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TENSOR FIELDS AND CONNECTIONS IN CROSS-SECTIONS
IN THE TANGENT BUNDLE OF ORDER 2

By Mariko TANI

The prolongations of tensor fields and connections given in a differentiable
manifold M to its tangent bundle T'(M) have been studied in [1], [2], [5], [7]. If
a vector field V is given in M, V determines a cross-section in T'(M) which is as
an zn-dimensional submanifold in 7'(M). Yano [3] has recently studied the behavior
of the prolongations of tensor fields and connections to 7'(M) on the cross-sections
determined by a vector field in . On the other hand, the prolongations of tensor
fields and connections in M to its tangent bundle 7%(M) of order 2 are studied in
[6]. If a vector field V' is given in M, V determines a cross-section in Z%(M).
The main purpose of the present paper is to study the behavior of the prolonga-
tions of tensor fields and connections in M to T%(M) on the cross-section determined
by a vector field in M.

In §1 we first recall properties of the prolongations of tensor fields and con-
nections in M to To(M). In §2 we study the cross-sections determined in To(M)
by vector fields given in M. §3 will be devoted to the study of the prolongations
of tensor fields given in M to Tx(M) along the cross-sections and §4 will be
devoted to the study of the prolongations of connections given in M to Ty(M)
along the cross-sections.

§1. Prolongations of tensor fields and linear connections to the tangent
bundle of order 2.

We shall recall, for the later use, some properties of the tangent bundle T2.(M)
of order 2 over a differentiable manifold M of dimension %, and those of prolon-
gations of tensor fields and linear connections in M to T.(M) (cf. [6]).

The tangent bundle T»(M) of order 2 is the space of equivalence classes of
mappings from the real line R into M, the equivalence relation being defined as
follows: we say that two mappings F and G are equivalent to each other if, in a
coordinate neighborhood U, they satisfy the conditions
d*F?* a>G*

0= ")

h Gh
PO=60=p, L=, i

where F(¢) and G™(¢) are the coordinates of F'(f) and G(¢) in U respectively. This
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TENSOR FIELDS AND CONNECTIONS 311

definition of the equivalence does not depend on the choice of the local coordinates.
We call this equivalence class containing F' a 2-jet and denote it by jp*(F). Namely
the tangent bundle of order 2 over M is the space of all 2-jets of M and its bundle
projection my: To(M)—M is defined by

w(Jp*(F))=p.

Let (U, z*) be a coordinate neighborhood with the local coordinate system (x?*).
A system of local coordinates (z*,y"*, z*) can be introduced in #,"}(U) in such a
way that a 2-jet j,%(F") (peU) has coordinates as
dZF/L

dF™
at=FN0),  yr=—"7—(0), =5 (0.

We call the local coordinate system (x”, %", z*) thus introduced in =z,"*(U) the
induced coordinate system and sometimes denote them by (£4)," ie.,

(1. 1) L — .’L‘Z, &-nH,: yz, 527» H,_____Zz.

Let (U,z") and (U’, ") be two coordinates neighborhoods of M related by
coordinate transformation

=z (z")

in UnU’. If we denote by (z*, ¥, 2*) and (z",y",2") the induced coordinates in
7~ Y(U) and 7,"*(U’) respectively, the coordinate transformation in z,”*(U)N=.~Y(U’)
is given by

ox™

B bt (ol n_ n
¥ =z"(z"), y PRt
ox™ orx
h' — h IRy Y )
z oz - T 0xiox vy
and its Jacobian matrix by
axh’
e 0 0
Pz oz
(1.2) dzdz L oz’ 0
%z 3z s o2z ox
ooz © " aztorer LY ooz U oz’

1) The indices A, B,C,D, -
respectively.

and 1,7,k -

run over the ranges 1,-.,,3# and
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We denote by g5(M) the space of all tensor fields of type (r,s) in M.
Especially, g%(M), g¥M) and gYM) are respectively the spaces of all functions,
of all vector fields and of all 1-forms all defined in M. We denote also by I5(T2(M))
the space of all tensor fields of type (r,s) in T(M).

Prolongations of tensor fields. For any element f of gYM), its prolongations
Fo frand fI' to Ty(M) are elements of TYT(M)) and have respectively local
expressions of the form

1.3 Fur@y), Ry (@), 20 (2 +yiyt,0:f ()

in the induced coordinate system (£4), f(z*) being the local expression of f in (z%),
where 0;=0/0x

For any element X of JY¥M), its prolongations X° X! and X are elements
of gYT.(M)) and have the following properties:

X°f0=0, X°f1=0, XOfU—(XSY,
@4 X1f0=0, Xifim (KPP, XUU=(XF),
XUP—(XFY,  XUF=(XPN,  XUU=(XP,

f being an arbitrary element of gYM).
For any element w of gYM), its prolongations «°, o' and ' are elements of
JYT(M)) and have the following properties:

0 (X"=0, 0 (X")=0, o (X)=(0(X))",
1.5) 0'(X%)=0, o'(XT)= -;—(w(X )% (X =((X))],
o"(X)=(o(X))", o"(X D= (a(X)), (X T)=(o(X)",
X being an arbitrary element of Ti(M).

Taking arbitrarily two tensor fields P and @ in M, we have the following
formulas:

PR)’=P'RL,
1.6 PRA'=P'RQ+P'Q,
(PRQ=PIRQ'+2PIQQ+P'RQQ".
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The prolongations P° P! and PY are called respectively the 0-¢4, the 1-s¢ and the
2-nd lifts of P, P being an arbitrary tensor field in M.

RemMARK. Let X and ¥ be two vector ﬁelds in To(M). If we have X =y fu
for any element f of FYM), then we have X=Y¥. Generally speaking, any tensor
field in Ty(M) is completely determined by giving its values for the 2-nd lifts of
vector fields arbitrarily given in M.

Let F be an element of (M) and P(¥) a polynomial of £. Then we have

1.7 (PENI=PFM).

We now note that the 2-nd lift of the identity tensor field I of type (1,1) is also
the identity tensor field in T2(M), which is also denoted by I in T2(M), that is to
say, I""=1. For example, if F?4+I=0, we have (F#™)?4+7=0. Thus, we obtain

ProOPOSITION. If F is an almost complex structure in M, so is F1U in To(M).

We denote by Ny the Nijenhuis tensor of an element F of Ji(M). We have
then

(1.8 (Np)!'=Npu
for Fe T1(M).

Prolongations of linear connections. Let there be given a linear connection V
in M. Then there exists a unique linear connection V! in T,(M) characterized by
the equation

1.9 FPiyu X=Fy X)L,
X and Y being arbitrary elements of 4 M). The connection F™ is called the Jift

of the given connection V. If we denote by 7' and R respectively the torsion and
the curvature tensors of V, we have

(1. 10) T=Tu  R=RY,

where 7* and R are the torsion and the curvature tensors of VI respectively.
We have the following formulas:

1.11) PilynX=FyX)°, FPilynXl=FyX)!
for X, Yeg¥M).

Let there be given a pseudo-Riemannian metric ¢ in M. Then ¢ is a pseudo-
Riemannian metric in T(M). If we denote by F the Riemannian connection
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determined by ¢, then its lift /T is the Riemannian connection determined by ¢
in To(M).

§2. Cross-sections determined by vector fields.

Let there be given a vector field V' in M. Denote by ¢p: I—M the orbit of V'
passing through a point P of M in such a way that ¢p(0)=P, where I is an
interval (—e,¢), ¢ being a certain positive number. If we denote by r3(P) the 2-jet
72(pp), we set that the correspondence P—yy(P) defines a mapping 7y M—T(M)
such that z,ey, is the identity mapping, i.e., that y,: M—Ty(M) is a cross-section
in Ty(M). The submanifold y,(M) imbedded in T2(M) is called the cross-section
determined by the vector field V. If U is a coordinate neighborhood in M the
cross-section 7, (M) is expressed locally in n,”*(U) by equations

2.1 aht=xh,  YPr=TMx?),  2h=TV¥z"oVx?)

with respect to the induced coordinate system (£4), where V= V"(z%d, is the local
expression of ¥V in U. We denote the equations (2. 1) by

2.2 §4=E4("),

ie., Ehr=gh, enth=Th gimth_hy |t
Taking account of (1.3) and (2. 1), we have along 7,(M) the equations

2.3 =L, fl=Lvf),  '=r1°

for fe gy M), where Ly denotes the Lie derivation with respect to V and _Lv*=_Lv L.
If we put B;4=0,£4, we get along (M) n local vector fields B; tangent to
the cross-section which have the components of the form

o
2. 4) (Bi4)= oV
0: V*)0r V™) + V330, V'™

with respect to the induced coordinate system (§4). For an element X of g(M)
with local expression X=X? 9/ox*, we denote by BX the vector field with com-
ponents B;4X? which is defined globally along 7y(M) by virtue of (1.2). The
mapping By: Tp(M)—T, (To(M)) (e=74(p)) defined by the correspondence X,—(BX),,
is the differential mapping 7’ of the cross-section mapping jy: M—To(M). Thus
By To(M)—T,(T:(M)) is an isomorphism and B,(T,(M)) is the tangent space of
the cross-section y,(M) at the point e=7,(p).

We consider along the cross-section 7,(M) = local vector fields C; and » local
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vector fields D; along y, (M), which have respectively components of the form

0 0
@.5) Co=| 330 | = 0
0; vr 51;h

in the induced coordinate system (£4). For an element X of g3M) with local
experession X=X1;, we denote by CX and DX the vector fields with components
C4X*® and D;4X?® respectively. Then according to (1. 2), CX and DX are defined
along r,(M). We now defined two mappings Cp: Tp(M)—T,(To(M)) and D, Tp(M)
—T(To(M)) (6=7v(p)) respectively by

(2. 6) Cpo:(CX)w Dpo:(DX)o

X being an arbitrary element of giM). It is easily verified by virtue of (2.5)
that the two mappings C, and D, defined by (2. 6) are isomorphisms of T(M) into

T(To(M)) (e=71v(P)).
Putting

N,D=CpTp(M),  N,P=DpTp(M)  (o=1v(D),
we have the following direct sum representation of 7,(72(M)):
To(To(M))=T,(ry(M))+N, P +N,®.

The 3# local vector fields B;, C; and D; along yy(M) are expressed respectively
by

2.7 B;=Ba;, C;=Co;, D;=Da;
and form a local family of frames {B;, C;, D;} along yy(M), which are called the
adapted frames of yy(M). The n local vector fields B; span T,(yy(M)), C; span
N,® and D; span N,®, all at geyp(M).
Taking account of (2.4), (2.5) and (2.7), we have along 7,(M)
XU=BX+2C( Ly X)+D(Lv*X),
2.9 X1= CcX +D(LvX),
X°= DX,

or equivalently
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X'=(XBi+2(Lv XH°CiH(Lv* X ) Dy,
(2. 10) X'= (X)°Ci+H(Lv X9 Dy,
X'= (X9°D;

for any element X of J4M) with local expression X= X9;.

§ 3. Prolongations of tensor fields in the cross-sections.
Let there be given a vector field X along ry(M). Putting
X=XB.+XC;+X'D;

we call ()?“)=()?i, )z'i, X9 the components of X in the adapted frame. Similarly,
for any tensor field T of type (1.2) along y,(M), we denote by

(Tﬁra):(?‘jih: ffih: 74.7'@'%: R Tﬁﬁ)

its components in the adapted frame. Thus by means of (2. 10), the lifts X°, X!
and X! have along (M) components of the form

0 0 X"
3EB.1 (X=[ 0 |, X== X* |, (X")=|2.Lv X"
Xh .CVXh .CVZ.X’L

in the adapted frame, where X is a vector field in M with local expression
X=X%;. In (3.1) we have identified the 0-th lift (X*)°, (LvX")° and (Ly2X")°
respectively with functions X*, [yX"* and »*X"* In the sequel we sometimes
use such identification.

Let there be given an element o of g¥M) with local expressions w=widz".
Then its lifts »° o' and o™ have respectively components of the form

(0)05):((01, 0) 0):
3.2) (oT)= (.L’Van, L o),

(0'p)=(Lvwi, Lywsi ws)

in the adapted frame. In fact by virtue of (2.3), (3.1) and (1.5), we have along
7v(M), for example,

3) We use Greek indices a, 8, -+ to represent the components in the adapted frame.
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o X420 Ly X )+ o (LX)

= _Lv¥(@:X7)

=(Lr*0) X 2 Lyoi)( Ly X)+ol Ly X?)

for arbitrary element X of Ji(M) with local expression X=X%;, and there exists
an element X of g¥M) such that at a given point, for any given values
(a", b%, cP),

Xtr=g*, _LypX*=B*F and _Lpy*X"=(t

hold. The other relations stated in (3. 2) are obtained similarly.

Taking account of (1.6), (3.1) and (3.2) we find components of 0-th, 1-st and
2-ad lifts of any tensor field in M with respect to the adapted frame. For example,
for an element %z of JYM) we have

ki O 0 1
? Lvhi 5 ki O
(hopa)= 0 0 0 ) (hlﬁa) = '%‘hji 0 0 y
0 0 0 0 0 0

3.3)
Lvthye  Lvhi ki

(A"ga)=| Lvhji %hﬂ 0
Ry 0 0
hj; being the components of 4. For an element F of (M),
0 0 o0 0 0 0
F%H)=| 0 0 0} F1)= ,

Fr 0 0
3.4
Fr 0 0

F)=| 2.0vF  F* 0 |,

LA LyFd F
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F;* being the components of F. For an element S of M),
So]i =0, Sojq, =0, Soji —Sﬁ.h,

3. 5) Stt= Stt=S;", Lit=_LvS;t,
SUh=Sy,  SUW;E=2LpS;,  SU;t=_Lv2Sit,

S;* being the components of S.

The linear isomorphism B defined in §2 is the differential mapping 7,/ of the
cross-section mapping 7yt M—y(M). Then we denote sometimes by 7,/X the
vector field BX, X being an arbitrary element of TiM). Given an element w of
JYM), we denote by /0 the image of o by the dual mapping of B! (=the
restriction of #, to 7y(M)). The mapping 7,/ is extended as a linear mapping
7v's T(M)—T (v(M)) by

W (PRA=0v'P)R(v'Q),

P and Q being arbitrary tensor fields in M.
N Now we will define the operation # in g (Tx(M)) as follows. For an element
X of JYT(M)), we put

X=XB,.

Let & be a tensor field of type (0. 1) defined along yy(M). Then putting along
v(M)

@ BX)=d&(BX)

for XeJi(M), we can define an element & of T(ry(M)) which is called the 1-form
induced in y,(M) from @. Let h be a tensor field of type (0,2) defined along 7,(M).
Then putting along 7,(M)

RBX, BY)=h(BX, BY)

for X, Yeg{(M), we can define an element A* of Fr,(M)) which is called the
tensor field induced in 7,(M) from h. Let F be a tensor field of type (1, 1) defined
along 7,(M) such that, for any vector field A tangent to r,(M), FA is also tangent
to 7(M). Then putting

FBX)=FBX)
for Xe g (M), we can define an element Fe of TYry(M)) which is called the tensor

field induced in y,(M) from F. Let § be a tensor field of type (1,2) defined along
77(M) such that for any vector field A B tangent to (M), S(A B) is tangent to
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rv(M). Then putting
S¥Bx, BY)=S8(BX, BY)

for X, Yeg¥M), we can define an e~1ement St of gYr,(M)), which is called the
tensor field induced in 7,(M) from S.
We have from (3. 1),

ProposITION 3.1. Let X be an element of I¥M). Then X' is tangent to
rv(M) if and only if LyX=0. In this case X™M=y,’X holds. For any element X
of TiM), X%=0 and X*=0 hold.

We have from (3. 2),

PROPOSITION 3. 2. For any element w of M),

oM=r/(Lyv'w), o=r/(Lye) and = o"=r/0
hold.

We have from (3. 3)

ProposITION 3.3. For any element h of TXM),

W=y, (Lv'h), W=y, (Lvh)  and  h%=p'h

hold, and hence h*(BX, BY)=h(X, Y)".

ProrosiTiON 3.4. Let g be a Riemannian metric in M. Then ¢% is a
Riemannian metric in (M) and 7, is isometry, i.e. g*=y,'g.

Suppose that the vector field V in M satisfies the condition _Lyg=cg, ¢ being
a Riemannian metric in M and ¢ a constant, that is, V is an infinitesimal homo-
thetic transformation with respect to g. Then we have from Proposition 3.3 the
relation g =cg¥=c%%,

If for each point ¢ of y,(M) the tangent space T,(y»(M)) is invariant by the
action of a tensor field F defined along 7,(M), then the cross-section (M) is said
to be invariant by F. For any Fe (M), we have from (3. 4)

FYBX)=DFX, FYBX)=CFX)+D(LvF)X),
F'(BX)=BFX)+2C(LvF)X)+D(Lv*F)X)

for Xegy(M). Thus we have
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ProrosiTION 3.5. Let F be an element of TYM). The cross-section ry,(M) is
invariant by F™ if and only if LvF=0. In this case, F'%=y,'F holds. The lifts
F° and FT do not leave 1,(M) invariant, unless F=0.

ProrosiTiON 3. 6. If F is an almost complex structure such that LvF=0, then
F™ is an almost complex structure in yy(M) and F'¥=y,'F holds.

If a Riemannian metric ¢ in M satisfies the condition
gFX,FY)=9(X,Y) for any X, YeTyM),

then (g, F) is called an almost Hermitian structure in M. If _LyF=0 holds, then
we get along (M)

g FMBX, F''BY)=(rv'0)(rv' )X, (' F)Y)
=X, FY))

because of Proposition 3.3 and 3.5. Thus we have

ProPOSITION 3.7. Suppose that there is given an almost Hermitian structure
9, F) in M. If LyF=0, then (9% F™¥) is an almost Hermitian structure in yy(M).

For any Se g¥M), we have from (3. 5)
S%BX, BY)=D(S(X, Y)),
3.7 SYBX, BY)=C(S(X, Y))+D({(LvS)X, Y)),
S(BX, BY )=B(S(X, Y))+2C(.LvS)X, Y))+D(Ly*S)X, Y))
for any X, YeJyM). Thus we get
ProprosITION 3.8. Let S be an element of TyM). The vector fields ST(BX, BY)
is tangent to y (M) for arbitrary elements X, Y of I(M), if and only if LvS=0,
and in this case S¥=1,'S holds. The vector fields S°(BX, BY) and S'(BX, BY) are

not tangent to yy(M), unless S=0.

If an element F of JXM) satisfies _LyF=0, then its Nijenhuis tensor satisfies
LvNrz=0. By virtue of (1. 8), Proposition 3.5 and 3.8, we have

NFII’=NFIH =TV’NF
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in the case that _yF=0. Thus we have

ProprosITION 3.9. Let F be an element of TiM) such that LvF=0. Then
the vector field Npu(BX, BY) is tangent to y,(M) for arbitrary elements X, Y of
TIYM), and Nput=Ngpiu=yr,' Ny hold. Especially Nyt vanishes identically in y,(M)
if and only if Np=0.

Consequently taking account of Proposition in §1 and Proposition 3.5, we get

ProrosiTioN 3.10. If a complex structure F satisfies the condition LvF=0,
then F™ is a complex structure in ry(M).

§4. Prolongations of affine connections in cross-sections.

First of all, we recall some formulas on Lie derivations (cf. [4]). Let there be
given an affine connection / with coefficients I%. For vector fields X with local
expression X=X%); and V, we have formulas as

4.1 Ly(V X0V ( Ly XM)=(Lv[ %) X7,
4.2 Vil LvD)—V (LvI%)=LvRuz™,

where Ry;* denotes the components of the curvature tensor R of 7. Hence we
have

4. 3) LV, XM=V (Lv* X =(Lv* ) X+ 2 Lv ]l 1) Lv X,
4. 4) Vil Ly’ ) —V ALV T R) 2 Lv L XLy 5) =2 Ly T3 Ly )= Lv* Rijit.
Taking account of (1.9) and (2. 9), we have along y(M)

FyuX=BVyX)+2C(Ly(Vy X))+ D LviP v X))
(4. 5)
=y X" By+2(LyV y X?)°Cr+(_Ly vy X ") D5,

for X, Ye gy (M), where X=X, is the local expression of X. On the other hand,
taking account of (1.4) and (2. 10), we have along (M)

VHYHXH:VHYII((Xh)OBh,+2(,£VXh)0Cﬁ+(,£‘V2Xh)ODﬁ)
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Py X =(X?) 7 Ty By +2(_Ly X)WV 1 puCy +(Ly2 X ™)V My Dy,
+(Y'%9; X*)° By +2(Y 0, Ly X ™) Cr4- (Y %0:(_Lv2X ™)) Dy,
where Y=Y, is the local representation of ¥. For an arbitrary point ¢ of 7(M),
there exists a vector field Y in M with initial conditions Y=9d,, LyrY=0, £»?Y=0

at p=mns(s). Then at ¢, YU'=BY=B0d,=B,, and the value of F''yuX! at o is
Pip, X", Comparing the two equations (4.5) and (4. 6), we have at oer (M),

(X™)V 1 g;Bn+2( Ly X ™)V 5 Crt-(Lv* X ™)V gDy,
=, X"—0, X" Bn+2{ LV ;X)) =V {LvX")}°C;,
HLAAW XM=V (Lv* X ™)} Dy,
=(p XY Br+2{Lv(V , X") =V ( Lv XM+ T3 Ly XY °Cr
HLAW XM=V (LX) + T Lv* XDy,
which implies by virtue of (4.1) and (4. 3),

(X™)7 1 g;Bn+2(Ly X"V 5,Crt-( Ly X ™)V gDy,
4.6 =X Br+2{(Lv ) X+ TH(Ly XD Cy
H(LP )X+ 2 Lr 3Ly X+ 5 Lv* XY Dy
Let a¢*, b* and c¢* be arbitrary real numbers. For any point ¢ of y»(M), there

exists a vector field X in M with local expression X=X?%, such that it satisfies
h=qgh Ly Xh=bF _[p:X*=c* at p=ry(0). Thus (4. 6) gives

PWg;Bi=(I"})°Br+2(Lv I 5)°Cr+(Lv* ) Dy,
4.7 Vg, Ci= I')'Cy +(LvIh) Dy,
Piiy Dy= (I')"Ds.
Putting
7By =V"5,B;—(I'};)"Bn,
4.8 W C=V1g Ci—('1)°Cs,

"Dy = VHBJ.D;—(F%)ODT»
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we have

4.9 T iBy=2Lv]}) Cit(Lv* )" Dy,
(4. 10) " Ci= (Lv['1:)' Dy,
4. 11) "P1;D;=0.

These are nothing but the structure equations for the cross-section (M), which
imply

ProposiTioN 4. 1. The cross-section yy (M) is totally geodesic in To(M) with
respect to the connection V'L, if and only if the vector field V is infinitesimal affine
transformation in M with respect toV (i.e. LvI%=0).

Taking account of (4.8) we have
4.12) g, BX=F,X")By+(X")"'V "' B;
for Xegy(M). For Y=Y, putting Vpy"'B,=Y?'V;1B;, we have
PUpy BX=BFl yX)+(X")" 'V pr" Bn.
We can now defined an affine connection F# in (M) by the equation
4.13) VigyBX=BlyX)

for X, Yeg M) and call I'* the affine connection induced in 7(M) from 7, or the
induced affine connection of 7,(M). Now (4.12) is written as

4. 14) PUgy BX=V%zy BX+(X")" 'V gy B,
for X=X1%,, YeTyM).

Let there be given an element % of gYM). By virtue of Proposition 3.3, we
have

BZ(W"(BX, BY ))=(tpzh**)(BX, BY )+ h"(ViszBX, BY )+h"(BX, V*5zBY’)

for X,Y,Zegy(M). On the other hand, taking account of (2.11), we have
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(BZ)W™(BX, BY ))=(BZ)(h(X, Y))’=(Z(h(X, Y)))°
=((Fzh)(X, Y))°+ AV 2 X, Y))'+ (X, V2Y))
= zh)"(BX, BY )+h" BV zX), BY )+h**(BX, BWzY))

for X, Y, ZegyM). If we compare the two equations obtained above, taking
account of (4. 13), we have

(4. 15) Vipzh =V zh)*

for Ze gyM).

When an affine connection 7 in M is torsionfree, V' is torsionfree in Ty(M)
too (cf. (1.10)). Hence the induced connection F* of 7,(M) is also torsionfree.
Thus we obtain from (4. 15)

ProposiTION 4.2. Let g be a Riemannian metric in M and V the Riemannian
connection determined by g in M. Then the connection V¢ induced in r,(M) from
V is the Riemannian connection determined by the induced metric 9% of 7,(M).

Let there be given an element F of (M) satisfying the condition _£,F=0,
then by virtue of (4. 13) and Proposition 3.5, we have

(4. 16) Vgt F =V zF')1
for Ze gy M). Thus we have

ProposiTiON 4.3. Let F be an element of IYM) satisfying the condition
LvF=0. If VF=0 in M, then V*F™=0 in r,(M).

An almost Hermitian structure (g, F) in M is called Kihlerian if FF=0, I/
being the Riemannian connection determined by g.

ProposiTION 4. 4. If (g, F) is a Kahlerian structure satisfying the condition
LvF=0, so is (¢ F'™) in r,(M).

Operating /g, to the first equation (4. 7) and taking the skew symmetric part
of the equation obtained with respect to the indices j and %, by virtue of (2. 11)
and (4.7) we have

Vg g, Bi—V 1 Vg B,
=(Rus")° Br+2(V i LI )=V { Lv [} Cs
HT e LV =V, Ly T) +2 Ly TN Ly D50 — 2 Lv 3 Ly )} Dy
which reduces to

4.17) RY(By, Bj)B;=(Ry ;") Bn+2(.Lv Ry i")°Cr+(Lv* Ry ;i) Dy,
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because of (1.10), (4.2) and (4.4), where Ry;* denote the components of the
curvature tensor R of the given affine condection F and R the 2-nd lift of R to

To(M).

As a direct consequence of (4. 17), we have

ProrosITION 4.5. Let R and R™ be the curvature tensors of affine connections
V given in M and VY, respectively. Then the curvature transformation R"(BX, BY)
X and Y being arbitrary elements of Ti(M), leaves invariant the tangent space of
the cross-section ry(M) at each point of (M), if and only if .LvR=0. In this
case R™=y,'R holds, where R™ denotes the temsor field induced in y,(M) from R.

[11]
[2]
[31]
[4]
[5]
[6]
[71]
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