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TENSOR FIELDS AND CONNECTIONS IN CROSS-SECTIONS
IN THE TANGENT BUNDLE OF ORDER 2

BY MARIKO TANI

The prolongations of tensor fields and connections given in a different iable
manifold M to its tangent bundle T(M) have been studied in [1], [2], [5], [7]. If
a vector field V is given in M, V determines a cross-section in T(M) which is as
an ^-dimensional submanifold in T(M). Yano [3] has recently studied the behavior
of the prolongations of tensor fields and connections to T(M) on the cross-sections
determined by a vector field in M. On the other hand, the prolongations of tensor
fields and connections in M to its tangent bundle T2(M) of order 2 are studied in
[6]. If a vector field V is given in M, V determines a cross-section in T2(M).
The main purpose of the present paper is to study the behavior of the prolonga-
tions of tensor fields and connections in M to T2(M) on the cross-section determined
by a vector field in M

In § 1 we first recall properties of the prolongations of tensor fields and con-
nections in M to T2(M). In § 2 we study the cross-sections determined in T2(M)
by vector fields given in M § 3 will be devoted to the study of the prolongations
of tensor fields given in M to T2(M) along the cross-sections and § 4 will be
devoted to the study of the prolongations of connections given in M to Γ2(M)
along the cross-sections.

§ 1. Prolongations of tensor fields and linear connections to the tangent
bundle of order 2.

We shall recall, for the later use, some properties of the tangent bundle T2(M)
of order 2 over a differentiate manifold M of dimension n, and those of prolon-
gations of tensor fields and linear connections in M to T2(M) (cf. [6]).

The tangent bundle T2(M) of order 2 is the space of equivalence classes of
mappings from the real line R into M, the equivalence relation being defined as
follows: we say that two mappings F and G are equivalent to each other if, in a
coordinate neighborhood [7, they satisfy the conditions

where Fh(t) and Gh(f) are the coordinates of F(f) and G(f) in U respectively. This
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TENSOR FIELDS AND CONNECTIONS 311

definition of the equivalence does not depend on the choice of the local coordinates.
We call this equivalence class containing F a 2- jet and denote it by jP

2(F). Namely
the tangent bundle of order 2 over M is the space of all 2- jets of M and its bundle
projection π2: T2(M)-*M is defined by

Let (U,χh) be a coordinate neighborhood with the local coordinate system (xh).
A system of local coordinates (xh,yh,zh) can be introduced in π2~\U) in such a
way that a 2- jet jp\F) (pe U) has coordinates as

We call the local coordinate system (xh,yh,zh) thus introduced in πz~\U) the
induced coordinate system and sometimes denote them by (ί̂ ),υ i.e.,

(1.1) ξ^==χ^f

Let (U,xh) and (U',xh>) be two coordinates neighborhoods of
coordinate transformation

related by

in UnU'. If we denote by (xh,yh,zh) and (xht,yft',zh') the induced coordinates in
K2~1(U) and π2~\U') respectively, the coordinate transformation in π2~\U)Γ[π2~

l(Uf)
is given by

., dxh'
zh =-^-r-

and its Jacobian matrix by

dx"

(1.2)

-^-Γ^+

" dxh y '

-yjyl

0, 0

0

dxh'

1) The indices A,B,CyD,> - and i,j\k, ~ run over the ranges 1, •••, 3n and 1, « ,w,
respectively.
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We denote by £ΓΪ(M) the space of all tensor fields of type (r, s) in M.
Especially, £Γί(M), £Γ}(M) and £Γί(M) are respectively the spaces of all functions,
of all vector fields and of all 1-forms all defined in M We denote also by £ΓΪ(ϊs(Λf ))
the space of all tensor fields of type (r, s) in T2(M).

Prolongations of tensor fields. For any element / of £ΓS(M), its prolongations
/°, f1 and /π to Γ2(M) are elements of £ΓS(Γ2(M)) and have respectively local
expressions of the form

(1. 3) /°: /(a*), /i: yidif(xh\ fu: 2%/(^)4WW(*Λ)

in the induced coordinate system (ξA), f(xh) being the local expression of / in (xh),
where di=djdx'1.

For any element X of £Γ}(Λf), its prolongations .X"0, J^1 and X11 are elements
of 3*o(Ϊ2(M)) and have the following properties:

(1. 4) xy^O, ί̂1/^ (-X/)0,

f being an arbitrary element of £ΓS(M).
For any element ω of 3\(M\ its prolongations o>°, ω1 and ω11 are elements of

£Π(Γ2(M)) and have the following properties:

) = 0, ω0^1) - 0, ω\Xu) = (ω(X))Q,

(1. 5) a>*(X«)=u, ωϊ(XI)=

^Γ being an arbitrary element of £ΓJ(M).
Taking arbitrarily two tensor fields P and ζ? in Λf, we have the following

formulas:

(1. 6) (P®Q)I=PI®Q0+P°®QI,
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The prolongations P°, Pl and Pπ are called respectively the 0-th, the 1-st and the
2-nd lifts of P, P being an arbitrary tensor field in M

REMARK. Let X and Ϋ be two vector fields in Γ2(M). If we have Xfu=Ϋfu

for any element / of £ΓS(M), then we have X=Y. Generally speaking, any tensor
field in T2(M) is completely determined by giving its values for the 2-nd lifts of
vector fields arbitrarily given in M.

Let F be an element of £Γ}(M) and P(t) a polynomial of t. Then we have

(1.7) (P(F)Y*=P(F^.

We now note that the 2-nd lift of the identity tensor field / of type (1,1) is also
the identity tensor field in Γ2(M), which is also denoted by / in Γ2(M), that is to
say, /"=/. For example, if F2-h/=0, we have (Fπ)a+/=0. Thus, we obtain

PROPOSITION. // F is an almost complex structure in M, so is F11 in T2(M).

We denote by NF the Nijenhuis tensor of an element F of £Π(M). We have
then

(1.8) (NF)
u=NFιι

for F€£rί(M).

Prolongations of linear connections. Let there be given a linear connection V
in M Then there exists a unique linear connection Fπ in T2(M) characterized by
the equation

(1.9) VπγπXll=(VYX)l\

X and Y being arbitrary elements of &l(M). The connection Fπ is called the lift
of the given connection V. If we denote by T and R respectively the torsion and
the curvature tensors of F, we have

(1.10) f-Γ11, R=Rl\

where T and R are the torsion and the curvature tensors of Fπ respectively.
We have the following formulas:

(i. ii)

for X,
Let there be given a pseudo-Riemannian metric g in M Then g11 is a pseudo-

Riemannian metric in T2(M). If we denote by V the Riemannian connection
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determined by g, then its lift F11 is the Riemannian connection determined by g11

in T2(M).

§2. Cross-sections determined by vector fields.

Let there be given a vector field V in M. Denote by φP: I—*M the orbit of V
passing through a point P of M in such a way that ^p(0)=P, where / is an
interval (— e, ε), ε being a certain positive number. If we denote by τ>(P) the 2- jet
fp(φp), we set that the correspondence P-»τ>(P) defines a mapping γv: M— >T2(M)
such that 7Γ2°7V is the identity mapping, i.e., that γv: M-*T2(M) is a cross-section
in T2(M). The submanifold γv(M) imbedded in T2(M) is called the cross-section
determined by the vector field V. If U is a coordinate neighborhood in M the
cross-section γv(M) is expressed locally in π2~

l(U) by equations

(2. 1) xh = xh, yh = FΛ(a?*), zh = F*(a?%. FΛ(Λ?*)

with respect to the induced coordinate system (ξA), where V= FΛ(#*)dΛ is the local
expression of V in U. We denote the equations (2. 1) by

(2. 2) ξA=ξA(^

i.e., £Λ=
Taking account of (1. 3) and (2. 1), we have along γv(M) the equations

(2.3) /π=UV/)o, /ι=UV/)°, /o=/o

f or /€ £Π(M), where _£V denotes the Lie derivation with respect to Fand _£V2=
If we put Bi

A=diζ
A

> we get along τ>(M) w local vector fields Bi tangent to
the cross- sect ion which have the components of the form

(2.4)

with respect to the induced coordinate system (ζA). For an element X of £ΓJ(M )
with local expression X—X1 d/dx\ we denote by BX the vector field with com-
ponents BiAX\ which is defined globally along γv(M) by virtue of (1. 2). The
mapping Bp: Tp(M)^Tσ (T2(M)) (σ=γv(PΪ) defined by the correspondence XP-»(BX\,
is the differential mapping γv

f of the cross-section mapping γv: M—*T2(M). Thus
Bp: Tp(M)-*Tσ(T2(M)) is an isomorphism and BP(TP(M)) is the tangent space of
the cross-section γv(M) at the point σ=γv(p).

We consider along the cross-section γv(M) n local vector fields d and n local
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vector fields D{ along γv(M), which have respectively components of the form

(2.5)

0

αv)=
0

in the induced coordinate system (ξA). For an element X of £Π(M) with local
experession X=Xidi, we denote by CX and DX the vector fields with components
Cϊ

AXί and Dϊ

AXί respectively. Then according to (1. 2), CX and DX are defined
along τv(M). We now defined two mappings Cp: Tp(M)->Tσ(T2(M)) and Dp:
-»T,(jΓ2(M)) (σ=Tv(p)) respectively by

(2.6) DpXp=(DX)σ

X being an arbitrary element of ζΓl(M). It is easily verified by virtue of (2. 5)
that the two mappings Cp and Dp defined by (2. 6) are isomorphisms of TP(M) into

Putting

we have the following direct sum representation of T0(TZ(M)):

The 3n local vector fields Bι, Cι and DΪ along γv(M) are expressed respectively
by

(2.7) C,=C9ί,

and form a local family of frames {Bt, d, D{] along γv(M), which are called the
adapted frames of γr(M). The w local vector fields Bt span T,,(7>(M)), C{ span
N,m and £>f span N,™, all at <7erF(M).

Taking account of (2. 4), (2. 5) and (2. 7), we have along γr(M)

(2.9)

X11=BX+2CUvX)+D(j:v2X),

X1^ CX +DUrX),

X"= DX,

or equivalently
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(2. 10)

for any element X of &l(M) with local expression X=Xidi.

§3. Prolongations of tensor fields in the cross-sections.

Let there be given a vector field X along γv(M). Putting

X=XiBi+XίCϊ+XϊDϊ

we call (Xa)=(Xi,Xϊ,Xϊ)B^ the components of X in the adapted frame. Similarly,
for any tensor field f of type (1. 2) along γv(M\ we denote by

its components in the adapted frame. Thus by means of (2. 10), the lifts X°, X1

and X11 have along γv(M) components of the form

(3. 1) (X°")=

0

0

Xh

χh

in the adapted frame, where X is a vector field in M with local expression
X=X*dt. In (3. 1) we have identified the 0-th lift (XhY, UV-X"Λ)° and (j:v

2Xh)°
respectively with functions Xh, £γXh and f£v

2Xfl. In the sequel we sometimes
use such identification.

Let there be given an element ω of £Γ?(M) with local expressions ω~
Then its lifts ω°, ω1 and ω11 have respectively components of the form

=(ωι, 0, 0),

(3.2)

in the adapted frame. In fact by virtue of (2. 3), (3. 1) and (1. 5), we have along
γv(M\ for example,

3) We use Greek indices a,β,~ to represent the components in the adapted frame.
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for arbitrary element X of £Π(M) with local expression X=X*di, and there exists
an element X of £Γi(M) such that at a given point, for any given values

and

hold. The other relations stated in (3. 2) are obtained similarly.
Taking account of (1. 6), (3. 1) and (3. 2) we find components of 0-th, 1-st and

2-αd lifts of any tensor field in Mwith respect to the adapted frame. For example,
for an element h of £ΓS(M) we have

(3.3)

/ hji

0

\ 0

0

0

0

0\ / Λ ,

0

O/

, (*',.)=

I T7 ft, 4,βO V ' f i j i

\h»
\ 0

1
Λ "'Jl

0

0

Λ\0

0

o)

V

hn\

0

o;

being the components of h. For an element F of £Γ}(M),

(3.4)

/ 0

0

\Fih

0

0

0

0\ / 0 0

0 (FV)=
FίΛ 0

1
ΓπFΛ ~- 7ΓΛO/ y — r * . 2 *,

o\
0

0 ,/

/
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Fih being the components of F. For an element S of

sv=o,

(3. 5) S V=0,

S#Λ being the components of S.
The linear isomorphism £ defined in § 2 is the differential mapping f/ of the

cross-section mapping γv: M-^γv(M). Then we denote sometimes by γv'X the
vector field BX, X being an arbitrary element of £ΓJ(M). Given an element ω of
£ΓJ(M), we denote by τv'α> the image of ω by the dual mapping of B~l (=the
restriction of π2 to γv(M)). The mapping f/ is extended as a linear mapping
r/' £Γ(M)->£Γ(MM)) by

P and Q being arbitrary tensor fields in M
Now we will define the operation # in £Γ(3Γ2(M)) as follows. For an element

X of 3 }(Γa(M)), we put

Let ω be a tensor field of type (0. 1) defined along γv(M). Then putting along
MM)

ω\BX)=ω(BX)

for XG 3Ί(M), we can define an element ω* of ΞΓίC/'rCM)) which is called the 1-form
induced in γv(M) from <S. Let h be a tensor field of type (0, 2) defined along γv(M).
Then putting along γv(M)

h*(BX, BY)=h(BX, BY)

for jf, F€£Π(M), we can define an element A* of £Γ§(rF(^)) which is called the
tensor field induced in γv(M) from /ι. Let F be a tensor field of type (1, 1) defined
along γv(M) such that, for any vector field Ά tangent to γv(M), PA is also tangent
to γv(M). Then putting

F\BX)=F(BX)

for Xe £Γβ(Af ), we can define an element F* of %\(γv(M)) which is called the tensor
field induced in γv(M) from P. Let S be^a tensor field of type (1, 2) defined along
7>(Λf ) such that for any vector field ί̂, B tangent to γv(M), S(Ά, B) is tangent to
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?v(.M). Then putting

S*(BX, BY)=S(BX, BY)

for X, F€2*o(M), we can define an element S* of 3\(γv(M)\ which is called the
tensor field induced in γv(M) from S.

We have from (3. 1),

PROPOSITION 3. 1. Let X be an element of £ΓJ(M). Then Xu is tangent to
7V(M) if and only if £VX=§. In this case %II*=γv'X holds. For any element X
of £ΓJ(AO, ^°*=0 and X™=Q hold.

We have from (3. 2),

PROPOSITION 3. 2. For any element ω of £Π(M),

hold.

We have from (3. 3)

PROPOSITION 3. 3. For any element h of £ΓS(M),

hu*= r/UVA), h™= γy'Uvh) and h«*=γv'h

hold, and hence h«\BX, BY)=h(X, F)°.

PROPOSITION 3. 4. Let g be a Riemannian metric in M. Then g^ is a
Riemannian metric in γv(M) and γv is isometry, i.e. gQ*—γv'g.

Suppose that the vector field V in M satisfies the condition <£vg=cg, g being
a Riemannian metric in M and c a constant, that is, V is an infinitesimal homo-
thetic transformation with respect to g. Then we have from Proposition 3. 3 the
relation gu^=cgI!ί=^c2g^.

If for each point σ of γv(M) the tangent space Tσ(γv(M)) is invariant by the
action of a tensor field F defined along γv(M\ then the cross-section γv(M) is said
to be invariant by F. For any F€ 2Ί(M), we have from (3. 4)

F °(BX) = DFX, Fl(BX) = C(FX)+D(UVF)X\

for Xs<3\(M). Thus we have
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PROPOSITION 3. 5. Let F be an element of %\(M\ The cross-section γv(M) is
invariant by Fu if and only if £vF=Q. In this case, FIU=γv'F holds. The lifts
F° and F1 do not leave γv(M) invariant, unless F=Q.

PROPOSITION 3. β. If F is an almost complex structure such that £VF=§, then
FIU is an almost complex structure in γv(M) and Fll*=γv'F holds.

If a Riemannian metric g in M satisfies the condition

g(FX,FY)=g(X, F) for any X, Fe£Π(M),

then (g, F) is called an almost Hermitian structure in M. If XvF=0 holds, then
we get along γv(M)

, (Tv'F)Y)

= (g(FX,FYW

because of Proposition 3. 3 and 3. 5. Thus we have

PROPOSITION 3. 7. Suppose that there is given an almost Hermitian structure
(g, F) in M. If *£VF=Q, then (g01, F11*) is an almost Hermitian structure in γv(M).

For any S€ 2Ί(M"), we have from (3. 5)

S\BX,BY)=D(S(X9Y)\

(3. 7) S*(BX, BY)=C(S(X, Y))+D(UVS)(X, F)),

Slϊ(BX,BY)=B(S(X, Y))+2C(UvS)(X, F))+^(UF

2S)(J^, F))

for any X, Fe£Π(M). Thus we get

PROPOSITION 3. 8. Let S be an element of £Π(M). The vector fields SII(BX, BY}
is tangent to γv(M) for arbitrary elements X, Y of £Π(M), if and only if J?vS=Q,
and in this case SlI*=γv'S holds. The vector fields S\BX,BY) and Sl(BX,BY) are
not tangent to γv(M), unless S=0.

If an element F of £Γ}(M) satisfies J:VF=Q, then its Nijenhuis tensor satisfies
JCvNF=Q. By virtue of (1. 8), Proposition 3. 5 and 3. 8, we have
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in the case that J?FF=0. Thus we have

PROPOSITION 3. 9. Let F be an element of 2Ί(M) such that J7FF=0. Then
the vector field NFu(BX, BY) is tangent to τv(M) for arbitrary elements X, Y of
&KM), and NFu*=NFιι*=γv'NF hold. Especially NF

11* vanishes identically in γv(M)
if and only if NF=Q.

Consequently taking account of Proposition in § 1 and Proposition 3. 5, we get

PROPOSITION 3.10. If a complex structure F satisfies the condition e£vF=ΰ,
then FIU is a complex structure in γv(M}.

§ 4. Prolongations of affine connections in cross-sections.

First of all, we recall some formulas on Lie derivations (cf. [4]). Let there be
given an affine connection V with coefficients Γfa. For vector fields X with local
expression X=Xidi and F, we have formulas as

(4. i)

(4. 2)

where Rkjth denotes the components of the curvature tensor R of F. Hence we
have

(4.3) j7

(4.4) F*U>V?0-PyUF^)+^

Taking account of (1. 9) and (2. 9), we have along γv(M)

Pu

(4.5)

for X, Fe£Π(M), where X=Xίdi is the local expression of X. On the other hand,
taking account of (1. 4) and (2. 10), we have along γv(M)
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where Y— Yldi is the local representation of Y. For an arbitrary point σ of ?v(M),
there exists a vector field Y in M with initial conditions Y=d» _£V^=0, ,£V2Γ=0
at p=πt(σ). Then at σ, Yll=BY=Bd]=B3, and the value of Γn

YιιX
u at σ is

Comparing the two equations (4. 5) and (4. 6), we have at σeγγ{M),

which implies by virtue of (4. 1) and (4. 3),

(4. 6)

Let ah, tf1 and c^ be arbitrary real numbers. For any point σ of γv(M ), there
exists a vector field X in M with local expression X=Xidt such that it satisfies
Xft=<zA, jCvXh=b\ £v*Xh=clί at p=πz(o). Thus (4. 6) gives

(4.7)

Putting

(4. 8)
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we have

(4. 9)

(4. 10)

(4. 11)

These are nothing but the structure equations for the cross-section τv(M), which
imply

PROPOSITION 4. 1. The cross-section γv(M) is totally geodesic in TZ(M) with
respect to the connection Fπ, if and only if the vector field V is infinitesimal affine
transformation in M with respect to V {i.e.

Taking account of (4. 8) we have

(4. 12) Pll

BjBX=(

for XcζTKM). For Y=Yίdί, putting V BY

llBh-= YJψjlIBh, we have

We can now defined an affine connection F* in γv(M) by the equation

(4. 13) P*BYBX=B(PγX)

for X, Y€ £ΓJ(M) and call F* the affine connection induced in γv(M) from F, or the
induced affine connection of γv(M). Now (4. 12) is written as

(4. 14)

for X=

Let there be given an element h of £Π(M). By virtue of Proposition 3. 3, we
have

BZ(h°*(BX, BY))=(V*Bzh**)(BX, BY)+h°*(P*BZBX, BY)+h"(BX, P*

for X, F, Z€ £Γβ(Af). On the other hand, taking account of (2. 11), we have
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, BY)+k?*(B(VzX\ BY)+h«\BX, B(7ZY))

for X, Y, ZG £Γί(M). If we compare the two equations obtained above , taking
account of (4. 13), we have

(4. 15) V*Bzh"=(Vzhy*

for
When an affine connection V in M is torsionfree, Fπ is torsionfree in T2(M)

too (cf. (1. 10)). Hence the induced connection F* of γv(M) is also torsionfree.
Thus we obtain from (4. 15)

PROPOSITION 4. 2. Let g be a Riemannian metric in M and V the Riemannian
connection determined by g in M. Then the connection F* induced in γv(M) from
V is the Riemannian connection determined by the induced metric g0* of γv(M).

Let there be given an element F of £Γί(M) satisfying the condition f£vF=Q,
then by virtue of (4. 13) and Proposition 3. 5, we have

(4. 16) FΛz*FII*=(ΓzF)11

for Z€£ΓJ(Λf). Thus we have

PROPOSITION 4. 3. Let F be an element of ζΓ[(M) satisfying the condition
XvF=Q. If FF=0 in M, then F*FΠ*=0 in γv(M).

An almost Hermitian structure (g, F) in M is called Kahlerian if FF^O, V
being the Riemannian connection determined by g.

PROPOSITION 4. 4. // (g, F) is a Kahlerian structure satisfying the condition
=0, so is (g°*,FIIjt) in Tv(M).

Operating PuBk to the first equation (4. 7) and taking the skew symmetric part
of the equation obtained with respect to the indices j and ky by virtue of (2. 11)
and (4. 7) we have

^^
which reduces to

(4. 17)
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because of (1.10), (4.2) and (4.4), where Rkah denote the components of the
curvature tensor R of the given affine condection V and R11 the 2-nd lift of R to
Γ2(M). As a direct consequence of (4.17), we have

PROPOSITION 4. 5. Let R and Ru be the curvature tensors of affine connections
V given in M and P1, respectively. Then the curvature transformation RU(BX, BY)
X and Y being arbitrary elements of £ΓJ(M), leaves invariant the tangent space of
the cross-section γv(M) at each point of γv(M), if and only if f£vR=^. In this
case Rm=γv'R holds, where Rm denotes the tensor field induced in γv(M) from R.
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