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INDUCED STRUCTURES ON SUBMANIFOLDS

BY DAVID E. BLAIR, GERALD D. LUDDEN AND KENTARO YANO

It is well known that hypersurfaces of almost complex manifolds carry almost
contact structures [7]. On the other hand submanifolds of codimension 2 of almost
complex manifolds and hypersurfaces of almost contact manifolds are not in general
almost complex. Previously these submanifolds have been studied from the stand-
point of conditions under which they possess an induced almost complex structure
or an /-structure [9], [11]. In this paper we obtain a more general structure on
these spaces.

In particular, while the odd-dimensional spheres carry a normal contact struc-
ture, the even-dimensional spheres are not almost complex except in dimensions 2
and 6; however we show that the even-dimensional spheres do carry the more
general structure induced here. Thus even-dimensional spheres can now be studied
from a differential geometric point of view.

1. Submanifolds of codimension 2 of almost complex manifolds. Let M2n+2

be a (2^+2)-dimensional almost Hermitian manifold, that is, M2n+2 carries a tensor
field / of type (1,1) such that

J2=-I

and a metric G satisfying

G(JXJY)=G(X, Y).

Suppose that N2n is a C°° submanifold with unit normals C and D and induced
metric g. Thus, if B denotes the differential of the imbedding and X and Y
tangent vector fields on N2n, then

G(BX,BY)=g(X,Y),

G(C,C)=1, G(D,D)=1, G(C,Z>)=0,

G(BX,Q=Q, G(BX,D)=Q.

It is easy to see ([1], [6], [8]) that we can define a tensor field / of type (1,1),
vector fields E and A, 1-forms η and α, and a function λ on N2n by

JBX=BfX+y(X)C+a(X)D,

JC=-BE+λD,

JD=-BΛ-λC.

(D
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η o/= λa, a °f= — λη,

fE=-2A, fA=λE,
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LEMMA 1. 1. /, E, A, η, a, λ satisfy

(2)

0, a(A)=l-λ2.

Proof. Computing J2BX we have

-BX=Bf*X+η(fX}C+a(fX}D-η(X)BE+λη(X)D~a(X}BA-λa(X)C.

Comparing tangential and normal parts we obtain the first three results. Similarly
computing PC and J2D, we have

-C= -BfE-η(E)C-a(E)D-λBA-λ*C,

-D= -BfA-η(A)C-a(A)D+λBE-λ2D,

which yield the remaining identities.

Applying Lemma 1. 1 we immediately obtain

LEMMA 1.2. f*+f=λ(a®E—η®A).

In general an f -structure of rank 2n on a C°° manifold M2n+s is a tensor field
/ of type (1, 1) and of constant rank 2n such that /3+/=0 [11]. If there exist on
M2n+s vector fields El9 '~,ES such that if 5?1, —,37* are dual 1 -forms, then

we say that the /-structure has complemented frames.
In our case it is clear from the above lemmas that if λ is identically zero,

then / is an /-structure with complemented frames.
On the other hand if λ is identically +1 or —1 we see from (2) that E—A=Q,

and from (1) λ=G(JC,D), fC=±D and JD=+C. Hence by Lemma 1.1, / is an
almost complex structure on N2n.

Conversely if / is an /-structure then by Lemmas 1.1 and 1.2 we have
Q=(fs+f)A=λ(l-λ2)E; but from η(E)=l-λ2 and the above we see that £=0 if
and only if λ=±l. Thus we have

THEOREM 1. 3. The tensor f defines an f -structure If and only if λ is identi-
cally 0, +1 or — 1. Moreover in the λ=§ case f is an f -structure of rank 2n—2
with complemented frames and in the Λ=±l case f is an almost complex structure.
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In contrast with the above we have the following results.

THEOREM 1. 4. If λ never vanishes, then f is non- singular.

Proof. Suppose fX=Q, then JBX=η(X)C+a(X)D and hence

-BX=J2BX=η(X}(-BE+λD)+a(X)(-BA-λC)

= -B(η(X}E+a(XϊA)+λη(X)D-λa(X)C,

which yields η(X)=Q and a(X)=0. Therefore since X is tangent to N2n and
BX=0, then X=Q.

THEOREM 1. 5. If λ is never equal to ±1, then N2n carries an almost complex
structure.

Proof. Since λ is never equal to ±1, we see from Lemma 1. 1 that E and A are
non-zero vector fields on N2n. Now G(fC,JD)=G(C,D)=0 so that Q=G(-BE+λD,
-BA-λQ=G(BE, BA)=g(E, A). Thus BE, BA, C, D span a 4-dimensional invariant
subspace of /, and hence its orthogonal complement P is also invariant under /.
But P,BE,BA span the tangent spaces of N2n, so for pζN2n we have

Consequently by a result of one of the authors [11], N2n has an /-structure,
say /, of rank 2n—2 with complemented frames E and A. Thus if we set
f=f+η®A-a®E, then f2=-L

We now list some properties of the induced metric g.

LEMMA 1. 6. The induced metric g on N2n satisfies

g(X, E)=y(X), g(X9 A)=a(X),

g(E, E)=g(A, A)=l-λ*, g(E, Λ)=0,

g(X,fY)=-g(fX,Y).

Proof. g(X, Y)=G(BX, BY)=G(JBX, JBY)

g(X,fY)=G(BX,BfY)=G(BX,JBY)=-G(JBX,BY)

= -G(BfX, BY)= -g(fX, F);

similarly
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η(X)~G(JBX, Q= -G(BX, fC)

=G(BX,BE)=g(X,E)

and

<χ(X}=G(JBC, D)= -G(BXJ JD)=G(BX, BA)=g(X, A)

yield the remaining results.
Now let us apply the Gauss-Weingarten equations

=ACX; Y)C+k(X,

= -BHX+l(X)D, VBXD= -BKX-l(X)C,

where h and k are the second fundamental forms, H and K are the corresponding
Weingarten maps, / is the third fundamental form, and Γ denotes covariant dif-
ferentiation. Moreover, we now assume that the ambient space is Kaehlerian,
i.e. F/=0. Thus we have

= -h(X, Y)BE+h(X, Y)W-k(X, Y)BA-k(X,

On the other hand

+(Pχa)(Y)D+a(PχY)D+a(Y)(-BKX-l(X)C).

Therefore, using (1) and comparing tangential and normal parts we have

-h(X, Y)E~k(X, Y)A=(Vxf)Y-η(Y}HX-a(Y)KX,

(3)

The first of these equations gives us an expression for the covariant derivative of
/; clearly if JV2w is totally geodesic then / is covariant constant. More generally
we prove

THEOREM 1. 7. Let NZn be a submanifold of a Kaehler manifold M2n+2. Then
if the induced structure (f,E,A,η,a,λ) has Λ=¥±l, f is covariant constant if and
only if h and k have the following form
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where

Proof. If / is covariant constant, then the first of equations (3) can be written
in the form

h(X, Y)η(Z)+k(X, Y)a(Z)=h(X,Z)η(Y)+k(X,Z)a(Y).

Setting Z=E yields

(l-λ*)h(X, Y)=h(X, E}η(Y)+k(X, £)α(

-λz)2σB=h(A, A)=k(A, E), (l-λ*)2σt=k(A, A).

from which, setting X=E, Y=A and X=A, Y=A we obtain h(E,A)=k(E,E)
and h(A,A)=k(A,E) respectively. On the other hand, setting J^Γ-^and X=E,
Y=A respectively gives

h(E, E)η(Z)+k(E, E)a(Z)=(l-λ*)h(E, Z\

h(E, A)η(Z)+k(E, A)a(Z)=(l-λ2)k(E, Z).

Therefore

(l-λ*)2h(X, Y) = h(E, E)η(X)η(Y)+ k(E, E}a(X)η(Y)

+h(E, A)y(X)a(Y)+k(E, A)a(X)a(Y)

and k(E,E)=h(E,A) giving the first of the desired formulas. Similarly, setting
Z=A we have

y Y)=h(X, A)η(Y)+k(X, A)a(Y)

and setting X=Y=A and X=A, Y=E respectively gives

h(A, A)η(Z)+k(A, A)a(Z)=(l-λ*)k(A, Z\

h(A, E)η(Z)+k(A, E)a(Z)=(l-λ*)h(A, Z).

Therefore

, Y)=h(A, E)η(X)η(Y)+k(A, E)a(X)η(Y)

+h(A, A)y(X)a(Y)+k(A, A)a(X)a(Y)

and k(A,E)=h(A,A) giving the second of the desired formulas.
Conversely if h and k are of the desired form, a direct substitution into the
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first of equations (3) yields Pf=Q.

In the case λ is identically +1 or — 1, E=A=Q and f2=~ I as we have seen.
Hence from Lemma 1.6 ^=α=0 and g(fX,fY)=g(X, F). Consequently the first
of equations (3) yields

THEOREM 1. 8. Let N2n be a submanifold of a Kaehler manifold M2n+2. Then
if the induced structure has λ identically +1 or —1, N2n is Kaehlerian.

We next use the integrability condition of the almost complex structure / to
define the corresponding notion of normality of the induced structure on N2n.
Letting [/,/] and [/,/] denote the Nij'enhuis torsion of / and / respectively, a
lengthy computation gives

[f,J](BX,BY)=B{[f,fl(X, Y)+dy(X, Y}E+da(X, Y)A

+ (a(X)l( F)-α( Y)l(X»E-(η(Xy( Y)-η

+η( Y)(Hf-fH)X-η(X)(Hf-fH) Y+a(Y)(Kf-fK)X

/^FI+iCF/^C^-CF^W-^Fx/F-F

)-η(HY)η(X)+η(KX}a( Y)-η(KY)a(X)

+λda(X,

+a(HX)η(Y)-a(HY)η(X)+a(KX)a(Y)-a(KY)a(X)

DEFINITION. The structure (/, E, A, -η, a, λ) is said to be normal if / commutes
with the Weingarten maps H and K and

ΰ. (4)

REMARK. We could, of course, discuss the geometry of a manifold N2n with
an intrinsically defined structure of the type introduced above. We simply say
that a C°° manifold N2n has an (f,E,A,η,a,λ)-strucfure if there exist on N2n

tensors /, E, A, η, a, λ satisfying the relations of Lemma 1. 1. In this case normality
is defined by the condition

[f,f]+dη®E+da®A=0. ( 5 )

We see that in the case λ is identically zero, the /-structure with comple-
mented frames (/, E, A, η, a) gives rise to an almost complex structure / on N2n

χR2 defined by
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f η a

(/)= -E 0 0

-/I 0 0

/is integrable if and only if [ f 9 f ] + d η®E+da®A=Q [5].
In general N2n may be considered as a totally geodesic submanifold of N2n

χR2 such that l=Q. Thus, in this case, equation (4) reduces to (5).

2. Hypersurfaces of almost contact spaces. In this section we show that a
hypersurface N2n of an almost contact manifold M2n+1 also has a naturally in-
duced (/, E, Λ, η, a, Λ)-structure. In [3] two of the authors studied conditions under
which such a hypersurface carries an almost complex structure or an /-structure
of rank 2n—2.

A C°° manifold M2n+1 is said to have an almost contact structure if there exist
on M2n+1 a tensor field φ, a vector field ξ, and a 1-form η' such that

?'(£)=!, φξ=0,

1/0^=0, ί02=-/4Y<8>£

this is equivalent to a reduction of the structural group of the tangent bundle to
U(ri)xl. If moreover M2n+1 carries a Riemannian metric G satisfying

G(ξ, X) = η'(X), G(φX, φY) = G(X, Y)~ηf(X}η'(Y),

we say M2n+l has an almost contact metric structure.
Now let N2n be a hypersurface with unit normal C. Let B denote the dif-

ferential of the imbedding and g the induced metric. Define a tensor field / of
type (1,1), vector fields E, A, 1-forms η, a and a function λ by

φBX=BfX+η(X)C,

φC=-BE,

Note that λ=G(ζ,C)=η'(C). Moreover we have

PROPOSITION 2.1. /, E, A, η, a, λ as defined here, satisfy the relations of
Lemma 1.1.

Proof. φ2BX= Bf2X-{- η(fX)C - η(X}BE, and φ2BX= - BX+ η'(BX}ξ = -BX
+ a(X)BA + a(X)λC. Comparing we have /2 = — I+η®E+a®A and η f=λa.
a(fX) = ηf(BfX) = η'(φBX)-ηf(C')η(X}=-λη(X\ that is a°f=-λη. φBA = BfA
+η(A)C and φBA = φζ-λφC = λBE, hence fA = λE and η(A) = 0. λa(fX) = η(f*X)
= η(-X+η(X)E+a(X}A}=-η(X}+r](X}η(E) and λa(fX} = -λ2η(X) SO that η(E)

=l-λ2. Similarly a(A)=η'(BA)=η'(ξ)-λη'(C)=l-λ* and a(E)=η'(BE)=-η'(φC)=Q.
Finally φBE=BfE+(l-λ2)C and φBE=-φ*C=C-'η'(C)ς=C-λBA-XtC hence fE
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Calculations similar to those of Lemma 1. 6 yield again

g(X,fY)=-g(fX,Y).

We will now examine some special cases for the hypersurfaces. First of all
we note that if A is singular at a point pcN2n then so is E and conversely.
Similarly if A is non-singular at p€N2n then A and E are linearly independent at
p. Thus we have the following result.

LEMMA 2. 2. If p€N2n and λ(p)*Q, then f is non-singular at p.

Proof. f2E=-λ2E, f*A=-λ2A, and f2X=-X if rί(X)=a(X)=Q.

We can see from Proposition 2. 1 that if E is the zero vector field then λ is
identically +1 or —1 and / is an almost complex structure on N2n [3]. On the
other hand, if λ is identically zero then / defines an /-structure with comple-
mented frames on N2n and hence if we define / by ?=f+η®A—a®E, f is an
almost complex structure [3, 4].

PROPOSITION 2.3. a) If λ is never 0, then f defined by f=f— (l/%(x)Λ is
an almost complex structure on N2n. b) If λ is never 1, then f defined by f
=f-}-(ll(λ—V))(η®A—a®E\ is an almost complex structure on N2n.

Proof. The proof of this proposition is merely computing f2 while making
use of the identities of Proposition 2. 1.

Proposition 2. 3 indicates that the interest in (/, E, A, η, α, ^-structures lies in
the case where λ assumes both of the values 0 and 1 (note that E and A are zero
vectors at points where Λ=l) and hence all values between 0 and 1. This must
be the case for the even-dimensional sphere which we discuss in the next section.

Applying the Gauss- Weingarten equations

=h(X, F)C, VBχC= -BEX,

we have

and

hence



196 DAVID E. BLAIR, GERALD D. LUDDEN AND KENTARO YANO

In the case that M2n+1 is cosymplectic, that is φ and η' are co variant constant
with respect to the Riemannian connection of G (cf. [2]), we have

-h(X,

Similar arguments to those giving Theorems 1. 7 and 1. 8 yield

THEOREM 2. 4. Let N2n be a hypersutface of a cosymplectic manifold M2n+1.
Then if the induced structure (f,E,A,η,a,λ) has Λ^=±l, / is covariant constant if
and only if h=ση®η where σ=h(E, £)/(!— Λ2)2. On the other hand if λ is identically
+1 or -1, N2n is Kaehlerian.

3. The even-dimensional sphere. In this section we show that the even-
dimensional spheres are non-trivial examples of manifolds with the structure that
we have been studying.

Let S2n denote the unit sphere in R2n+ί considered as a cosymplectic manifold.
Let x be the position vector in R2n+1 determining S2n, then x-x=l and x Xi=Q,
Xi=diX, i=l, -,2n. The metric tensor g of S2n being given by Xi x3. Now the
mean curvature vector or outward normal C may be identified with x. Hence we
have Q=Pj(xi x)=(hjiC) C+Xi Xj and therefore h=—g.

We can also consider S2n in R*n+2 regarded as a Kaehler manifold. Again let
C be the outer normal to S2n in R2n+1 and D the normal to R2n+1 in R2n+2.
Then Q=Pj(xi x)=(hj1C+kjiD) C+Xi Xj and Q=PjD=—KfXi—ljC hence h=-g,
k=Q and /=0. As we have seen in section 1, the induced structure on S2n has
λ=G(fC,D), that is, λ is the cosine of the angle between JC and D. The diagram
below gives an interpretation of λ for the sphere example.

In either case we have from equations (3) or (6)

and from equations (3) or by differentiating a(X)=η'(BX) and using ίy=0 and
the Gauss equation we have



INDUCED STRUCTURES ON SUBMANIFOLDS 197

)=-Xg(X, F).

LEMMA 3. 1. The l-form η is killing and dη(X, Y)=2g(X,fY); the l-form a is
closed.

Proof. (V,η)(Y)+(VγηKX)=g(X9fY)+g(Y,fX)=&, further dy(X, F)=(F^
- (Vγη)(X) = 2g(X, /F). Similarly da(X, F) = (Frα)(F) - (Pγd)(X) = ~ λg(X, Y)

While a is not killing we do have the following result for the vector field A
which is the contravariant form of a.

PROPOSITION 3. 2. The vector field A is a conformal infinitesimal transforma-
tion which is not an isometry for λ not identically zero.

Proof. Let J7 denote Lie differentiation, then

REMARK. Proposition 3. 2 is both natural and interesting in view of the con-
jecture of one of the authors [9] that a compact Riemannian manifold of constant
scalar curvature admitting a non-killing conformal vector field is isometric to a
Euclidean sphere. We note more generally than Proposition 3. 2 that if M2n+1 has
an almost contact metric structure (φ, ξ, ηf, G) with ξ killing (e.g. quasi-Sasakian
\2] and if N2n is a totally umbilical hypersurface, then the conclusion of Proposi-
tion 3. 2 holds. For

, F).

If now h=μg, μ^O, then

9 F)

using the fact that rf is killing. Note also that if h=μg, then μF=dη where F
is the covariant form of /.

THEOREM 3.3. The (f, E, A, η, a, λ)-structure on S2n is normal.

Proof. Note that from (6) (?χf)Y=—η(Y)X+g(X, Y)E since F^=0 and H=-L
Then a direct computation using Lemma 3. 1 shows that [f,f]+dη§ξ)E+da®A=Q.

Finally note that g(X, PYA)=(rτa)(X)=-λg(X, F) and hence VγA=-λY. Let-
ting R(X, F) denote the curvature transformation we have
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R(A,

= -(Yλ)A+(Aλ)Y.

Now letting Y be a unit vector orthogonal to A we have for the sectional curva-
ture K(Yy A)=Aλ/(l—λ2), but S2n has constant curvature 1, hence we have

PROPOSITION 3. 4. The function λ on S2n satisfies the differential equation

Aλ
l-λ2

REMARK. In the case of a totally umbilical hypersurface, h=μg, of a cosym-
plectic manifold we have by making similar computations to the above that
K(A,Y)=-A(μλ)l(l-λ*). By computing R(E,A)E using (6) we obtain R(A,E)
=μ2~λ(Aμ)/(l-λ2) and hence

Aλ
l-λ2 ~ μ'
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