SURFACES OF CURVATURE $\lambda_{N}=0$ IN \boldsymbol{E}^{2+N}

By Bang-Yen Chen

1. ${ }^{11,2)}$ In [3], Prof. Ōtsuki introduced some kinds of curvature, $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}$, for surfaces in a $(2+N)$-dimensional Euclidean space E^{2+N}. These curvatures play a main rôle for the surfaces in higher dimensional Euclidean space.

In [5], Shiohama proved that a complete, oriented surface M^{2} in E^{2+N} with the curvatures $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{N}=0$ is a cylinder.

In this note, we shall prove the following theorem:
Theorem 1. Let $f: M^{2} \rightarrow E^{2+N}(N \geqq 2)$ be an immersion of a compact, oriented surface M^{2} in a $(2+N)$-dimensional Euclidean space E^{2+N}. Then
(I) The last curvature $\lambda_{N}=0$ if and only if M^{2} is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N}, and
(II) The first curvature $\lambda_{1}=a=$ constant and the last curvature $\lambda_{N}=0$ if and only if M^{2} is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} with radius $1 / \sqrt{a}$.
2. Lemmas. In order to prove Theorem 1, we first prove the following two lemmas.

Lemma 1. Let $f: M^{2} \rightarrow E^{2+N}$ be an immersion given as in Theorem 1. Then the last curvature $\lambda_{N} \geqq 0$ if and only if M^{2} is imbedded. as a convex surface in a 3dimensional linear subspace of E^{2+N}.

Proof. Let $f: M^{2} \rightarrow E^{2+N}$ be an immersion given as in Theorem 1, and let $\left(p, e_{1}, e_{2}, \cdots, e_{2+N}\right)$ be a Frenet-frame in the sense of O tsuki [2], then we have the following:

$$
\begin{array}{ll}
d p=\omega_{1} e_{1}+\omega_{2} e_{2}, & \\
d e_{A}=\sum_{B} \omega_{A B} e_{B}, & \omega_{A B}+\omega_{B A}=0, \\
\omega_{i r}=\sum_{r} A_{r i j} \omega_{\jmath}, & A_{r \imath j}=A_{r j i}, \\
\omega_{i r} \wedge \omega_{2 r}=\lambda_{r-2} \omega_{1} \wedge \omega_{2} & \lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{N}, \\
G(p)=\sum_{r} \lambda_{r-2}(p), & \tag{2.5}\\
A, B=1, \cdots, 2+N, & r=3, \cdots, 2+N, \quad i, j=1,2,
\end{array}
$$

[^0]where ω_{1}, ω_{2} and ω_{12} are the basic forms, and the connection form of M^{2} with respect to the induced metric, and $G(p)$ denotes the Gaussian curvature at p.

Let B_{ν} denote the normal bundle of the immersion $f: M^{2} \rightarrow E^{2+N}$, then for any $(p, e) \in B_{\nu}$, we can write

$$
\begin{equation*}
e=e_{3} \cos \theta_{1}+\cdots+e_{2+N} \cos \theta_{N}, \quad-\frac{\pi}{2} \leqq \theta_{i} \leqq \frac{\pi}{2} \tag{2.6}
\end{equation*}
$$

As in [3], we know that the Lipschitz-Killing curvature $K(p, e)$ satisfies

$$
\begin{equation*}
K(p, e)=\lambda_{1}(p) \cos ^{2} \theta_{1}+\cdots+\lambda_{N}(p) \cos ^{2} \theta_{N} \tag{2.7}
\end{equation*}
$$

Now, suppose that $\lambda_{N} \geqq 0$, then by (2.4) and (2.7) we know that $K(p, e) \geqq 0$ for all $(p, e) \in B_{\nu}$. Hence, the total absolute curvature $T(f)$ of the immersion $f: M^{2} \rightarrow E^{2+N}$ satisfies

$$
\begin{align*}
T(f) & =\int_{B_{\nu}}|K(p, e)| d V \wedge d \sigma_{N-1}=\int_{B_{\nu}} K(p, e) d V \wedge d \sigma_{N-1} \\
& =\int_{B_{\nu}}\left(\lambda_{1}(p) \cos ^{2} \theta_{1}+\cdots+\lambda_{N}(p) \cos ^{2} \theta_{N}\right) d V \wedge d \sigma_{N-1} \tag{2.8}\\
& =\frac{c_{N+1}}{2 \pi} \int_{M^{2}} G(p) d V=(2-2 g) c_{N+1} .
\end{align*}
$$

Therefore by a result due to Chern-Lashof [2], we know that $T(f) \geqq(2+2 g) c_{N+1}$, hence we know that f is a minimal imbedding and the genus $g=0$. Hence, also by a result due to Chern-Lashof [2], M^{2} is imbedded as a convex surface in a 3 dimensional linear subspace of E^{2+N}.

Conversely, if M^{2} is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N}. Then we have

$$
\begin{equation*}
T(f)=\int_{B_{\nu}}|K(p, e)| d V \wedge d_{N-1}=2 c_{N+1} \quad \text { and } \quad g=0 \tag{2.9}
\end{equation*}
$$

On the other hand, by the last three equalities of (2.8), we have

$$
\begin{equation*}
\int_{B_{\nu}} K(p, e) d V \wedge d \sigma_{N-1}=2 c_{N+1} \tag{2.10}
\end{equation*}
$$

Hence, by (2.9) and (2.10) we know that the Lipschitz-Killing curvature $K(p, e) \geqq 0$ for all $(p, e) \in B_{\nu}$. Therefore by (2.4) and (2.7), we can easily verify that the last curvature $\lambda_{N} \geqq 0$. This completes the proof of the Lemma.

Lemma 2. Let $f: M^{2} \rightarrow E^{2+N}(N \geqq 1)$ be an immersion given as in Theorem 1 , and let $\bar{f}: M^{2} \rightarrow E^{3+N}$ be the immersion given by $\bar{f}(p)=f(p)$ for all $p \in M^{2}$. Then the Lipschitz-Killing curvature $K(p, e)$ and $\bar{K}(p, e)$ of the immersions f and \bar{f} satisfy the following:

$$
\begin{equation*}
\bar{K}(p, e)=\cos ^{2} \theta K\left(p, e^{\prime}\right), \quad(p, e) \in \bar{B}_{\nu} \tag{2.11}
\end{equation*}
$$

where e^{\prime} denotes the unit vector of the projection of e in E^{2+N}, and θ denotes the angle between e and e^{\prime}.

Proof. We consider the bundle of all frames $p, e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{2+N}^{\prime}$, such that $p \in M^{2}$, $e_{1}^{\prime}, e_{2}^{\prime}$ are tangent vectors and $e_{3}^{\prime}, \cdots, e_{2+N}^{\prime}$ are normal vectors to $f\left(M^{2}\right)$ at $f(p)$. If we set

$$
\begin{equation*}
\omega_{2+N, A}^{\prime}=d e_{2+N}^{\prime} \cdot e_{A}^{\prime} \tag{2.12}
\end{equation*}
$$

and let $\omega_{1}^{\prime}, \omega_{2}^{\prime}$ denote the basic forms, then the Lipschitz-Killing curvature $K\left(p, e_{2+N}^{\prime}\right)$ of the immersion f is given by

$$
\begin{equation*}
\omega_{2+N, 1}^{\prime} \wedge \omega_{2+N, 2}^{\prime}=K\left(p, e_{2+N}^{\prime}\right) \omega_{1} \wedge \omega_{2} \tag{2.13}
\end{equation*}
$$

Now, let a be the one of the two unit vectors perpendicular to E^{2+N} in E^{3+N}. A unit normal vector at $f(p)$ can be written uniquely in the form:

$$
\bar{e}_{3+N}=(\cos \theta) e_{2+N}^{\prime}+(\sin \theta) a, \quad-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}
$$

where e_{2+N}^{\prime} is the unit vector in the direction of its projection in E^{2+N}. Let

$$
\bar{e}_{2+N}=(\sin \theta) e_{2+N}^{\prime}-(\cos \theta) a, \quad \bar{e}_{s}=e_{s}^{\prime}, \quad 1 \leqq s \leqq 1+N
$$

and

$$
\bar{\omega}_{3+N, A}=d \bar{e}_{3+N} \cdot \bar{e}_{A}
$$

Then we have

$$
\bar{\omega}_{3+N, s}=\cos \theta \omega_{2+N, s}^{\prime}
$$

Therefore by (2.13) we can easily get

$$
\bar{K}(p, e)=\cos ^{2} \theta K\left(p, e^{\prime}\right)
$$

where e^{\prime} is the unit vector in the direction of the projection of e in E^{2+N}.
3. Proof of Theorem 1. The necessity of Part (I) in Theorem 1 follows immediately from Lemma 1. On the other hand, suppose that M^{2} is imbedded as a convex surface in a 3-dimensional linear subspace E of E^{2+N}. Without loss of generality, we can suppose that $E \subset E^{1+N}$. Now, let

$$
f^{\prime}: M^{2} \rightarrow E^{1+N}
$$

be the immersion of M^{2} into E^{1+N} given by $f^{\prime}(p)=f(p)$ for all $p \in M^{2}$. Then by Lemma 2, we know that for all $(p, e) \in B_{\nu}$, we have

$$
K(p, e)=\cos ^{2} \theta K^{\prime}\left(p, e^{\prime}\right) \quad-\frac{\pi}{2}<\theta \leqq \frac{\pi}{2}
$$

Hence

$$
K(p, e)=0, \quad \theta=\frac{\pi}{2} .
$$

Now, by Lemma 1, we know that $K^{\prime}\left(p, e^{\prime}\right) \geqq 0$ for all $\left(p, e^{\prime}\right) \in B_{v}^{\prime}$. Hence by (2.4) and (2.7), we know that last curvature $\lambda_{N}=0$.

Now, suppose that not only the last curvature $\lambda_{N}=0$ but the first curvature $\lambda_{1}=a=$ constant. Then by the fact that M^{2} is imbedded as a convex surface in a 3 -dimensional linear subspace E, we can easily see, from Lemma 2, that

$$
\lambda_{1}(p)=K(p, e)
$$

where e is a unit normal vector at $f(p)$ in E. Furthermore we can easily verify that the Lipschitz-Killing curvature $K(p, e)$ for such e is equal to the Gaussian curvature $G(p)$ of the immersion $\bar{f}: M^{2} \rightarrow E$ which is induced by f in a natural way. Hence by the fact that M^{2} is compact, we know that M^{2} is imbedded in E with constant Gaussian curvature $G(p)=a$. Therefore M^{2} is imbedded in E as a sphere with radius $1 / \sqrt{a}$.

Conversely, suppose that M^{2} is imbedded as a sphere in a 3 -dimensional linear subspace E with radius $1 / \sqrt{ } \bar{a}$. Then we know that the Gaussian curvature $G(p)$ $=\bar{K}(p, e)=a$ for all (p, e) in the normal bundle of the immersion $\bar{f}: M^{2} \rightarrow E$. Hence by Lemma $2,(2.4)$ and (2.7) we can easily verify that the first curvature $\lambda_{1}=a$ and the last curvature $\lambda_{N}=0$. This completes the proof of Theorem 1.

The author would like to take this opportunity to express his warmest thanks to Professor T. Nagano for his kindly help.

References

[1] Chen, B. Y., Some integral formulae of the Gauss-Kronecker curvature. Kōdaı Math. Sem. Rep. 20 (1968), 410-413.
[2] Chern, S. S., and R. K. Lashof, On the total curvature of mmersed manifold. Amer. J. Math. 79 (1957), 306-318.
[3] Ōtsuki, T., On the total curvature of surfaces in Euclidean spaces. Japan. J. Math. 35 (1966), 61-71.
[4] O Tsuki, T., Surfaces in the 4 -dimensional Euclidean space 1 sometric to a sphere. Kōdaı Math. Sem. Rep. 18 (1966), 101-115.
[5] Shiohama, K., Cylinders in Euclidean space E ${ }^{2+N}$. Kōdai Math. Sem. Rep. 19 (1967), 225-228.

Department of Mathematics,
University of Notre Dame, Indiana, U.S.A.,
Tamkang College of Arts \& Sciences, Taiwan, China.
Added in Print. A recent paper of author generalizes Lemma 1 to even-dimensionat. manifolds in Euclidean spaces.

[^0]: Received February 10, 1969.

 1) We follow the notations in [3].
 2) This work was supported in part by the SDF at University of Notre Dame, 19681970.
