{\lambda}$ of C^{λ} by $F_{\lambda}{ }^{\kappa}$ can be written as
where

$$
u^{i}=u_{f} g^{f i}
$$

$g_{j i}$ being the Riemannian metric on M induced from that of \tilde{M}.
We put

$$
\begin{equation*}
v^{k}=B_{i}^{k} v^{2}+\lambda C^{\varepsilon} \tag{3.8}
\end{equation*}
$$

where v^{i} is a vector field of M and λ a function of M.
Applying $F_{\star}{ }^{\mu}$ again to (3.6) and taking account of (3.6) itself, (3.7) and (3.8), we find

$$
\begin{align*}
f_{i}^{t} f_{t}^{h} & =-\delta_{i}^{h}+u_{i} u^{h}+v_{i} v^{h} \tag{3.9}\\
u_{t} f_{i}^{t} & =\lambda v_{i} . \tag{3.10}
\end{align*}
$$

Applying $F_{\star}{ }^{\mu}$ again to (3.7) and taking account of (3.6), (3.7) and (3.8), we obtain

$$
\begin{align*}
& f_{i}^{h} u^{i}=-\lambda v^{h}, \tag{3.11}\\
& u_{i} u^{i}=1-\lambda^{2} .
\end{align*}
$$

Finally applying F_{*}^{μ} to (3.8), we find

$$
\begin{align*}
f_{i}{ }^{h} v^{i} & =\lambda u^{h}, \tag{3.13}\\
u_{i} v^{i} & =0 . \tag{3.14}
\end{align*}
$$

Since u^{ε} is a unit vector, we have, from (3.8),

$$
\begin{equation*}
v_{i} v^{i}=1-\lambda^{2} \tag{3.15}
\end{equation*}
$$

On the other hand, we have, from (3.4)

$$
G_{\gamma \beta} F_{\mu}{ }^{\gamma} F_{\lambda}{ }^{\beta} B_{j}{ }^{\mu} B_{i}{ }^{2}=G_{\mu \lambda} B_{j}{ }^{\mu} B_{i}{ }^{2}-u_{\mu} B_{j}{ }^{\mu} u_{\lambda} B_{i}{ }^{\lambda}
$$

from which

$$
g_{k h} f_{j}{ }^{k} f_{i}^{h}+u_{j} u_{i}=g_{j i}-v_{j} v_{i}
$$

that is

$$
\begin{equation*}
g_{k h} f_{j}{ }^{k} f_{i}{ }^{h}=g_{j i}-u_{j} u_{i}-v_{j} v_{i} . \tag{3.16}
\end{equation*}
$$

Equations (3.9) $\sim(3.16)$ show that a hypersurface of an almost contact metric manifold admits a (f, g, u, v, λ)-structure.

For the hypersurface M, the equations of Gauss and those of Weingarten are

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{\kappa}=h_{j i} C^{\kappa}, \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{j} C^{k}=-h_{j}{ }^{i} B_{i}{ }^{k} \tag{3.18}
\end{equation*}
$$

respectively.
Differentiating (3.6) covariantly along M, we have, taking account of (3.17) and (3.18),

$$
\begin{aligned}
& \left(\nabla_{\mu} F_{\lambda}{ }^{k}\right) B_{j}{ }^{\mu} B_{i}{ }^{2}+F_{\lambda}{ }^{k} h_{j i} C^{\lambda} \\
= & \left(\nabla_{j} f_{i}{ }^{h}\right) B_{h}{ }^{\kappa}+f_{i}^{t} h_{j t} C^{k}+\left(\nabla_{j} u_{i}\right) C^{k}-u_{i} h_{j}{ }^{h} B_{h}{ }^{k}
\end{aligned}
$$

or

$$
\begin{aligned}
& \left(\nabla_{\mu} F_{\lambda}{ }^{\kappa}\right) B_{j}{ }^{\mu} B_{i}{ }^{2}-h_{j i} u^{h} B_{h}{ }^{\kappa} \\
= & \left(\nabla_{j} f_{i}^{h}-h_{j}{ }^{h} u_{i}\right) B_{h}{ }^{\kappa}+\left(\nabla_{j} u_{i}+h_{j t} f_{i}{ }^{t}\right) C^{\kappa} .
\end{aligned}
$$

Thus, if \tilde{M} is a Sasakian manifold, that is, if

$$
\nabla_{\mu} F_{\lambda}{ }^{\mathrm{k}}=-g_{\mu \lambda} v^{\mathrm{c}}+\delta_{\mu}^{\mathrm{k}} v_{\lambda,},
$$

then we have

$$
\begin{aligned}
& -g_{j i}\left(B_{h}{ }^{\kappa} v^{h}+\lambda C^{k}\right)+B_{j}{ }^{\kappa} v_{i}-h_{j i} u^{h} B_{h}{ }^{\kappa} \\
= & \left(\nabla_{j} f_{i}{ }^{h}-h_{j}{ }^{h} u_{i}\right) B_{h}{ }^{\kappa}+\left(\nabla_{j} u_{i}+h_{j t} f_{\imath}\right) C^{\kappa},
\end{aligned}
$$

from which

$$
\begin{equation*}
\nabla_{j} f_{i}^{h}=-h_{j i} u^{h}+h_{j}{ }^{h} u_{i}-g_{j i} v^{h}+\delta_{j}^{h} v_{i}, \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} u_{i}=-h_{j t} f_{i}^{t}-\lambda g_{j i} . \tag{3.20}
\end{equation*}
$$

On the other hand, differentiating (3.8) covariantly along M and taking account of (3.17), (3.18), and

$$
\nabla_{\lambda} v^{k}=F_{\lambda}{ }^{\kappa},
$$

we find

$$
F_{\lambda}{ }^{{ }^{k}} B_{j}{ }^{\lambda}=h_{j i} v^{i} C^{\kappa}+B_{i}{ }^{\kappa} \nabla_{j} v^{i}+\left(\nabla_{j} \lambda\right) C^{\kappa}+\lambda\left(-h_{j}{ }^{h} B_{h}{ }^{\kappa}\right),
$$

or

$$
f_{j}{ }^{h} B_{h}{ }^{\kappa}+u_{j} C^{k}=\left(\nabla_{j} v^{h}-\lambda h_{j}{ }^{h}\right) B_{h}{ }^{\kappa}+\left(\nabla_{j} \lambda+h_{j i} v^{i}\right) C^{k},
$$

from which

$$
\begin{equation*}
\nabla_{j} v^{h}=f_{j}{ }^{h}+\lambda h_{j}{ }^{h}, \tag{3.21}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{j} v_{i}=f_{j i}+\lambda h_{j i} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{j} \lambda=u_{j}-h_{j i} v^{i} . \tag{3.23}
\end{equation*}
$$

Thus, computing $S_{j i}{ }^{h}$ we obtain

$$
\begin{equation*}
S_{j i}{ }^{h}=\left(f_{j}{ }^{t} h_{t}{ }^{h}-h_{j}{ }^{t} f_{t}{ }^{h}\right) u_{i}-\left(f_{i}{ }^{t} h_{t}{ }^{h}-h_{i}{ }^{t} f_{t}^{h}\right) u_{j} . \tag{3.24}
\end{equation*}
$$

Now we prove
Proposition 4.1. In order that the induced (f, g, u, v, λ)-structure on a hypersurface of a Sasakian manifold be normal it is necessary and sufficient that f commutes with h.

Proof. The sufficiency of the condition is trivially seen from (3.24). So we prove the necessity of the condition.

Suppose that the (f, g, u, v, λ)-structure be normal, then we have, from $S_{j i}{ }^{h}=0$,

$$
\begin{equation*}
\left(f_{j}{ }^{t} h_{t}{ }^{h}-h_{j}{ }^{t} f_{t}{ }^{h}\right) u_{i}=\left(f_{i}{ }^{t} h_{t}{ }^{h}-h_{i}{ }^{t} f_{t}{ }^{h}\right) u_{j} . \tag{3.25}
\end{equation*}
$$

Thus, for some vector field w^{h}, we have

$$
\begin{equation*}
f_{J}^{t} h_{t}{ }^{h}-h_{j}^{t} f_{t}^{h}=w^{h} u_{J} . \tag{3.26}
\end{equation*}
$$

Since the covariant components of the tensor defined by the left hand members of the above equation are symmetric, it follows that w is proportional to u, that is,

$$
f_{j}^{t} h_{t h}+f_{h}^{t} h_{t J}=\alpha u_{j} u_{h}
$$

α being a function, from which, by transvection of $g^{j h}, \alpha=0$ or $u_{J}=0$. This, together with (3.26), shows that f commutes with h.

It is known [12] that if f commutes with h and $\lambda^{2} \neq 1$ almost everywhere, the hypersurface is totally umbilical. So we get

Proposition 4.2. If the (f, g, u, v, λ)-structure induced on a hypersurface of a Sasakian manifold is normal, the hypersurface is totally umbilical.

For a hypersurface with the induced normal (f, g, u, v, λ) -structure, we have from (3.20),

$$
\begin{equation*}
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda g_{j i} \tag{3.27}
\end{equation*}
$$

and from (3.22)

$$
\begin{equation*}
\nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \lambda h g_{j i} \tag{3.28}
\end{equation*}
$$

which show that u^{h} and v^{h} define infinitesimal conformal transformations in M.

§4. Identities in manifolds with normal (f, $g, u, v, \lambda)$-structure.

In this section we shall prove some identities in manifolds with normal (f, g, u, v, λ)-structure for later use.

Let M be a manifold with normal (f, g, u, v, λ)-structure. The structure being normal, we have

$$
f_{j}{ }^{t} \nabla_{t} f_{i}{ }^{h}-f_{2}{ }^{t} \nabla_{t} f_{j}{ }^{h}-\left(\nabla_{J} f_{\imath}{ }^{t}-\nabla_{v} f_{j}{ }^{t}\right) f_{t}^{h}
$$

$$
\begin{equation*}
+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h}=0 \tag{4.1}
\end{equation*}
$$

We first prove
Lemma 4.1. In a manifold M with normal (f, g, u, v, λ)-structure, we have

$$
\lambda\left(f_{j}^{t} u_{t i}-f_{\imath}{ }^{t} u_{t j}\right)+f_{j}{ }^{t} f_{\imath}^{s} v_{t s}-v_{j i}
$$

$$
\begin{equation*}
+\left(f_{j}^{t} u_{i}-f_{i}^{t} u_{j}\right) \nabla_{t} \lambda-\lambda\left\{\left(\nabla_{j} \lambda\right) v_{i}-\left(\nabla_{i} \lambda\right) v_{j}\right\}=0 \tag{4.2}
\end{equation*}
$$

and

$$
\lambda\left(f_{j}^{t} v_{t i}-f_{i}^{t} v_{t j}\right)-f_{j}^{t} f_{i}{ }^{s} u_{t s}+u_{j i}+\left(f_{j}^{t} v_{i}-f_{\imath}^{t} v_{j}\right) \nabla_{t} \lambda
$$

$$
\begin{equation*}
+\lambda\left\{\left(\nabla_{j} \lambda\right) u_{i}-\left(\nabla_{i} \lambda\right) u_{j}\right\}=0, \tag{4.3}
\end{equation*}
$$

where

$$
u_{j i}=\nabla_{j} u_{i}-\nabla_{i} u_{j}, \quad v_{j i}=\nabla_{j} v_{i}-\nabla_{i} v_{j} .
$$

Proof. Transvecting (4.1) with v_{h}, we find

$$
\begin{gathered}
f_{j}^{t}\left(\nabla_{t} f_{i}^{h}\right) v_{h}-f_{\imath}^{t}\left(\nabla_{t} f_{j}^{h}\right) v_{h}+\lambda\left(\nabla_{j} f_{\imath}^{t}-\nabla_{i} f_{j}^{t}\right) u_{t} \\
+\left(1-\lambda^{2}\right)\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right)=0
\end{gathered}
$$

by virtue of (1.3) and (1.5), or

$$
\begin{gathered}
f_{j}^{t}\left\{\nabla_{t}\left(f_{i}{ }^{h} v_{h}\right)-f_{i}{ }^{h} \nabla_{t} v_{h}\right\}-f_{\imath}{ }^{t}\left\{\nabla_{t}\left(f_{j}{ }^{h} v_{h}\right)-f_{j}{ }^{h} \nabla_{t} v_{h}\right\} \\
+\lambda\left\{\nabla_{j}\left(f_{\imath}^{t} u_{t}\right)-f_{\imath} \nabla_{j} \nabla_{j}-\nabla_{i}\left(f_{j}^{t} u_{t}\right)+f_{j}^{t} \nabla_{i} u_{t}\right\}+\left(1-\lambda^{2}\right)\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right)=0,
\end{gathered}
$$

from which

$$
\begin{aligned}
& f_{j}^{t}\left\{-\left(\nabla_{t} \lambda\right) u_{i}-\lambda \nabla_{t} u_{i}-f_{i}{ }^{h} \nabla_{t} v_{h}\right\}+f_{i}{ }^{t}\left\{\left(\nabla_{t} \lambda\right) u_{j}+\lambda \nabla_{t} u_{j}+f_{j}{ }^{h} \nabla_{l} v_{h}\right\} \\
+ & \lambda\left\{\left(\nabla_{j} \lambda\right) v_{i}+\lambda \nabla_{j} v_{i}-f_{i}^{t} \nabla_{j} u_{t}-\left(\nabla_{i} \lambda\right) v_{j}-\lambda \nabla_{i} v_{j}+f_{j} \nabla_{i} u_{t}\right\} \\
+ & \left(1-\lambda^{2}\right)\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right)=0,
\end{aligned}
$$

by virtue of (1.2) and (1.3), from which

$$
\begin{aligned}
& \lambda\left\{f_{j}^{t}\left(\nabla_{t} u_{i}-\nabla_{i} u_{t}\right)-f_{i}^{t}\left(\nabla_{t} u_{j}-\nabla_{j} u_{t}\right)\right\}+f_{j}^{t} f_{i}^{s}\left(\nabla_{t} v_{s}-\nabla_{s} v_{t}\right)-\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) \\
+ & \left(f_{j}^{t} u_{i}-f_{i}^{t} u_{j}\right) \nabla_{t} \lambda-\lambda\left\{\left(\nabla_{j} \lambda\right) v_{i}-\left(\nabla_{i} \lambda\right) v_{j}\right\}=0,
\end{aligned}
$$

which proves (4.2)
Similarly, transvecting (4.1) with u_{h}, we can prove (4.3).
In order to get further results on manifolds with $\operatorname{normal}(f, g, u, v, \lambda)$-structure, we put the condition

$$
\begin{equation*}
v_{j i}=2 f_{j i .} \tag{4.4}
\end{equation*}
$$

As we have seen in the preceding section, for a hypersurface of Sasakian manifold, we have

$$
\nabla_{j} v_{i}=f_{j i}+\lambda h_{j i}
$$

and consequently the condition (4.4) is always satisfied.
Lemma 4. 2. Let M be a manifold with normal ($f, g, u, v, \lambda)$-structure satisfying (4. 4). If the function $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, then we have

$$
\begin{equation*}
u^{t} \nabla_{t} \lambda=1-\lambda^{2} . \tag{4.5}
\end{equation*}
$$

Proof. Transvecting (4.2) with $u^{j} v^{i}$ and using (1.2) (1.5), we find

$$
\begin{gathered}
\lambda\left(-\lambda u_{j i} v^{j} v^{i}-\lambda u_{i j} u^{i} u^{j}\right)+\lambda^{2} v_{t s} u^{t} v^{s}-v_{j i} u^{j} v^{i} \\
-\lambda\left(1-\lambda^{2}\right) u^{t} \nabla_{t} \lambda-\lambda\left(1-\lambda^{2}\right) u^{j} \nabla_{j} \lambda=0,
\end{gathered}
$$

or, using $v_{t s}=2 f_{t s}$,

$$
\text { ON }(f, g, u, v, \lambda) \text {-STRUCTURES }
$$

$$
2 \lambda\left(1-\lambda^{2}\right)^{2}-2 \lambda\left(1-\lambda^{2}\right) u^{t} \nabla_{t} \lambda=0
$$

which proves (4.5)
Lemma 4. 3. Let M be a manifold with normal (f, g, u, v, λ)-structure satisfying (4. 4), then we have

$$
\begin{equation*}
f_{j}{ }^{t} \nabla_{h} f_{t i}-f_{i}{ }^{t} \nabla_{h} f_{t j}=u_{j}\left(\nabla_{i} u_{h}\right)-u_{i}\left(\nabla_{j} u_{h}\right)+v_{j}\left(\nabla_{i} v_{h}\right)-v_{i}\left(\nabla_{j} v_{h}\right) . \tag{4.6}
\end{equation*}
$$

Proof. Since $f_{j i}$ is given by

$$
f_{j i}=\frac{1}{2}\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right)
$$

we have

$$
\begin{equation*}
\nabla_{\jmath} f_{i h}+\nabla_{\imath} f_{h j}+\nabla_{h} f_{j i}=0 \tag{4.7}
\end{equation*}
$$

On the other hand, (4.1) can be written as

$$
\begin{aligned}
& f_{j}^{t} \nabla_{t} f_{i h}-f_{\imath}^{t} \nabla_{t} f_{j h}+\left(\nabla_{j} f_{i t}-\nabla_{i} f_{j t}\right) f_{h}^{t} \\
& \quad+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u_{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v_{h}=0
\end{aligned}
$$

and consequently

$$
\begin{aligned}
& -f_{j}^{t}\left(\nabla_{\imath} f_{h t}+\nabla_{h} f_{t i}\right)+f_{\imath}^{t}\left(\nabla_{j} f_{h t}+\nabla_{h} f_{t j}\right) \\
& +\left(\nabla_{j} f_{i t}-\nabla_{2} f_{j t}\right) f_{h}{ }^{t}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u_{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v_{h}=0
\end{aligned}
$$

that is,

$$
\begin{aligned}
-\nabla_{i}\left(f_{j}^{t} f_{h t}\right) & -f_{j}^{t} \nabla_{h} f_{t i}+\nabla_{j}\left(f_{i}^{t} f_{h t}\right)+f_{i}^{t} \nabla_{h} f_{t j} \\
& +\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u_{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v_{h}=0
\end{aligned}
$$

Substituting

$$
f_{j}^{t} f_{h t}=g_{j h}-u_{j} u_{h}-v_{j} v_{h}
$$

we obtain

$$
u_{j}\left(\nabla_{i} u_{h}\right)+v_{j}\left(\nabla_{i} v_{h}\right)-f_{j}{ }^{t} \nabla_{h} f_{t i}-u_{i}\left(\nabla_{j} u_{h}\right)-v_{i}\left(\nabla_{j} v_{h}\right)+f_{i}^{t} \nabla_{h} f_{t \jmath}=0
$$

which gives (4.6).

§5. Vector fields \boldsymbol{U} and V.

In $\S 3$, we have seen that a totally umbilical submanifold of codimension 2 of a Kählerian manifold whose connection induced on the normal bundle is flat admits a normal (f, g, u, v, λ)-structure and that the vector fields U and V define
infinitesimal conformal transformations.
Also in §4, we have seen that a totally umbilical hypersurface of a Sasakian manifold admits a normal (f, g, u, v, λ)-structure and that the vector fields U and V define infinitesimal conformal transformations.

In this section, we prove that, under certain conditions, the vector fields U and V of a normal (f, g, u, v, λ)-structure both define infinitesimal conformal transformations.

In the sequel, we assume that

$$
\begin{equation*}
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 \phi f_{j i} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}, \tag{5.2}
\end{equation*}
$$

where ϕ is a differentiable function on M.
Lemma 5.1. Let M be a manifold with normal (f, g, u, v, λ)-structure satisfying (5.1) and (5.2). If the function $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, then we have

$$
\begin{equation*}
v^{t} \nabla_{t} \lambda=-\phi\left(1-\lambda^{2}\right) . \tag{5.3}
\end{equation*}
$$

Proof. Transvecting (4.3) with $u^{\top} v^{2}$ and using (1.2)~(1.5), we find

$$
\begin{array}{r}
\lambda\left(-\lambda v_{j i} v^{j} v^{i}+\lambda v_{j i} u^{j} u^{i}\right)-\lambda^{2} u_{t s} u^{t} v^{s}+u_{j i} u^{j} v^{i} \\
-\lambda\left(1-\lambda^{2}\right) v^{t} \nabla_{t} \lambda-\lambda\left(1-\lambda^{2}\right) v^{i} \nabla_{i} \lambda=0,
\end{array}
$$

or, using $u_{t s}=2 \phi f_{t s}$,

$$
-2 \lambda\left(1-\lambda^{2}\right)^{2} \phi-2 \lambda\left(1-\lambda^{2}\right) v^{i} \nabla_{i} \lambda=0
$$

which proves (5.3).
Lemma 5.2. Under the same assumptions as those in Lemma 5.1, we have

$$
\begin{equation*}
\nabla_{i} \lambda=u_{i}-\phi v_{i} . \tag{5.4}
\end{equation*}
$$

Proof. From (4. 2), (5.1) and (5.2), we have

$$
2 f_{2}^{t} f_{v}^{s} f_{t s}-2 f_{j i}+\left(f_{j}{ }^{t} u_{i}-f_{i}{ }^{t} u_{j}\right) \nabla_{t} \lambda-\lambda\left\{\left(\nabla_{j} \lambda\right) v_{i}-\left(\nabla_{i} \lambda\right) v_{j}\right\}=0,
$$

or

$$
2 \lambda\left(u_{j} v_{i}-u_{i} v_{j}\right)+\left(f_{j}{ }^{t} u_{i}-f_{i}{ }^{t} u_{j}\right) \nabla_{t} \lambda-\lambda\left\{\left(\nabla_{j} \lambda\right) v_{i}-\left(\nabla_{i} \lambda\right) v_{j}\right\}=0 .
$$

Transvecting this equation with v^{j}, we find

$$
-2 \lambda\left(1-\lambda^{2}\right) u_{i}+\lambda u_{i} u^{t} \nabla_{t} \lambda-\lambda\left(v^{j} \nabla_{j} \lambda\right) v_{i}+\lambda\left(1-\lambda^{2}\right) \nabla_{i} \lambda=0
$$

from which, substituting (4.5) and (5.3),

$$
\begin{gathered}
\text { ON }(f, g, u, v, \lambda) \text {-STRUCTURES } \\
-2 \lambda\left(1-\lambda^{2}\right) u_{i}+\lambda\left(1-\lambda^{2}\right) u_{i}+\lambda\left(1-\lambda^{2}\right) \phi v_{i}+\lambda\left(1-\lambda^{2}\right) \nabla_{i} \lambda=0
\end{gathered}
$$

which proves (5.4).
Lemma 5.3. Under the same assumptions as those in Lemma 5.1, ϕ is constant.
Proof. Differentiating (5.4) covariantly, we have

$$
\nabla_{j} \nabla_{i} \lambda=\nabla_{j} u_{i}-\phi \nabla_{j} v_{i}-v_{i} \nabla_{j} \phi,
$$

from which, using (5.1) and (5.2),

$$
v_{j} \nabla_{i} \phi=v_{i} \nabla_{j} \phi
$$

which implies that

$$
\nabla_{i} \phi=\alpha v_{i}
$$

for some scalar function α.
Differentiating the equation above covariantly, we get

$$
\nabla_{j} \nabla_{i} \phi=v_{i} \nabla_{j} \alpha+\alpha \nabla_{j} v_{i},
$$

from which, using (5.1)

$$
2 \alpha f_{j i}=v_{j} \nabla_{i} \alpha-v_{i} \nabla_{j} \alpha .
$$

Thus, if $n>2$, we have $\alpha=0$, because the rank of $f_{j i}$ is almost everywhere maximum. This shows that ϕ is constant.

Lemma 5.4. Under the same assumptions as those in Lemma 5.1, we have

$$
\begin{equation*}
\left(\nabla_{j} u_{i}+\nabla_{i} u_{j}\right) u^{i}=-2 \lambda u_{j} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}\right) v^{i}=2 \lambda \phi v_{j} . \tag{5.7}
\end{equation*}
$$

Proof. Differentiating

$$
u_{i} u^{i}=1-\lambda^{2}
$$

covariantly and using (5.4), we find

$$
2\left(\nabla_{j} u_{i}\right) u^{i}=-2 \lambda\left(u_{j}-\phi v_{j}\right) .
$$

Substituting this into

$$
2\left(\nabla_{j} u_{i}\right) u^{i}=\left\{\left(\nabla_{j} u_{i}+\nabla_{i} u_{j}\right)+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right)\right\} u^{i},
$$

or

$$
2\left(\nabla_{j} u_{i}\right) u^{i}=\left(\nabla_{j} u_{i}+\nabla_{i} u_{j}\right) u^{i}+2 \lambda \phi v_{j},
$$

we find

$$
-2 \lambda\left(u_{j}-\phi v_{j}\right)=\left(\nabla_{j} u_{i}+\nabla_{i} u_{j}\right) u^{2}+2 \lambda \phi v_{j},
$$

which proves (5.6).
Similarly, we can prove (5.7).
Theorem 5.1. Under the same assumptions as those in Lemma 5.1, both of the vector fields u^{h} and v^{h} define infinitesimal conformal transformations.

Proof. Transvecting (4.6) with v^{2} and using (1.3), we find

$$
\begin{aligned}
& f_{j}^{t}\left(\nabla_{h} f_{t i}\right) v^{2}-\lambda u^{t} \nabla_{h} f_{t \jmath} \\
= & u_{j}\left(v^{i} \nabla_{i} u_{h}\right)+v_{j}\left(v^{i} \nabla_{i} v_{h}\right)-\left(1-\lambda^{2}\right) \nabla_{j} v_{h},
\end{aligned}
$$

from which

$$
\begin{aligned}
& f_{j}^{t}\left\{\nabla_{h}\left(f_{t} v_{i}\right)-f_{t}{ }^{i} \nabla_{h} v_{i}\right\}+\lambda\left\{\nabla_{h}\left(f_{j}^{t} u_{t}\right)-f_{j}^{t} \nabla_{h} u_{t}\right\} \\
= & u_{j}\left(v^{i} \nabla_{i} u_{h}\right)+v_{j}\left(v^{i} \nabla_{i} v_{h}\right)-\left(1-\lambda^{2}\right) \nabla_{j} v_{h},
\end{aligned}
$$

or, again using (1.2) and (1.3),

$$
\begin{aligned}
& -f_{j}^{t}\left\{\left(\nabla_{h} \lambda\right) u_{t}+\lambda \nabla_{h} u_{t}+f_{t}{ }^{i} \nabla_{h} v_{i}\right\} \\
& +\lambda\left\{\left(\nabla_{h} \lambda\right) v_{j}+\lambda \nabla_{h} v_{j}-f_{j}^{t} \nabla_{h} u_{t}\right\} \\
= & u_{j}\left(v^{i} \nabla_{i} u_{h}\right)+v_{j}\left(v^{i} \nabla_{i} v_{h}\right)-\left(1-\lambda^{2}\right) \nabla_{j} v_{h},
\end{aligned}
$$

that is,

$$
\begin{aligned}
& -2 \lambda f_{j}{ }^{t} \nabla_{h} u_{t}+\left(\delta_{j}^{i}-u_{j} u^{2}-v_{j} v^{i}\right) \nabla_{h} v_{i}+\lambda^{2} \nabla_{h} v_{j} \\
= & u_{j}\left(v^{i} \nabla_{i} u_{h}\right)+v_{j}\left(v^{i} \nabla_{i} v_{h}\right)-\left(1-\lambda^{2}\right) \nabla_{j} v_{h},
\end{aligned}
$$

or

$$
\begin{aligned}
& -2 \lambda f_{j}{ }^{t} \nabla_{h} u_{t}+\left(\nabla_{h} v_{j}+\nabla_{j} v_{h}\right)+\lambda^{2}\left(\nabla_{h} v_{j}-\nabla_{j} v_{h}\right) \\
= & u_{j} v^{i}\left(\nabla_{i} u_{h}-\nabla_{h} u_{j}\right)+v_{j} v^{i}\left(\nabla_{i} v_{h}+\nabla_{h} v_{i}\right),
\end{aligned}
$$

or

$$
\begin{aligned}
& -2 \lambda f_{j}{ }^{t} \nabla_{h} u_{t}+\left(\nabla_{h} v_{j}+\nabla_{j} v_{h}\right)+2 \lambda^{2} f_{h j} \\
= & 2 \lambda \phi u_{j} u_{h}+v_{j} v^{i}\left(\nabla_{i} v_{h}+\nabla_{h} v_{i}\right) .
\end{aligned}
$$

Substituting

$$
\begin{aligned}
2 \nabla_{h} u_{t} & =\left(\nabla_{h} u_{t}+\nabla_{t} u_{h}\right)+\left(\nabla_{h} u_{t}-\nabla_{t} u_{h}\right) \\
& =\nabla_{h} u_{t}+\nabla_{t} u_{h}+2 \phi f_{h t}
\end{aligned}
$$

and (5.7) into the equation above, we find

$$
\begin{aligned}
& -\lambda f_{j} t\left(\nabla_{h} u_{t}+\nabla_{t} u_{h}\right)-2 \lambda \phi\left(g_{j h}-u_{j} u_{h}-v_{j} v_{h}\right) \\
& +\left(\nabla_{h} v_{j}+\nabla_{j} v_{h}\right)+2 \lambda^{2} f_{h j} \\
= & 2 \lambda \phi u_{j} u_{h}+2 \lambda \phi v_{j} v_{h}
\end{aligned}
$$

or

$$
\begin{equation*}
\nabla_{h} v_{j}+\nabla_{j} v_{h}=\lambda f_{j}\left(\nabla_{h} u_{t}+\nabla_{t} u_{h}\right)+2 \lambda \phi g_{h_{j}}-2 \lambda^{2} f_{h j} \tag{5.8}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\nabla_{h} u_{j}+\nabla_{j} u_{h}=-\lambda f_{j}{ }^{t}\left(\nabla_{h} v_{t}+\nabla_{t} v_{h}\right)-2 \lambda g_{h j}-2 \lambda^{2} \phi f_{h j} . \tag{5.9}
\end{equation*}
$$

Substituting (5.8) into (5.9), we obtain, using (5.6),

$$
\begin{equation*}
\left(1-\lambda^{2}\right)\left(\nabla_{h} u_{j}+\nabla_{j} u_{h}\right)=-2 \lambda\left(1-\lambda^{2}\right) g_{h j}-2 \lambda^{3} v_{h} v_{j}-\lambda^{2} v^{t}\left(\nabla_{h} u_{t}+\nabla_{t} u_{s}\right) v_{j} . \tag{5.10}
\end{equation*}
$$

Transvecting (5.10) with v^{3}, we find

$$
\left(1-\lambda^{2}\right)\left(\nabla_{h} u_{j}+\nabla_{j} u_{h}\right) v^{j}=-2 \lambda\left(1-\lambda^{2}\right) v_{h}-2 \lambda^{3}\left(1-\lambda^{2}\right) v_{h}-\lambda^{2}\left(1-\lambda^{2}\right) v^{t}\left(\nabla_{h} u_{t}+\nabla_{t} u_{h}\right),
$$

or

$$
\left(1+\lambda^{2}\right)\left(1-\lambda^{2}\right)\left(\nabla_{h} u_{j}+\nabla_{j} u_{h}\right) v^{j}=-2 \lambda\left(1+\lambda^{2}\right)\left(1-\lambda^{2}\right) v_{h},
$$

from which

$$
\begin{equation*}
\left(\nabla_{h} u_{j}+\nabla_{j} u_{h}\right) v^{j}=-2 \lambda v_{h} . \tag{5.11}
\end{equation*}
$$

Substituting (5.11) into (5.10), we obtain
(5.12)

$$
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda g_{j i} .
$$

Substituting (5.12) into (5.8), we find

$$
\begin{equation*}
\nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \lambda \phi g_{j i} . \tag{5.13}
\end{equation*}
$$

Equations (5.12) and (5.13) show that both of the vector fields u^{h} and v^{h} define infinitesimal conformal transformations.

Using (5.12), (5.3) and

$$
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 \phi f_{j i}, \quad \nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i},
$$

we have

$$
\begin{equation*}
\nabla_{j} u_{i}=-\lambda g_{j i}+\phi f_{j i}, \tag{5.14}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} v_{i}=\lambda \phi g_{j i}+f_{j i} . \tag{5.15}
\end{equation*}
$$

§6. Covariant derivative of $\mathbf{2}$-form $\boldsymbol{f}_{\boldsymbol{j} i}$.

Theorem 6.1 If a manifold with normal metric (f, g, u, v, λ)-structure satisfies (5.1) and (5.2), and if $\lambda\left(1-\lambda^{2}\right)$ is an almost everywhere non-zero function, then we have

$$
\begin{equation*}
\nabla_{J} f_{i h}=-g_{j i}\left(\phi u_{h}+v_{h}\right)+g_{j h}\left(\phi u_{i}+v_{i}\right) . \tag{6.1}
\end{equation*}
$$

Proof. Substituting (5.14) and (5.15) into (4.6), we find

$$
\begin{aligned}
& f_{j}^{t} \nabla_{h} f_{t i}-f_{\imath}^{t} \nabla_{h} f_{t \jmath} \\
& =u_{j}\left(-\lambda g_{i n}+\phi f_{i n}\right)-u_{i}\left(-\lambda g_{j h}+\phi f_{j h}\right) \\
& \quad+v_{j}\left(\lambda \phi g_{i n}+f_{i h}\right)-v_{i}\left(\lambda \phi g_{j h}+f_{j h}\right),
\end{aligned}
$$

or

$$
\begin{aligned}
& \nabla_{h}\left(f_{j}^{t} f_{t i}\right)-\left(\nabla_{h} f_{j}\right) f_{t i}-f_{\imath} \nabla_{h} f_{t j} \\
= & -\lambda\left(u_{j}-\phi v_{j}\right) g_{i h}+\lambda\left(u_{i}-\phi v_{i}\right) g_{j h} \\
& +\left(\phi u_{j}+v_{j}\right) f_{i h}-\left(\phi u_{i}+v_{i}\right) f_{j h},
\end{aligned}
$$

from which

$$
\begin{aligned}
& \nabla_{h}\left(-g_{j i}+u_{j} u_{i}+v_{j} v_{i}\right)+2 f_{\imath} \nabla_{h} f_{t j} \\
= & -\lambda\left(u_{j}-\phi v_{j}\right) g_{i h}+\lambda\left(u_{i}-\phi v_{i}\right) g_{j h} \\
& +\left(\phi u_{j}+v_{j}\right) f_{i h}-\left(\phi u_{i}+v_{i}\right) f_{j h},
\end{aligned}
$$

or, using (5.14) and (5.15),

$$
\begin{equation*}
f_{j}^{t} \nabla_{n} f_{i t}=\lambda\left(u_{j}-\phi v_{j}\right) g_{i n}+\left(\phi u_{i}+v_{i}\right) f_{j h} . \tag{6.2}
\end{equation*}
$$

Transvecting (6.2) by $f_{k^{3}}$ and using (1.1), we find

$$
\begin{aligned}
& -\nabla_{h} f_{i k}+u_{k} u^{t} \nabla_{h} f_{i t}+v_{k} v^{t} \nabla_{h} f_{i t} \\
= & \lambda^{2}\left(\phi u_{k}+v_{k}\right) g_{i h}-\left(\phi u_{i}+v_{i}\right)\left(g_{h k}-u_{h} u_{k}-v_{h} v_{k}\right),
\end{aligned}
$$

or

$$
\begin{aligned}
& -\nabla_{h} f_{i k}+u_{k}\left\{\nabla_{h}\left(f_{2}{ }^{t} u_{t}\right)-f_{2}{ }^{t} \nabla_{h} u_{t}\right\}+v_{k}\left\{\nabla_{h}\left(f_{\imath} v_{t}\right)-f_{\imath} \nabla_{h} v_{t}\right\} \\
= & \lambda^{2}\left(\phi u_{k}+v_{k}\right) g_{i h}-\left(\phi u_{i}+v_{i}\right)\left(g_{h k}-u_{h} u_{k}-v_{h} v_{k}\right),
\end{aligned}
$$

from which, using (1.2) and (1.3),

$$
\begin{aligned}
& -\nabla_{h} f_{i k}+u_{k}\left\{\left(\nabla_{h} \lambda\right) v_{i}+\lambda\left(\nabla_{h} v_{i}\right)-f_{i}{ }^{t} \nabla_{h} u_{t}\right\} \\
& -v_{k}\left(\left(\nabla_{h} \lambda\right) u_{i}+\lambda\left(\nabla_{h} u_{i}\right)+f_{2}{ }^{t} \nabla_{h} v_{t}\right\} \\
= & \lambda^{2}\left(\phi u_{k}+v_{k}\right) g_{i h}-\left(\phi u_{i}+v_{i}\right) g_{h k}+\left(\phi u_{i}+v_{i}\right)\left(u_{h} u_{k}+v_{h} v_{k}\right) .
\end{aligned}
$$

Substituting (5.4), (5.14) and (5.15) into this equation, we find

$$
\begin{aligned}
& -\nabla_{h} f_{i k}+u_{k}\left\{\left(u_{h}-\phi v_{h}\right) v_{i}+\lambda\left(\lambda \phi g_{h i}+f_{h i}\right)-f_{\imath}^{t}\left(-\lambda g_{h t}+\phi f_{h t}\right)\right\} \\
& -v_{k}\left\{\left(u_{h}-\phi v_{h}\right) u_{i}+\lambda\left(-\lambda g_{h i}+\phi f_{h i}\right)+f_{\imath}^{t}\left(\lambda \phi g_{h t}+f_{h t}\right)\right\} \\
= & \lambda^{2}\left(\phi u_{k}+v_{k}\right) g_{i h}-\left(\phi u_{i}+v_{i}\right) g_{h k}+\left(\phi u_{i}+v_{i}\right)\left(u_{h} u_{k}+v_{h} v_{k}\right),
\end{aligned}
$$

which proves (6.1).
We have seen that if a manifold with normal (f, g, u, v, λ)-structure satisfies

$$
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 \phi f_{j i}, \quad \nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i},
$$

then

$$
\nabla_{J} f_{i h}=-g_{j i}\left(\phi u_{h}+v_{h}\right)+g_{j h}\left(\phi u_{i}+v_{i}\right)
$$

Conversely, we have
Theorem 6.2. If $a(f, g, u, v, \lambda)$-structure satisfies (5.1), (5.2) and (6.1) then the structure is normal.

Proof. Substituting (6.1) into

$$
\begin{aligned}
S_{j i}{ }^{h}= & f_{j}{ }^{t} \nabla_{t} f_{i}{ }^{h}-f_{\imath}{ }^{t} \nabla_{t} f_{j}{ }^{h}-\left(\nabla_{J} f_{i}^{t}-\nabla_{\imath} f_{j}{ }^{t}\right) f_{t}^{h} \\
& +\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h},
\end{aligned}
$$

we have

$$
\begin{aligned}
S_{j i}{ }^{h}= & f_{j}^{t}\left\{-g_{t i}\left(\phi u^{h}+v^{h}\right)+\delta_{t}^{h}\left(\phi u_{i}+v_{i}\right)\right\} \\
& -f_{\imath}^{t}\left\{-g_{t j}\left(\phi u^{h}+v^{h}\right)+\delta_{t}^{h}\left(\phi u_{j}+v_{j}\right)\right\} \\
& -\left\{\delta_{j}^{t}\left(\phi u_{i}+v_{i}\right)-\delta_{i}^{t}\left(\phi u_{j}+v_{j}\right)\right\} f_{t}^{h}+2 \phi f_{j i} u^{h}+2 f_{j i} v^{h} \\
= & 0,
\end{aligned}
$$

and consequently the structure is normal.

§7. Characterizations of even dimensional spheres.

We prove
Theorem 7.1. Let M be a complete manifold with normal (f, g, u, v, λ)-structure satisfying (5.1) and (5.2). If $\lambda\left(1-\lambda^{2}\right)$ is an almost everywhere non-zero function and $n>2$ then M is isometric with an even dimensional sphere.

Proof. Differentiating (5.4) covariantly, we have

$$
\nabla_{j} \nabla_{i} \lambda=\nabla_{j} u_{i}-\phi \nabla_{j} v_{i},
$$

ϕ being a constant, from which, using (5.14) and (5.15),

$$
\begin{equation*}
\nabla_{j} \nabla_{i} \lambda=-\left(1+\phi^{2}\right) \lambda g_{j i} . \tag{7.1}
\end{equation*}
$$

Thus, λ being not identically zero, by a famous theorem of Obata [6], M is isometric with a sphere.

We next prove
Theorem 7.2. Let M be a complete manifold with normal (f, g, u, v, λ)-structure satisfying

$$
\begin{equation*}
\nabla_{j} v_{i}=f_{j i} . \tag{7.2}
\end{equation*}
$$

If $\lambda\left(1-\lambda^{2}\right)$ is an almost everywhere non-zero function, then M is isometric with an even dimensional sphere.

Proof. Differentiating

$$
v_{i} v^{2}=1-\lambda^{2}
$$

covariantly and using (7.2), we find

$$
f_{j i} v^{v}=-\lambda \nabla_{j} \lambda
$$

or

$$
\lambda\left(\nabla_{j} \lambda-u_{j}\right)=0,
$$

from which

$$
\nabla_{j} \lambda=u_{j} .
$$

This shows that

$$
\nabla_{j} u_{i}-\nabla_{i} u_{j}=0 .
$$

Equation (7.2) shows that

$$
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i} .
$$

Thus all the assumptions of Theorem 7.1 are satisfied, and consequently M is isometric with an even dimensional sphere.

Bibliography

[1] Ако, M., Submanıfolds in Fubınian manifolds. Kōdai Math. Sem. Rep. 19 (1967), 103-125.
[2] Blair, D. E., and G, D. Ludden, Hypersurfaces in almost contact manifolds. Tôhoku Math. J. 22 (1969), 354-362.
[3] Blair, D. E., G. D. Ludden, and K. Yano, Induced structures on submanifolds. Kōdaı Math. Sem. Rep. 22 (1970), 188-198.
[4] Goldberg, S. I., and K. Yano, Varıétés globalement repérées. C. R. Parıs 269 (1969), 920-922.
[5] Goldberg, S. I., and K. Yano, Polynomial structures on manifolds. Kōdai Math.

$$
\text { ON }(f, g, u, v, \lambda) \text {-STRUCTURES }
$$

Sem. Rep. 22 (1970), 199-218.
[6] Obata, M., Certain conditions for a Riemannian manifold to be 1sometric with a sphere. J. Math. Soc. Japan 14 (1962), 333-340.
[7] Okumura, M., Totally umbilical submanifolds of a Kählerian manifold. J. Math. Soc. Japan 19 (1967), 317-327.
[8] Okumura, M., Certain hypersurfaces of an odd dimensional sphere, Tôhoku Math. J. 19 (1967), 381-395.
[9] Sasaki, S., On differentiable manıfolds with certain structure which are closely related to almost contact structure I. Tôhoku Math. J. 12 (1960), 450-476.
[10] Tashiro, Y., On contact structure of hypersurfaces in complex manifolds, I. Tôhoku Math. J. 15 (1963), 62-78.
[11] Watanabe, Y., Totally umbilical surfaces in normal contact Riemannian manifolds. Kōda1 Math. Sem. Rep. 19 (1967), 474-487.
[12] Yamaguchi, S., On hypersurfaces in Sasakian manifold. Kōdai Math. Sem. Rep. 21 (1969), 64-72.
[13] Yano, K., and S. Ishihara, The f-structure induced on submanifolds of complex and almost complex spaces. Kōdai Math. Sem. Rep. 18 (1966), 120-160.

Tokyo Institute of Technology and
Saitama University.

