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AN APPLICATION OF GREEN’S FORMULA OF A DISCRETE
FUNCTION: DETERMINATION OF
PERIODICITY MODULI, I

By Hisao Mizumoto

Introduction. Recently Opfer published a very interesting result [6] (also cf.
[5]) in which he concerned himself with the problem of determining the modulus
of a doubly connected domain by means of the difference method.

In the present paper we shall consider a corresponding problem for a general
multiply connected domain. It is known that for a non-degenerated N-ply con-
nected domain (N=2) there exist N(N—1)/2 quantities which are said to be
periodicity moduli of the domain, which are conformally invariant, and which have
an important meaning in the function theory. We shall concern ourselves with
the problem of determining the system of periodicity moduli by means of the
difference method (cf. Theorem 3.1 and Corollaries 2. 4, 3. 1).

Our method making effective use of Green’s formula of a discrete function
admits to deal with our problem by a unified principle. Also for a harmonic
function # and a discrete harmonic function U on a domain G and a lattice R
respectively which are constant on each boundary component of G and R, the
monotonicity of the Dirichlet integral Dg(#) and the summation Sg(U) (see § 2. 2)
with respect to G and R is effectively utilized (cf. Lemmas 1.1, 2. 4, 2.5 and 2. 6,
and Theorem 2. 1).

For N=2 our main results (Theorem 3.1 and Corollary 3. 1) coincide to Opfer’s
(Satz 7 of [6]). However even such a special case our method is deferent from
his and is more simplified.

§1. Periodicity moduli of multiply-connected domain.

1. Periodicity moduli. Let G be an N-ply connected bounded domain on a
complex z-plane (z=z-iy), where N=2. If there exists a boundary component of
G consisting of a point, then G is said to be degemerated. A domain G being not
degenerated is said to be non-degenerated. Let Iy, .-, I'y—; be boundary components
of a non-degenerated domain G, and set I'= U35 I7,.

Let u, (=0, ---, N—1) be a harmonic measure of I', on G respectively which
is defined as a harmonic function on G which has the boundary property
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1 on I,
;=
0 on I'—TI,.

Let uF (j=0,---, N—1) be a conjugate harmonic function of #, on G respectively
which is multi-valued. Let y, (=0, ---, N—1) be a piecewise analytic Jordan curve
in G homotopic to /', respectively. We define

ou,

= ds=S duwr (j, k=0, N—1),
= Goas={ ar G )

which is independent of a particular choice of 7, where by 9/on and ds we denote
the inner normal derivative on y; and the line element of 7; respectively.
It is easy to see the relations

N—-1
3 ep=0  (k=0,, N—1)
7=0

and
Tik=Tky (j, k=0,~--,N——1).

i (4, k=1, .-, N—1) is said to be a system of periodicity moduli of G, and the
matrix (zx); x=1,...5-1 1S said to be a matrix of periodicity moduli of G, which is
symmetric and positive definite.

The following theorem is well known.

TueoreM 1.1. Let G and G’ be two non-degenerated N-ply connected bounded
domains. Let I') (j=0,---, N—1) and I'}, (7=0,---, N—1) be the boundary components
of G and G’ respectively. Then G is conformally equivalent to G’ so that I,
corresponds to 1"} respectively if and only if

=75 (k=1 N=D),

where i, (j,k=1,--, N—1) and <, (j, k=1, -, N—1) are the systems of periodicity
moduli of G and G’ respectively.

The sufficiency in Theorem 1.1 is called the Torelli theorem.

ReMARrk. It is known that for each non-degenerated N-ply connected domain
there exists a system of 1 (N=2) or 3N—6 (IN=3) real parameters as follows:
Two domains are conformally equivalent each other if and only if the systems
of real parameters for the domains coincide with each other.
Because a number of different periodicity moduli is N(N—1)/2, we see that for
N=5 there exists yet a dependency among the periodicity moduli.

Let us define

(L1 O'jkEDG(uj+uk):S A +u¥)=1,;4 2t +7xx (4, k=1,---, N-1),

Titrk
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where by Dg(u) we denote the Dirichlet integral of a function » over G. Obviously
01>0, gjx=0r, and e¢,,=4z,, (4, k=1, -, N=1). ajx (4,k=1,---, N—1) is said to be
a system of modified periodicity moduli. Obviously the system o (4, k=1,:--, N—1)
is found from the system ;; (j, k=1, ---, N—1), and vice versa.

2. Monotonicity. With the notations in 1, let {G,}5=o be an exhaustion of a
non-degenerated N-ply connected bounded domain G (IN=2) such that a boundary
component I} (j=0, -, N—1) of each G, consists of a piecewise analytic Jordan
curve and /"7 is homotopic to ', on G respectively. Let u} (j=0,:--, N—1) be the
harmonic measure of I} on G, (#=0, 1, ---) respectively. Let % (7, k=1, ---, N—1) be the
system of periodicity moduli of G, (=0, 1, ---) respectively, and ¢% (j,k=1, -, N—1)
be the system of modified periodicity moduli of G, (=0,1, ---) respectively.

LEmmMA 1. 1. Let ¢y, -+, cy-1 be a system of real numbers being not simultane-
ously zero. Then

N-1 N—-1
(1. 2) Z CjCkT%> Z CiCkTTH (n>m)
k=1 2, k=1
and
N—-1 N—-1
(1 3) Z Cj()kT}'k\ Z CjiCkTjk (n—>OO)
7 k=1 k=1
Proof. 1t is due to a standard method. Set
N—-1 N-—-1
u'= 3, cju} and u= 7y, cju,.
J=1 J=1
Then

N—-1 N-1
Dan(un) = Z CjCkT;-'k and DG(M) = :L_,' CiCkT jke
2k=1 2,k=1

The equality

m o, MmN\ __ m on" . n aun _ n
Deg,,(u™, u )———Srmu o ds——SMu " ds=Dg,(u")

(m>m; I"M=UY3 1)
implies
De,,(u"—u™)=De,,(u™)— Da,(4")— Da,-6,,(%"),

which implies (1. 2) and the strong convergence of #" to #; lima.. De,(u—u")=0,
where by Deg,(«™, u*) we denote the mixed Dirichlet integral of #™ and #" over
Gu. Analogously we see that

De,(u—u")=Dag, (™) — Dg(1) — Dg-c, ().



234 HISAO MIZUMOTO

Hence
Dg, (0" \Dg(u)  (n—c0).

When we set ¢,=cz=1 and ¢;=0 (/=74, k) in Lemma 1. 1, we obtain the corollary.

CorROLLARY 1. 1.

(i) 05 >0% (n>m);
(ii) o\ (n—o0);

§2. Monotone convergence of summation Sz(U).

1. Definitions. By L, we denote the set {A(m-+in)|m,n: integers} (£>0) on
the z-plane (z=x+iy). By a mesh M in L, we call a set {z, z-+4, z-+ih, 2+ h(1-0)}
for a point zeL,. Let G be a non-degenerated bounded domain on the z-plane of
which the boundary consists of the segments each of which joins two points of
L; and is parallel to one of the coordinate axes. Then G is said to be a laltice
domain with mesh width h. Obviously a lattice domain with mesh width % is one
with mesh width A/n for each positive integer #.

Let G be an N-ply connected lattice domain with mesh width 4, I, (=0,---, N—1)
be boundary components of G and set I'=UY3 I, We set R=GNL, G being the
closure of G. The sets A=I"NR, 4,=I';NR (j=0,--, N—1) and R°=R~—/ are said
to be the boundary of R, the boumdary components of R and the interior of R
respectively. Here we agree that a point of R, 4 and 4; (=0, ---, N—1) respectively
through which I runs for k-times, is counted for k-times. A point zeR° is said
to be an immner point of R and a point zeA is said to be a boundary point of R.
When R° is connected (see p. 345 of Collatz [1] for the definition), R is said to be
a lattice with mesh width h. If G is N-ply connected, then R is said to be N-ply
conmnected. A point zeL, is said to be neighboring to a point z’¢L; or is said to
be a neighboring point of 2/, if |z—2z'|=h.

Let R be a lattice with mesh width 4, and let U be a real function on R.
Let 2z, be an inner point of R, and z, (=1,2,3,4) be four neighboring points of
zo. If the equation

@1 AUy —(Uy+ U+ Uy +Ucsy) =0

holds for every z,€R°, then U is said to be discrete harmonic on R, where U, = U(z;)
7=0,4.

2. Green’s formula. Let R be an N-ply connected lattice with mesh width 4,
let 4 be its boundary, and let I" be the boundary of the domain G which defines
R. Let {zz}4-1 be the set of points of R, and let {zn}4-1 (z<v) be the set of points
of R°. Let U and U’ be functions on R, and set Uwmy=U(z,) and Ulpy=U"(2y)
(n=1,--,u). We consider a bilinear form
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Sr(U, U’)—“—‘z . IZ_h m<n(U<m>—U(n))(Ufm)—Ufn))~
Furthermore, we consider the partial sum Sg(U, U’) of Sg(U, U’) which is obtained
by elimination of the terms with respect to two points neighboring along the
boundary I'. Here a point z,€/ is said to be neighboring to a point z,€4 along
I' if and only if |z,—=z,)/=#/ and the segment z,z,cI’. If U or U’ is constant on
each boundary component 4, (=0, -, N—1) of R, then we see immediately that

Sx(U, U")=Sx(U, U").
Furthermore by Sg(U) and Sa(U) we denote Sz(U, U) and Sz(U, U) respectively.

LemMma 2.1. (Cf. pp. 34-36 of Courant, Friedrichs and Lewy [2].) Let U and
U’ be two functions on a lattice R. Then the formula

I3

Sp(U, U+ Z_Il Uiy (Utnyy + Ul + Ulngy + Ulngy —4U'wy)

2.2
= Z U(n)('CU'(n)" Z Ul(nlk))

n=p+1 k=1
holds. Here zn, (j=1,2,3,4) are four neighboring points of zn, 2w, (k=L ;
£=0,1,2, or 3) are the points of R neighboring to z, which lie on the left of z,
with respect to the oriented curve I' and which are not neighboring to z, along I,
and the summation corrvesponding to £=0 is taken to be vacuous.

CorROLLARY 2.1. If U’ in Lemma 2.1 is discvete harmonic, then

SHU, Y= 33 Uon(+Viw— 3 Ul )-
n=p+1 k=1
COROLLARY 2.2. If U is a function on R with the boundary property U(z)=0

for zed, and U’ is a discrete harmonic function on R, then

2.3 Se(U, U")=Sx(U, U")=0.

Conversely, if a function U’ on R satisfies the rvelation (2. 3) for every function U
on R with the boundary property U(z)=0 for zed, then U’ is discrete harmonic
on R.

Proof. The first assertion is obvious by Corollary 2. 1.

If there existed a point zm€ R° such that Ulmp+ Ulmgy + Ulmp + Ul —4 Uty 0,
then we would choose the function U so that Ugwmy=1 and Uwy=0 for each z,3zn,
and by Lemma 2.1 we would see that Sg(U, U")=Sx(U, U")=0.

COROLLARY 2.3. If U is a discrete harmonic function on R, then

v

Z (lf Um—’;l U(nlk)> =0.

n=p+1
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3. Boundary value problem, Minimum problem.

LEmmA 2. 2. (Cf. pp. 203-207 of Milne [4].) Let f be an arbitrarily given
function on the boundary A of a lattice R. Then there exists one and only one
discrete harmonic function U on R which has the boundary property Uz)=f(z) for
ze.

Let R be an N-ply connected lattice (N=2), and let 4, (=0, -, N—1) be its
boundary components. A discrete harmonic function U, (=0, ---, N—1) on R which

has the boundary property
1 for zed,
Uiz)=
0 for zed—4, (A= U5=4y),

is said to be a discrete harmonic measure of A, on R respectively.

LemMA 2. 3. (Cf. p. 206 of Milne [4].) Let W be a function on a lattice R, and
let U be a discvete harmonic function on R with the boundary property U(z)=W(z2)
for zed. Then the inequality

Sr(U)=Sr(W)
holds, where the equality appears if and only if W=U.
Lemmas 2. 2 and 2. 3 can be also easily proved by making use of Corollary 2. 2.

4. Monotonicity with respect to lattices with common mesh width. Let R;
and R, be two N-ply connected lattices (N=2) which have the properties:

(i) R; and R, have a common mesh width #;

(ii) RiCRy;

(iif) A boundary component I} (=0, ---, N—1) of G, is homotopic to a boundary
component % (=0, -, N—1) of G, respectively on G,, where G, and G, are the
lattice domains which define R; and R, respectively.

LEMMA 2.4. Let R, and R, be the lattices defined as above. Let c, (j=1,---,
N—1) be a system of real numbers being not simultaneously zevo. Let U* (k=1,2)
be a discrete harmonic function on Ry vespectively which has the boundary property

Ukz)=c, for zeli=I'*NRy;  (j=0,-, N—1; ¢,=0).
Then the inequality
Se,(UNZSr,(U?)
holds.

Proof. We continue U! to R, by setting U'z)=c, for each point z of R,
between I} and I} (j=0,---, N—1) respectively. Then by Lemma 2.3
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Se, (U =Se,(U)ZSr,(U?).

5. Monotonicity with respect to subdivision of meshes. Let R be an N-ply
connected lattice (N=2), and let R’ be the lattice which is obtained by dividing
each mesh of R to four equal meshes with half width respectively. Let 4,
(7=0,---, N—1) and 4; (§=0,---, N—1) be boundary components of R and R’
respectively with 4;c4;.

LemMA 2.5. (Cf. p. 163 of Lelong-Ferrand [3].) Let R and R’ be the lattices
defined as above. Let c, (j=1,---,N—1) be a system of real numbers being not
simultaneously zero. Let U and U’ be discrete harmonic functions on R and R’
vespectively which have the boundary properties

U@)=c, for zed, (=0, N—1; ¢,=0)
and
U'(z)=c, for zed, (j=0,--, N—=1; c,=0).
Then
Sr(U)>Sr(U").

Proof. Our proof of which a part is used afterward, is due to Opfer (see Satz
4 of [6]).

The function U is continuously continuable to a function I/ on the domain G
definining R so that for each mesh M of R

U=azy+bz+cy+d (z=2+1y)

on the domain M defining M, where a, b, ¢ and d are so determined that U(z)=U(z)
for ze M. Especially we can take U as a function on R’. Let 21, Zs, 23 and z, be
four points of M numbered to the positive oriented direction of M. Then an
elementary calculation yields

@ 4 Se(U)—Sn (0= % = (Uor— ot Uo—Ueo)*>0,

where U¢y=Ul(z;) (7=1,2,3,4). Hence by Lemma 2.3 we see that
Se(U)>Se(Hh =S (U).

6. liMy, poe SRn(Un—ﬁm)zo. Let R, be an N-ply connected lattice on the z-
plane (N=2), and R, (#=1,2, ---) be the lattice which is obtained by dividing each
mesh of R,_; to four equal meshes with half width respectively. Let I", (=0, ---,
N—1) be the boundary components of the domain G defining R, and set A7=I";N R,
(7=0,--, N—1; n=0,1,---). Let ¢, (j=1,---, N—1) be a system of real numbers
being not simultaneously zero. Let U” (=0, 1,---) be a discrete harmonic function
on R, which has the boundary property U"(z)=c, for zeA} (j=0, -, N—1; ¢,=0)
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respectively. The function U” is continuously continuable to a function [/* on G
so that for each mesh M of R,

Ur=azy+bz+cy+d  (z=z+iy)

on the domain M defining M, where g, b, ¢ and d are so determined that U"(z)=U"(z)
for ze M. Especially we can take U™ as a function on R.., (7=0).
By Corollary 2.2 we see that

(2. 5) S (U=U™ UH=0  (n>m).
Further by an iteration of the calculation of (2. 4) we see that
(2. 6) Se,(U™<Se, (U™  (n>m).
(2.5) and (2. 6) imply that
S (Ur—U™=Sp (0™ =Sz, (UM< Sr, (U™ =Sz, (U  (n>m).

Hence we have that there exist the limits

@7 lim Sg,(U™= lim Sz, (0™
and
2. 8) lim Sz (U"—0™=0.

7. Relation between Sz(U) and Dg(l/). Let R be an N-ply connected lattice
on the z-plane (N=2), and 4, (=0, .-, N—1) be boundary components of R. Let
¢j (j=1,---, N—1) be a system of real numbers being not simultaneously zero. Let
U be a function on R which has the boundary property U(z)=c, for ze4, (=0, -,
N—1; ¢,=0). The function U is continuously continuable to a function U on the
domain G defining R by the same method as [/* in 6.

Let M be a mesh of R, let z;, 2., 2; and z, be four points of M numbered to
the positive oriented direction of M, and let us denote U(z;)=U¢ (7=1,2,3,4).
An elementary calculation yields

~ 1
DuU)= g(( Uy —U»)+ (U — U )+ (U~ Uw )+ Uy — Uy )?

—(Uwy—U) U —Uw)—(Ue— Us)(Uwy— Uw)),
where M is the domain defining M. We set
Tu(U)=(Uwy—U)*+(Uxy — Uer)*+ Uy — Ucy)* + Uy — Uy
Then

1

~ 1
5 Tu(U)—DxuU)= g(Ua)— Uay+ Uy~ Uw)?
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Hence we have that

SWU)-De0)= 5 T, Tu)— %, D)
MCR MCR
2.9
= %‘ 2 (U — U+ Uy — Uw)*>0.
MCR

8. limp,e Se,(U™)=Dg(). With the notations in 6, let # be a harmonic func-
tion on G which has the boundary property w=c; on I', (=0,---, N—1). (2.8)
and (2.9) imply that

(2. 10) lim Deg((/"— 0™ =0.

m,n-—»00

On the other hand, by a consequence of Courant, Friedrichs and Lewy (see pp.
47-54 of [2]) we see that {30/"/ax} and {80/?/ay} uniformly converge to the functions
oulox and du/dy respectively almost everywhere on every compact subregion of G.
Hence we obtain that

lim Da(z—0™ =0,

n—>c0

which implies that

@. 1) lim Dg(0™ = Dg(w).

By (2.4), 2.7) and (2.9) we see that
(2.12) lim Sg, (U™ =1lim De@™).
(2.11) and (2. 12) yield that

Se (U N\De(u)  (n—00).

LEMMA 2.6. Let R, be an N-ply commected lattice, let R, (n=1,2,---) be the
lattice which is obtained by dividing each mesh of R._, to four equal meshes with
half width respectively, let G be the lattice domain which defines R,, and let I',
(7=0,---, N=1) be boundary components of G. Let ¢, (j=1,---,N—1) be a system
of real numbers being not simultaneously zero. Let U™ (n=0,1,---) be a discrete
harmonic function on R" respectively which has the boundary property U™(z)=c; for
zed;=I';N Ry (j=0, -, N—1;¢,=0), and let u be a harmonic function on G which
has the boundary property u=c, on I’y (7=0,---, N—1). Then

Se (U N\Dg(w)  (n—00).

9. Monotone convergence theorem of Sz, (U"). Let G be a non-degenerated
N-ply connected bounded domain (N=2). For each sufficiently small 2>0 there
exists a maximal N-ply connected lattice domain G,cG with mesh width % which
has the properties:
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(i) A boundary component [} (=0, ---, N—1) of G, is homotopic to a boundary
component ', (=0, -, N—1) of G respectively on G;

(i) G, defines a lattice R,.

The lattice R, is said to be an inner maximal lattice of G with mesh width h.

Let {R.}3-0 be a sequence of inner maximal lattices of G with mesh width #/2"
(n=0,1,---) respectively, and let G, (#=0,1,---) be the domain defining R, re-
spectively. If the sequence {G,}2., is an exhaustion of G, then {R.)3-, is said to
converge to G, denoted by R, "G (n—oco) (Cf. Opfer [6]).

By Lemmas 1.1, 2.4 and 2. 6 we can easily conclude the theorem.

THEOREM 2.1. Let G be a non-degenerated N-ply conmected bounded domain
(N=2), and {R.)5-0 be a sequence of inner maximal lattices of G with mesh width
/2" (n=0,1, ---) vespectively. Let I', (j=0,---, N—1) be boundary components of G,
and let I'* (j=0,---, N—1) be boundary components of the domain G, defining R,
(n=0,1, ---) respectively so determined that I't is homotopic to I", on G respectively.
Let ¢, (7=1, -, N—1) be a system of real numbers being not simultaneously zero.
Let U™ (n=0,1,---) be a discrete harmonic function on R, respectively which has
the boundary property U™z)=c, for zeA;=ITNR, (j=0, -, N—1;c,=0), and let u
be a harmonic function on G which has the boundary property u=c, on I'y (=0, -,
N—1). Then

Sr,(U")>De(w)  (n=0,1, ),
and if Ry /G (n—oo),
Se(UNNDe(u)  (n—o0).

COROLLARY 2. 4. With the notations of Theorem 2.1, let Uy (j=1,--, N—1) be
a discrete harmomnic measure of A} on R, (n=0,1,---) respectively, and o (j, k=1,
-oy, N—1) be the system of modified periodicity moduli of G. Then

SRn(U;"+UI7c')>0']k (]yk:]-ny__l; nzOyly)y
and if Rn/'G (n—>OO),
Se,(U+ U\ (n—oo; j,k=1,--, N=1).

§3. Monotone convergence of periodicity moduli.

1. Period of conjugate discrete harmonic function. Let M be a mesh
{z, 2+h, 2+ih, z+h(1+10)} in L,. The point z+A(1-+17)/2 is said to be a middle point
of M. A middle point z; is said to be neighboring to a middle point z, if |z;—z,|
=h. Let R be a lattice with mesh width 7%, and let U be a discrete harmonic
function on R. Let y be a Jordan curve which consists of the segments each of
which joins two neighboring middle points of meshes of R, and let z, 24, =, 2. =20
be the middle points through which y runs and which are numbered successively
in positive direction of 7. Then the points
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2= zf'lz"_zf +i z"lz_z’ and  z,= zj“l;zf +i zf”'zz"‘ G=1, 0

belong to R. We set
oty = Ulz;.)— Ulzs,) G=1,,0)

and
t,= Z ot¢s)-
J=1

Lemma 3.1. (Cf. Satz 1 of Opfer [6].) If y and ¢ are two Jordan curves
defined as above and which are homotopic each other on the domain G defining R,
then t,=t,.

Proof. It is immediately shown by making use of Corollary 2. 3.

t, is said to be a period of the comjugate discrete haymonic function of U
along 7.

2. Periodicity moduli of N-ply connected lattice. Let R be an N-ply connected
lattice (N=2), and let 4, (j=0,---, N—1) be its boundary components. Let Uj
(7=0,+:, N—1) be the discrete harmonic measure of 4, on R respectively. Let 7;
(7=0,---, N—1) be a Jordan curve which consists of the segments each of which
joins two neighboring middle points of meshes of R, and which is homotopic to I,
respectively on the domain G defining R, where I', is a boundary component of G
such that I';NR=4,. By ¢ (4,k=0,.-, N—1) we denote the period of the conju-
gate discrete harmonic function of U, along ri respectively. By Lemma 3.1, # is
independent of a particular choice of yz. It is immediately seen that

N-—-1
> tix=0 (=0, -, N—1).
=0

Furthermore by Corollary 2.1 we see that

3.1 SKU, U)=S3(U,, U= %, (#Uscw = 3, Uscup ) =t
2p€d, =
which implies
tjk———tkj (j) k=0) ) N"—]-)»

where Ujmy=Uyi(2:). The collection of #; (4, k=1, -+, N—1) is said to be a system
of periodicity moduli of R. Furthermore a system of modified periodicity moduli
of R is defined by a collection of quantities

SjkESR(Uj—i- Uk)=tjj+2tjk+tkk (j,k=1, "',N—].).

By Corollary 2.1 we see that s;; is a period of the conjugate discrete harmonic
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function of U;+ Ui along 7;+7yx respectively.
3. Monotone convergence theorem of periodicity moduli.

THEOREM 3.1. Under the same condition as Theorem 2.1, the following hold:

N-1 N-

—1
(i) Z CiCr e > Z CiCxTjx (n=0,1,--);
Jk=1 k=1

(ii) If R,/ G (n—o0), then

N—-1 N-1
21 CiCklT N\ 21 CiCkTik (n—0c0),
ik=1 k=1

where by t3, (j,k=1,--,N=1) and t;x (j,k=1,--, N—1) we denote the systems of
periodicity moduli of R, and G respectively.

Proof. When we note that in Theorem 2.1

N—-1 N-1
SRn( U") = kZ: Cj(,‘kl?k and Da(u) = Z CiCrTjk
’ k=1 k=1

because of (3.1), Theorem 2.1 implies the present theorem.

When we set ¢,=c;y=1 and ¢;=0 (/%j,k) in Theorem 3.1, we obtain the
corollary.

CoROLLARY 3. 1. With the notations of Theorem 3.1, let s%, (j,k=1,-, N—1)
and oz (§,k=1,---, N—1) be the systems of modified periodicity moduli of R, and
G respectively. Then the following hold:

(i) S>>0, (5, k=1, N=1; n=0,1, -);
(i) If Rn,/ G (n—o0), then
shN\og  (m—oo; j, k=1, -, N—1),
and thus
th—tw  (m—oo; j, k=1, N—1).

If N=2, then Theorem 3.1 and Corollary 3.1 coincide to Satz 7 of Opfer [6].
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