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INDUCED STRUCTURES ON SUBMANIFOLDS
By Davip E. BLAIR, GERALD D. LubppEN AND KENTARO YANO

It is well known that hypersurfaces of almost complex manifolds carry almost
contact structures [7]. On the other hand submanifolds of codimension 2 of almost
complex manifolds and hypersurfaces of almost contact manifolds are not in general
almost complex. Previously these submanifolds have been studied from the stand-
point of conditions under which they possess an induced almost complex structure
or an f-structure [9], [11]. In this paper we obtain a more general structure on

these spaces.
In particular, while the odd-dimensional spheres carry a normal contact struc-

ture, the even-dimensional spheres are not almost complex except in dimensions 2
and 6; however we show that the even-dimensional spheres do carry the more
general structure induced here. Thus even-dimensional spheres can now be studied
from a differential geometric point of view.

1. Submanifolds of codimension 2 of almost complex manifolds. Let M/27*2
be a (2n+2)-dimensional almost Hermitian manifold, that is, M?"*% carries a tensor

field J of type (1,1) such that
Ji=—1
and a metric G satisfying
GUJX,JY)=GX,Y).

Suppose that N2?* is a C> submanifold with unit normals C and D and induced
metric ¢g. Thus, if B denotes the differential of the imbedding and X and Y
tangent vector fields on N?**, then

G(BX, BY)=¢(X, Y),
G, O=1, GWOD,D)=1, G, D)=0,
G(BX,C)=0, G(BX, D)=0.

It is easy to see ([1], [6], [8]) that we can define a tensor field f of type (1, 1).
vector fields £ and A, 1-forms 5 and «, and a function 2 on N?* by

JBX=BfX+3(X)C+a(X)D,
JC=—BE+2D, (1)
JD=—BA—-iC.
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Lemma 1. 1. £, E, A,y a, 2 satisfy
fr=—I+3@E+a®A4,

nof=2a, acf=—72,

FE=—24, fA=1E, (2)
nE)=1-2, a(E)=0,
7(A)=0, a(A)=1—2.

Proof. Computing J/2BX we have
—BX=Bf*X+n(fX)C+a(fX)D—n(X)BE+(X)D—a(X)BA—a(X)C.

Comparing tangential and normal parts we obtain the first three results. Similarly
computing J2C and /%D, we have

—C=—BfE—(E)C—a(E)D—2BA—2°C,
—D=—BfA—y(A)C—a(A)D+21BE—22D,
which yield the remaining identities.
Applying Lemma 1.1 we immediately obtain
LEmMA 1. 2. PH=2AaQRQE—R A).

In general an f-structure of rank 2z on a C* manifold M?*+s is a tensor field
S of type (1,1) and of constant rank 2z such that f3+f=0 [11]. If there exist on
M?+s vector fields Ey, ---, Es such that if 2!, ---,%° are dual 1-forms, then

nz(E:l/)=517‘ (117, ZI=1, 2: Tty S),
fE.T:O: vzc’f:Ov
[i=—I+9"QE;,

we say that the f-structure has complemented frames.

In our case it is clear from the above lemmas that if 2 is identically zero,
then f is an f-structure with complemented frames.

On the other hand if 1 is identically +1 or —1 we see from (2) that E=A=0,
and from (1) 2=G(JC, D), JC==+D and /D==FC. Hence by Lemma 1.1, f is an
almost complex structure on N?".

Conversely if f is an f-structure then by Lemmas 1.1 and 1.2 we have
0=(*+f)A=21—2)E; but from 7n(E)=1—2% and the above we see that £=0 if
and only if A=+1. Thus we have

THEOREM 1. 3. The tensor f defines an f-structure if and only if 2 is identi-
cally 0, +1 or —1. Moreover in the 2=0 case f is an f-structure of vank 2n—2
with complemented frames and in the 2==+1 case f is an almost complex structure.
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In contrast with the above we have the following results.
THEOREM 1. 4. If A never vanishes, then f is non-singular.
Proof. Suppose fX=0, then /BX=5(X)C+a(X)D and hence

—BX=]*BX=9X)(—BE+2D)+a(X)(—BA—1C)
=—Bu(X)E+a(X)A)+219(X)D—2a(X)C,

which yields »(X)=0 and a(X)=0. Therefore since X is tangent to N?* and
BX=0, then X=0.

THEOREM 1.5. If 1 is never equal to +1, then N®* carries an almost complex
Structure.

Proof. Since i is never equal to +1, we see from Lemma 1.1 that £ and A are
non-zero vector fields on N?*. Now G(JC, JD)=G(C, D)=0 so that 0=G(—BE+2D,
—BA—1C)=G(BE, BA)=g(E, A). Thus BE, BA,C, D span a 4-dimensional invariant
subspace of J, and hence its orthogonal complement P is also invariant under J.
But P, BE, BA span the tangent spaces of N?%, so for pe N** we have

NZNJNE=P,

Consequently by a result of one of the authors [11], N?* has an f-structure,
say f, of rank 2x—2 with complemented frames F and A. Thus if we set
F=Ff+7QA—a@E, then f?=—1I.

We now list some properties of the induced metric g.

LeMmMA 1. 6. The induced metric g on N*® satisfies
9(X, Y)=g(fX, Y)+9(X)n(Y)+a(X)a(Y),
9(X, E)=9(X), 9(X, A=a(X),
9(E, E)=9(A, A)=1-2,  ¢(E, A)=0,
(X, fY)=—9(fX, Y).
Proof.  ¢(X, Y)=G(BX, BY)=G(/BX, JBY)
=G(Bf X+9(X)C+a(X)D, BfY+9(Y)C+a(Y)D)
=g(fX, fY)+9(X)(Y)+a(X)a(Y);
o(X, fY)=G(BX, BfY)=G(BX, JBY )=—G(JBX,BY)
=—G(BfX, BY)=—9(fX, Y);

similarly
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Y X)=G(JBX, C)=—G(BX, JC)
=G(BX, BE)=9(X, E)
and
a(X)=G(JBC, D)=—G(BX, JD)=G(BX, BA)=9(X, 4)

yield the remaining results.
Now let us apply the Gauss-Weingarten equations

(VexB)Y=h(X, Y)C+k(X, Y)D,
V pxC=—BHXHUX)D, VsxD=—BKX—IX)C,

where % and % are the second fundamental forms, H and K are the corresponding
Weingarten maps, / is the third fundamental form, and / denotes covariant dif-
ferentiation. Moreover, we now assume that the ambient space is Kaehlerian,
ie. FJ=0. Thus we have

VpxJBY =W px])BY+J(V5xB)Y+JBV xY
=J(X, Y)C+k(X, Y)D)+JBV xY
=—WX, Y)BE+WX, Y)AD—k(X, Y)BA—k(X, Y)IC+]BV x Y.
On the other hand
VxJBY =V gx(Bf Y +3(Y)C+a(Y)D)
=X, fY)C+EX, fY)D+BV xf)Y+BfVxY
+ 7 xn)(Y)CH9(V 2 Y )CH9(Y )(— BHX+I(X)D)
+ xa)(Y)D+a(V xY)D+a(Y)—BKX—UX)C).
Therefore, using (1) and comparing tangential and normal parts we have
—WX, V)E—k(X, V)A=Vxf)Y—(Y)HX—a(Y)KX,
X, Y)=kX, fY)+Fza)Y)+UX)(Y), (3)
—2k(X, Y)=hX, fY)+Fxn)(Y)—UX)a(Y).

The first of these equations gives us an expression for the covariant derivative of
f; clearly if N?* is totally geodesic then f is covariant constant. More generally
we prove

THEOREM 1.7. Let N?* be a submanifold of a Kaehler manifold M**2, Then
if the induced structure (f, E, Ay, a,2) has 2x+1, f is covariant constent if and
only if h and k have the following form
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h=01 @1+ @n+17Q &) tosaRa,
k=0 ®@7+05(aR@9+7Qa)+0a R a,
where
A= ’a1=mEE), (-2 e=hE, A)=k(E,E),
A—2’os=n(A, A)=KA,E), (1—2®’a=k(4, A).

Proof. If fis covariant constant, then the first of equations (3) can be written
in the form

WX, Y)(Z)+kX, Y)a(Z)=WX, Z(Y)+ kX, Z)a(Y).
Setting Z=F yields
A—=2(X, Y)=nX, E(Y)+k(X, E)a(Y);

from which, setting X=F, Y=A and X=A, Y=A we obtain #(E, A)=Fk(E, E)
and #(A, A)=k(A, E) respectively. On the other hand, setting X=Y=F and X=F,
Y=A respectively gives

WE, EY((Z)+KkE, E)(Z)=1—E, Z),
WE, Ay Z)+-k(E, A)a(Z)=1—2k(E, Z).
Therefore
A=2WX, Y)=NWE, Ey(X)(Y)+ k(E, E)a(Xm(Y)
+AE, An(X)a(Y)+k(E, A)a(X)e(Y)

and k(E, E)=n(E, A) giving the first of the desired formulas. Similarly, setting
Z=A we have

(A=2k(X, Y)=h(X, A(Y)+k(X, Aa(Y)
and setting X=Y=A and X=A, Y=F respectively gives
WA, A Z)+-k(A, A)a(Z)=(1—-2Dk(A, Z),
WA, EW(Z)+k(A, E)a(Z)=1—NA, Z).
Therefore
A—2)k(X, Y)=hA, EY(X)n(Y)+k(A, E)a(X)(Y)
+2(A, Ap(X)a(Y)+k(A, A)a(X)a(Y)

and k(A, E)=h(A, A) giving the second of the desired formulas.
Conversely if # and % are of the desired form, a direct substitution into the
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first of equations (3) yields Ff=0.

In the case 2 is identically +1 or —1, E=A=0 and f?=-—7] as we have seen.
Hence from Lemma 1.6 p=a=0 and ¢(fX,fY)=¢(X, Y). Consequently the first
of equations (3) yields

THEOREM 1. 8. Let N** be a submanifold of a Kaehler manifold M?***. Then
if the induced structure has 2 identically +1 or —1, N?* is Kaehlerian.

We next use the integrability condition of the almost complex structure J to
define the corresponding notion of normality of the induced structure on NZ%.
Letting [/, /] and [f,f] denote the Nijenhuis torsion of J and f respectively, a
lengthy computation gives

[/, JI(BX, BY)=B{[f, /1X, Y)+dy(X, Y)E+da(X, Y)A
FH(a(XUY)—a(YIUXNE— (XU Y)—n(Y)(X)A
(Y XHf —fE)X—n(X)Hf —H) Y+ a(Y Y Ef—fK)X
—a(X)ES—FE)Y P ran)(Y ) — ) (X) —9(Vx S Y — Py fX)
+p(HX (Y ) —n(HY (X)+n(KX)a(Y)—9n(KY)a(X)
— I X)a(Y)HUFY)a(X)— 2 XU Y ) —(Y)UX)
+2da(X, Y )ICH{(Vyxa)(Y)—(Vrra)(X)—a(Vx fY—Vr fX)
Fa(HX(Y)—a(HY (X)) +a(KX)a(Y)—a(KY )a(X)
HUfX(Y) = U FY (X)) = An(XD)UY ) —n(YUX))
—2dy(X, Y)}D.

DeriNiTION. The structure (f, E, 4, 9, a, 2) is said to be normal if f commutes
with the Weingarten maps A and K and

U fl+dyQ E+da®@ A+(aADQ E—(p A ® A=0. (4)

ReMmark. We could, of course, discuss the geometry of a manifold N?* with
an intrinsically defined structure of the type introduced above. We simply say
that a C>= manifold N?* has an (f, E, A, », a, A)-structure if there exist on N2"
tensors f, E, A, 9, a, 2 satisfying the relations of Lemma 1.1. In this case normality
is defined by the condition

I, f14+dn@ E+da® A=0. (5)

We see that in the case 2 is identically zero, the f-structure with comple-
mented frames (f, E, 4,7, «) gives rise to an almost complex structure / on N?"
X R? defined by
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S 7 a
(ND=|—-E 0 0
—A 0 0

J is integrable if and only if [f, f]+dp® E+da® A=0 [5].
In general N?* may be considered as a totally geodesic submanifold of N?"
X R? such that /=0. Thus, in this case, equation (4) reduces to (5).

2. Hypersurfaces of almost contact spaces. In this section we show that a
hypersurface N?* of an almost contact manifold M?**' also has a naturally in-
duced (f, E, A, 5, &, A)-structure. In [3] two of the authors studied conditions under
which such a hypersurface carries an almost complex structure or an f-structure
of rank 2n—2.

A C* manifold M?**** is said to have an almost contact structure if there exist
on M*™*! a tensor field ¢, a vector field & and a 1-form 7’ such that

7'(6)=1, p&=0,
7ep=0, ’=—I+7QE

this is equivalent to a reduction of the structural group of the tangent bundle to
U(n)x1. If moreover M?*"*! carries a Riemannian metric G satisfying

GE X)=79'(X),  GpX, ¢Y)=G(X, Y)—7'(X)y'(Y),

we say M?*"*' has an almost contact metric structure.

Now let N?* be a hypersurface with unit normal C. Let B denote the dif-
ferential of the imbedding and ¢ the induced metric. Define a tensor field f of
type (1,1), vector fields F, A, 1-forms 5, « and a function 2 by

¢BX=BfX+9yX)C, &=BA+IC,
¢oC=—BE, a(X)=9'(BX).
Note that 1=G(¢, C)=%'(C). Moreover we have

ProprosiTioN 2.1. f,E, A, a2 as defined here, satisfy the vrelations of
Lemma 1.1.

Proof. ¢*BX=Bf:X+n(fX)C—n(X)BE, and ¢*BX=— BX+ y(BX)t=—BX
+ a(X)BA+ a(X)2C. Comparing we have f?=—I+7QF+a®A and 7pef = ia.
a(fX)=7'(BfX)=75(¢BX) — y(C)p(X) = — ap(X), that is aef=—12y. ¢BA=BfA
+p(A)C and @BA = ¢&—2¢9C = IBE, hence fA=E and 5(A)=0. Aia(fX)=9(X)
==X+ X)E+ a(X)A)= —9(X) +9p(X)(E) and 2a(fX)=—27(X) so that »(E)
=1-—2% Similarly a(A)=y"(BA)=7'(6)—y(C)=1—2* and a(E)=y'(BE)=—7'(¢C)=0.
Finally ¢BE=BfE+(1—2*)C and ¢BE=—¢*C=C—7/(C)é=C—2ABA—2*C hence fE
=—AA,
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Calculations similar to those of Lemma 1.6 yield again
nX)=9(X, E), a(X)=g¢(X, A),
9(fX, fY)=9(X, ¥)— (XY ) —a(X)a(Y),
9(X, fY)=—g(fX, Y).

We will now examine some special cases for the hypersurfaces. First of all
we note that if A is singular at a point peN?* then so is E and conversely.
Similarly if A is non-singular at pe N?* then A and E are linearly independent at
p. Thus we have the following result.

LEMMA 2. 2. If peN* and XA(p)=0, then f is non-singular at p.
Proof. f*E=—2E, f?A=—24A, and f2X=—X if p(X)=a(X)=0.

We can see from Proposition 2.1 that if E is the zero vector field then 2 is
identically +1 or —1 and f is an almost complex structure on N?* [3]. On the
other hand, if 21 is identically zero then f defines an f-structure with comple-
mented frames on N?* and hence if we define f by f=f+nQA—a@®E, f is an
almost complex structure [3, 4].

PROPOSITION 2. 3. a) If 2 is never 0, then f defined by f=]2~(1/2)77®A, is
an almost complex structure on N®*™. b) If 2 is never 1, then [ defined by [
=f+1/QA-1D))Q®A—aQE), is an almost complex structure on N*".

Proof. The proof of this proposition is merely computing f2? while making
use of the identities of Proposition 2. 1.

Proposition 2.3 indicates that the interest in (f, E, A, 1, &, A)-structures lies in
the case where 1 assumes both of the values 0 and 1 (note that £ and A are zero
vectors at points where A=1) and hence all values between 0 and 1. This must
be the case for the even-dimensional sphere which we discuss in the next section.

Applying the Gauss-Weingarten equations

(FexB)Y=n(X, Y)C, VpxC=—BHX,
we have
VBX((PB Y)= (VBX(P)B Y+ SD(VBXB) Y+ SDBVX Y
=Vsxp)BY—W(X, Y)BE+¢BVxY
and
Vex(pBY)=Vpx(Bf Y+1n(Y)C)
=X, fY)C+BFxf)Y+BfVx Y+ Y )C+7(Fx Y)C—9(Y)BHX,

hence
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(Vxp)BY—~N(X, Y)BE=WX, fY)C+BFx )Y+ Fxp(Y)C—(Y)BHX.

In the case that M?*"+! is cosymplectic, that is ¢ and 5’ are covariant constant
with respect to the Riemannian connection of G (cf. [2]), we have

—h(X, V)E=(VxNY—n(Y)HX, } 6)

0=4(X, FY)+Fxn)(Y).
Similar arguments to those giving Theorems 1.7 and 1. 8 yield

THEOREM 2.4. Let N?* be a hypersurface of a cosymplectic manifold M.
Then if the induced structure (f, E, A,n, a,2) has Ax=*1, f is covariant constant if
and only if h=09Qn where c=h(E, E)[(1—2%)". On the other hand if A is identically
+1 or —1, N?* is Kaehlerian.

3. The even-dimensional sphere. In this section we show that the even-
dimensional spheres are non-trivial examples of manifolds with the structure that
we have been studying.

Let S?* denote the unit sphere in R?2"*! considered as a cosymplectic manifold.
Let x be the position vector in R2**! determining S2*, then z-x=1 and z-x;=0,
2;=0:x, 1=1, -+, 2n. The metric tensor g of S?* being given by x;-x,. Now the
mean curvature vector or outward normal C may be identified with x. Hence we
have 0=/j(z;-x)=(%;C)-C+x;-x, and therefore = —g.

We can also consider S?” in R2"*? regarded as a Kaehler manifold. Again let
C be the outer normal to S?* in R?**! and D the normal to R**' in R*"*2
Then 0=Fyz;-z)=(h;C+k;uD)-C+x;-x, and 0=F;D=—K;z;—[;C hence h=-—y,
k=0 and /=0. As we have seen in section 1, the induced structure on S?" has
2=G(JC, D), that is, 1 is the cosine of the angle between /C and D. The diagram
below gives an interpretation of A for the sphere example.

In either case we have from equations (3) or (6)
Tx)(Y)=—n(X, fY)=9(X, fY)

and from equations (3) or by differentiating «(X)=7'(BX) and using /=0 and
the Gauss equation we have
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Fxa)(Y)=2h(X, Y)=—29(X, Y).

LemmMmA 3.1. The 1-form vy is killing and dp(X, Y)=29(X, fY); the 1-form « is
closed.

Proof. (Pxp)(Y)+Fep)(X)=9(X, fY)+9(Y, fX)=0; further dp(X, Y)=Fxn)(Y)
— (Fe)(X) = 29(X, fY). Similarly da(X, Y) = (Fxa)(Y) — (Fra)(X) = — 29(X, Y)
+29(Y, X)=0.

While « is not killing we do have the following result for the vector field A
which is the contravariant form of a.

PROPOSITION 3. 2. The vector field A is a conformal infinitesimal transforma-
tion which is not an isometry for 2 not identically zero.

Proof. Let _£ denote Lie differentiation, then
(Lag)( X, YV)=g(FxA, Y)+9(FrA, X)
=Pxa)(Y)+Pra)(X)
=—22(X, Y).

ReEMARK. Proposition 3.2 is both natural and interesting in view of the con-
jecture of one of the authors [9] that a compact Riemannian manifold of constant
scalar curvature admitting a non-killing conformal vector field is isometric to a
Euclidean sphere. We note more generally than Proposition 3.2 that if A/?**! has
an almost contact metric structure (¢, &,7’, G) with ¢& killing (e.g. quasi-Sasakian
[2] and if N?» is a totally umbilical hypersurface, then the conclusion of Proposi-
tion 3.2 holds. For

(Vxa)(Y)=Vgxy'(BY)—7/(BVxY)
=P/ XBY 45/ (WX, ¥)C)

=Vpxy' Y BY )+ (X, Y).
If now Z=pg, p=0, then
(Lag) X, Y)=xa)(Y)+(Fra)(X)=24pg(X, Y)

using the fact that 5’ is killing. Note also that if A=pyg, then pF=dy where F
is the covariant form of f.

THEOREM 3. 3. The (f, E, A, y, a, 2)-Structure on S** is normal.

Proof. Note that from (6) (Fxf)Y=—n(Y)X+¢(X, Y)E since Vp=0and H=—1I.
Then a direct computation using Lemma 3.1 shows that [f, f14+dn& E+da @ A=0.

Finally note that ¢(X, l'vA)=ra)(X)=—29(X, Y) and hence FyA=—2Y. Let-
ting R(X, Y) denote the curvature transformation we have
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R(A, Y)A=Vi4, nA+TyViA—V4lr A
=—AA, Y]+Vr(—24)—V4(—2Y)
=—(YDHA+(ANY.

Now letting Y be a unit vector orthogonal to A we have for the sectional curva-
ture K(Y, A)=A2/(1—22), but S* has constant curvature 1, hence we have

ProrosiTION 3. 4. The function A on S** satisfies the differential equation

A2
1—22
ReMmARrk. In the case of a totally umbilical hypersurface, Z=pg, of a cosym-
plectic manifold we have by making similar computations to the above that
KA, Y)=—A(pd)/1—2%). By computing R(E, A)E using (6) we obtain R(4, E)
=p*—2(Ap)/(1—2%) and hence

=1.

A
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