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CONSTRUCTION OF BRANCHING MARKOV PROCESSES
WITH AGE AND SIGN*

BY MASAO NAGASAWA

It is a familiar fact in the theory of Markov processes that solutions for a
wide class of linear parabeolic and elliptic equations can be investigated in terms
of Markov processes (e.g. Dynkin [3] and Ito-McKean [8]). On the other hand it
was known that a class of semi-linear parabolic equations plays an important role
in the theory of branching processes (e.g. Bartlett [2], Harris [5], Moyal [15], and
Skorohod [21]). The mathematical structure that reveals the mechanism of how
this non-linearity appears in the theory of Markov processes should, therefore, be
investigated systematically. Attempts in this direction were recently performed in
several articles, especially, in Moyal [13], [14], [15], Skorohod [21], and Ikeda-
Nagasawa-Watanabe [6], [7]. A branching Markov process Xt is defined as a
strong Markov process on a large state space S=\J%=oSn\J{d} having the following
branching property15

(1)

where Tt is the semi-group of the "large" Markov process on S and / is a func-
tion on S defined by

, if

), if ar=(

0 if y—A\J , 1± •*/ LI ,

where/ is a measurable function on S with ||/||==sup^€5 |/W|^1. Then

u(t,x)=Ttf(x), xeS,

is the (minimal)25 solution of a non-linear integral equation:

(2) u(t,x)=:
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1) Definition of the notation appearing in the following will be found in § 1.
2) This is taken to mean that if /^O, u(t, x)=Ttf(x) is the minimal solution of (2).
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where F is defined for a measurable function u on S by

(3) F[x,u]=Σqn(.
n=0

Γt, K, qn and πn appearing in the above equation have the following probabilistic
meaning: T°t describes the motion of one particle before the instance τ of the first
splitting i.e. T°t is a semi-group subordinate to Tt, K(x1dsdy) is the joint distri-
bution of τ and Xr_ for a particle whose starting point is xzS, qn(x)^Λ is the
probability that a particle splits into ^-particles at xcS, and πn(x,dy) is the distri-
bution of the ^-particles which have been produced by splitting at x.

It should be remarked that, in the above treatment, qn(x) is non-negative, n=l
must be excluded in the summation defining F in (3), and jΓJl(αO<l at some point
xεS. In order to eliminate the above restriction from the probabilistic treatment
of the equation (2), a method was proposed by Sirao [20].3) The crucial point of it
is to introduce new parameters "age" and "sign" to describe the state of particles.
We shall call a branching Markov process which has the additional parameters a
branching Markov process with age and sign.

Now, a fundamental problem concerning the general theory of branching
Markov process is how to construct a strong Markov process having the branching
property (1) by a given system of quantities {TJ, K, qn, πn} which describes funda-
mental nature of branching Markov processes and is given usually as an experi-
mental data in many applications. Several methods were given in [6] to construct
branching Markov processes. One is a probabilistic way in which the process is
constructed by piecing out path functions of one particle which is originaly given.
One of the other two analytic ways is based on MoyaΓs method given in [13], and
another one is through finding a solution of the non-linear integral equation (1).
The most fundamental one is, in the author's opinion, the probabilistic construction,
because this method is directly based on and reveals probabilistic structure i.e.
mechanism of piecing out of path functions of branching Markov processes.

The purpose of this paper is to give a probabilistic construction of branching
Markov processes with age and sign and to discuss some properties of the processes
constructed. In § 1 we will state the main theorem of the paper. A theorem on
piecing out of path functions will be stated in § 2. We will construct the Markov
process with age in § 3 and branching Markov process with age and sign in § 4 by
means of the theorem of piecing out. In § 5, main properties, especially the
branching property, of the processes constructed will be proved. A proof is given
in Ikeda-Nagasawa-Watanabe [6], [7]. The proof for the present case is essentially
the same as one given in [6]. We will give, however, proof of Lemmas for com-
pleteness. In § 6 we shall give some additional comments on probabilistic solutions
of the non-linear integral equation (2).

ACKNOWLEDGEMENT. It is my pleasure to express my thanks to Nobuyuki

3) Similar idea was used in [7] to discuss branching transport processes.
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Ikeda and Tunekiti Sirao. Ikeda read the original draft and gave me various
advice. My attention to Nagumo's equation was first brought by his suggestion.

§ 1. Main theorem.

Let D be a compact Hausdorff space with a countable open base, ΛΓ={0,1,2,3, •••},
and S=DxN. A point O, k)eDxN describes a state of a particle whose position
and age are x and k, respectively. We shall consider the following motion: A
particle moving in D and growing older produces (n—l)-sons whose ages are zero
at a random time τ and on x$D with probability q£(x) or ςfc(x), where #ί(#)(j£(aO==0.
Then if q£(ai)>Q, the ^-particles continue the same but mutually independent
movement in S=DxN, say positive world, but if #«(#)>0 the ^-particles make
transition to another world a copy of the original S=DxN and continue the same
but mutually independent movement. Then the ^-particles repeat such repro-
duction. Of course, if a particle is originally in another world, say negative world,
and #n(#)>0, then ^-particles immigrate to the positive world. That is, if + sign
apperrs on the shoulder of qn, then all particles stay in the same world, but if —
sign appears, all particles immigrate to the opposite world. Precisely speaking, to
carry out a technical procedure satisfactorily we prepare four copies of S, two of
them stand for positive world and the remainder negative world.

Accordingly a state of ^-particles can be described by a point of the product
space of /={0,1,2,3} and the n-fold symmetric topological product of Sn of S=DxN.
Therefore an adequate state space of the above mentioned motion is

S=DxN,

where Δ is an extra point added by the one-point compactification, and S°={d}xN,
where 3 is another extra point.

The precise meaning of Sn stated above is given as follows: Let Sc π )=φxΛOC W ),
(w=l,2, ), be the n-fold direct product of DxN. We identify a point ((a?ι,Aι),
(a?2, As), ••-, (a?n, A»)) with another point ((xπw>, A^D), (x*&)9 AJcC2)), •••, (#«cn), A^n))), where
(π(l),π(2), -~,π(ri)} is a permutation of {1,2, ~,n}. This identification defines a
equivalence relation. Sn is the quotient space of SC7l) by this relation. An element
of Sn will be denoted by (x,k) where x=(xι,xz, ~,xn) and k=(kι,kz, ,kn), and a
point of S will be denoted by (xtk,j).A)

We will construct a "large" Markov process on the "large" state space S by a
system of given quantities: (i) a conservative strong Markov process on D which
has right continuous path functions with left limits, which we shall call the basic

4) A point (x,k,j)eSnχf stands for the following state of particles: A fo-year old
particle is distributed at Xi, i= 1, 2, ~ ,n and if j=Q or 1 the w-particles are in a positive
world and if j=2 or 3 they are in a negative world. Our definition of state space S is
slightly different from the one given in [20], where ((xlt k^)t •••, (xn, knj) and ((#ί, k[\ •••, (xr

n> k'γff)
are identified if (#1? , XH) is a permutation of (x[, •••, x'n) and 2?=ι ^i=Σ?=ι k(.
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Markov process', (ii) Bounded non-negative measurable function c(x) on D, which
will be called the killing rate', (iii) A sequence {qn(x)\ n=Q,l,2, •••} of measurable
functions on D satisfying

Σ Itfn|(a0 = l, xzD,
n=Q

where \qn\=qZ+4K, tfί=tfnVθ, and g£=(—0n)Vθ; (iv) A sequence {πn(x,dy}\
w=l,2,3,--} of probability kernels defined on DxD^, where Z)(n) is the w-fold
topological product of Zλ

Our main theorem is stated as follows:

THEOREM 1.1. Assume there are given a basic Markov process on D and a
system of quantities {c, qn, πn} stated above. Then there exists a strong Markov
process Zt on S=(\J%=o S n x f ) \ J { Λ } which has right continuous path functions with
left limits before the terminal time ζ such that:

(i) Let Ut be the semi-group of the process Zί,5) / a bounded measurable
function on D and λ a positive constant. Then Ut satisfies the following extended
"branching property"

(1.1)

where

(1. 2) Ax, ft,y)=(-l)"/ayO(ar, ft),

where [ ] is Gauss's bracket i.e. [0/2], [1/2]=0, [2/2], [3/2]=1, and

wflf&i), if z=(x,k)ςSn, and |ft |=Σ*ί,
XX 1=1 ι=l

(1.3) / Λ(z)= k _ o

.0 , ΐ/ jzr=J.

(ii) Put

(1. 4) «(f, a?)= Ut£λ(x, 0,0), a?€D,

^^ it satisfies the following non-linear integral equation

5) The semi-group Ut of Zt is usually defined for a bounded measurable function g
on S with 0(4)=0 by

Utg( )=E.[g(Zt)l eS,

where E. denotes the integration with respect to the probability measure P. of the process.
However we define Utg by the above equation even when g is unbounded but g(Zi) is
mtegrable with respect to P.. Therefore it happens that Utg( ) blows up for some

6) For a function g defined on S, we write as (0)|z>(aO=g(#, 0, 0), xεD.
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(1. 5) it(t,x)=TVf(x)

where T^ is the semi-group defined in terms of the given basic Markov process
on D by

(1. 6) T^f(x)=Ex\f(xύ exp (tf-2)^)L

where

S t
c(xs(w))ds,

0

and F is defined by

(I. 8) F[x, u]=q0(x) + Σ 4n(x)\ πn(x, dy)ύ(y\
n-l JzjOO

where u is a measurable function on D and

)= f[ u(yt), if v=(yι,y* -,yn

The equalities in (1. 1) and (1. 5) are taken to mean that if the left hand side has
a definite value then both sides are equal.

Moreover when ||/||^r<l, there exists ε>0 depending on r and \\f\\ such that
f^*S

f λ(Zt), /e[0,ε), is integrable with respect to the measure P(x,kj} and hence u(t,x)
s~^>

= Utf λ(x,0,Q), where £€[0,ε) and x£D, has a definite value and is a unique local
solution of (1. 5) with the initial data f.

DEFINITION. We shall call the Markov process Zt which is stated in the above
Theorem a branching Markov process with age and sign. The constant λ appearing
in (1. 2) will be called a weight of age.

REMARK 1. For applications, it is useful to observe the fact that the existence
s~^

of a solution u(t,x) of (1. 5) is reduced to the integrability of f λ(Zt), an unbounded
function when Λ>1, with respect to the measure P(x,kj) of the branching Markov
process with age and sign. When the initial data / and the weight λ satisfy
11/11 <1 and 0</^1, respectively, there is no difficulty. In fact, under the con-

dition, f λ is a bounded function on S and hence u(t,x)=Utf λ(x,Q,Q) is well-defined
for all t^O. Moreover we have \u(t,x)\<l and therefore u(t,x) is the unique
global solution of (1. 5). The uniqueness follows from the following inequality: For
any r satisfying 0<r<l, there exists a constant c(r)>0 such that

(1.9)

7)
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provided \\u\\, \\v\\ ̂ r, (cf. Lemma 1.3 of [6]).

REMARK 2. Theorem 1. 1 is still valid when we take a non-negative continuous
additive functional φt instead of the one defined in (1. 7). In this case (1. 5) becomes

(1. 50 wtf,ar)=ΓiY(a?)+Γ ( K((x,ΰ),dsd(y,k))λ*F[y,u(t-s, •)],
Jo Js

where K is a kernel defined on SxS by

in terms of a Markov process with age that will be constructed in § 3.

REMARK 3. We assumed in Theorem 1. 1 that the basic Markov process is
conservative i.e. the life time ζ^oo, /Va.e., but it is useful in applications to
distinguish the following case: the state space D contains a point d as a terminal
point and #ζ_=<5, P^-a.e., where ζ is the first hitting time of δ. For example, xt is
the part of the ^-dimensional Brownian motion on a bounded domain U (cf. [3])
and D=U\J{δ] is the one-point compactification of U9 then this is the case stated
above. We will give a remark about this point when we construct a branching
Markov process with age and sign in § 3 and § 4.

REMARK 4. If we take

then

(1.10) F[x9u]=Σqn(x)u(x)»9
n = 0

and if we take 2 as a weight of age, then

where Tt is the semi-gromp of the basic Markov process. This is the typical case
appearing in many applications.

REMARK 5. We give a simple example. Let D be the d-dimensional Euclidean
space with one point compactification, the basic Markov process on D be the d-
dimensional standard Brownian motion, and let F be given in (1. 10) with a con-
dition \c(x)ΣZ=oQn(x)—c(y)Σ%=Q4n(y)\^r\χ--y\9 where γ is a positive constant and
\x—y\ is a distance of J9. Moreover we assume that c,qn(x) (#=0,1,2,3, •••)» and
/ are bounded continuous function on D. Then we can obtain from (1. 5) that

w(i,a?)=C/i/2(a?,0,0), j?€D, f€[0,e), ||/||^r<l, satisfies

(1. U) ~
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where Δ is J-dimensional Laplacian operator and ε>0 depends on r, (cf. Remark 1
above, and Theorem 1 of [10]). In the case of simple branching Brownian motion
(i.e. without age and sign), u(t,x)=Ex[f(Xt)]J x£Rd satisfies

(1.12) ^=-^

where ||/||<1, ί€[0,oo) and

FM=«-o

(cf. [6]). The difference between two cases brought by introducing age, sign, and
weight of age should be remarked.

§ 2. Preliminaries.

Since the construction of the branching Markov process with age and sign Zι
that will be given in the following sections heavily leans upon a theorem of
piecing out paths of Markov process [6], we will give a brief description of the
theorem to make this paper self-contained.

Let E be a locally compact Hausdorff space with a countable base and
E=E\J{d} be the one-point compactification of E (if E is compact, Δ is attached
as an extra point). Let {W,Nt,Px,xt,ζ,ΰt} be a Markov process on E=E(J{d} with
Δ as a terminal point, where W is the path space, Nt is the smallest Borel field
on W with respect to which χg(s^f) are measurable and ζ is the life time of xt i.e.
the first hitting time to J,8) and θt is the shift operator of path i.e. θt w(s)=w(tJ

Γs)J

(e.g. [3], [8]). We assume in addition that all path functions are right continuous
and with left limits, and the process satisfies the strong Morkov property: For every
JVί+-Markov time T and for any Borel set A of E, it holds that

where NT+={B\ B^N™ and for every t>0 Br\{w, T(w)^t}^Nt+} and T is said to be
Nt+-Markov time if {w\ T(w)^t}ςNt+.8>

Let μ(w,dx) be a probability kernel defined on WxE, i.e. μ(w, •) is a probability
measure on E and μ( ,A) is a A/oo-measurable function for any Borel subset A of
E. The kernel μ(w,dx) will be called an instantaneous distribution, if it has the
properties: (i) For ^€PFsuch that ζ(w)=0 or ζ(w;)=oo, μ(w,dy)=δά(dy), and (ii) for
any Λfί+-Markov time T(w),

(2.1) P*[μ(w, dy)=μ(θτw, dy\ Γ<α=

where ζ is the life time of xt.
Let Ω be the infinite product of Ω=WxE, i.e.

8) We assume that xt(w)=Δ for t^ζ(w). Nt+=
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(2. 2) Ω= Π Ω,, (Ωj=Ω),
j=ι

with the product Borel field

(2. 3) 3= Π &„

A , A

where <B(E) is the Borel field of E, and define a probability kernel Q(χ,dω) on
ExΩ by

(2. 4)

/\/ A ~ ^V/

Then there exists a unique system of probability measures (Px, xzE] on (Ω, <B)
such that for any bounded measurable function F(ω1

fω
z

y •• ,«>ri) on (Πj=ι ^,ΠJ=1 £Fy),

(w=l,2,3, ),

(2. 5) n-ι, dωn)

where ωJ=(Wj,Xj). The existence of such measure Px is guaranteed by lonescu-
Tulcea's Theorem (e.g. Loeve [11], p. 137).

Now we shall define a new process Xt on (Ω,<B,Pχ) by piecing out the paths
of the given Markov process xt as follows: First of all we put for ω=(w,

(2.6)
if

if

(at, Qx] is generally not Markov process, however we can obtain a strong Markov
process by piecing out xt infinitely many times. Putting for ώ=(ω1, ω2, •

N(ώ)=

we define Xt(ω) on (Ω, <£} by

(2.7)

oo, if such j does not exist,

if O^ί^

if

if

71 + 1

^Σ

Δ, if ίS
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and define the life time of Xt by

7V(S)

(2. 8) ζ(ώ)=
.7 = 1

and introduce a sequence of random times

It is easily seen that PX[Ω0] = I, where ΩQ={ώ;Xt(ώ) is right continuous with respect
to ί^O}. The shift operator θt of ωsΩQ is defined by

(2. 9) M=((ft-rtc«w*+i, **+ι), ωfc+2, •••), if r*

Let Γ(ώ) be a random variable on ΩQ taking values in [0, oo]. We shall call ώ and
ώ'€β0 ^-equivalent and denote as ώ~ώ' (£Γ) if: (a) Γ(<S)=Γ(<S'), (b) Xs(ω)=Xs(ώ/))

fors^T(ώ), and (c) if τk(ω)^T(ω)<τM(ω)^ζ(ω), then τ,(ώO^T(ωO<τ,+1(ά>/)^ζ(ώ/)
and rXώ)=r/ώ') for every y^ft, while if T(ω)^ζ(ώ), then Γ(ω')^ζ(ώ') and τ/ώ)
==τ/ώ/) for every y^O. Put

<Bτ={A; (i) AεtBΠΩo and (ii) if ώ€,4 and ω~ω'(Rτ} then ώ'eA}.

'̂ ^ ~ /^^Then ^^ is a Borel field of ΩQ and {^t:t^0} is an increasing family and
where TVί is the Borel field generated by Xg, (s<t).

On the basis of the above notation our theorem reads as follows:

THEOREM 2.1 ([6]). Let {W,Nt,Pχ,xt,ζ,θt} be a strong Markov process on
E—E\J{Δ] which has right continuous path functions with left limit with Δ as a
terminal point, and μ(w,dy) be an instantaneous distribution. Then the system

{Ωo,<Bt+,Pχ,Xt,ζ»ΰt}9:> defined above is a strong Markov process on E which has
right continuous path functions with left limits before ζ with Δ as a terminal point

/v /v

having the properties (i) The sub-process {Xt,Px,t<τ} of {XtPx} is equivalent to the
Markov process {xt,Pχ,t<ζ\, and (ii) for Γs$(E)

(2. 10) Px[XτsΓ, {ω w^B}}= { Px[dw]μ(w, Γ),
JB

where B belongs to the Borel field generated by xsι 0^5<ζ, and we write α>=(ω1, ω2, •••)
and ωl=(Wi,Xi\ £=1,2, •••. Moreover if xt(w) is quasi-left-continuous and ζ is non-
accessible (i.e. totally inaccessible in ihe strong sense [12] p. 130), then Xt(&) is
qua si-left- continuous before ζ(ώ).

§ 3. Markov process with age.

We will construct a Markov process with a new parameter age from a given

9) tβt+= ΓU>o«S?ί+ε We may take, if necessary, a completion of (βt+ instead of
the standard argument (e.g. [3]).



478 MASAO NAGASAWA

Markov process and a killing rate c(x). Let D be a compact Hausdorff space with
a countable open base. Let {W,Nt,Px,xt,ζ,θt} be a conservative strong Markov
process on D which has right continuous path functions with left limit. In the
following we shall call the process xt the basic Morkov process.

Taking a measurable function c on D> we put

)=\ \c\(x£w))ds,
0

= \ c+(x.
o

(3.1)

where we write c+=cVθ, c~=(— c)Vθ, and |c|=c++c~.
Now let {W, Nt, Pχ,xt, ζ,0«} be a sub-process10) of ^ that is obtained from xt

by curtailing the life time with killing rate \c\(x\ such that

(3. 2) Ex[f(xt)}=Ex[f(xt}mtl

where

(3. 3) mt(w) = exp ( — ̂ ί(̂ )).

First of all we have

LEMMA 3.1. Let g(x,s) be a bounded measurable function on Z)x[0,oo) and
ί, then

(3. 4) EAg(*t-, 0, ζ^t]=Eg(x,9 s)e~" \c\ (xs}

Proof. ([16]) It is sufficient to prove (3.4) for g(x,f)=f(x)e~λt, bounded con-
tinuous / on D and Λ>0. In this case we have

=lim

Therefore the condition (c. 2) of [6] is automatically satisfied i.e.

10) Cf. Dynkm [3] or Ito-McKean [8].
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(3.5) px[ζ=t]=0 for any fixed f€[0,oo).

Now let x\ be an infinite collection of xt, precisely speaking, we define x\ as
follows: put

#={0,1,2,3,.-},
(3. 6)

where WΔ is an extra point, and

\(xt(w),k), if w=(w,k), and

[j, if W—WΛ or t^ζ(w\

fCWO, if

\(
=J

ζ ( '̂)=

f(Λΰ;, *), if

(3.7) .; /; , a f > - f f

where AT; is the Borel field generated by ^(^<0» Nl»= Vί>0 A/";, and we write as
Λ?ϊ = (jJί,*ί)

Clearly {Tf'^^P^.fc),^^',^} is a strong Markov process on S=(DxN)\J{A]
which has right continuous path functions with left limits with Δ as a terminal
point.

Next we define a probability kernel π(w,dy) on W'XS by

if
(3.8)

if ζ («r)=0, or +00,

where

i,*, if c+0*0^0, and 2r=(y,A/V

if
(3.9)

11) When £> contains a point δ as a terminal point of the basic Markov process and
#ζ_ = <5, where ζ is the first hitting time to δ, we put π'((dtk\dyu)=ds(dy)dk,k^
y =(y,k"), and assume c(<5)=0.
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Then it is easily seen that π(w',dy9) is an instantaneous distribution of x*t. We
can get, therefore, a strong Markov process {Ω, Nt, PC*,*), (x, k)eS, Xt=(xt, kt), ζ, θt]
on S which has right continuous path functions with left limit with Δ as a termi-
nal point by means of theorem of piecing out stated in §2. We shall call this
process Xt=(x,kt) on S Markov process with age. We give a picture of this
process in Figure 1, where

(3.10)

σ(ω)=mf {t',Xt$Dxk, when kQ(ω)=k},

=00, if { } is void,

<7o(α>)=0, σι(ω)=σ((o), σn(fo)=σn.1

£iv>*"ws3£3

Dx3

Dx2

Dxl

DxO

Figure 1.

LEMMA 3. 2. Let f be a non-negative measurable function on D, λ a positive
constant, a a non-negative constant, and

S
t pί
b(xs(w))ds, bt(ω) = \ b(xs(ω))ds,

o Jo

where b is a non-negative measurable function on D. Then we

(3.11) Ewl
n\

where the expectation Ex of the right hand side is that of the basic process, and
f λ is a function on S defined by

12) σn (w=0,1, 2, •••) is AΓί+-Markov time, and Pcaj.fcjfsupn σ n<oo yn, tfτι<ζ]=0.
13) We will use thς same notation bt, but it may produce no confusion.
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f λ(x,k)=f(x)λ\ if (x,
(3. 12)

Proof. By the way of construction of Xt, we have E ( X ί k ) [ f A(Xt)e~abl;t<σ]
=Ex[f(xt)esφ(—abt—φt)]λ*. Thus (3. 11) is true for n=Q. Assume that (3. 11) is
valid for n—\. Then we have

noting (3. 4) and kβ=kQ+\, we can continue the above, using the induction hy-
pothesis and Lemma 3. 1, as

(n—L)l

Thus (3. 11) is true for «.

COROLLARY 3. 3. Fί?r α non-negative measurable function f on D and a positive
constant λ

(3. 13) E

(3.14) E,x,k,[

REMARK 1. From (3. 11) we have

(3. 15) E^^[f'λ(Xt)') σn^t<σn+ι]=

REMARK 2. If we take λ=2 and put

14) When λ>l (λ<l), λ+°°= + co (+0) and when ;=1? ;+°°=l.
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then

(3.16) T'tf(x)=Eχ[f(x) exp

Therefore, if Eafex.p(Jίc(xB)ds)']^e?<fi with some constant c0>0, it defines a semi-
group on B(D\ the space of bounded measurable functions on Dy which may
describe the creation of mass.

§ 4. Branching Markov process with age and sign.

We shall construct a branching Markov process with age and sign which has
the Markov process with age as a "non-branching part" (this terminology comes
from [6]). Let {Ω, Nt, PC*,*), (xyk)£DxN, Xt=(xt,ks\θt} be a Markov process with
age on S=(DxN)\J{Λ} constructed in the previous section, but here we assume
that c(x) which appeared in the first paragraph of § 3, is non-negative. Taking the
same f unctioh c, we put

(4.1)

and

(4. 2)

Let {ΩtNttPix.k-ίtXtfζyΰt} be the mrsub-process of the Markov_process with age Xt.
Next we make the n-fold symmetric direct product {Ωn, TV?, P?x>k}, X?, ζn, θn

t] of Xt

which stands for n-particles moving on and growing older independently. Here

Ωn=ΩxΩx-xΩ,

ζ»
(4. 3)

if t<ζn(ω\
Xnt(o>)=

if ^

where ω=(ωl, ω2, ~,ωn)GΩn and p is the natural mapping from the direct product
SCW) onto the quotient space Sn. Let TV? be the smallest Borel field with respect to
which X" (s^t) is measurable and put for AsN",

(4. 4) Pz[A]=\ _
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PROPOSITION 4. 1.1B> The n-fold symmetric direct product {Ωn, JV?, P£, *>, Xn

t, ζn,Θn

t}
defined above is a strong Markov process on S^Uί^} which has right continuous
path functions with left limits, with Δ as a terminal point.

Now we prepare four copies of the direct sum of all X", (»=1,2,3, •••)• Strictly
speaking we construct a large Markov process Z\ on S in the following way: We
put

(4.5) ^

where S=DxN, #={0,1,2,3, ...}, /={0,1,2,3}, S°={d}xN, d is an extra point, and
Sn, (n>Y) is the symmetric w fold direct product of S. Moreover we put

(4. 6) Ω»= U Ωnxf, Ω°xf={a)dkJ; keNJef]
n=0

where {ωd1cj} are extra points, and

ίζ», if ω°=(ω,y), ωeΩn

y

Cβ(ω°H[+00, if ω°ςΩQxf,

<(Xn

t(ω\j\ if ω«=(a>,

(4.7) ^(^-J, if ω°€βwX/, ί^

if a>o=ωdkJ€Ω°Xf,

if ω°=(α>,

if G)Q =

Let #? be the smallest Borel field with respect to which ZJ, (s<£) is measurable,
and put for

sΩn}}, (x,

n,*.ΛM=^c.a*/^λ
(4. 8) -<

PJ is any probability measure on (Ω^^N^) such that

,PS[2i(α>0)=J for all ί€[0,oo)]=l.

PROPOSITION 4. 2. TTte 5y5/«w {Ω°, N°t, P\χ,k,i), Z\, ζ°, Θ°t} defined above i$ a

15) A proof is found in [6J.
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strong Markov process on £={(U~=oSw)x/}U{Λ} which has right continuous path
functions with left limits with Δ as a terminal point.

The process Z\ is a mathematical model of motion of arbitrary number of
particles moving on and growing older independently in four countries (the same
copies).

We will write in the following as Z\=(X\J\}.^
The next step we have to do is to define a law that governs the situation of

splitting of particles and that decides a country where those particles will imigrate.
Let {^;^=0,1,2, •••} be a a sequence of bounded measurable functions on D

satisfying

00

(4.9) Σ ltfn|(a?)=l, xsD,

where \qn\=q%+qή, #ί=#nVθ, qΰ=(—#n)VO, and take a sequence {πn(x, dy);
n=l, 2, 3, —} of probability kernels defined on DxD^n\ «=1,2, 3, •••, where D^ is
the n-fold direct product of Zλ17)

First of all we define a probability kernel on SxSn, w=0,1,2,3, ••• by

, ft)),

(4. 10) *»((*, /), d(y, k)}=π'n((x, /),

where (y,k)=((yι,k1),~ ,(yn,kn)')€Sn and p is the natural mapping from the ^-fold
product SCW) to the n-folά symmetric product Sn, and put

π+((x, /), d(y, ft)) = .

(4.11)

fcft)) =

71 = 0

π+ and π~ are kernels defined on Sx(U«=oSw) and π++π~ is a probability kernel on

Next we define kernels μϊ and ̂  on (^n{ω;0<ζw(ft>)<oo})χ(Ufc=0S
A;)(ri),

n=l,2,3, by

ι, fti), rf(ara, fe), — , < (̂α:w, ftn))
(4. 12)

n (-) _ w

= Σ /(c«c.)-c(.«)iW ^+(^cc«<)-(ω<), ί(Λ?<, ftί)) Π δ{2rnw-t*J)i(d(Xj9 fty)),
1=1 .;=!

16) XJ takes values in USU>SW, and /J in /.
17) When D contains a point 5 as a terminal point of the basic Markov process and

ς_=<5, we put |^|(δ)=l (therefore |#n|(#)=0, w^l) and πί(δtdy)=δs(dy).
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where we write ω=(ωl

y ω2, •••, ωn)eΩn. Then we put

485

(4. 13) μ+(ω, d(x, k» = μϊ(ω,

where γ is the natural mapping from (U£=oSfc)cri) to U£US f c defined below:

(4.14)
(d,ki+kz-]—kn), if (xt, ki)=(d,ki) for all ί=l,2, - ,n,

p((x\, k\\ (xl, kΐ), •••, (a?J*i, ̂ f1), (Λ?2> ^D> •"> W, ft), •••, (^nn, &ϊw))> otherwise,

where we take all (aτt, fc)=((a?J, A<)> •••> WS *?*)) which differ from (3,^), and ^ is
the natural mapping from USUS ( Λ ) onto U?=oS".

Finally we define a probability kernel χ<y°, J(aτ, A:,;)) on Ω°xS by

(4.15)

if ω°=(ω,j)ζ U Ωnxf and
71 = 1

δMx,k,j'y), if α>°€ U 5WX/ and ζ°(ω°)=0 or +00,

where Λ and ;2 are the functions of y (of ω°=(ω,j)) defined by the table:

Table 1.

A picture given in Figure 2 describes the mechanism of transition of particles
governed by the kernel μ(ωQ,d(x,k,j')) defined above (but only for #2).
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(x,k,0)
S=DxN

(χ,k,2\
f

C*,0,D

U 9W vΠ i i Qw v 1O X U U o X 1
n=o n=o
v^

ί
Figure 2.

U S w x 2
n=o n=o

We may write the transition mechanism more simply and symbolically as shown
in Figure 3, because the crucial point is the change of the variable j (of (X A:, j))
depending on the sign.

S

Figure 3.

The symbol (+) and (—) in Figure 3 correspond to the sign appearing on the
shoulder of q£ i.e. to the case q£(x)>Q and #w(#)>0, (n=Q, 1,2, •••), respectively.

It is clear from the definition that the kernel μ(ω*,d(x,k,j')) is an instantaneous
distribution for Z°t. Consequently we can apply Theorem 2.1 to the Markov process
Z\ and the instantaneous distribution μ. Hence we have obtained a strong Markov
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process on S which has right continuous path functions with left limits before the
life time ζ. We will denote hence-forth the process as {Ω, Nt, Zt=(Xt, Kt, ft),
P(x,k,v,(x,k,j)ζS,ζ,θt} and call it a branching Markov process with age and sign
(corresponding to the basic Markov process xt and the system of quantities {c, qn, πn})
The components Xt, Kt, and /« of Zt stand for positions, ages and sign of particles
at instant t, respectively, taking values in Uπ=o£)c n ), USUAf^, and /.

Theorem 2.1 implies that this process has the following properties: (i) The
sub-process {Zt, P(Xtkj},t<τ} is equivalent to {Z{, P(x,kj),t<ζ°}, where τ is the "first
branching time (splitting time)'" of Z«, i.e.

(4. 16) r(αO=inf {ft J

and (ii) as a particular case of (2.10)

(4.17)

= Σ
71=0

where ZT-=(x, /, 0).
Thus we have obtained a Markov process which was expected to exist in

Theorem 1.1. We will prove in the next section the remaining properties of the
process that are stated in Theorem 1.1.

§5. Some properties of Zt=(Xt,Kt,Jt).

In this section we shall prove that the semi-group Ut of the process Zt has
the branching property (1.1) and provides a solution of non-linear integral equation
(1. 5). Proof of the branching property of Zt can be done in the same way given
in Ikeda-Nagasawa-Watanabe [6]19) with minor notational change caused by new
components Kt and ft of Zt, which will be dealt with the following lemma and
Lemma 5. 2.

LEMMA 5.1. Let f be a measurable function on S which is independent of k
and j. Then

(5.1) ^.ftj)[(-l)CJ^l''7(*)]=(-l)y^l*l£<ίcAθ) K-lF</2]^ι/(X)]

where [•] denotes Gauss's bracket and |*| = Σ?-ι fe if k=(kί9kZ9 •••, kn) The equality
in (5.1) is taken to mean that if the left hand side has definite value then both
sides are equal.

18) τ is JV«+-Markov time.
19) Cf. Proof of the equivalence theorem, especially, Property B. Ill -> Branching

property.
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Proof. According to the way of construction of the measure P(Λ,*,/),20) the left
hand side of (5. 1) is equal to

=/, say.

Now remembering that P(x,k,j} is the direct product of the sub-process of the
Markov process with age,21) and noting the following

Xω°, d(x', A:/,y/))(-l)c/'/^l*/l/(Λ;0=^IJΓc0-lXω0, d(x', k' J/))(-l)

which follows from the definition of the kernel μ, we have, using Corollary 3. 3,

(<o<>, d(x', V,j'y)(-ϊf''MλMf(x').

On the other hand if we take account of the function relation of jι and jz,
given in the Table 1 and the form (— lp'//2] of the integrand, we have

which is the right hand side of (5. 1).
Let us introduce some notation to state fundamental properties of Zt. For a

bounded measurable f uction / on D, we put

(5. 2) Z/FWKar, &, i)=E(x,kJ}[(Zti rr^f <rr+J,

when fiλ(Zύ is integrable on {τr^t<τr+ι} with respect to PC*,*,/), where rr is
defined by

r0(ω)=0, rι(<y)=τ(ω), and

We write also U°t instead of U(

t°\ Let ψ be the joint distribution of τ and Zr, i.e.

(5. 4) ψ((x, k, j), dsd(x', k', /)) =P(*,k,

Then we have the following property that corresponds to the property B. III.
of [6]. We will, therefore, call it also property B. III.

20) Cf. § 2, (2. 4).

21) Cf. (4. 8) and (4. 4).
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[Property B. Ill] Let f(x) and f(x, v) be bounded measurable functions on D
and £>x[0, oo), respectively. Then the following two properties hold:

U\fλ(x, k,i)=(

φ((x, 0, 0), dsd(x' k', j'))f(^srt(x', k', /')
JoJs

(ϋ)

= Σ * Φ((xi, 0, 0), dsd(x', k',i') )f(yλ(x', k',j') Π U l [ f ( λ } ( x P , 0, 0),2

ι=lJθJS p=l
p*ι

^^where x=(x1,xΐ, •• ,x ώ, k=(k1,kΐ, ---.fen), and f λ is defined in (1. 2).

Proof, (i) is verified as follows: For x=(xι, •••, xn) and k=(kι, •• ,kn~),

U\ fλ(x, k, j)=E(xM) itftZά t<τ}

but since P(x,k,o) is equivalent to the direct product measure P(x,k) of the subprocess
of the Markov process with age,2!° the above line is equal to, by Corollary 3. 3,

, t<τ\

(ii) is verified as follows:

but since when ω=(ω1,ωz

9 ,ωn), τ(ω)=inf (r(ω*), f=l, 2, •••, ri), we can continue as
follows:

22) When a?e£>, Z/ϊ[/(-, s)-^](a?f 0, 0)=C7,°[/( f s) ,ί](a?, 0,0), because Z^S, ί<r, P(^0,o)-a.e.
and /(., 5).̂ , &)=/(-, 5).^(y, AJ), (

23) Cf. (4. 8) and (4. 4).
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= Σ ^(-l)υ''nE(xM[f( ,τ) λ(Xf,Kr) ,Jt=j',τ=τ(ω^ds,s<τ(ω^, for
j' = Q 1=1 Jo

= Σ Σ \\-W'mEltjt,®\\[Λμ(ω\d(lf,k,jy)df.J.f( ,s) ί(v,K)
j' =Qι = l JO L[JS

Π/( ,
p*ι

= Σ Σ Γ(-D°'Λ1£Uβ.o)ΓLχ
/=<H=ιJo LJs

•Π £(,,.,

= Σ
1=1 JO

completing the proof.

LEMMA 5. 2. For a bounded measurable function f on D and positive λ, it
holds that

(5. 5) U ¥ > f ( x , *,Λ=(-l)y^'*' U?λ(x, 0, 0),

(5. 6) Utfiλ(x, *,Λ=(-l)y^'*» ϋi Ax, 0,0).

These are taken to mean that if the left hand side is definite then both sides are
equal.

Proof. We prove (5. 5) by induction. When r=Q, (5. 5) is nothing but (i) of
Property B. III. Let us assume that (5. 5) is valid for r^O.

where we used (5. 5) for r. Then Lemma 5. 1 implies the last line is equal to

24) Cf. (4. 7) and (4. 3).
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which proves (5. 5) for r+l. (5. 6) follows from (5. 5) and

ε/i/^= Σ z/rA
r=0

which is verified by P(*,*,y)[limn^roτΛ=ζ]=l (cf. (2.7)), completing the proof.

We shall state several Lemmas which correspond to Lemma 1. 2~Lemma 1. 6
of [6], Proof of our Lemmas here can be performed by the same way as [6]
making slight modification of notation, which we can dispose of mainly by Lemma
5. 2. All equalities that will appear in the following lemmas are taken to mean
that the left hand side is definite if and only if the right hand side is, and if this
is the case both sides are equal.

LEMMA 5. 3. For a bounded measurable function f on D and positive λ,

(5. ?) UK u<& Ate ft, y ) = Γ L #(te ft, Λ dυdw, ft', yo) J7$v Ac*7, ft7, y')
JsJS

(5. 8) c/r 1 } * , ft, y>= A #te *> Λ Λrfί*', ft', yo) up.
JoJs

Proof. The above equalities are direct consequence of the strong Markov
property of Zt. In fact,

r/, f t 7 , Λ] E W , f t ' , /),
oJs

which proves (5. 8). Next we prove (5. 7).

taking account of {ω]τ(ω) = s+τ(θ&),s<τ(ω)} = {ωis<τ(ώ)}, this is equal to
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JsJS

which proves (5.7).

LEMMA 5.4. For (α:,0)€Sm, a positive constant λ, and a bounded measurable
function f(x,s) defined on .DxtOjOo), we have

, o, 0),

(5. 9) = Σ Γ ί <*((««. 0. 0). rfaίCe'. k' ,j'))f(^λ(x' ,k',j')
1=1 JθJS™>-(n-l)χj

Proof. If we put #/, where a is a non-negative constant, in (ii) of Property
B. Ill instead of /, and compare the coefficients of am of both sides of (ii), then we
can obtain (5. 9).

LEMMA 5.5. Let f i ( x , t ) (ί=l, 2, •••) be bounded measurable functions on
Z?X[0, oo) and Λ>0. Then for m^n—l, m^n, and (x, 0)€Sπ, ̂

φ((x, 0, 0),
"

(5.10) =\ ΣT^ΓV Σ , ,M Σ**\ ψ((xt,Q,ty,dvd(x',k',j')
Joι=ιl m Knt-n+o (n—1)! '- -

\n-lj

A(-lF/a Π £c.,.o.o

where Σπ denotes the sum over all permutations π on (l,2,- ,m), Σcm-ra+i) the sum
over all choices (qlf q2, •••, ^m-n+i) /row (1, 2, •••, w), Σ* ̂  ^^m over all permutations
π on (#ι, •••, #m-n+ι) ^wrf Σ** ̂  sum over all permutations π on (A, •••, /n_ι) w AfcA is
/A0 remainder of (1,2, •••, w) excluding (qίt •• ,^m-w+ι)

Proof. If all /t are the same ones, (5. 10) reduces to (5. 9). In order to deduce
(5. 10) from (5. 9), we have to use a formula of permanent: Let (alj) be a mXm-
matrix, then we have
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m m / m \ m /m—l \

Σ Π *•«>..; =Π(Σβ*.,)- Σ Π(Σ «*,./)+
* .7=1 .7=1 \fc=ι / (*ι, ",*m-ι)^=1\β=1 /

m /m—2 \ m

+ Σ Π Σ «*,..;)— +(-D"-1ΣΠβ*.ί.(*l,-,*TO_2).; = l V=l / fc .7 = 1

where Σ (*!,....*,.> denotes the sum over all choices (&ι, •• ,A r) from (1, - ,m). By
means of this formula the integrand of the left hand side of (5. 10) can be expressd

r*\s

as a sum of functions of the form g λ therefore we can apply (5. 9) to each term
and verify (5. 10) as follows. The left hand side of (5. 10) is equal to, putting

φ((x, 0, 0), dv ώ)-
ml q=ι

G ι—1 \ m ~ _ ' 1

ε/*β( .«o ) ^)+-+(-IΓΣ/*( ^) )̂ K=1 / k=l J

and by (5. 9) in the previous lemma, this is equal to

Σ Π ^Φ((xi,0^dυdz')^\(Σfq( ,υ)) λ(z') Π ̂ ΓfΣΛ(
ι=l Jθ JSW-(n-l) mi I \g=ι / ί,dFt L\Q=1

- Σ

Applying again the formula (5. 11) of permanent to the integrand { } above, we
can express the above line as

, 0, 0), dv d(x', W,j'V\ Σ WΠ+1

where h = l,2, —,m — n + l, and {hp;l^p^n,p*i} = {m—n+2,—,m}. Since
w!=(Λ)(«-l)!(0ί-Λ+l)! and Σ.=Σcm-n+i) Σ** Σ*, this equal to the right hand
side of (5. 10).

LEMMA 5. 6. For (x, 0)€SW and a bounded measurable function f on D, we
have
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Σ f Σ (Λ Φ((xt, 0, 0), dυ d(x', k',j'))U™ft(x', k'J')
rL+ ~+rn=r Jθι=l JS

(5. 12) [] Ui[UZ?f3Kxr, 0, 0)

= Σ Πu™f • *(*t,o,θ),
r1+.. +rn=r+l t=l

where Z^+.-.+r^r denotes the sum over all combinations (rr rn) of non-negative
integers such that n H ----- \-rn=r, permitting n=r3.

Proof. If we put g<r*>(v)=UlUpifiλ(xi,0,0), then the left hand side of (5. 12)
is equal to, using (5. 7) in Lemma 5. 3,

Σ Σ d(-g
rι+» +rn=r J(H=1 p^i

Replacing n+1 by n and noting dg^(v)=Q, we can express the above as

Σ
Π+ .+rn=r+l Jo

Σ Π s-crί)(θ),
r1+-+rn=r+l τ=\

which is equal to the right hand side of (5. 12).

LEMMA 5. 7. For (x, k)$Sn, we have

(5. 13) U?>λ(x9 *,Λ=(-l)yΛ3 Σ Π U^&i, kif 0).

. When r=0, (5. 13) is just (i) of property B. III. Let us assume (5. 13)
is true for 1,2,3, —,r. Since Lemma 5. 2 implies

1)/(α;, 0, 0),

it is sufficient to treat U? +1)/l(α;, 0, 0). However by Lemma 5. 3

/= J7<r +D/75(a:, 0, 0) = Π A #(*, 0, 0),

and hence we can apply (5. 13) to the integrand Uγ2sf λ(x',k',j') by the induction
hypothesis, Then applying Lemma 5. 5, we have
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ι= Σ Σ Σ T Γ Y Σ -T Σ* ψ((χt,o,θ),dsd(X',k'j'))
m=n-lr1+r2+ "+rm=r Jθt=l / "* \ (ra-ra+1) (H — 1J1 J<SW-n+ixj

U-i/

• I >«» l-i-ni Σ*mrΓ ϋΉ A*ί, o, 0)K(-iF/a 1 Π ϋi[ W A(*ί» o, 0),I ym—n-\-L)\ h=ι J p%t

where r^=rqιt^9 ^**=^c3,)> and Σ* and Σ** are given in Lemma 5. 5. Noting
that

Σ Σ = Σ Σ Σ

=

we can express / as

oo pi n 1
/ = y V \ V

J

_ - _
ά-l %+...+ rtJ_1+r'=r Joz^ί / ^ \

\w-ι/

• ( Σ m If' U™fr(x'h, 0, 0)^A(-1)"'« 1 Π WIUP? A(*ί» 0, 0)
lr« + -+rSTO-7!l

=r' ft=1 J P*1

7 - τ i,,ι=l Jo m=n-l / AΛί \ (m-n+1) r1+.-+rrl=r Jsm-n+lχj

(n-l)

',k',j') π c7i[^a

where we used the induction hypothesis for r'<rand wrote (rlf rz, ~,rn) instead of
(nv n2, •••, nn_v /). Hence we have

S ί n Γ* ^ /̂ ^'

Ot=l JS p*τi

n r^

by Lemma 5. 6. Thus we have obtained (5.13) for r+l.

We are now ready to prove the branching property of Ut.
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PROPOSITION 5. 8. The semi-group Ut of Zt has the branching property.

Proof. First of all we note PU,*,/) [limn^ooτn=ζ]=l. This follows from the
construction of Zt (cf. § 2, especially (2. 7)). Therefore by Lemma 5. 7 we have,
taking (#,ft)eSw,

(or, ft, Λ = Σ ^ Γ A*, ft, JO
r=0

=(-i)ϋ/2]Σ Σ Π
r=0 r1+...+rn=r ι=l

=(-Dϋ/2] Σ ••• Σ Π c/^
(5. 14)

On the other hand since (5, &, ) and Δ are traps, we have

(5. 15)

(5.14) and (5.15) prove the branching property of Ut.
Now we shall prove (1. 5) of Theorem 1.1. At first we define a kernel π

(Sx{0})x# by

where π+ and π~ are defined in (4.11).

LEMMA 5. 9. Let Blf B2, and BB be Borel subsets of [0, co], DxNxf, and S,

25) We define Utf~λ(x, k, j) when f^λ(Zt) is integrable with respect to P(x,kj)-

on
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respectively. Then we have

(5. 17) tfor.o.o^W/i,,̂ ^

Proof. This follows directly from the way of construction of

497

In order to write down the integral equation which is satisfied by Utf λ(x,Q,Q),
we have to introduce some notation:

(5.18)

F [x, u] =
n=l

, 0, 0),

πn(x, dy)ύ(y),

Γ r_€rf(y,A,0)],

where / is a bounded measurable function on D.
In the following we shall assume that u(t, x) has definite value in [0, T),

Γ€(0,oo], that is, f^λ(Zt) is integrable with respect to PC*.O,O). Then we have by
the strong Markov property of Zt

u(t, x)=Eto.w[

By Lemma 5. 9, the second term of the right hand side is equal to

/= s, Zr_ e d(y, k, 0); π((τ/, k, 0),

oJs
(x, ds d(y,

, *), , V, 2) ,

but by the branching property of Ut and (5. 6) in Lemma 5. 2, we have
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, k', l)=λ\k'\(Ut.sf^\D(y'\

', k', Z)=-

and hence

!=(' ( K(x, dsd(y, *))**(#(»)-«•(»))+ Σ (<Zί(2/)-<K(?/)) π»(v, dy')u(t-s,
im

= K(x, ds d(y, k))λ*F[y, u(t-s,
o js

Thus we have proved that u(t, x) satisfies the following non-linear integral equation.

PROPOSITION 5. 10. If f λ(Zt) is integrable with respect to PGC.O.O) for /e[0, T),
/^w'

then u(ttx)=Eίx,<>,(l ) [ f λ(Zt}} satisfies

(5. 19) u(t, χ)= U°tf~λ(x, 0, 0) +('( K(x, ds d(y, k))λ"F[y, u(t-s, •)],
JO JDXN

where f is a bounded measurable function on D ane λ is a positive constant.

LEMMA 5. 11. For a non-negative measurable function f on D, we have

(5. 20) ( K(x, dsd(y, *)W*/(y)= T¥>(c f)(x)ds,
JDXN

(5.21)

where T^ is the semi-group defined in terms of the basic Markov process xt on D
by T\*>f(x)=EAf(xi)e«-*>"}.

Proof.

K(x,dsd(v,K»λ*f(v)
DXN

=/, say.

26) {Xt, P(x,k)} is the exp(—^ί)-subprocess of the Markov process with age where
φt=ίίc(xs)dst cf. the first paragraph of §4.

27) {Xt, Pc#,fc)} is the Markov process with age.
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Since dψ,=c(x,)ds, we have

By Corollary 3. 3, we have

(5. 22) £W(c /)

Thus we have proved (5. 20).
Next we show (5. 21);

where we used Corollary 3. 3.
Combining proposition 5. 10 and Lemma 5. 11, we have

/•̂ ^PROPOSITION 5. 12. If f λ(Zt) is integrable with respect to PU.O.O, then u(t,x)

satisfies

(5.23) u(t,xϊ=

where F is given in (5. 18).

Now, in the following we will prove the last statement of Theorem 1. 1. First
of all we need the following lemma.

LEMMA 5. 13. For an initial data f satisfying \\f\\^r<l, there exists ε>0
depending on ? and \\f\\ such that there exists the unique local solution v(t,x),

0, ε), of the integral equation (5. 23).

Proof. For any r satisfying 0<r<l, there exists a constant c(r) such that for
bounded measurable functions u and v on D,

(5. 24) sup sup \ύ(x)-d(x)\^c(r)\\u-v\\,
n xζDΠ

provided \\u\\, IHI^r, (cf. Lemma 0. 1 of [6]). On the other hand we have
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(5. 25) \F[t, u]-F[x, »]| £ Σ lί.(«)l sup sup \ύ(x)-$(x)\.

Therefore it holds for u and v satisfying ||«||, IMI^r that

(5.26) \\F[;u]-F[;v\\l£cV)\\u-v\\.

Hence we are able to apply a Theorem due to Segal ([19] Theorem 1. 1, cf.
also Kato [9]) to the present case, that is, if we put

then we can find ε>0 such that un(t,x) converges for ί€[0, ε) and it supplies a
unique local solution of (5. 23), and hence we obtain the assertion of the lemma.

Next we borrow the following lemma from [6],28) which is easily proved by
induction for n.

LEMMA 5.14. // vt(x) is a solution of (5. 23), then it satisfies

n n
/r- Q/7\ TT ΛP(J} / \ 1 Γ TO'(5. 27) 11 Ί s Vt-s (Xί) = 11 -Π

τ=l τ=l

PROPOSITION 5.15.29) // vt(x) is a solution of (5. 23) and if we put

if (x»

(5. 28)

then ϋt satisfies the following integral equation of renewal

(5. 29) ϋt(x,k,fi=Uϊfiλ(x,

28) Cf. Lemma 4. 4 in [6].
29) This proposition is stated here in its own interest. We shall not use the pro-

position to prove the last statement of Theorem 1. 1, but we use a version of it in the
following proposition.

30) This is called M-equation in [6J.



BRANCHING MARKOV PROCESSES 501

where

ψ((x, λw), dsd(x', k',j'))=P(x>

Proof. Since ϋt(x, k, f) has clearly the following property

ϋt(x, k,j)=ϋt( )\D λ(x, k, j),

the equation (5. 29) can be written in the form

T
J=l

(5. 30)

(x,

by the Property B. Ill and Lemma 5. 11. However (5. 30) follows directly from
(5. 27).

PROPOSITION 5.16. For any initial data f satisfying ||/||<r<l, there exists
r>±s

ε>0 depending on r and \\f\\ such that f λ(Zt), ί€[0,ε), is integrable with respect to
the measure P(x,kj} of the branching Markov process with age and sign, and hence

r^f

u(t, x)=Utf λ(x,Q,Q), where ίe[0, ε) and xsD, is a unique local solution of (5. 23).

Proof. Let / be a non-negative31) measurable function on D such that ||/||^
First of all we remark that Lemma 5. 13 is valid when we replace F in (5. 23) by

(5. 31) |F| [x, u] = \qo(x)\+
n=l

Let vt(x\ ^e[0, ε), be the solution of (5.23) with |F| instead Of F, the existence of
which is assured in Lemma 5. 13. Then vt(x) satisfies (5. 27), where F must be
replaced by |F|. Put

(5>32)

6fa, kj)= Π vfaW, if (x,
ι=l

Then it is easy to see that vt satisfies

31) |/ /i| = ||/| /i| Therefore it is sufficieent to consider a non-negative/.
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(5. 33) ϋt(x, k, j)= Ul \ft\(x, k, /)+ Γ ( ̂ (fo A, j), ds d(x', k', j'))
JoJs

vt.s(x',k',j'), (x,

In fact, (5. 33) is equal to

(5. 34) ϋt(x, k,j)= Π T[»f(xi)λ«t + (' ds Σ **' T?(f\F\[; »,_J)(*0 Π Γ^-
1=1 Jo ι=l p^t

by a version of the Property B.IΠ for f λ(x,k,j)=f λ(x,k). (5. 34) follows from
(5. 27) with |F|.

Now, it is clear from (5. 33) that

Assume that

Σ U?>
n=0

By the definition of U^ and the strong Markov property of Zt, we have

"̂+1 / r^

, k,j)= Ul\f λ\(x, k,j)

, k,;'), dsd(xf, kf,/)) ( Σ Uί-\\f λ\ (x', k',/)).
Ό Js " Wo /

By the induction hypothesis, the second term of the right hand side of the above
equality is less than and equal to

A#C*f k, j\ ds d(x', k', j'ϊ
oJsr

Therefore we have

Σ Ul»>\f λ\(x,k,j)£6ί(x,k,j)<oo, ί€[0,e).
n=0

and hence

(5. 35) Ut\fiλ\(x, kj)=lim Σ U™\ft\(x, k,j)<vt(x, k,j)<oo, f€[0, β),
ΛΓ-»oo TO=0

which proves the integrability of fiλ(Zt), /e[0, ε), with respect to the measure



BRANCHING MARKOV PROCESSES 503

P(χ,k,j}. Accordingly u(t9x)=Utf λ(x, 0,0), ίe[0, ε), has a definite value and hence it
is a solution of (5. 23) by (ii) of Theorem 1.1, which has been proved already.
The uniqueness part of Lemma 5.13 implies v(ty x)=u(tt x), where v(t,x) is the
solution guaranteed in Lemma 5.13.

Thus we have completely proved Theorem 1.1.

REMARK. When F[x, u] has the following form

(5. 36) F[x, u]=qQ(x)+ Σ qn(x)\ n*n(x, dy)ύ(y\

where JV<+co, the previous proposition is true for any bounded initial data / on
D. In fact, when F is given by (5. 36), it satisfies

(5. 37) \F[x, u]-F[x, v]\^c(r)\\u-v\\,

provided ||&||, IMI^lr, where r is any positive number. Therefore Lemma 5. 13 is
true for any r>0, and all arguments following Lemma 5. 13 are of course applicable
for this case.

§ 6. Some comments.

(A) When all qn(x) are non-negative, we may use U « = o SwX{0, 1} as the state
space instead of U"=oSwX{0,l,2,3}. In fact particles starting from Un=oS w X{0, 1}
do not make transition into U£USnX{2, 3} and vice versa. In this case we shall
call the process Zt on Un=oSwX{0, 1} branching Markov process with age.

Let Zt be a branching Markov process with age on U£USWX{0, 1}. We have

already proved that when u(t, x)=E(X,Q^[f λ(Zt)] has a definite value it is a solution
of the non-linear integral equation:

(6. 1) u(t, x)= Tpf(x)+( dsT?\cF[u(t-s, )])(*), xeD.
Jo

We shall remark that u(tfx)=E^toylf λ(Zt)] is the minimal solution of (6. 1) when
/ is non-negative.

LEMMA 6. 1. Let f be a bounded non-negative measurable function on D, then

ut(x, k,j)=E(x,kJ)[f(Zt)], (x, k,j)s U
71 = 0

is the minimal solution of the following integral equation of renewal type
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ut(x,k,i)=Ulf^.(x,k,j)
(6.2)

+ Γ C ψ((x, k, i), ds d(x', k', j'))uUx', k', j'), (x, k, f) e S
JoJs

where S= U SU Sn X {0, 1} and

φ((x, kj), dsd(x', k',j'))=P(xM)[τ€ds, Z,ed(x', k'J')].

Proof. If vt(x,k,j) is a solution of (6. 2), then clearly

Assume vt(x, k,j)^Σ%=v U^f^λ(x, k,j), N>0, then

vt(x, k, j) > Ulftίp, k, }) + ('( φ((x, k, j), ds d(x', k', /)) Σ U&ffe1, k', /)
J ΰ J S' n=Q

Therefore

vt(x, k,j)>ut(x, k,j)= Σ U^£λ(x, kj\
n=0

completing the proof.
Let vt(x) be a solution of (6. 1) for non-negative /, then

6t(x, k, j)= f[ vt(xi}λk^ (x, k)cSn,
t=l

is a solution of (6. 2), which is already proved in the previous section. Suppose

that Vt(x)<Ut(x)=E^χ,^^ [f λ(Zt)]> then we have ΰt(x, k,j)<ut(xt k,j). This contradicts
the fact that ut(x, k, j) is the minimal solution of (6. 2). This implies that ut(x) is
the minimal solution of (6. 1).

(B) When qι(x)^Q, (but the other qn(x) are arbitrary), we need not use
U£US W X{0, 1, 2, 3}. Instead, we may use U£U Swx{0, 1} as the state space. In

s^s

this case, we have to replace f λ in (1. 2) by

(i. 20
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and the table 1 by Table 1' below to define the instantaneous distribution in (4.15).

j*

Table I'.

Figure 3 is simplified as follows:

U Snx{0,l}
n=o

Figure 3'.

(C) When all qn(x) are non-negative and in addition if ^i(a?)=0, then we do
not need any discussions given in § 4 and § 5, because we are able to use the
branching Markov process Xt defined on USU S", S=DxN, developed in [6], taking
the Markov process with age constructed in § 3, as a non-branching part. We shall
call this Markov process on U w = o S w U { Λ } branching Markov process with age, too.

As an application, we can treat the problem of the blowing up of solutions for
the following non-linear integral equation

j8=2,3,

in terms of branching Markov process with age. Here Tt is the semi-group of d-
dimensional symmetric stable process with index α, (0<α^2). The behaviour of
blowing up of the solution depends on the dimension d, the index α, and the power
ft (cf. [4] and [17]).

(D) Let E be a compact Hausdorff space with a countable open base. Assume
there are given conservative strong Markov processes that have right continuous
path functions with left limits, {W\ N\, Pl

x, ζ1,0J} and {W 2, N\, P2

X, ζ
2, Θ2

t} on Ex{l}
and Ex {2}, respectively. If we put
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'D=EX{1,2}9

xt(w)=xi(w\ if wew*, i=l,2,

(6.3) |Pc*,i)=Pk ί=ι,2,

on TF*, i=l,2,

then {TF,-Λ/ί, α?t,-P(a?,ί),ζ, 0*} is clearly a strong Markov process on Z>=£x{l, 2}, which
has right continuous path functions with left limits.

Now we take this process as a basic Markov process. Let {#£(#); »=0,1,2,3, •••},
/=!, 2, be sequences of measurable functions on E satisfying

(6.4) ί=l,2,

and taking sequences {0}/(aO;«==0,1,2, 3, •••}, (i,y=l,2), of non-negative measurable
functions on E such that

(6.5)

we put

(6.6)

i=l,2, and »=0,1,2, ,

Then ττn is a probability kernel defined on £>xZ)C7l>.82) Finally let c\x\ f=l,2, be
non-negative measurable functions on £", and put

c(xy ί)=cί(x).

We can apply Theorem 1.1 to the system of quantities: the Markov process
{W,Nt,Pta:,i),3;t,ζ,θt}, c(x,i), {qii}, and {πn((x, i), d(x', V))} defined above. Therefore
we have a branching Markov process with age and sign

{Ω,Nt,P(kti),ktftZt,ζ,θt} on S--= f u S n x f ]
\n=0 /

32) D<n>=DxDχ. xD.



BRANCHING MARKOV PROCESSES 507

where S=Ex{l,2}xN.
Now we define a function f on D=Ex{l, 2} by

(6.7) fo *)=/(*), *=1,2,

where / is a bounded measurable function on E. Taking 2 as a weight of age,
we put

(6.8) i=l, 2;

Then Ui(t,x) £=1,2 satisfy, when they have a definite value i.e. f 2(Zt) is inte-
grable, the following system of non-linear integral equation:

dsTlc1 j Affiutf-s, )n+<#«s(f-s, •)*]

j βi(βg«ι(f-s, )"

(6.9)

where T\ and 71 are the semi-group of x\ and αjj defined by

(6.10)

Thus Theorem 1.1 is of use to treat a system of non-linear integral equations in
terms of Markov processes.

For example, the equation of Nagumo [18] for an active pulse transmission
line simulating nerve axon

(6.11)
dt

du2

\Ul 3*

1- b_

can be treated as a special case of (6. 9), (cf. also [1] and [22]).
Added in proof. As for a limit theorem similar to the one for nerve axon, cf.

M. Nagasawa, A limit theorem of a pulse-like wave form for a Markov process.
Proc. Japan Acad. 44 (1968), 491-494.
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