DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES OF ORDER 2

By Kentaro Yano and Shigeru Ishihara

Dedicated to Professor Shisanji Hokari on his Sixtieth Birthday

§ 0. Introduction.

The differential geometry of tangent bundles has been studied by Davies [13], Dombrowski [1], Kobayashi [15], Ledger [2], [3], [16], Morimoto [4], [5], Okumura [8], Sasaki [6], Tachibana [8], Tanno [9], Tondeur [10], the present authors [2], [3], [11], [13], [14], [15], [16], [17], [18] and others and that of cotangent bundles by Patterson [17], [18], Satô [7] and one of the present authors [12], [17], [18]. 10

The purpose of the present paper is to study the differential geometry of tangent bundles of order 2, the tangent bundle of order 2 $T_2(M)$ of a differentiable manifold M being defined as the set of all 2-jets of M determined by mappings of the real line R into M.

In §1, we define the tangent bundles of order 2 and induced coordinates in it and fix the notations used throughout the paper.

In § 2, we study the lifts of functions and two vector fields A and B existing a priori in $T_2(M)$.

§ 3 is devoted to the study of lifts of vector fields, 1-forms and derivations, and § 4 to the study of lifts of tensor fields and two linear mappings α and β . In § 5, we give the local expressions of these lifts.

In § 6, we study in more detail the lifts of tensor fields of type (1, 1) and discuss lifts of torsion tensors and Nijenhuis tensors.

§ 7 is devoted to the study of lifts of affine connections and also of curvature tensor and torsion tensor of the connection.

We study lifts of infinitesimal transformations in § 8 and geodesics in $T_2(M)$ in the last § 9.

Contents

- §1. Tangent bundles of order 2.
- § 2. Lifts of functions.
- § 3. Lifts of vector fields, 1-forms and derivations.
- § 4. Lifts of tensor fields.
- § 5. Local expressions.

Received November 27, 1967.

¹⁾ The numbers in brackets [] refer to Bibliography at the end of the paper.

- § 6. Lifts of tensor fields of type (1, 1).
- § 7. Lifts of affine connections.
- § 8. Lifts of infinitesimal transformations.
- § 9. Geodesics.

§ 1. Tangent bundles of order 2.

Let M be a differentiable manifold²⁾ of dimension n and R the real line. We introduce an equivalence relation \sim in the set of all differentiable mappings $F \colon R \to M$ as follows. Let $r \ge 1$ be a fixed integer. If two differentiable mappings $F \colon R \to M$ and $G \colon R \to M$ satisfy the conditions³⁾

(1.1)
$$F^{h}(0) = G^{h}(0), \quad \frac{dF^{h}(0)}{dt} = \frac{dG^{h}(0)}{dt}, \quad \cdots, \quad \frac{d^{r}F^{h}(0)}{dt^{r}} = \frac{d^{r}G^{h}(0)}{dt^{r}},$$

the mappings F and G being respectively represented by $x^h = F^h(t)$ and $x^h = G^h(t)$ $(t \in R)$ with respect to local coordinates (x^h) defined in a coordinate neighborhood containing the point $F^h(0) = G^h(0)$, then we say that the two mappings F and G are equivalent to each other and write $F \sim G$. Each equivalence class determined by the equivalence relation \sim is called briefly an r-jet of M and denoted by $j_F^r(F)$ if this class contains a mapping $F: R \rightarrow M$ such that F(0) = P. The point P is called the target of the r-jet $j_F^r(F)$. In the sequel, we shall restrict ourselves to the case r=1 or r=2.

If we denote by $T_2(M)$ the set of all 2-jets of M and topologize $T_2(M)$ in the natural way, the space $T_2(M)$ has the natural bundle structure over M, its bundle projection π_2 : $T_2(M) \rightarrow M$ being defined by $\pi_2(j_{\mathbb{P}}^2(F)) = \mathbb{P}$. The space $T_2(M)$ is called the *tangent bundle of order* 2 over M.

The set $T_1(M)$ of all 1-jets of M is nothing but the tangent bundle of M, if $T_1(M)$ is naturally topologized. The bundle projection π_1 : $T_1(M) \rightarrow M$ of $T_1(M)$ is defined by $\pi_1(j_P^1(F)) = P$. Each 1-jet of M is called a tangent vector of M. If we introduce a mapping π_{12} : $T_2(M) \rightarrow T_1(M)$ by $\pi_{12}(j_P^2(F)) = j_P^1(F)$, $F: R \rightarrow M$ being an arbitrary differentiable mapping such that F(0) = P, then $T_2(M)$ has a bundle structure over $T_1(M)$ with bundle projection π_{12} . It is easily verified that the relation

$$(1. 2) \pi_2 = \pi_1 \circ \pi_{12}$$

holds.

Let U be a coordinate neighborhood of M and (x^h) certain coordinates defined in U. We call the set $(U, (x^h))$ simply a coordinate neighborhood of M. If we take an arbitrary 2-jet $j_P^2(F)$ belonging to $\pi_2^{-1}(U)$ and put

²⁾ Manifolds, mappings and objects we discuss are assumed to be differentiable and of class C^{∞} . Manifolds under consideration are supposed to be connected.

³⁾ The indices $h, i, j, k, \dots, m, t, s$ run over the range $\{1, 2, \dots, n\}$ and the so-called Einstein's summation convention is used with respect to this system of indices.

(1.3)
$$y^{h} = \frac{dF^{h}(0)}{dt}, \quad z^{h} = \frac{d^{2}F^{h}(0)}{dt^{2}},$$

then we see from (1.1) that the 2-jet $j_1^2(F)$ is expressed in a unique way by the set (x^h, y^h, z^h) , where x^h are the coordinates of the target P in $(U, (x^h))$. Thus a system of coordinates (x^h, y^h, z^h) is introduced in the open set $\pi_2^{-1}(U)$ of $T_2(M)$. We call (x^h, y^h, z^h) the *coordinates induced in* $\pi_2^{-1}(U)$ from $(U, (x^h))$, or, simply the *induced coordinates* in $\pi_2^{-1}(U)$. On putting

$$\xi^h = x^h, \qquad \xi^{\bar{h}} = y^h, \qquad \xi^{\bar{h}} = z^h,$$

we denote the induced coordinates (x^h, y^h, z^h) by (ξ^A) in $\pi_2^{-1}(U)$.

Let $(U,(x^h))$ and $(U',(x^{h'}))$ be two intersecting coordinate neighborhoods of M. Let $(\xi^A)=(x^h,y^h,z^h)$ and $(\xi^A')=(x^{h'},y^{h'},z^{h'})$ be the coordinates induced respectively from $(U,(x^h))$ and $(U',(x^{h'}))$. Then, denoting by $x^{h'}=x^{h'}(x^i)$ the coordinate transformation in $U\cap U'$, the transformation of the induced coordinates in $\pi_2^{-1}(U\cap U')$ is given by

$$(1. 5) x^{h'} = x^{h'}(x^i), y^{h'} = \frac{\partial x^{h'}}{\partial x^h} y^h, z^{h'} = \frac{\partial x^{h'}}{\partial x^h} z^h + \frac{\partial^2 x^{h'}}{\partial x^j \partial x^i} y^j y^i,$$

and its Jacobian matrix by

$$(1.6) \qquad \begin{pmatrix} \frac{\partial x^{h'}}{\partial x^h} & 0 & 0 \\ \frac{\partial^2 x^{h'}}{\partial x^i \partial x^s} y^s & \frac{\partial x^{i'}}{\partial x^i} & 0 \\ \frac{\partial^2 x^{h'}}{\partial x^j \partial x^s} z^s + \frac{\partial^3 x^{h'}}{\partial x^j \partial x^t \partial x^s} y^t y^s & 2 \frac{\partial^2 x^{i'}}{\partial x^j \partial x^s} y^s & \frac{\partial x^{j'}}{\partial x^j} \end{pmatrix}.$$

Let $\varphi \colon M \to M$ be a differentiable transformation. The correspondence $j_{\mathbb{P}}^2(F)$ $\to j_{\varphi(\mathbb{P})}^2$ $(\varphi \circ F)$, $j_{\mathbb{P}}^2(F) \in T_2(M)$ determines a differentiable transformation $\varphi^* \colon T_2(M)$ $\to T_2(M)$, called the *transformation induced in* $T_2(M)$ *from* φ . If we take a point \mathbb{P} belonging to a coordinate neighborhood $(U, (x^h))$, and, if we suppose that the point $\varphi(\mathbb{P})$ belongs to a coordinate neighborhood $(U', (x^h'))$, then we can express φ locally by equations

$$(1.7) x^h' = \varphi^{h'}(x^h),$$

 $\varphi^{h'}(x^h)$ being n differentiable functions of the variables x^h such that $|\partial \varphi^{h'}/\partial x^h| \neq 0$, where (x^h) are the coordinates of P in $(U,(x^h))$ and $(x^{h'})$ those of $\varphi(P)$ in $(U',(x^{h'}))$. Then the induced transformation φ^* is expressed locally by equations of the form

⁴⁾ The indices A, B, C, D, E run over the symbols $\{1, 2, \dots, n; \overline{1}, \overline{2}, \dots, \overline{n}\}$ and the so-called Einstein's summation convention is used with respect to this system of indices,

(1.8)
$$x^{h'} = \varphi^{h'}(x^h), \qquad y^{h'} = \frac{\partial \varphi^{h'}}{\partial x^h} y^h,$$
$$z^{h'} = \frac{\partial \varphi^{h'}}{\partial x^h} z^h + \frac{\partial^2 \varphi^{h'}}{\partial x^j \partial x^k} y^j y^i,$$

where (x^h, y^h, z^h) are the induced coordinates of $j_P^2(F)$ in $\pi_2^{-1}(U)$ and $(x^{h'}, y^{h'}, z^{h'})$ those of $\varphi^*(j_P^2(F))$ in $\pi_2^{-1}(U')$.

Let X be an infinitesimal transformation (a vector field) in M. Then, taking account of (1.8), we see easily that there naturally corresponds an infinitesimal transformation \tilde{X} in $T_2(M)$ having components of the form

$$(1.9) \tilde{X}^h = X^h, \tilde{X}^{\bar{h}} = y^i \partial_i X^h, \tilde{X}^{\bar{h}} = z^i \partial_i X^h + y^j y^i \partial_j \partial_i X^h$$

in $\pi_2^{-1}(U)$, the functions X^h being the components of X in $(U,(x^h))$ and ∂_i denoting the operator

$$\partial_i = \frac{\partial}{\partial x^i}$$
.

Hence we have the relation

$$(1. 10) \qquad (\exp(tX))^* = \exp(t\widetilde{X}) \qquad (t \in R),$$

whenever $\exp(tX)$ is defined.

If we put Y=fX, f and X being respectively a function and a vector field in M, then we find in $T_2(M)$

$$\widetilde{Y} = \widetilde{f}\widetilde{X} + 2\widetilde{g}\widetilde{U} + \widetilde{h}\widetilde{V},$$

 \widetilde{X} and \widetilde{Y} being constructed by (1.9) respectively from X and Y, where \widetilde{U} and \widetilde{V} are vector fields having respectively components of the form

(1. 11)
$$\widetilde{U}$$
: $\widetilde{U}^h = 0$, $\widetilde{U}^{\overline{h}} = \frac{1}{2} y^i \partial_i X^h$, $\widetilde{U}^{\overline{h}} = X^h$;

(1. 12)
$$\tilde{V}$$
: $\tilde{V}^h = 0$, $\tilde{V}^{\bar{h}} = 0$, $\tilde{V}^{\bar{h}} = X^h$

in $\pi_2^{-1}(U)$ and $\tilde{f}=f\circ\pi_{12}$, $\tilde{g}=y^i\partial_i f$, $\tilde{h}=z^i\partial_i f+y^jy^i\partial_j\partial_i f$ with respect to the induced coordinates (x^h,y^h,z^h) in $\pi_2^{-1}(U)$. Therefore, given a vector field X in M, we obtain in $T_2(M)$ three vector fields \tilde{X} , \tilde{U} , and \tilde{V} defined by (1.9), (1.11) and (1.12) respectively.

Notations.

We list below notations used frequently in this paper.

1. $\mathfrak{I}_s^r(M)$ is the space of all tensor fields of type (r, s), i.e., of contravariant degree r and covariant degree s, in a differentiable manifold M. An element of

 $\mathfrak{T}(M)$ is a function in M, an element of $\mathfrak{T}(M)$ is a vector field in M, and an element of $\mathfrak{T}(M)$ is a 1-form in M.

2.
$$\mathfrak{I}(M) = \sum_{s} \mathfrak{I}_{s}^{r}(M).$$

3. $\Lambda_*(M)$ is the space of all differential forms in M. Λ_s is the space of all sforms in M.

$$\Lambda_*(M) = \sum_s \Lambda_s(M), \qquad \Lambda_s(M) = \Lambda_*(M) \cap \mathcal{T}_s^0(M).$$

4. A mapping $\varphi: \mathcal{I}(M) \to \mathcal{I}(M')$ is said to be *linear* if we have $\varphi(aS+bT) = a\varphi(S) + b\varphi(T)$ for any element $S, T \in \mathcal{I}(M)$, where α and b are constants.

§ 2. Lifts of functions.

Lifts of functions. Let f be a function in M. Then f is a mapping f: $M \rightarrow R$ and it gives a mapping $f \circ F$: $R \rightarrow R$. For the given function f a 2-jet $j_a^2(f \circ F)$ of R is completely determined by giving a 2-jet $j_F^2(F)$, F being a mapping F: $R \rightarrow M$ such that P = F(0) and $\alpha = f(P)$. Thus, if we put $f^*(j_F^2(F)) = j_a^2(f \circ F)$, there exists a mapping f^* : $T_2(M) \rightarrow T_2(R)$ corresponding to f. On the other hand, any element τ of $T_2(R)$ can be expressed canonically by a set $(A^0(\tau), A^{I}(\tau), A^{II}(\tau))$ of three numbers, which are the induced coordinates of τ in $T_2(R)$, because R is covered naturally by only one coordinate neighborhood R itself. Therefore, for a function f given in M, there corresponds in $T_2(M)$ three functions f^0 , f^I and f^{II} respectively defined by

(2.1)
$$f^{0}(\sigma) = A^{0}(f^{\sharp}(\sigma)), \quad f^{I}(\sigma) = A^{I}(f^{\sharp}(\sigma)), \quad f^{II}(\sigma) = A^{II}(f^{\sharp}(\sigma)),$$

 σ being an arbitrary element of $T_2(M)$. The three functions f^0 , f^1 and f^{11} thus defined in $T_2(M)$ is called respectively the 0-th, the 1st and the 2nd lifts of f. A function f in M is constant if and only if one of its lifts f^1 and f^{11} vanishes identically in $T_2(M)$. A function f in M vanishes identically if and only if its lift f^0 does so in $T_2(M)$.

The lifts f^0 , f^1 and f^{11} of a function f in M expressed by $f(x^h)$ in $(U,(x^h))$ are represented respectively as

(2. 2)
$$f^0: f(x^h), \qquad f^{II}: y^i \partial_i f(x^h), \qquad f^{II}: z^i \partial_i f(x^h) + y^j y^i \partial_j \partial_i f(x^h)$$

with respect to the induced coordinates $(\xi^A) = (x^h, y^h, z^h)$ in $\pi_2^{-1}(U)$. We note here that f^0 has in $\pi_2^{-1}(U)$ the same local representation as f has in $(U, (x^h))$.

Taking account of (2.2), we find

(2.3)
$$f^0 = f \circ \pi_2 = (f^V) \circ \pi_{12}, \qquad f^I = (f^C) \circ \pi_{12}$$

for $f \in \mathcal{I}(M)$, where the functions f^{ν} and f^{σ} defined in $T_1(M)$ are respectively the vertical and the complete lifts of f in the sense of [14] and [15]. As consequences

of (2.2), we find the following formulas:

(2. 4)
$$(fg)^0 = g^0 f^0, \qquad (fg)^{\text{I}} = f^{\text{I}} g^0 + f^0 g^{\text{I}},$$

$$(fg)^{\text{II}} = f^{\text{II}} g^0 + 2 f^{\text{I}} g^{\text{I}} + f^0 g^{\text{II}}$$

for $g, f \in \mathcal{I}_0^0(M)$.

REMARK. Let \widetilde{X} be a vector field in $T_2(M)$. Then \widetilde{X} vanishes identically in $T_2(M)$ if we have $\widetilde{X}f^{\mathrm{II}}=0$ for any function f in M. In fact, if we take account of (2.2) and denote by $(\widetilde{X}^A)=(\widetilde{X}^h,\widetilde{X}^{\overline{h}},\widetilde{X}^{\overline{h}})$ the components of \widetilde{X} with respect to the induced coordinates $(\xi^A)=(x^h,y^h,z^h)$, we see that the condition $\widetilde{X}f^{\mathrm{II}}=0$ is expressed as

$$\widetilde{X}^{k}(z^{i}\partial_{k}\partial_{i}f + y^{j}y^{i}\partial_{k}\partial_{i}\partial_{i}f) + 2\widetilde{X}^{\bar{k}}y^{i}\partial_{k}\partial_{i}f + \widetilde{X}^{\bar{\bar{k}}}\partial_{k}f = 0.$$

Thus, if we have $\tilde{X}f^{\text{II}}=0$ for any element f of $\mathcal{I}_0^{\text{o}}(M)$, we find $\tilde{X}^h=\tilde{X}^{\bar{h}}=\tilde{X}^{\bar{h}}=0$ by virtue of the continuity of \tilde{X} . Consequently, a vector field \tilde{X} in $T_2(M)$ is completely determined by giving the values of $\tilde{X}f^{\text{II}}$, f being arbitrary elements of $\mathcal{I}_0^{\text{o}}(M)$. In the sequel, this remark will be useful in determining values of vector fields given in $T_2(M)$.

Vector fields A and B. We now consider in each $\pi_2^{-1}(U)$ two local vector fields A and B respectively with components of the form

(2. 5)
$$A: \begin{pmatrix} 0 \\ 0 \\ y^h \end{pmatrix}, \qquad B: \begin{pmatrix} 0 \\ \frac{1}{2}y^h \\ z^h \end{pmatrix}$$

with respect to the induced coordinates (ξ^A) , $(U, (x^h))$ being an arbitrary coordinate neighborhood of M. Taking account of (1.5) and (1.6), we can easily verify that both of the local vector fields A and B thus introduced determine respectively global vector fields in $T_2(M)$, which are also denoted by A and B respectively. We now obtain the following formulas:

(2. 6)
$$Af^{0}=0, \qquad Af^{II}=0, \qquad Af^{II}=f^{I}, \\ Bf^{0}=0, \qquad Bf^{I}=\frac{1}{2}f^{I}, \qquad Bf^{II}=f^{II}$$

for $f \in \mathcal{I}_0^0(M)$ and

$$[A, B] = \frac{1}{2}A$$

by virtue of (2. 2) and (2. 5).

§ 3. Lifts of vector fields, 1-forms and derivations.

Lifts of vector fields. Let X be a vector field in M. We introduce in each $\pi_2^{-1}(U)$ three local vector fields X^0 , X^1 and X^{11} having respective components of the form

$$(3. 1) X^{0} = \begin{pmatrix} 0 \\ 0 \\ X^{h} \end{pmatrix}, X^{I} = \begin{pmatrix} 0 \\ \frac{1}{2}X^{h} \\ y^{i}\partial_{i}X^{h} \end{pmatrix}, X^{II} = \begin{pmatrix} X^{h} \\ y^{i}\partial_{i}X^{h} \\ y^{i}\partial_{i}X^{h} + y^{j}y^{i}\partial_{j}\partial_{i}X^{h} \end{pmatrix}$$

with respect to the induced coordinates (ξ^A) , where X^h denote the components of X in $(U,(x^h))$ (Cf. (1.9), (1.11) and (1.12)). If we take account of (1.5), (1.6) and the transformation law $X^{h'} = (\partial x^{h'}/\partial x^h)X^h$ of the components of X, then we see that the local vector fields X^0 , X^I and X^{II} above determine respectively global vector fields in $T_2(M)$, which are also denoted by X^0 , X^I and X^{II} respectively. The vector fields X^0 , X^I and X^{II} in $T_2(M)$ are called respectively the 0-th, the 1st and the 2nd lifts of X. We find

(3. 2)
$$\pi_{12}(X^0) = 0, \quad \pi_{12}(X^1) = \frac{1}{2}X^{\nu}, \quad \pi_{12}(X^{11}) = X^{\nu}$$

for $X \in \mathcal{T}_0^1(M)$ because of (3. 1), π_{12} denoting the differential mapping of the projection π_{12} : $T_2(M) \rightarrow T_1(M)$, where the vector fields X^{ν} and X^{c} defined in $T_1(M)$ denote respectively the vertical and the complete lifts of X in the sense of [14] and [15]. According to (3. 1), a vector field X in M vanishes identically if and only if one of X^0 , X^1 and X^{11} does so in $T_2(M)$.

Taking account of (3.1), we find the following formulas:

(3. 3)
$$(fX)^{0} = f^{0}X^{0}, \qquad (fX)^{I} = f^{I}X^{0} + f^{0}X^{I},$$

$$(fX)^{II} = f^{II}X^{0} + 2f^{I}X^{I} + f^{0}X^{II}$$

for $f \in \mathcal{I}_0^0(M)$, $X \in \mathcal{I}_0^1(M)$. As immediate consequences of (2.2) and (3.1), we have the following formulas:

$$X^{0}f^{0}=0, \qquad X^{0}f^{1}=0, \qquad X^{0}f^{11}=(Xf)^{0},$$

$$(3. 4) \qquad X^{1}f^{0}=0, \qquad X^{1}f^{1}=\frac{1}{2}(Xf)^{0}, \qquad X^{1}f^{11}=(Xf)^{1},$$

$$X^{11}f^{0}=(Xf)^{0}, \qquad X^{11}f^{1}=(Xf)^{1}, \qquad X^{11}f^{11}=(Xf)^{11}$$

for $f \in \mathcal{I}_0^0(M)$, $X \in \mathcal{I}_0^1(M)$.

Lifts of 1-forms. Let ω be a 1-form in M. We introduce in each $\pi_2^{-1}(U)$ three local 1-forms ω^0 , ω^I and ω^{II} having respective components of the form

(3. 5)
$$\omega^{0}: (\omega_{i}, 0, 0),$$

$$\omega^{I}: (y^{k}\partial_{k}\omega_{i}, \omega_{i}, 0),$$

$$\omega^{II}: (z^{k}\partial_{k}\omega_{i} + y^{k}y^{j}\partial_{k}\partial_{i}\omega_{i}, 2y^{j}\partial_{i}\omega_{i}, \omega_{i})$$

with respect to the induced coordinates (ξ^A) , where ω_i denote the components of ω in $(U, (x^h))$. Taking account of (1.5), (1.6) and the transformation law $\omega_{i'} = (\partial x^i/\partial x^{i'})\omega_i$ of components of ω , we can easily verify that the local 1-forms ω^0 , ω^I and ω^{II} above determine respectively global 1-forms in $T_2(M)$, which are also denoted respectively by ω^0 , ω^I and ω^{II} . These 1-forms ω^0 , ω^I and ω^{II} are respectively called the 0-th, the 1st and the 2nd lifts of ω . From (3.5) we find

(3. 6)
$$\omega^0 = \omega \circ \pi_2 = \omega^V \circ \pi_{12}, \qquad \omega^I = \omega^C \circ \pi_{12}$$

for $\omega \in \mathcal{I}_0^1(M)$, where the 1-forms ω^V and ω^C defined in $T_2(M)$ are respectively the vertical and the complete lifts of ω in the sense of [14] and [15]. According to (3.5), a 1-form ω vanishes identically in M if and only if one of ω^0 , ω^I and ω^{II} does so in $T_2(M)$.

Taking account of (3.5), we obtain the formulas

(3.7)
$$(f\omega)^{0} = f^{0}\omega^{0}, \qquad (f\omega)^{I} = f^{I}\omega^{0} + f^{0}\omega^{I},$$

$$(f\omega)^{II} = f^{II}\omega^{0} + 2f^{I}\omega^{I} + f^{0}\omega^{II}$$

for $f \in \mathcal{I}_0^0(M)$, $\omega \in \mathcal{I}_1^0(M)$. As immediate consequences of (3.1) and (3.5), we find the following formulas:

$$\omega^{0}(X^{0}) = 0, \qquad \omega^{0}(X^{I}) = 0 \qquad \omega^{0}(X^{II}) = (\omega(X))^{0},$$

$$(3.8) \qquad \omega^{I}(X^{0}) = 0, \qquad \omega^{I}(X^{I}) = \frac{1}{2}(\omega(X))^{0}, \qquad \omega^{I}(X^{II}) = (\omega(X))^{I},$$

$$\omega^{II}(X^{0}) = (\omega(X))^{0}, \qquad \omega^{II}(X^{I}) = (\omega(X))^{I}, \qquad \omega^{II}(X^{II}) = (\omega(X))^{II}$$

for $X \in \mathcal{I}_0^1(M)$, $\omega \in \mathcal{I}_1^0(M)$.

Formulas. We have here the following formulas:

$$[X^{0}, Y^{0}]=0, [X^{I}, Y^{I}]=\frac{1}{2}[X, Y]^{0},$$

$$[X^{I}, Y^{0}]=0, [X^{II}, Y^{I}]=[X, Y]^{I},$$

$$[X^{II}, Y^{0}]=[X, Y]^{0}, [X^{II}, Y^{II}]=[X, Y]^{II}$$

for $X, Y \in \mathcal{I}_0^1(M)$. In fact, taking account of (3.4), we have

$$\begin{split} [X^{\text{II}}, Y^{\text{I}}]f^{\text{II}} &= X^{\text{II}}(Y^{\text{I}}f^{\text{II}}) - Y^{\text{I}}(X^{\text{II}}f^{\text{II}}) = (X(Yf)^{\text{I}} - (Y(Xf))^{\text{I}} \\ &= ([X, Y]f)^{\text{I}} = [X, Y]^{\text{I}}f^{\text{II}}, \end{split}$$

$$[X^{II}, Y^{II}]f^{II} = ([X, Y]f)^{II} = [X, Y]^{II}f^{II}$$

for any element f of $\mathfrak{I}(M)$. Therefore, if we take account of the Remark stated in § 2, we obtain $[X^{II}, Y^{I}] = [X, Y]^{I}$ and $[X^{II}, Y^{II}] = [X, Y]^{II}$. Applying similar devices, we can prove the other formulas given in (3. 9).

The correspondences $X \rightarrow X^0$, $X \rightarrow X^1$ and $X \rightarrow X^{11}$ $(X \in \mathcal{I}_b^1(M))$ determine respectively one-to-one linear mappings of $\mathcal{I}_b^1(M)$ into $\mathcal{I}_b^1(T_2(M))$. We have, from the last formulas given in (3. 9),

PROPOSITION 3.1. The correspondence $X \rightarrow X^{11}$ $(X \in \mathcal{I}_0^1(M))$ determines an isomorphism of the Lie algebra $\mathcal{I}_0^1(M)$ into the Lie algebra $\mathcal{I}_0^1(T_2(M))$.

According to (3. 1) and (3. 5), we find in each neighborhood $\pi_2^{-1}(U)$ the formulas

$$\left(\frac{\partial}{\partial x^{i}}\right)^{0} = \frac{\partial}{\partial z^{i}}, \qquad \left(\frac{\partial}{\partial x^{i}}\right)^{\mathrm{I}} = \frac{1}{2} \frac{\partial}{\partial y^{i}}, \qquad \left(\frac{\partial}{\partial x^{i}}\right)^{\mathrm{II}} = \frac{\partial}{\partial x^{i}};$$

$$(3. 10) \qquad (dx^{h})^{0} = dx^{h}, \qquad (dx^{h})^{\mathrm{I}} = dy^{h}, \qquad (dx^{h})^{\mathrm{II}} = dz^{h}$$

with respect to the induced coordinateg $(\xi^A) = (x^h, y^h, z^h)$, where $(U, (x^h))$ is a coordinate neighborhood of M.

REMARK. If we take account of (3. 1) and (3. 5), we see that a tensor field K, say, of type (1, 2) in $T_2(M)$ is completely determined by giving values $K(X^{II}, Y^{II}, \omega^{II})$, X and Y being arbitrary elements of $\mathcal{T}_0^1(M)$ and ω an arbitrary element of $\mathcal{T}_0^1(M)$.

Lifts of derivations. In this paper we mean by a *derivation* in M a linear mapping $D: \mathcal{I}(M) \to \mathcal{I}(M)$ satisfying the conditions:

(a)
$$D: \mathcal{I}_{s}^{r}(M) \rightarrow \mathcal{I}_{s}^{r}(M)$$
,

(3. 11) (b)
$$D(S \otimes T) = (DS) \otimes T + S \otimes (DT)$$
 for $S, T \in \mathcal{I}(M)$,

(c)
$$DI=0$$
,

where I denotes the identity tensor field of type (1, 1) in M.

For a given derivation D in M, there exists a vector field P in M such that

$$(3. 12) Pf = Df,$$

f being an arbitrary element of $\mathfrak{T}_{0}^{0}(M)$. In each coordinate neighborhood $(U,(x^{h}))$ of M, taking account of (3.11, a), we can put

(3. 13)
$$D\left(\frac{\partial}{\partial x^i}\right) = Q_i{}^h \frac{\partial}{\partial x^h},$$

 Q_i^h being certain functions in U. Thus, taking account of (3.11, b), (3.12) and

(3.13), we obtain

$$D\!\left(X^h\frac{\partial}{\partial x^h}\right) \!\!=\! (P^i\partial_i X^h \!+\! Q_i{}^h X^i)\frac{\partial}{\partial x^h}$$

in $(U,(x^h))$ for any element $X=X^h(\partial/\partial x^h)$ of $\mathcal{I}_0^l(M)$. That is to say, for any element X of $\mathcal{I}_0^l(M)$, DX has components of the form

$$(3. 14) (DX)^h = P^i \partial_i X^h + Q_i^h X^i$$

in $(U,(x^h))$, if X has components X^h in $(U,(x^h))$. According to (3.11), we have $D(\omega(X)) = (D\omega)(X) + \omega(DX)$ for any element X of $\mathcal{I}_0^1(M)$ and any element ω of $\mathcal{I}_0^0(M)$. Thus, as a consequence of (3.14), $D\omega$ has components of the form

$$(3. 15) (D\omega)_i = P^j \partial_j \omega_i - Q_i^h \omega_h \text{for } \omega \in \mathcal{I}_i^0(M)$$

in $(U,(x^h))$, if ω has components ω_i in $(U,(x^h))$. The set (P^h,Q_i^h) is called the components of the derivation D in $(U,(x^h))$.

We suppose that a derivation D has components (P^h,Q_i^h) and $(P^{h'},Q_{i'}^{h'})$ respectively in $(U,(x^h))$ and in $(U',(x^{h'}))$. Then, as a consequence of (3.14) and the transformation law $X^{h'} = (\partial x^{h'}/\partial x^h) X^h$ of the components X^h of X, we obtain the transformation law

of the components of a derivation D in $U \cap U'$.

If we are given a derivation D in M, we introduce in $\pi_2^{-1}(U)$ three local vector fields D^0 , D^{I} and D^{II} having components of the form

(3. 17)
$$D^{0}$$
: $\begin{pmatrix} 0 \\ 0 \\ P^{h} \end{pmatrix}$, D^{I} : $\begin{pmatrix} 0 \\ \frac{1}{2}P^{h} \\ -y^{i}Q_{i}^{h} \end{pmatrix}$, D^{II} : $\begin{pmatrix} P^{h} \\ \frac{1}{2}y^{i}(\partial_{i}P^{h}-Q_{i}^{h}) \\ -(z^{i}Q_{i}^{h}+y^{j}y^{i}\partial_{j}Q_{i}^{h}) \end{pmatrix}$

with respect to the induced coordinates (ξ^A) , where (P^h, Q_i^h) denote the components of the given derivation D in $(U, (x^h))$. Thus, taking account of (1.5), (1.6), (3.16) and (3.17), we see that all of the local vector fields D^0 , $D^{\rm I}$ and $D^{\rm II}$ above determine respectively global vector fields in $T_2(M)$, which are denoted also by D^0 , $D^{\rm I}$ and $D^{\rm II}$ respectively. These three vector fields D^0 , $D^{\rm I}$ and $D^{\rm II}$ in $T_2(M)$ are called respectively the 0-th, the 1st and the 2nd lifts of the derivation D.

We now find for any derivation D the following formulas:

(3. 18)
$$D^{0}f^{0}=0,$$
 $D^{1}f^{0}=0,$ $D^{11}f^{0}=(Df)^{0},$ $D^{0}f^{1}=0,$ $D^{1}f^{1}=\frac{1}{2}(Df)^{0},$ $D^{11}f^{1}=\alpha(Ddf),$ $D^{0}f^{11}=(Df)^{0},$ $D^{1}f^{11}=\alpha(Ddf),$ $D^{11}f^{11}=\beta(Ddf)$

for $f \in \mathcal{I}_0^0(M)$, where $\alpha \omega$ and $\beta \omega$ for any element ω of $\mathcal{I}_1^0(M)$ are functions in $T_2(M)$ having respectively local representations $\alpha \omega = y^i \omega_i$ and $\beta \omega = z^i \omega_i + y^j y^i \partial_j \omega_i$ in $\pi_2^{-1}(U)$ with respect to the induced coordinates (ξ^A) , the functions ω_i being the components of ω in $(U, (x^h))$ (Cf. § 5).

Lifts of Lie derivations. The Lie derivation \mathcal{L}_X with respect to a vector field X is a derivation having components of the form

$$\mathcal{L}_{X}: P^{h} = X^{h}, \qquad Q_{i}^{h} = -\partial_{i}X^{h},$$

where X^h denote the components of X. Thus, substituting (3.19) in (3.17), we have

Proposition 3. 2. The formulas

$$(\mathcal{L}_X)^0 = X^0$$
, $(\mathcal{L}_X)^{\mathrm{I}} = X^{\mathrm{I}}$, $(\mathcal{L}_X)^{\mathrm{II}} = X^{\mathrm{II}}$

hold for $X \in \mathcal{I}_0^1(M)$.

Lifts of covariant derivations. Let Γ be an affine connection in M. Then the covariant differentiation Γ_X with respect to a vector field X is a derivation in M, which has components of the form

(3. 20)
$$V_X: P^h = X^h, \qquad Q_i{}^h = X^j \Gamma_j{}^h{}_i,$$

 $\Gamma_{J}^{h}{}_{i}$ denoting the coefficients of V and X^{h} the components of X. The covariant derivative $V_{X}Z$ has components of the form

$$(\nabla_X Z)^h = X^j (\partial_i Z^h + \Gamma_i h_i Z^i)$$

for any vector field Z with components Z^h . Substituting (3.20) in (3.17), we see that the lifts $(\mathcal{F}_X)^0$, $(\mathcal{F}_X)^{\mathrm{I}}$ and $(\mathcal{F}_X)^{\mathrm{II}}$ have respectively components of the form

$$(\mathcal{V}_{X})^{0}: \begin{pmatrix} 0 \\ 0 \\ X^{h} \end{pmatrix}, \qquad (\mathcal{V}_{X})^{I}: \begin{pmatrix} 0 \\ \frac{1}{2}X^{h} \\ -X^{J}y^{i}\Gamma_{j}^{h_{i}} \end{pmatrix},$$

$$(3. 21)$$

$$(\mathcal{V}_{X})^{II}: \begin{pmatrix} X^{h} \\ \frac{1}{2}y^{i}(\partial_{i}X^{h} - X^{j}\Gamma_{j}^{h_{i}}) \\ -(X^{J}z^{i}\Gamma_{j}^{h_{i}} + y^{J}y^{i}\partial_{j}(X^{h}\Gamma_{k}^{h_{i}})) \end{pmatrix}$$

for any element X of $\mathcal{I}_0^1(M)$. Therefore we have, from (3.1) and (3.21),

Proposition 3. 3. The formulas

$$(\nabla_X)^0 = X^0, \quad (\nabla_X)^I = X^I - \alpha(\hat{\nabla}X), \quad (\nabla_X)^{II} = X^{II} - \beta(\hat{\nabla}X)$$

hold for any element X of $\mathfrak{I}_0^1(M)$.

In Proposition 3. 3, \hat{V} is an affine connection in M defined by

$$\hat{V}_X Y = V_Y X + [X, Y]$$
 for $X, Y \in \mathcal{I}_0^1(M)$,

and αF and βF for any element F of $\mathcal{I}_1^1(M)$ are vector fields in $T_2(M)$ having respectively components

(3. 22)
$$\alpha F : \begin{pmatrix} 0 \\ 0 \\ y^i F_i{}^h \end{pmatrix}, \qquad \beta F : \begin{pmatrix} 0 \\ \frac{1}{2} y^i F_i{}^h \\ z^i F_i{}^h + y^j y^i \partial_j F_i{}^h \end{pmatrix}$$

with respect to the induced coordinates (ξ^A) in $\pi_2^{-1}(U)$, the functions $F_i{}^h$ being components of F in $(U, (x^h))$ (Cf. § 4 or § 5). We see easily that the affine connection $\hat{\Gamma}$ has coefficients $\hat{\Gamma}_j{}^h{}_i = \Gamma_i{}^h{}_j$, $\Gamma_j{}^h{}_i$ being the coefficients of Γ . As an immediate consequence of Proposition 3. 3, we have

Proposition 3.4. For any element X of $\mathcal{I}_0^1(M)$

$$(\nabla_X)^{\rm I} = X^{\rm I}, \qquad (\nabla_X)^{\rm II} = X^{\rm II}$$

hold if and only if $\hat{V}X=0$.

Derivation determined by a tensor field of type (1, 1). When a derivation D satisfies the condition Df=0 for $f \in \mathcal{I}^0_0(M)$, D determines an element F of $\mathcal{I}^1_1(M)$ such that DX=FX for any element X of $\mathcal{I}^1_0(M)$. In such a case, we denote D by D_F and call it the derivation determined by a tensor field F of type (1, 1). The derivation D_F has components of the form

(3. 23)
$$D_F: P^h = 0, Q_i^h = F_i^h,$$

 F_{i}^{h} being components of F. Substituting (3. 23) in (3. 17), we find

(3. 24)
$$(D_F)^0 = 0$$
, $(D_F)^{\mathrm{I}} = -\alpha F$, $(D_F)^{\mathrm{II}} = -\beta F$,

 αF and βF being defined by (3. 22).

§ 4. Lifts of tensor fields.

Lifts of tensor fields. We have introduced in § 2 and § 3 three kinds of lifts for functions, vector fields and 1-forms given in M. The operations taking these lifts are linear mappings $\mathcal{T}^0_s(M) \to \mathcal{T}^0_s(T_2(M))$, $\mathcal{T}^1_s(M) \to \mathcal{T}^1_s(T_2(M))$ and $\mathcal{T}^0_1(M) \to \mathcal{T}^0_1(T_2(M))$ respectively. Thus we can now define for any element K of $\mathcal{T}^r_s(M)$ its lifts K^0 , K^1 and K^{11} , which are elements of $\mathcal{T}^r_s(T_2(M))$, in such a way that the correspondence $K \to K^0$, $K \to K^1$ and $K \to K^{11}$ all define linear mappings $\mathcal{T}^r_s(M) \to \mathcal{T}^r_s(T_2(M))$, which are characterized by the properties

$$(S \otimes T)^{0} = S^{0} \otimes T^{0},$$

$$(S \otimes T)^{I} = S^{I} \otimes T^{0} + S^{0} \otimes T^{I},$$

$$(S \otimes T)^{II} = S^{II} \otimes T^{0} + 2S^{I} \otimes T^{I} + S^{0} \otimes T^{II}$$

for $S, T \in \mathcal{I}(M)$. The conditions (4.1) are compatible with the conditions (2.4), (3.3) and (3.7). The tensor fields K^0 , K^1 and K^{11} are called respectively the 0-th, the 1st and the 2nd lifts of K. We see that a tensor field K, not belonging to $\mathcal{I}_0^0(M)$, vanishes identically in M if and only if one of its lifts K^0 , K^1 and K^{11} does so in $T_2(M)$.

Linear mappings γ_X . Let T be an element of $\mathcal{I}_s^r(M)$ $(s \ge 1)$. Then it is a correspondence

$$T: (X_1, \dots, X_s) \rightarrow T(X_1, \dots, X_s) \in \mathcal{I}_0^r(M),$$

 X_1, \dots, X_s being arbitrary elements of $\mathcal{I}_0^1(M)$. If for an element X of $\mathcal{I}_0^1(M)$ we define an element $\gamma_X T$ of $\mathcal{I}_{s-1}^1(M)$ by

$$(\gamma_X T)(X_2, \dots, X_s) = T(X, X_2, \dots, X_s),$$

 X_2, \cdots, X_s being arbitrary elements of $\mathcal{I}^1_{\mathfrak{d}}(M)$, then the correspondence $T \to \gamma_X T$ determines a mapping γ_X : $\mathcal{I}^r_{\mathfrak{s}}(M) \to \mathcal{I}^r_{\mathfrak{s}-1}(M)$ such that $\gamma_X(fT+gS)=f(\gamma_X T)+g(\gamma_X S)$ for $f,g \in \mathcal{I}^0_{\mathfrak{s}}(M)$ and $T,S \in \mathcal{I}^r_{\mathfrak{s}}(M)$. If T has components of the form $T_{\iota_1 \iota_2 \cdots \iota_s}{}^{h_1 \cdots h_r}$, then $\gamma_X T$ has the components $X^k T_{k \iota_2 \cdots \iota_s}{}^{h_1 \cdots h_r}$, X^k being components of X. We have the formula

$$\gamma_{X_s} \cdots \gamma_{X_1} T = T(X_1, \dots, X_s) \in \mathcal{I}_0^r(M)$$

for any elements X_1, \dots, X_s of $\mathcal{I}_0^1(M)$.

We now have the following formulas:

for $X \in \mathcal{I}_{0}^{l}(M)$, $K \in \mathcal{I}(M)$. In fact, if we suppose that $K = \omega \otimes S$, $\omega \in \mathcal{I}_{0}^{l}(M)$, $S \in \mathcal{I}(M)$, then we have

$$\begin{split} & \varUpsilon_{X^{0}}K^{0} = \varUpsilon_{X^{0}}(\omega^{0} \otimes S^{0}) = \omega^{0}(X^{0})S^{0} = 0, \\ & \varUpsilon_{X^{1}}K^{1} = \varUpsilon_{X^{1}}(\omega^{1} \otimes S^{0} + \omega^{0} \otimes S^{1}) = \frac{1}{2}(\omega(X))^{0}S^{0} \\ & = \frac{1}{2}(\varUpsilon_{X}(\omega \otimes S))^{0} = \frac{1}{2}(\varUpsilon_{X}K)^{0}, \\ & \varUpsilon_{X^{11}}K^{11} = \varUpsilon_{X^{11}}(\omega^{11} \otimes S^{0} + 2\omega^{1} \otimes S^{1} + \omega^{0} \otimes S^{11}) \\ & = ((\omega(X))^{11}S^{0} + 2(\omega(X))^{1}S^{1} + (\omega(X))^{0}S^{11}) \\ & = (\omega(X)S)^{11} = (\varUpsilon_{X}(\omega \otimes S))^{11} = (\varUpsilon_{X}K)^{11} \end{split}$$

by virtue of (3.8) and (4.1). Thus, according to $\gamma_X(fS+gT)=f\gamma_XS+g\gamma_XT$ for $S, T\in \mathcal{T}_s^r(M)$ and $f,g\in \mathcal{T}_s^r(M)$, we can prove these three formulas for any element K of $\mathcal{T}(M)$. In a similar way, we can prove the other formulas given in (4.2). Lifts of differential forms. We now obtain the following formulas:

(4. 3)
$$(\omega \wedge \pi)^{0} = \omega^{0} \wedge \pi^{0}, \qquad (\omega \wedge \pi)^{I} = \omega^{I} \wedge \pi^{0} + \omega^{0} \wedge \pi^{I},$$

$$(\omega \wedge \pi)^{II} = \omega^{II} \wedge \pi^{0} + 2\omega^{I} \wedge \pi^{I} + \omega^{0} \wedge \pi^{II}$$

for ω , $\pi \in \Lambda_*(M)$. Moreover we have the following formulas:

(4. 4)
$$\omega^{0}(X^{II}, Y^{II}, \dots, Z^{II}) = (\omega(X, Y, \dots, Z))^{0},$$

$$\omega^{I}(X^{II}, Y^{II}, \dots, Z^{II}) = (\omega(X, Y, \dots, Z))^{I},$$

$$\omega^{II}(X^{II}, Y^{II}, \dots, Z^{II}) = (\omega(X, Y, \dots, Z))^{II}$$

for $\omega \in \Lambda_*(M)$, X, Y, \dots, Z being arbitrary element of $\mathcal{I}_0^1(M)$. The formulas (4.4) are immediate consequences of (4.2).

We obtain directly from (2.2) and (3.5)

$$(4.5) (df)^{0} = d(f^{0}), (df)^{I} = d(f^{I}), (df)^{II} = d(f^{II})$$

for $f \in \mathcal{G}_0^0(M)$. We next have the following formulas:

(4. 6)
$$(d\omega)^0 = d(\omega^0), \quad (d\omega)^{\mathrm{I}} = d(\omega)^{\mathrm{I}}, \quad (d\omega)^{\mathrm{II}} = d(\omega^{\mathrm{II}})$$

for $\omega \in \mathcal{I}_1^0(M)$. In fact, taking account of (3.4), (3.8) and (3.9), we have

$$\begin{split} 2(d\omega^{0})(X^{\text{II}},\ Y^{\text{II}}) &= X^{\text{II}}\omega^{0}(Y^{\text{II}}) - Y^{\text{II}}\omega^{0}(X^{\text{II}}) - \omega^{0}([X^{\text{II}},\ Y^{\text{II}}]) \\ &= (X\omega(Y) - Y\omega(X) - \omega([X,\ Y]))^{0} \\ &= 2((d\omega)(X,\ Y))^{0} = 2(d\omega)^{0}(X^{\text{II}},\ Y^{\text{II}}). \end{split}$$

Therefore, according to the Remark stated in § 3, we have $(d\omega)^0 = d(\omega^0)$. By similar devices, we have the other formulas given in (4.6).

If we consider a differential form ω which has the local expression $\omega = f dx^{i_1} \wedge \cdots \wedge dx^{i_s}$, $f \in \mathfrak{I}_{\delta}^{w}(U)$ in $(U, (x^h))$, we obtain

$$d\omega = df \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_8}$$

and hence, taking account of (4.3), (4.5) and (4.6),

$$\begin{aligned} (d\omega)^{\mathrm{I}} &= (df)^{\mathrm{I}} \wedge (dx^{\imath_{1}} \wedge \cdots \wedge dx^{\imath_{s}})^{0} + (df)^{0} \wedge (dx^{\imath_{1}} \wedge \cdots \wedge dx^{\imath_{s}})^{\mathrm{I}} \\ &= (df^{\mathrm{I}}) \wedge (dx^{\imath_{1}} \wedge \cdots \wedge dx^{\imath_{s}})^{0} + (df^{\mathrm{0}}) \wedge (dx^{\imath_{1}} \wedge \cdots \wedge dx^{\imath_{s}})^{\mathrm{I}} \\ &= d(f^{\mathrm{I}}(dx^{\imath_{1}} \wedge \cdots \wedge dx^{\imath_{s}})^{0} + f^{\mathrm{0}}(dx^{\imath_{1}} \wedge \cdots \wedge dx^{\imath_{s}})^{\mathrm{I}}) \\ &= d(fdx^{\imath_{1}} \wedge \cdots \wedge dx^{\imath_{s}})^{\mathrm{I}} = d(\omega^{\mathrm{I}}) \end{aligned}$$

by virtue of (3.10). Therefore, taking account of the identity $(\omega + \pi)^{\mathrm{I}} = \omega^{\mathrm{I}} + \pi^{\mathrm{I}}$ for ω , $\pi \in \Lambda_*(M)$, we have $(d\omega)^{\mathrm{I}} = d(\omega^{\mathrm{I}})$ for any element ω of $\Lambda_*(M)$. Similarly, we obtain $(d\omega)^0 = d(\omega^0)$ and $(d\omega)^{\mathrm{II}} = d(\omega^{\mathrm{II}})$ for any element ω of $\Lambda_*(M)$. Thus we have

Proposition 4.1. The formulas

$$(d\omega)^0 = d(\omega^0), \qquad (d\omega)^{\mathrm{I}} = d(\omega^{\mathrm{I}}), \qquad (d\omega)^{\mathrm{II}} = d(\omega^{\mathrm{II}})$$

hold for any element ω of $\Lambda_*(M)$.

Lie derivatives with respect to lifts. Denoting by \mathcal{L}_X the operator of Lie derivation with respect to a vector field X, we have directly from (3.4)

$$\mathcal{L}_{X^{0}}f^{0}=0, \qquad \mathcal{L}_{X^{0}}f^{I}=0, \qquad \mathcal{L}_{X^{0}}f^{II}=(\mathcal{L}_{X}f)^{0},$$

$$(4.7) \qquad \mathcal{L}_{X^{I}}f^{0}=0, \qquad \mathcal{L}_{X^{I}}f^{I}=\frac{1}{2}(\mathcal{L}_{X}f)^{0}, \qquad \mathcal{L}_{X^{I}}f^{II}=(\mathcal{L}_{X}f)^{I},$$

$$\mathcal{L}_{X^{II}}f^{0}=(\mathcal{L}_{X}f)^{0}, \qquad \mathcal{L}_{X^{II}}f^{I}=(\mathcal{L}_{X}f)^{I}, \qquad \mathcal{L}_{X^{II}}f^{II}=(\mathcal{L}_{X}f)^{II}$$

for $f \in \mathcal{I}_0^0(M)$, $X \in \mathcal{I}_0^1(M)$ and directly from (3. 9)

$$\mathcal{L}_{X^{0}} Y^{0} = 0, \qquad \mathcal{L}_{X^{0}} Y^{I} = 0, \qquad \mathcal{L}_{X^{0}} Y^{II} = (\mathcal{L}_{X} Y)^{0},$$

$$(4.8) \qquad \mathcal{L}_{X^{I}} Y^{0} = 0, \qquad \mathcal{L}_{X^{I}} Y^{I} = \frac{1}{2} (\mathcal{L}_{X} Y)^{0}, \qquad \mathcal{L}_{X^{I}} Y^{II} = (\mathcal{L}_{X} Y)^{I},$$

$$\mathcal{L}_{X^{II}} Y^{0} = (\mathcal{L}_{X} Y)^{0}, \qquad \mathcal{L}_{X^{II}} Y^{I} = (\mathcal{L}_{X} Y)^{I}, \qquad \mathcal{L}_{X^{II}} Y^{II} = (\mathcal{L}_{X} Y)^{II}$$

for $X, Y \in \mathcal{I}_0^1(M)$. We have now the following formulas:

$$\mathcal{L}_{X^{0}} \omega^{0} = 0, \qquad \mathcal{L}_{X^{0}} \omega^{I} = 0, \qquad \mathcal{L}_{X^{0}} \omega^{II} = (\mathcal{L}_{X} \omega)^{0},$$

$$(4. 9) \qquad \mathcal{L}_{X^{I}} \omega^{0} = 0, \qquad \mathcal{L}_{X^{I}} \omega^{I} = \frac{1}{2} (\mathcal{L}_{X} \omega)^{0}, \qquad \mathcal{L}_{X^{I}} \omega^{II} = (\mathcal{L}_{X} \omega)^{I},$$

$$\mathcal{L}_{X^{II}} \omega^{0} = (\mathcal{L}_{X} \omega)^{0}, \qquad \mathcal{L}_{X^{II}} \omega^{I} = (\mathcal{L}_{X} \omega)^{I}, \qquad \mathcal{L}_{X^{II}} \omega^{II} = (\mathcal{L}_{X} \omega)^{II}$$

for $X \in \mathcal{I}_0^1(M)$, $\omega \in \mathcal{I}_0^n(M)$. In fact, taking an arbitrary vector field Y in M, we have

$$\begin{split} (\mathcal{L}_{X^{0}} \, \omega^{0})(Y^{\mathrm{II}}) &= \mathcal{L}_{X^{0}} \, (\omega^{0}(Y^{\mathrm{II}})) - \omega^{0}(\mathcal{L}_{X^{0}} \, Y^{\mathrm{II}}) = 0, \\ (\mathcal{L}_{X^{\mathrm{I}}} \, \omega^{\mathrm{I}})(Y^{\mathrm{II}}) &= \mathcal{L}_{X^{\mathrm{I}}} \, (\omega^{\mathrm{I}}(Y^{\mathrm{II}})) - \omega^{\mathrm{I}}(\mathcal{L}_{X^{\mathrm{I}}} \, Y^{\mathrm{II}}) = \frac{1}{2} \, (\mathcal{L}_{X} \, (\omega(Y)) - \omega(\mathcal{L}_{X} \, Y))^{0} \\ &= \frac{1}{2} ((\mathcal{L}_{X} \, \omega)(Y))^{0} = \frac{1}{2} \, (\mathcal{L}_{X} \, \omega)^{0}(Y^{\mathrm{II}}), \\ (\mathcal{L}_{X^{\mathrm{II}}} \, \omega^{\mathrm{II}})(Y^{\mathrm{II}}) &= \mathcal{L}_{X^{\mathrm{II}}} \, (\omega^{\mathrm{II}}(Y^{\mathrm{II}})) - \omega^{\mathrm{II}}(\mathcal{L}_{X^{\mathrm{II}}} \, Y^{\mathrm{II}}) = (\mathcal{L}_{X}(\omega(Y)) - \omega(\mathcal{L}_{X} \, Y))^{\mathrm{II}} \\ &= ((\mathcal{L}_{X} \, \omega)(Y))^{\mathrm{II}} = (\mathcal{L}_{X} \, \omega)^{\mathrm{II}}(Y^{\mathrm{II}}) \end{split}$$

by virtue of (3. 4), (3. 8), (4. 7) and (4. 8). Consequently, Y being arbitrary, we find $\mathcal{L}_{X^0} \omega^0 = 0$, $\mathcal{L}_{X^{\mathrm{I}}} \omega^{\mathrm{I}} = (1/2)(\mathcal{L}_X \omega)^0$, $\mathcal{L}_{X^{\mathrm{II}}} \omega^{\mathrm{II}} = (\mathcal{L}_X \omega)^{\mathrm{II}}$. Similarly, we obtain the other formulas given in (4. 9). We have here

Proposition 4.2. For any element K of $\mathfrak{I}(M)$ the formulas

$$\mathcal{L}_{X^0} K^0 = 0,$$
 $\mathcal{L}_{X^0} K^{\mathrm{I}} = 0$ $\mathcal{L}_{X^0} K^{\mathrm{II}} = (\mathcal{L}_X K)^0,$ $\mathcal{L}_{X^{\mathrm{I}}} K^0 = 0,$ $\mathcal{L}_{X^{\mathrm{I}}} K^{\mathrm{I}} = \frac{1}{2} (\mathcal{L}_X K)^0,$ $\mathcal{L}_{X^{\mathrm{I}}} K^{\mathrm{II}} = (\mathcal{L}_X K)^{\mathrm{I}},$ $\mathcal{L}_{X^{\mathrm{II}}} K^0 = (\mathcal{L}_X K)^0,$ $\mathcal{L}_{X^{\mathrm{II}}} K^{\mathrm{II}} = (\mathcal{L}_X K)^{\mathrm{II}},$ $\mathcal{L}_{X^{\mathrm{II}}} K^{\mathrm{II}} = (\mathcal{L}_X K)^{\mathrm{II}},$

hold, X being an arbitrary element of $\mathfrak{T}_0^1(M)$.

Proof. These formulas have been already proved in (4.7), (4.8) and (4.9) respectively for K belonging to $\mathcal{T}^s_0(M)$, $\mathcal{T}^1_0(M)$ or $\mathcal{T}^s_1(M)$. Then we assume that these formulas are established for K belonging to $\mathcal{T}^r_s(M)$, where $r \leq p$, $s \leq q$. Taking an arbitrary element S of $\mathcal{T}^1_m(M)$ and an element T of $\mathcal{T}^{p-1}_{q-m}(M)$, we have

$$\mathcal{L}_{X^{0}}(S \otimes T)^{0} = \mathcal{L}_{X^{0}}(S^{0} \otimes T^{0}) = (\mathcal{L}_{X^{0}}S^{0}) \otimes T^{0} + S^{0} \otimes (\mathcal{L}_{X^{0}}T^{0}) = 0,$$

$$\mathcal{L}_{X^{I}}(S \otimes T)^{I} = \mathcal{L}_{X^{I}}(S^{I} \otimes T^{0} + S^{0} \otimes T^{I})$$

$$= (\mathcal{L}_{X^{I}}S^{I}) \otimes T^{0} + S^{I} \otimes (\mathcal{L}_{X^{I}}T^{0}) + (\mathcal{L}_{X^{I}}S^{0}) \otimes T^{I} + S^{0} \otimes (\mathcal{L}_{X^{I}}T^{I})$$

$$= \frac{1}{2}((\mathcal{L}_{X}S)^{0} \otimes T^{0} + S^{0} \otimes (\mathcal{L}_{X}T)^{0})$$

$$= \frac{1}{2}((\mathcal{L}_{X}S) \otimes T + S \otimes (\mathcal{L}_{X}T)^{0}) = \frac{1}{2}(\mathcal{L}_{X}S \otimes T)^{0},$$

$$\mathcal{L}_{X^{\text{II}}}(S \otimes T)^{\text{II}} = \mathcal{L}_{X^{\text{II}}}(S^{\text{II}} \otimes T^{0} + 2S^{\text{I}} \otimes T^{\text{I}} + S^{0} \otimes T^{\text{II}})$$

$$= (\mathcal{L}_{X^{\text{II}}} S^{\text{II}}) \otimes T^{0} + S^{\text{II}} \otimes (\mathcal{L}_{X^{\text{II}}} T^{0}) + 2(\mathcal{L}_{X^{\text{II}}} S^{\text{I}}) \otimes T^{\text{I}}$$

$$+ 2S^{\text{I}} \otimes (\mathcal{L}_{X^{\text{II}}} T^{\text{I}}) + (\mathcal{L}_{X^{\text{II}}} S^{0}) \otimes T^{\text{II}} + S^{0} \otimes (\mathcal{L}_{X^{\text{II}}} S^{\text{II}})$$

$$= ((\mathcal{L}_{X} S) \otimes T + S \otimes (\mathcal{L}_{X} T))^{\text{II}} = (\mathcal{L}_{X} S \otimes T)^{\text{II}}$$

by virtue of (4.1). Similarly, we can prove the other formulas given in Proposition 4.2 for $K=S\otimes T$. Consequently, we have proved Proposition 4.2 as consequences of $\mathcal{L}_X(S+T)=\mathcal{L}_XS+\mathcal{L}_XT$ for $S,T\in\mathcal{T}^r_s(M)$.

Linear mappings α *and* β . We shall define a linear mapping α : $\mathcal{I}_{s}^{r}(M) \to \mathcal{I}_{s-1}^{r}(T_{2}(M))$ ($s \ge 1$). Let T be an element of $\mathcal{I}_{s}^{r}(M)$. Then T^{11} is a correspondence

$$T^{\text{II}}: (\widetilde{X}_1, \dots, \widetilde{X}_s) \rightarrow T^{\text{II}}(\widetilde{X}_1, \dots, \widetilde{X}_s) \in \mathcal{I}_0^r(T_2(M)),$$

 $\widetilde{X}_1, \dots, \widetilde{X}_s$ being arbitrary elements of $\mathcal{I}^1_{\emptyset}(T_2(M))$. If we consider a correspondence αT such that

(4. 10)
$$\alpha T: \quad (\widetilde{X}_2, \cdots, \widetilde{X}_s) \rightarrow T^{\mathrm{II}}(A, \widetilde{X}_2, \cdots, \widetilde{X}_s) \in \mathcal{I}_0^r(T_2(M)),$$

 $\widetilde{X}_2, \dots, \widetilde{X}_s$ being arbitrary elements of $\mathcal{I}_0^1(T_2(M))$ and A the vector field defined by (2.5). Then αT is an element of $\mathcal{I}_{s-1}^r(T_2(M))$. Then the correspondence α : $T \rightarrow \alpha T$ determines a linear mapping α : $\mathcal{I}_s^r(M) \rightarrow \mathcal{I}_{s-1}^r(T_2(M))$. Thus we have from (4.10)

(4. 11)
$$\alpha \omega = \omega^{\text{II}}(A) \quad \text{for } \omega \in \mathcal{I}_{1}^{0}(M),$$

$$\alpha df = f^{\text{I}} \quad \text{for } f \in \mathcal{I}_{0}^{0}(M).$$

When T has the form $T=\omega \otimes S$, $\omega \in \mathcal{I}(M)$, $S \in \mathcal{I}(M)$, taking account of (4.1), we find

$$(4. 12) \qquad \alpha T = (\alpha \omega) S^0 \qquad (T = \omega \otimes S)$$

because of the formulas

(4. 13)
$$\omega^{0}(A)=0$$
, $\omega^{I}(A)=0$, $\omega^{II}(A)=\alpha\omega$

for $\omega \in \mathcal{I}_1^0(M)$, which are direct consequences of (2.5) and (3.5).

We shall next define a linear mapping β : $\mathcal{I}_s^r(M) \to \mathcal{I}_{s-1}^r(T_2(M))$ ($s \ge 1$). Let T be an element of $\mathcal{I}_s^r(M)$. If we consider a correspondence

$$(4. 14) \beta T: (\widetilde{X}_2, \dots, \widetilde{X}_s) \rightarrow T^{\mathrm{II}}(B, \widetilde{X}_2, \dots, \widetilde{X}_s) \in \mathcal{I}_{s-1}^r(T_2(M)),$$

 $\widetilde{X}_2, \dots, X_s$ being arbitrary elements of $\mathcal{I}_0^t(T_2(M))$ and B the vector field defined by (2.5), then βT is an element of $\mathcal{I}_{s-1}^r(T_2(M))$. Thus the correspondence $\beta: T \rightarrow \beta T$ defines a linear mapping $\beta: \mathcal{I}_s^r(M) \rightarrow \mathcal{I}_{s-1}^r(T_2(M))$. We have now

$$\beta\omega = \omega^{\text{II}}(B) \quad \text{for} \quad \omega \in \mathcal{I}_{1}^{\text{o}}(M),$$

$$\beta(df) = f^{\text{II}} \quad \text{for} \quad f \in \mathcal{I}_{0}^{\text{o}}(M).$$

When T has the form $T=\omega \otimes S$, $\omega \in \mathcal{I}_1^0(M)$, $S \in \mathcal{I}(M)$, taking account of (4.1), we obtain

$$\beta T = (\beta \omega) S^{0} + (\alpha \omega) S^{T}$$

by virtue of the formulas

(4. 17)
$$\omega^{\scriptscriptstyle 0}(B) = 0, \qquad \omega^{\scriptscriptstyle \text{I}}(B) = \frac{1}{2}\alpha\omega, \qquad \omega^{\scriptscriptstyle \text{I}}(B) = \beta\omega$$

for $\omega \in \mathfrak{I}(M)$, which are direct consequences of (2.5) and (3.5).

§ 5. Local expressions.

In this section, we would like to find local expressions of the lifts of tensor fields in M. By components of a tensor field T in M we always mean those of T in coordinate neighborhood $(U,(x^h))$ of M and by components of a tensor field \widetilde{T} in $T_2(M)$ those of \widetilde{T} with respect to the induced coordinates $(\xi^A)=(x^h,y^h,z^h)$ in $\pi_2^{-1}(U)$. The local expression of a function f, a vector field X and a 1-form ω have been already given by (2,2), (3,1) and (3,5) respectively.

Tensor fields of type (1, 1). Let F be an element of $\mathcal{T}_1^1(M)$, which is expressed by

$$F = F_i{}^h dx^i \otimes \frac{\partial}{\partial x^h}$$

in (U, x^h)). Taking the 0-th lift, we find

$$F^{0} = \left(F_{i}^{h} dx^{i} \otimes \frac{\partial}{\partial x^{h}}\right)^{0}$$
$$= (F_{i}^{h})^{0} dx^{i} \otimes \frac{\partial}{\partial y^{h}}$$

by virtue of (3.10) and (4.1). Taking the 1st lift, we have

$$\begin{split} F^{\mathrm{I}} &= \left(F_{i}^{h} dx^{i} \otimes \frac{\partial}{\partial x^{h}} \right)^{\mathrm{I}} \\ &= (F_{i}^{h})^{0} \left(dy^{i} \otimes \frac{\partial}{\partial x^{h}} + \frac{1}{2} dx^{i} \otimes \frac{\partial}{\partial y^{h}} \right) + (F_{i}^{h})^{\mathrm{I}} dy^{i} \otimes \frac{\partial}{\partial z^{h}} \end{split}$$

by virtue of (3. 10) and (4. 1). Taking the 2nd lift, we obtain

$$\begin{split} F^{\text{II}} &= \left(F_i{}^h dx^i \otimes \frac{\partial}{\partial x^h} \right)^{\text{II}} \\ &= (F_i{}^h)^0 \left(dz^i \otimes \frac{\partial}{\partial y^h} + dy^i \otimes \frac{\partial}{\partial y^h} + dx^i \otimes \frac{\partial}{\partial x^h} \right) \\ &+ (F_i{}^h)^{\text{I}} \left(2dy^i \otimes \frac{\partial}{\partial z^h} + dx^i \otimes \frac{\partial}{\partial y^h} \right) + (F_i{}^h)^{\text{II}} \left(dx^i \otimes \frac{\partial}{\partial z^h} \right) \end{split}$$

by virtue of (3.10) and (4.1). Therefore we see that the lifts F^0 , F^1 and F^{11} of F have respectively the components of the form

(5. 1)
$$F^{0}: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ F_{i}^{h} & 0 & 0 \end{pmatrix}, \qquad F^{1}: \begin{pmatrix} \frac{1}{2}F_{i}^{h} & 0 & 0 \\ y^{s}\partial_{s}F_{i}^{h} & F_{i}^{h} & 0 \end{pmatrix},$$
$$F^{11}: \begin{pmatrix} F_{i}^{h} & 0 & 0 \\ y^{s}\partial_{s}F_{i}^{h} & F_{i}^{h} & 0 \\ z^{s}\partial_{s}F_{i}^{h} + y^{t}y^{s}\partial_{t}\partial_{s}F_{i}^{h} & 2y^{s}\partial_{s}F_{i}^{h} & F_{i}^{h} \end{pmatrix},$$

where F_i^h denote the components of F. We have from (5.1)

PROPOSITION 5.1. A tensor field F of type (1, 1) is of rank r, if and only if F^0 is of rank r, if and only if F^{II} is of rank 2r, or, if and only if F^{II} is of rank 3r.

Let I be the identity tensor field of type (1, 1). Then, substituting $F_i{}^h = \delta_i^h$ in (5, 1), we find

$$(5.2) I^{0}: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ I & 0 & 0 \end{pmatrix}, I^{1}: \begin{pmatrix} 0 & 0 & 0 \\ \frac{1}{2}I & 0 & 0 \\ 0 & I & 0 \end{pmatrix}, I^{11}: \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix}.$$

Therefore the 2nd lift I^{II} of the identity tensor field I of type (1, 1) is the identity tensor field of type (1, 1) in $T_2(M)$. We have from (3, 1) and (5, 2)

(5. 3)
$$I^{0}X^{0}=0, \qquad I^{0}X^{I}=0, \qquad I^{0}X^{II}=X^{0},$$

$$I^{I}X^{0}=0, \qquad I^{I}X^{I}=\frac{1}{2}X^{0}, \qquad I^{I}X^{II}=X^{II}.$$

for $X \in \mathcal{I}_0^1(M)$.

Tensor fields of type (0, 2). Let g be an element of $\mathfrak{I}_{2}^{0}(M)$. Then we can easily verify that its lifts g^{0} , g^{I} and g^{II} have respectively components of the form

$$g^{0}: \begin{pmatrix} g_{ji} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad g^{I}: \begin{pmatrix} y^{s}\partial_{s}g_{ji} & g_{ji} & 0 \\ g_{ji} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$(5. 4)$$

$$g^{II}: \begin{pmatrix} z^{s}\partial_{s}g_{ji} + y^{t}y^{s}\partial_{t}\partial_{s}g_{ji} & 2y^{s}\partial_{s}g_{ji} & g_{ji} \\ 2y^{s}\partial_{s}g_{ji} & 2y^{s}\partial_{s}g_{ji} & 0 \\ g_{ji} & 0 & 0 \end{pmatrix},$$

where g_{ji} denote the components of g.

Given an element \tilde{h} of $\mathcal{I}_{2}^{0}(T_{2}(M))$, we denote by

$$\tilde{h}(d\xi, d\xi) = \tilde{h}_{cB}d\xi^c d\xi^B$$

the quadratic differential form corresponding to \tilde{h} , if \tilde{h} is symmetric, \tilde{h}_{CB} being the components of \tilde{h} . Let g be a *pseudo-Riemannian metric* in M. Then, taking account of (5,4), we obtain

$$g^{0}(d\xi, d\xi) = g_{ji}dx^{j}dx^{i},$$

$$(5. 5) \qquad g^{I}(d\xi, d\xi) = 2g_{ji}dx^{j}\delta y^{i},$$

$$g^{II}(d\xi, d\xi) = 2g_{ji}dx^{j}\delta v^{i} + 2g_{ji}\delta y^{j}\delta y^{i},$$

the differential forms δy^h and δz^h being defined respectively by

$$\delta y^h = dy^h + {h \brace s i} y^s dx^i,$$

$$(5. 6) \qquad \delta v^{h} = d\left(z^{h} + y^{t}y^{s} \begin{Bmatrix} h \\ t \quad s \end{Bmatrix}\right) + \begin{Bmatrix} h \\ i \quad l \end{Bmatrix} \left(z^{l} + y^{t}y^{s} \begin{Bmatrix} l \\ t \quad s \end{Bmatrix}\right) dx^{i}$$

$$= dz^{h} + 2 \begin{Bmatrix} h \\ i \quad t \end{Bmatrix} y^{t} dy^{i} + \left\lceil y^{t}y^{s} \left(\partial_{i} \begin{Bmatrix} h \\ t \quad s \end{Bmatrix}\right) + \begin{Bmatrix} h \\ i \quad l \end{Bmatrix} \begin{Bmatrix} l \\ t \quad s \end{Bmatrix}\right) + \begin{Bmatrix} h \\ i \quad s \end{Bmatrix} z^{s} dx^{i},$$

where $\left\{ egin{aligned} h \\ j \end{aligned}
ight\}$ denote the Christoffel's symbols constructed from g_{ji} and v^h are defined by

$$v^h = z^h + \left\{ h \atop j \quad i \right\} y^i y^j.$$

We have, from (5. 5),

PROPOSITION 5. 2. Let g be a pseudo-Riemannian metric in M (with r positive and n-r negative signs). Then g^{II} is a pseudo-Riemannian metric in $T_2(M)$ (with n+r negative and 2n-r positive signs).

Let φ be a 2-form of the maximum rank in M. Then φ^{II} is also a 2-form of the maximum rank in $T_2(M)$ because of (5.4). When $\varphi = d\eta$, η being a 1-form,

then $\varphi^{II} = d(\eta^{II})$ as an immediate consequence of Proposition 4.1. Thus we have

PROPOSITION 5.3. If φ is a 2-form defining an (almost) symplectic structure in M, then φ^{II} defines an (almost) symplectic structure in $T_2(M)$.

Tensor fields of type (2, 0). Let G be a tensor field of type (2, 0) in M. Then we can easily verify that its lifts G^0 , G^1 and G^1 have respectively components of the form

$$G^{0}: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & G^{ji} \end{pmatrix}, \qquad G^{I}: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2}G^{ji} \\ 0 & \frac{1}{2}G^{ji} & y^{s}\partial_{s}G^{ji} \end{pmatrix},$$

$$(5.7) \qquad G^{II}: \begin{pmatrix} 0 & 0 & G^{ji} \\ 0 & \frac{1}{2}G^{ji} & y^{s}\partial_{s}G^{ji} \\ G^{ji} & y^{s}\partial_{s}G^{ji} & z^{s}\partial_{s}G^{ji} + y^{t}y^{s}\partial_{t}\partial_{s}G^{ji} \end{pmatrix},$$

where G^{ji} denote the components of G.

Tensor fields αT and βT . We shall give the local expressions of αT and βT defined in § 4. Taking account of (2. 5) and (3. 5), we have from (4. 11) and (4. 15)

(5.8)
$$\alpha \omega = y^i \omega_i, \quad \beta \omega = z^k \partial_k \omega_i + y^j y^i \partial_j \omega_i \quad \text{for} \quad \omega \in \mathcal{G}_1^0(M)$$

with respect to the induced coordinates (x^h, y^h, z^h) in $\pi_2^{-1}(U)$, where ω_i denote the components of ω . Especially, we have from (5.8)

(5. 9)
$$\alpha(dx^h) = y^h, \qquad \beta(dx^h) = z^h$$

in $\pi_2^{-1}(U)$.

Let T be an element of $\mathcal{I}_s^r(M)$ ($s \ge 1$) and assume that T has the expression

$$T = T_{i_1 i_2 \cdots i_s} {}^{h_1 \cdots h_r} dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_s} \otimes \frac{\partial}{\partial x^{h_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{h_r}}$$

in $(U,(x^h))$. Then, taking account of (4.12), we have

$$\begin{split} &\alpha T = \alpha \bigg(dx^{\jmath} \otimes \bigg(T_{fi_{2} \cdots i_{s}}{}^{h_{1} \cdots h_{r}} dx^{\imath_{2}} \otimes \cdots \otimes dx^{\imath_{s}} \otimes \frac{\partial}{\partial x^{h_{i}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{h_{r}}} \bigg) \bigg) \\ &= \alpha (dx^{\jmath}) (T_{fi_{2} \cdots i_{s}}{}^{h_{1} \cdots h_{r}})^{0} dx^{\imath_{2}} \otimes \cdots \otimes dx^{\imath_{s}} \otimes \frac{\partial}{\partial z^{h_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial z^{h_{r}}} \end{split}$$

by virtue of (3.10), since $\alpha(T+S) = \alpha T + \alpha S$ for $T, S \in \mathcal{I}_s^r(M)$. Thus, according to (5.9), we obtain

$$(5. 10) \alpha T = (y^{j} T_{ji_{2} \dots i_{s}}{}^{h_{1} \dots h_{r}}) dx^{i_{2}} \otimes \dots \otimes dx^{i_{s}} \otimes \frac{\partial}{\partial z^{h_{1}}} \otimes \dots \otimes \frac{\partial}{\partial z^{h_{r}}}$$

with respect to the induced coordinates (ξ^A) in $\pi_2^{-1}(U)$. Especially, for any element F of $\mathcal{I}_1^1(M)$, αT has components of the form

(5. 11)
$$\alpha F: \begin{pmatrix} 0 \\ 0 \\ y^i F_i^h \end{pmatrix},$$

 F_i^h denoting the components of F. For an element S of $\mathcal{I}_2^1(M)$, αS has components of the form

(5. 12)
$$\alpha S: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ y^{j}S_{ji}^{h} & 0 & 0 \end{pmatrix}$$

where S_{ji}^{h} denote the components of S.

Let F be an element of $\mathcal{I}_{i}^{1}(M)$ with local expression

$$F=F_{i}^{h}dx^{i}\otimes \frac{\partial}{\partial x^{h}}.$$

Then, taking account of (4.16), we have

$$\begin{split} \beta F &= \beta \bigg(dx^i \otimes \bigg(F_i{}^h \frac{\partial}{\partial x^h} \bigg) \bigg) \\ &= \beta (dx^i) \bigg(F_i{}^h \frac{\partial}{\partial x^h} \bigg)^0 + \alpha (dx^i) \left(F_i{}^h \frac{\partial}{\partial x^h} \right)^{\mathrm{I}} \\ &= \beta (dx^i) (F_i{}^h)^0 \frac{\partial}{\partial z^h} + (dx^i) \bigg((F_i{}^h)^{\mathrm{I}} \frac{\partial}{\partial z^h} + \frac{1}{2} (F_i{}^h)^0 \frac{\partial}{\partial y^h} \bigg) \\ &= \frac{1}{2} y^i (F_i{}^h)^0 \frac{\partial}{\partial y^h} + (z^i (F_i{}^h)^0 + y^i (F_i{}^h)^{\mathrm{I}}) \frac{\partial}{\partial z^h} \end{split}$$

by virtue of (3.10) and (5.9), since $\beta(T+S) = \beta T + \beta S$ for $T, S \in \mathcal{I}_s^r(M)$. This means that βF has components of the form

(5. 13)
$$\beta F: \begin{pmatrix} 0 \\ \frac{1}{2} y^i F_i{}^h \\ z^i F_i{}^h + y^j y^i \partial_j F_i{}^h \end{pmatrix}$$

for any element $F \in \mathcal{I}_i^1(M)$, where F_i^h denote the components of F.

By similar devices, we see that, for an element S of $\mathcal{I}^1_{\mathbf{z}}(M)$, βS has components of the form

(5. 14)
$$\beta S: \begin{pmatrix} 0 & 0 & 0 \\ \frac{1}{2} y^k S_{ki}^h & 0 & 0 \\ z^k S_{ki}^h + y^t y^s \partial_t S_{si}^h & y^k S_{ki}^h & 0 \end{pmatrix},$$

where S_{ji}^h denote the components of S.

If we take account of (3.1) and (5.8), we obtain the following formulas:

$$X^{0}(\alpha\omega) = 0, \qquad X^{0}(\beta\omega) = (\omega(X))^{0},$$

$$(5. 15) \qquad X^{I}(\alpha\omega) = \frac{1}{2}(\omega(X))^{0}, \qquad X^{I}(\beta\omega) = \alpha(\mathcal{L}_{X}\omega) + (\alpha(d\omega))(X),$$

$$X^{II}(\alpha\omega) = \alpha(\mathcal{L}_{X}\omega), \qquad X^{II}(\beta\omega) = \beta(\mathcal{L}_{X}\omega)$$

for $\omega \in \mathcal{I}_0^0(M)$ and $X \in \mathcal{I}_0^1(M)$.

§ 6. Lifts of tensor fields of type (1, 1).

Formulas. Let F be an element of $\mathcal{I}_1^1(M)$. Then, taking account of (3,1) and (5,1), we find easily the following

$$F^{0}X^{0}=0, F^{0}X^{I}=0 F^{0}X^{II}=(FX)^{0},$$

$$(6.1) F^{I}X^{0}=0, F^{I}X^{I}=\frac{1}{2}(FX)^{0}, F^{I}X^{II}=(FX)^{I},$$

$$F^{II}X^{0}=(FX)^{0}, F^{II}X^{I}=(FX)^{I}, F^{II}X^{II}=(FX)^{II}$$

for $F \in \mathcal{I}_1^1(M)$, X being an arbitrary element of $\mathcal{I}_0^1(M)$.

For any two elements F and G of $\mathcal{I}_1^!(M)$, we defined an element FG of $\mathcal{I}_1^!(M)$ by (FG)X=F(GX), X being an arbitrary element of $\mathcal{I}_0^!(M)$. Then we find the following formulas:

$$G^{0}F^{0}=0, \qquad G^{0}F^{1}=0 \qquad G^{0}F^{11}=(GF)^{0},$$

$$(6. 2) \qquad G^{1}F^{0}=0, \qquad G^{1}F^{1}=\frac{1}{2}(GF)^{0}, \qquad G^{1}F^{11}=(GF)^{1},$$

$$G^{11}F^{0}=(GF)^{0}, \qquad G^{11}F^{1}=(GF)^{1}, \qquad G^{11}F^{11}=(GF)^{11}$$

for $G, F \in \mathcal{I}_2^1(M)$. In fact, taking account of (6.1), we have

$$(G^{0}F^{0})X^{II} = G^{0}(F^{0}X^{II}) = 0,$$

$$(G^{I}F^{I})X^{II} = G^{I}(F^{I}X^{II}) = G^{I}(FX)^{I} = \frac{1}{2}(G(FX))^{I} = \frac{1}{2}(GF)^{0}X^{II}$$

$$(G^{II}F^{II})X^{II} = G^{II}(F^{II}X^{II}) = G^{II}(FX)^{II} = (G(FX))^{II} = (GF)^{II}X^{II}$$

for any element X of $\mathcal{I}_0^1(M)$. Thus we have $G^0F^0=(GF)^0$, $G^1F^1=(1/2)(GF)^0$ and

 $G^{II}F^{II}=(GF)^{II}$. The other formulas given in (6.2) are proved in a similar way.

We see from (6.2) that, for any element F of $\mathcal{I}_1^1(M)$, F^0 , F^1 and F^{II} are commutative with each other and the identities

(6.3)
$$(F^0)^2 = 0$$
, $(F^1)^3 = 0$ for $F \in \mathcal{I}_1^1(M)$

hold.

Let P(t) be a polynomial of t and $F \in \mathcal{I}_1^1(M)$. Then, taking account of (6.2), we obtain

$$(6.4)$$
 $(P(F))^{II} = P(F^{II})$

and hence, for example,

(6.5)
$$(F^2+I)^{II}=(F^{II})^2+I, \quad (F^3+F)^{II}=(F^{II})^3+F^{II}$$

for any element F of $\mathcal{I}_{i}^{1}(M)$.

A tensor field F of type (1, 1) is called an *almost complex structure* if $F^2+I=0$. A tensor field F is called an f-structure of rank r if $F^3+F=0$ and F is of rank r everywhere. Thus, taking account of Proposition 5. 1, we have from (6.5)

PROPOSITION 6.1. Let F be an element of $\mathfrak{T}_1^1(M)$. Then F^{II} is an almost complex structure in $T_2(M)$ if and only if F is so in M. F^{II} is an f-structure of rank 3r in $T_2(M)$ if and only if F is an f-structure of rank r in M.

Contraction in Lifts. Let F be an element of $\mathcal{I}_i^{\mathfrak{l}}(M)$. We denote by c(F) the element of $\mathcal{I}_i^{\mathfrak{l}}(M)$ obtained by contraction, i.e., $c(F)=F_i{}^{\mathfrak{l}}$ if F has components $F_i{}^{\mathfrak{l}}$. Then we have from (5,1)

(6. 6)
$$c(F^0)=0, c(F^1)=0, c(F^{11})=3(c(F))^0$$

for $F \in \mathcal{I}_1^1(M)$. For example, we have

$$(6.7) c((\omega \otimes X)^0) = 0, c((\omega \otimes X)^1) = 0, c((\omega \otimes X)^{11}) = 3(\omega(X))^0,$$

X and ω being respectively elements of $\mathcal{I}_0^1(M)$ and $\mathcal{I}_1^0(M)$.

Torsion tensors and Nijenhuis tensors. Let S be an element of $\mathcal{I}_2^!(M)$ such that $S=Z\otimes\omega\otimes\pi$, $Z\in\mathcal{I}_0^!(M)$, ω , $\pi\in\mathcal{I}_1^!(M)$. Then, taking account of (3. 8) and (4. 1), we have the following formulas:

(6. 8)
$$S^{0}(X^{II}, Y^{II}) = (S(X, Y))^{0}, \qquad S^{I}(X^{II}, Y^{II}) = (S(X, Y))^{I},$$

$$S^{II}(X^{II}, Y^{II}) = (S(X, Y))^{II}$$

for $S \in \mathcal{I}_2^1(M)$, X and Y being arbitrary elements of $\mathcal{I}_0^1(M)$.

Let there be given two elements G and F of $\mathcal{I}_{\mathbf{i}}^1(M)$. Then their torsion tensor $N_{F,G}$ is by definition a tensor field of type (1,2) given by

(6. 9)
$$N_{F,G}(X, Y) = [FX, GY] + [GX, FY] + FG[X, Y] + GF[X, Y] - F[X, GY] - F[GX, Y] - G[X, FY] - G[FX, Y],$$

X and Y being arbitrary elements of $\mathcal{I}_{0}^{1}(M)$. Thus, taking account of (3.9), (6.1) and (6.2), we obtain

$$N_{F^{0},G^{0}}(X^{II}, Y^{II}) = 0, \qquad N_{F^{0},G^{I}}(X^{II}, Y^{II}) = 0,$$

$$F_{F^{0},G^{II}}(X^{II}, Y^{II}) = (N_{F,G}(X, Y))^{0},$$

$$(6. 10) \qquad N_{F^{I},G^{I}}(X^{II}, Y^{II}) = \frac{1}{2} (N_{F,G}(X, Y))^{0},$$

$$N_{F^{I},G^{II}}(X^{II}, Y^{II}) = (N_{F,G}(X, Y))^{I},$$

$$N_{F^{II},G^{II}}(X^{II}, Y^{II}) = (N_{F,G}(X, Y))^{II},$$

X and Y being arbitrary elements of $\mathcal{I}_0^1(M)$. Thus, we have from (6.10)

$$N_{F^{0},G^{0}}=0, \qquad N_{F^{I},G^{I}}=\frac{1}{2}(N_{F,G})^{0},$$

$$(6. 11) \qquad N_{F^{0},G^{I}}=0, \qquad N_{F^{I},G^{II}}=(N_{F,G})^{I},$$

$$N_{F^{0},G^{II}}=(N_{F,G})^{0}, \qquad N_{F^{II},G^{II}}=(N_{F,G})^{II}$$

for $F, G \in \mathcal{G}_1^1(M)$ by virtue of (6. 8).

The Nijenhuis tensor N_F of an element F of $\mathcal{I}_1^1(M)$ is defined by $N_F = (1/2)N_{F,F}$. Thus we have from (6.11)

Proposition 6.2. For any element F of $\mathcal{I}_{i}^{1}(M)$

$$N_{F^0} = 0$$
, $N_{F^{\text{I}}} = \frac{1}{2} (N_F)^0$, $N_{F^{\text{II}}} = (N_F)^{\text{II}}$

hold.

PROPOSITION 6.3. Let F be an almost complex structure in M. Then the almost complex structure F^{II} is a complex structure in $T_2(M)$ if and only if F is so in M.

§ 7. Lifts of affine connections.

Lifts of affine connections. Let Γ be an affine connection in M, which has coefficients $\Gamma_{f_{i}}^{h}$ in $(U,(x^{h}))$. We now introduce in $\pi_{2}^{-1}(U)$ an affine connection Γ^{II} having coefficients $\tilde{\Gamma}_{c}^{A}{}_{B}$ with respect to the induced coordinates $(\xi^{A})=(x^{h},y^{h},z^{h})$ such that

(7. 1)
$$(\tilde{\Gamma}_{c}{}^{h}{}_{B}) = \begin{pmatrix} (\Gamma_{f}{}^{h}{}_{i})^{0} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

for each fixed index h,

(7. 2)
$$(\tilde{\Gamma}_{c}^{\bar{h}}{}_{B}) = \begin{pmatrix} (\Gamma_{j}{}^{h}{}_{i})^{1} & (\Gamma_{j}{}^{h}{}_{i})^{0} & 0 \\ (\Gamma_{j}{}^{h}{}_{i})^{0} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

for each fixed \bar{h} and

(7.3)
$$(\tilde{\Gamma}_{o}^{\bar{h}}_{B}) = \begin{pmatrix} (\Gamma_{j}^{h}_{i})^{\text{II}} & 2(\Gamma_{j}^{h}_{i})^{\text{I}} & (\Gamma_{j}^{h}_{i})^{0} \\ 2(\Gamma_{j}^{h}_{i})^{\text{I}} & 2(\Gamma_{j}^{h}_{i})^{0} & 0 \\ (\Gamma_{j}^{h}_{i})^{0} & 0 & 0 \end{pmatrix}$$

for each fixed index \bar{h} , where $(\Gamma_j{}^h{}_i)^0$, $(\Gamma_j{}^h{}_i)^{\mathrm{I}}$ and $(\Gamma_j{}^h{}_i)^{\mathrm{II}}$ denote respectively the 0-th, the 1st and the 2nd lifts of the functions $\Gamma_j{}^h{}_i$ given in $(U,(x^h))$. We note here that the transformation law of coefficients $\Gamma_j{}^h{}_i$ of an affine connection is given by

(7.4)
$$\Gamma_{j'}^{h'} = \frac{\partial x^{h'}}{\partial x^h} \left(\frac{\partial x^j}{\partial x^{j'}} - \frac{\partial x^i}{\partial x^{t'}} \Gamma_{j}^{h}{}_{i} + \frac{\partial^2 x^h}{\partial x^{j'}\partial x^{i'}} \right)$$

in $U \cap U'$. Thus, taking account of (1.5), (1.6), (7.1), (7.2) and (7.3), we know by virtue of (7.4) that the affine connection Γ^{II} introduced above in each $\pi_2^{-1}(U)$ determines globally in $T_2(M)$ an affine connection, which is denoted also by Γ^{II} . The affine connection Γ^{II} constructed thus in $T_2(M)$ is called the *lift of the affine connection* Γ given in Γ .

We obtain here the following formulas:

for $X, Y \in \mathcal{I}_0^1(M)$. In fact, taking account of (3.1), (7.1), (7.2) and (7.3), we see that $\mathcal{I}_{X^{II}}^{II} Y^{II}$ has components of the form

$$\begin{split} (\mathcal{V}_{X^{11}}^{11} \ Y^{11})^h &= X^j \bigg(\frac{\partial Y^h}{\partial x^j} + \varGamma_{j}{}^h{}_{\imath} Y^i \bigg) = X^j \mathcal{V}_{\jmath} Y^h, \\ (\mathcal{V}_{X^{11}}^{11} \ Y^{11})^{\bar{h}} &= X^j \bigg[\frac{\partial}{\partial x^j} \left(y^s \partial_s Y^h \right) + \left(y^s \partial_s \varGamma_{j}{}^h{}_{\imath} \right) Y^i + \varGamma_{j}{}^h{}_{\imath} (y^s \partial_s Y^i) \bigg] \\ &\qquad \qquad + \left(y^s \partial_s X^j \right) \bigg[\frac{\partial}{\partial y^j} \left(y^s \partial_s Y^h \right) + \varGamma_{j}{}^h{}_{\imath} Y^i \bigg] \\ &= y^s \partial_s \bigg(X^j \bigg(\frac{\partial Y^h}{\partial x^j} + \varGamma_{j}{}^h{}_{\imath} Y^i \bigg) \bigg) = y^s \partial_s (X^j \mathcal{V}_{\jmath} Y^h), \end{split}$$

$$\begin{split} (\mathcal{F}_{X^{11}}^{11} \ Y^{11})^{\overline{h}} &= X^{\jmath} \bigg[\frac{\partial}{\partial x^{\jmath}} \left(z^{s} \partial_{s} Y^{h} + y^{t} y^{s} \partial_{t} \partial_{s} Y^{h} \right) + \left(z^{s} \partial_{s} \Gamma_{\jmath}{}^{h}{}_{i} + y^{t} y^{s} \partial_{t} \partial_{s} \Gamma_{\jmath}{}^{h}{}_{i} \right) Y^{\imath} \\ &\quad + 2 (y^{s} \partial_{s} \Gamma_{\jmath}{}^{h}{}_{i}) (y^{t} \partial_{t} Y^{i}) + \Gamma_{\jmath}{}^{h}{}_{i} (z^{s} \partial_{s} Y^{i} + y^{t} y^{s} \partial_{t} \partial_{s} Y^{i}) \bigg] \\ &\quad + (y^{k} \partial_{k} X^{\jmath}) \bigg[\frac{\partial}{\partial y^{\jmath}} \left(z^{s} \partial_{s} Y^{h} + y^{t} y^{s} \partial_{t} \partial_{s} Y^{h} \right) + 2 (y^{s} \partial_{s} \Gamma_{\jmath}{}^{h}{}_{i}) Y^{i} + 2 \Gamma_{\jmath}{}^{h}{}_{i} (y^{s} \partial_{s} Y^{i}) \bigg] \\ &\quad + (z^{k} \partial_{k} X^{\jmath} + y^{m} y^{i} \partial_{m} \partial_{t} X^{\jmath}) \bigg[\frac{\partial}{\partial z^{\jmath}} \left(z^{s} \partial_{s} Y^{h} + y^{t} y^{s} \partial_{t} \partial_{s} Y^{h} \right) + \Gamma_{\jmath}{}^{h}{}_{i} Y^{i} \bigg] \\ &\quad = z^{s} \partial_{s} (X^{\jmath} (\partial_{\jmath} Y^{h} + \Gamma_{\jmath}{}^{h}{}_{i} Y^{i})) + y^{t} y^{s} \partial_{t} \partial_{s} (X^{\jmath} (\partial_{\jmath} Y^{h} + \Gamma_{\jmath}{}^{h}{}_{i} Y^{i})) \\ &\quad = z^{s} \partial_{s} (X^{\jmath} \mathcal{F}_{\jmath} Y^{h}) + y^{t} y^{s} \partial_{t} \partial_{s} (X^{\jmath} \mathcal{F}_{\jmath} Y^{h}), \end{split}$$

Therefore we find $V_{X^{II}}^{II} Y^{II} = (V_X Y)^{II}$. Similarly, we obtain the other formulas given in (7.5).

Comparing (7.5) with (4.2) or (6.1), we find easily the formulas

(7. 6)
$$V^{II}Y^{0} = (VY)^{0}, \quad V^{II}Y^{I} = (VY)^{I}, \quad V^{II}Y^{II} = (VY)^{II}$$

for $Y \in \mathcal{I}_0^1(M)$.

We also obtain the following formulas:

(7.7)
$$\begin{aligned} & \mathcal{F}_{X^{0}}^{II} \, \omega^{0} = 0, & \mathcal{F}_{X^{0}}^{II} \, \omega^{I} = 0, & \mathcal{F}_{X^{0}}^{II} \, \omega^{II} = (\mathcal{F}_{X} \, \omega)^{0}, \\ & \mathcal{F}_{X^{II}}^{II} \, \omega^{0} = 0, & \mathcal{F}_{X^{II}}^{II} \, \omega^{I} = \frac{1}{2} (\mathcal{F}_{X} \, \omega)^{0}, & \mathcal{F}_{X^{II}}^{II} \, \omega^{II} = (\mathcal{F}_{X} \, \omega)^{I} \\ & \mathcal{F}_{X^{II}}^{II} \, \omega^{0} = (\mathcal{F}_{X} \, \omega)^{0}, & \mathcal{F}_{X^{II}}^{II} \, \omega^{I} = (\mathcal{F}_{X} \, \omega)^{I}, & \mathcal{F}_{X^{II}}^{II} \, \omega^{II} = (\mathcal{F}_{X} \, \omega)^{II} \end{aligned}$$

for $X \in \mathcal{I}_0^1(M)$, $\omega \in \mathcal{I}_0^1(M)$. In fact, taking an arbitrary element Y of $\mathcal{I}_0^1(M)$, we have

$$\begin{split} (\mathcal{V}_{X^{\text{II}}}^{\text{II}} \, \omega^{\text{II}})(Y^{\text{II}}) &= \mathcal{V}_{X^{\text{II}}}^{\text{II}} \, (\omega^{\text{II}}(Y^{\text{II}})) - \omega^{\text{II}}(\mathcal{V}_{X^{\text{II}}}^{\text{II}} \, Y^{\text{II}}) \\ &= (\mathcal{V}_{X}(\omega(Y)) - \omega(\mathcal{V}_{X}Y))^{\text{II}} \\ &= ((\mathcal{V}_{X} \, \omega)(Y))^{\text{II}} = (\mathcal{V}_{X} \, \omega)^{\text{II}}(Y^{\text{II}}) \end{split}$$

by virtue of (3. 8) and (7. 5). Thus we have $V_{X^{II}}^{II} \omega^{II} = (V_X \omega)^{II}$, because Y is arbitrary. The other formulas given in (7. 7) are proved in a similar way.

We have from (7.7) the formulas

(7. 8)
$$V^{\text{II}}\omega^0 = (\overline{V}\omega)^0$$
, $V^{\text{II}}\omega^{\text{I}} = (\overline{V}\omega)^{\text{I}}$, $V^{\text{II}}\omega^{\text{II}} = (\overline{V}\omega)^{\text{II}}$

for $\omega \in \mathcal{I}_1^0(M)$. In fact, we have from (4.2) and (7.7)

$$\gamma_{X^{\mathrm{II}}}(\overline{V}^{\mathrm{II}}\omega^{\mathrm{II}}) = \overline{V}_{X^{\mathrm{II}}}^{\mathrm{II}} \omega^{\mathrm{II}} = (\overline{V}_{X}\omega)^{\mathrm{II}} = (\gamma_{X}(\overline{V}\omega))^{\mathrm{II}} = \gamma_{X^{\mathrm{II}}}(\overline{V}\omega)^{\mathrm{II}}$$

for any element X of $\mathcal{I}_0^1(M)$. Thus we have $V^{II}\omega^{II}=(V\omega)^{II}$. Similarly, we can prove the other formulas given in (7.8).

We have here from (7.6) and (7.8)

Proposition 7.1. For any element K of $\mathfrak{I}(M)$

$$\nabla^{\text{II}} K^0 = (\nabla K)^0, \quad \nabla^{\text{II}} K^{\text{I}} = (\nabla K)^{\text{I}}, \quad \nabla^{\text{II}} K^{\text{II}} = (\nabla K)^{\text{II}}$$

hold.

We have directly from Proposition 7.1 the formulas

(7. 9)
$$\begin{aligned} & \mathcal{F}_{X^{0}}^{\text{II}} K^{0} \! = \! 0, & \mathcal{F}_{X^{0}}^{\text{II}} K^{\text{I}} \! = \! 0, & \mathcal{F}_{X^{0}}^{\text{II}} K^{\text{II}} \! = \! (\mathcal{F}_{X} K)^{0}, \\ & \mathcal{F}_{X^{\text{I}}}^{\text{II}} K^{0} \! = \! 0, & \mathcal{F}_{X^{\text{I}}}^{\text{II}} K^{\text{I}} \! = \! \frac{1}{2} (\mathcal{F}_{X} K)^{0}, & \mathcal{F}_{X^{\text{I}}}^{\text{II}} K^{\text{II}} \! = \! (\mathcal{F}_{X} K)^{\text{I}}, \\ & \mathcal{F}_{X^{\text{II}}}^{\text{II}} K^{0} \! = \! (\mathcal{F}_{X} K)^{0}, & \mathcal{F}_{X^{\text{II}}}^{\text{II}} K^{\text{I}} \! = \! (\mathcal{F}_{X} K)^{\text{I}}, & \mathcal{F}_{X^{\text{II}}}^{\text{II}} K^{\text{II}} \! = \! (\mathcal{F}_{X} K)^{\text{II}} \end{aligned}$$

for $X \in \mathcal{I}_0^1(M)$, $K \in \mathcal{I}_s^r(M)$ by virtue of (4.2).

The Curvature and the torsion tensors. Denoting by T the torsion tensor of an affine connection V in M, we have by definition

$$T(X, Y) = (V_X Y - V_Y X) - [X, Y]$$
 for $X, Y \in \mathcal{I}_0^1(M)$.

Taking the second lift, we obtain

$$(T(X, Y))^{\text{II}} = (\mathcal{F}_{X^{\text{II}}}^{\text{II}} Y^{\text{II}} - \mathcal{F}_{Y^{\text{II}}}^{\text{II}} X^{\text{II}}) - [X^{\text{II}}, Y^{\text{II}}]$$

= $\widetilde{T}(X^{\text{II}}, Y^{\text{II}})$

by virtue of Proposition 7.1 and (3.9), where \tilde{T} denotes the torsion tensor of \mathcal{F}^{II} . This equation implies, together with (6.8), $T^{\text{II}}(X^{\text{II}}, Y^{\text{II}}) = \tilde{T}(X^{\text{II}}, Y^{\text{II}})$. Thus, we have $T^{\text{II}} = \tilde{T}$, since X and Y are arbitrary. Therefore we have

Proposition 7.2. The torsion tensor of the lift ∇^{II} of an affine connection ∇ given in M coincides with the 2nd lift T^{II} of the torsion tensor T of ∇ .

The curvature tensor R of an affine connection V in M is a tensor field of type (1, 3) such that, for any two elements X and Y of $\mathcal{I}_0^1(M)$, R(X, Y) is an element of $\mathcal{I}_1^1(M)$ satisfying the condition

$$R(X, Y)Z = (\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z) - \nabla_{(X,Y)} Z$$

for any element Z of $\mathcal{I}_{i}^{1}(M)$. Taking the 2nd lift, we find

$$\begin{split} (R(X, Y)Z)^{\text{II}} = & (\mathcal{F}_{X^{\text{II}}}^{\text{II}} \mathcal{F}_{Y^{\text{II}}}^{\text{II}} Z^{\text{II}} - \mathcal{F}_{Y^{\text{II}}}^{\text{II}} \mathcal{F}_{X^{\text{II}}}^{\text{II}} Z^{\text{II}}) - \mathcal{F}_{[X^{\text{II}},Y^{\text{II}}]}^{\text{II}} Z^{\text{II}} \\ = & \widetilde{R}(X^{\text{II}}, Y^{\text{II}})Z^{\text{II}} \end{split}$$

by virtue of Proposition 7.1 and (3.9), where \tilde{R} denotes the curvature tensor of V^{II} . On the other hand, we can verify $(R(X,Y)Z)^{\text{II}} = R^{\text{II}}(X^{\text{II}},Y^{\text{II}})Z^{\text{II}}$ by virtue of $V_{X^{\text{II}}}K^{\text{II}} = (V_XK)^{\text{II}}$ given in (4.2). Therefore we find $\tilde{R}(X^{\text{II}},Y^{\text{II}})Z^{\text{II}} = R^{\text{II}}(X^{\text{II}},Y^{\text{II}})Z^{\text{II}}$, which implies $\tilde{R} = R^{\text{II}}$ since X, Y and Z are arbitrarily taken. Thus we have

PROPOSITION 7.3. The curvature tensor of the lift V^{II} of an affine connection V given in M coincides with the 2nd lift R^{II} of the curvature tensor R of V.

As a corollary to Propositions 7.1 and 7.3, we have

PROPOSITION 7. 4. Let T and R be respectively the torsion and the curvalure tensors of an affine connection V given in M. According as T=0, VT=0, R=0 or VR=0, we have $T^{II}=0$, $V^{II}T^{II}=0$, $Y^{II}=0$ or $V^{II}R^{II}=0$. In particular, $T_2(M)$ is locally symmetric with respect to the lift V^{II} of V if and only if M is so with respect to V.

Let g be a pseudo-Riemannian metric in M and V the Riemannian connection determined by g. Then we have from Proposition 7.1

$$V^{\text{II}}g^{\text{II}} = (Vg)^{\text{II}} = 0.$$

On the other hand, since Γ is torsionless, so is Γ^{11} by virtue of Proposition 7. 2. Consequently, Γ^{11} should coincide with the Riemannian connection determined by g^{11} . Thus we have

Proposition 7.5. Let g be a pseudo-Riemannian metric in M and V its Riemannian connection. Then the lift V^{II} of V is the Riemannian connection determined by the 2nd lift g^{II} of g.

We have from Propositions 7.4 and 7.5

PROPOSITIONS 7. 6. Let g be a pseudo-Riemannian metric in M. Then $T_2(M)$ is locally symmetric with respect to g^{II} if and only if M is so with respect to g.

Let P be an element of $\mathcal{I}_3^1(M)$. Then we have from (4.2)

$$\gamma_{X^{\text{II}}}\gamma_{Y^{\text{II}}} P^{\text{II}} = (\gamma_{X}\gamma_{Y} P)^{\text{II}},$$

in which both sides belong to $\mathcal{I}_1^1(T_2(M))$.

If we take account of (6.6), we find

$$c(\gamma_X \Pi \gamma_Y \Pi P \Pi) = c((\gamma_X \gamma_Y P) \Pi) = 3(c(\gamma_X \gamma_Y P))^0$$
,

which implies

PROPOSITION 7.7. Let g be a pseudo-Riemannian metric in M. Then the Ricci tensor \tilde{K} of g^{II} coincides with $3K^0$, where K denotes the Ricci tensor of g.

If g^{II} is an Einstein metric in $T_2(M)$, we have $\tilde{K} = ag^{\text{II}}$ with a constant a, \tilde{K} being the Ricci tensor of g^{II} . However, we have from proposition 7.7 $\tilde{K} = 3K^0$. Thus we have $ag^{\text{II}} = 3K^0$, which, together with (5.4), implies a = 0. Therefore we have

Proposition 7.8. Let g be a pseudo-Riemannian metric in M. If g^{II} is an

Einstein metric in $T_2(M)$, then g^{II} is of zero Ricci tensor. If g^{II} is of constant curvature, then g^{II} is locally flat.

Let \widetilde{K}_{CB} denote the components of the Ricci tensor $\widetilde{K}=3K^0$ of g^{II} and \widetilde{G}^{CB} the contravariant components of g^{II} . Then, taking account of (5.4) and (5.7), we have $\widetilde{k}=\widetilde{K}_{CB}\widetilde{G}^{CB}=3(K_{ji}g^{ji})^0$, where K_{ji} denote the components of the Ricci tensor of g and g^{ji} the contravariant components of g. Thus we have

PROPOSITION 7.9. Let g be a pseudo-Riemannian metric in M. Let k and \tilde{k} be the curvature scalars of g and g^{II} respectively. Then $\tilde{k}=3k^0$. If g is of constant curvature scalar, so is g^{II} .

A pseudo-Riemannian metric g is of constant curvature k in M if

$$R(X, Y)Z = k(g(Z, Y)X - g(Z, X)Y)$$
 for $X, Y \in \mathcal{I}_0^1(M)$

with a constant k, R denoting the curvature tensor of g. Taking the 2nd lift, we have

$$\begin{split} R^{\text{II}}(X^{\text{II}}, \, Y^{\text{II}}) Z^{\text{II}} &= (R(X, \, Y)Z)^{\text{II}} \!=\! (k(g(Z, \, Y)X \!-\! g(Z, \, X)\, Y))^{\text{II}} \\ &= k[g^{\text{II}}(Z^{\text{II}}, \, Y^{\text{II}})X^0 \!+\! 2g^{\text{I}}(Z^{\text{II}}, \, Y^{\text{II}})X^{\text{I}} \!+\! g^0(Z^{\text{II}}, \, Y^{\text{II}})X^{\text{II}} \\ &- g^{\text{II}}(Z^{\text{II}}, \, X^{\text{II}})Y^0 \!-\! 2g^{\text{I}}(Z^{\text{II}}, \, X^{\text{II}})Y^{\text{I}} \!-\! g^0(Z^{\text{II}}, \, X^{\text{II}})Y^{\text{II}}]. \end{split}$$

If we take account of $I^{0}X^{II}=X^{0}$, $I^{I}X^{II}=X^{I}$ given in (5.3), we have from the equation above

$$R^{\text{II}}(X^{\text{II}}, Y^{\text{II}})Z^{\text{II}}$$

$$(7. 10) = k[g^{11}(Z^{11}, Y^{11})I^{0}X^{11} + 2g^{1}(Z^{11}, Y^{11})I^{1}X^{11} + g^{0}(Z^{11}, Y^{11})X^{11} - g^{11}(Z^{11}, X^{11})I^{0}Y^{11} - 2g^{1}(Z^{11}, X^{11})I^{1}Y^{11} - g^{0}(Z^{11}, X^{11})Y^{11}]$$

which gives the curvature tensor R^{II} of g^{II} in $T_2(M)$ when g is of constant curvature in M.

§ 8. Lifts of infinitesimal transformations.

Let g be a pseudo-Riemannian metric in M. Then we have from Proposition 4. 2

$$(8,1) \qquad \mathcal{L}_{X^0} q^{\mathrm{II}} = (\mathcal{L}_X q)^0, \qquad \mathcal{L}_{Y^{\mathrm{I}}} q^{\mathrm{II}} = (\mathcal{L}_X q)^{\mathrm{I}}, \qquad \mathcal{L}_{Y^{\mathrm{II}}} q^{\mathrm{II}} = (\mathcal{L}_X q)^{\mathrm{II}}$$

for any element X of $\mathcal{I}_0^1(M)$. If X is a Killing vector field with respect to g, i.e., if $\mathcal{L}_X g = 0$, then X^0 , X^{I} and X^{II} are so with respect to g^{II} . Thus, taking account of (5. 2), we have

Proposition 8.1. Let q be a pseudo-Riemannian metric in M. If X is a

Killing vector field with respect to g in M, then X^0, X^I, X^{II} are all Killing vector fields with respect to the pseudo-Riemannian metric g^{II} in $T_2(M)$.

Similarly, taking account of Proposition 6.1, we have

PROPOSITION 8.2. If X is an (almost) analytic vector field in M with respect to an (almost) complex structure F, i.e., if $\mathcal{L}_X F = 0$, then X^0, X^I and X^{II} are so also in $T_2(M)$ with respect to the (almost) complex structure F^{II} .

Let X be a conformal Killing vector field in M with respect to a pseudo-Riemannian metric g. Then we have $\mathcal{L}_X g = ag$, $a \in \mathcal{I}_0^0(M)$. Thus, taking account of (8.1), we obtain

$$\mathcal{L}_{X^{\text{II}}} g^{\text{II}} = a^{\text{II}} g^{0} + 2a^{\text{I}} g^{\text{I}} + a^{0} g^{\text{II}},$$

which implies

PROPOSITION 8.3. Let X be a conformal Killing vector field in M with respect to a pseudo-Riemannian metric g. Then X^{II} is conformal in $T_2(M)$ with respect to g^{II} if and only if X is homothetic, i.e., if and only if $\mathcal{L}_X g = ag$ holds with a constant a. If this is the case, X^{II} is necessarily homothetic.

Let Γ be an affine connection in M. Then, for any element X of $\mathcal{I}_0^1(M)$, the Lie derivative of Γ with respect to X is an element $\mathcal{L}_X\Gamma$ of $\mathcal{I}_2^1(M)$ defined by

$$(8.2) \qquad (\mathcal{L}_X \nabla)(Y, Z) = \mathcal{L}_X (\nabla_Y Z) - \mathcal{L}_Y (\nabla_X Z) - \mathcal{L}_{\lceil X, Y \rceil} Z,$$

X, Y and Z belonging to $\mathcal{I}_{0}^{1}(M)$. Thus, taking account of (3.9), (8.2) and Proposition 4.2, we obtain

$$\begin{split} (\mathcal{L}_{X^{\text{II}}} \mathcal{V}^{\text{II}}) &(Y^{\text{II}}, Z^{\text{II}}) = \mathcal{L}_{X^{\text{II}}} (\mathcal{V}_{Y^{\text{II}}}^{\text{II}} Z^{\text{II}}) - \mathcal{V}_{Y^{\text{II}}}^{\text{II}} (\mathcal{L}_{X^{\text{II}}} Z^{\text{II}}) - \mathcal{V}_{[X^{\text{II}},Y^{\text{II}}]}^{\text{II}} Z^{\text{II}} \\ &= &(\mathcal{L}_{X} (\mathcal{V}_{Y} Z) - \mathcal{V}_{Y} (\mathcal{L}_{X} Z) - \mathcal{V}_{[X,Y]} Z)^{\text{II}} \\ &= &((\mathcal{L}_{X} \mathcal{V}) (Y, Z))^{\text{II}} = (\mathcal{L}_{X} \mathcal{V})^{\text{II}} (Y^{\text{II}}, Z^{\text{II}}) \end{split}$$

for any element Y and Z of $\mathcal{I}_0^1(M)$. Thus we find

$$\mathcal{L}_{X^{\mathrm{II}}} \nabla^{\mathrm{II}} = (\mathcal{L}_{X} \nabla)^{\mathrm{II}}.$$

Similarly, we can prove the other formulas given in Proposition 8.4. Thus we have

PROPOSITION 8.4. Let V be an affine connection in M. Then, for any element X of $\mathfrak{I}_0^1(M)$, the formulas

$$\mathcal{L}_{X^0} V^{\mathrm{II}} = (\mathcal{L}_X V)^0, \qquad \mathcal{L}_{X^{\mathrm{I}}} V^{\mathrm{II}} = (\mathcal{L}_X V)^{\mathrm{I}}, \qquad \mathcal{L}_{X^{\mathrm{II}}} V^{\mathrm{II}} = (\mathcal{L}_X V)^{\mathrm{II}}$$

hold in $T_2(M)$.

A vector field X is called an *infinitesimal affine transformation* with respect to an affine connection V if $\mathcal{L}_X V = 0$. As a consequence of Proposition 8.4, we have

PROPOSITION 8.5. Let V be an affine connection in M. If X is an infinitesimal affine transformation in M with respect to V, then X^0 , X^1 and X^{II} are so also in $T_2(M)$ with respect to V^{II} .

A vector field X in M is called an *infinitesimal projective transformation* with respect to an affine connection Γ if

$$(\mathcal{L}_X \nabla)(Y, Z) = \eta(Z) Y + \eta(Y) Z,$$

 η being a certain element of $\mathfrak{T}^{\mathfrak{g}}(M)$. Taking the 2nd lift, we have

$$\begin{split} (\mathcal{L}_{X^{\text{II}}} \mathit{V}^{\text{II}})(Y^{\text{II}}, Z^{\text{II}}) \! = \! \eta^{\text{II}}(Z^{\text{II}}) Y^{0} \! + \! 2 \eta^{\text{I}}(Z^{\text{II}}) Y^{\text{I}} \! + \! \eta^{0}(Z^{\text{II}}) Y^{\text{II}} \\ + \! \eta^{\text{II}}(Y^{\text{II}}) Z^{0} \! + \! 2 \eta^{\text{I}}(Y^{\text{II}}) Z^{\text{I}} \! + \! \eta^{0}(Y^{\text{II}}) Z^{\text{II}} \end{split}$$

by virtue of Propositton 8.4. Thus we have

PROPOSITION 8.6. Let X be an infinitesimal projective transformation in M with respect to an affine connection V. Then X^{II} is an infinitesimal projective transformation with respect to V^{II} if and only if X is affine. If this is the case, X^{II} is necessarily affine with respect to V^{II} .

Let X be an element of $\mathcal{I}_0^1(M)$ and $\exp(tX)$ denote a local 1-parameter group of transformations of M generated by X. Then, according to (1. 10) and (3. 1), X^{Π} generates a local 1-parameter group of $T_2(M)$ and

$$\exp(tX^{\text{II}}) = (\exp(tX))^*$$

holds. Hence we have

Proposition 8.7. If a vector field X in M is complete in the sense that it generates a global 1-parameter group of transformations of M, then X^{II} is also complete in $T_2(M)$.

REMARK. From the local expressions (3.1) of X^0 and X^I , we see immediately that X^0 and X^I are complete in $T_2(M)$ whether X is complete in M or not.

Taking account of the Remark stated above, we have, from Propositions 8.1 and 8.7,

PROPOSITION 8.8. If M is homogeneous pseudo-Riemannian manifold with

metric g, so is $T_2(M)$ with metric g^{II} .

Similarly, we have from Proposition 8. 2

Proposition 8.9. If M is homogeneous (almost) complex manifold with (almost) complex structure F, so is $T_2(M)$ with (almost) complex structure F^{II} .

Similarly, we have from Proposition 8.5

PROPOSITION 8.10. If a group G of affine transformations of M with respect to an affine connection V is transitive in M, the group G^* of affine transformations of $T_2(M)$ with respect to V^{II} is transitive in $T_2(M)$, where G^* denotes the group of transformations generated by vector fields X^0 , X^I and X^{II} , X in M being an arbitrary element belonging to the Lie algebra of vector fields generating G.

Let M be a pseudo-Riemannian (resp. affine) symmetric space with metric g (resp. connection Γ). If we take an arbitrary point P in M, then there exists in M a symmetry S_P with center P, that is to say, S_P is in M an isometry of g (resp. an affine transformation of Γ) such that $S_P(P)=P$, $(S_P)^2=$ identity. We note here that M is identified with the zero-cross section M of $T_2(M)$, which is defined by equations $y^h=0$, $z^h=0$ with respect to the induced coordinates $(\xi^A)=(x^h,y^h,z^h)$ in each $\pi_2^{-1}(U)$. For any point P of M we denote by \overline{P} the point of \overline{M} corresponding to P. Then the transformation $(S_P)^*$ induced from S_P (Cf. § 1) is a symmetry with center \overline{P} with respect to g^{II} (resp. Γ^{II}). On the other hand, $T_2(M)$ is homogeneous with respect to g^{II} (resp. Γ^{II}), because M is so with respect to g (resp. Γ). Therefore, taking an arbitrary point σ in $T_2(M)$, we know that there exists an isometry (resp. an affine transformation) $\tilde{\varphi}$ such that $\tilde{\varphi}(\overline{P})=\sigma$. Hence, the transformation $\tilde{\varphi}\circ(S_P)^*\circ\tilde{\varphi}^{-1}$ is a symmetry with center σ , i.e., $T_2(M)$ is symmetric with respect to g^{II} (resp. Γ^{II}). Thus we have

Proposition 8.11. If M is symmetric with respect to a pseudo-Riemannian metric g (resp. an affine connection ∇), so is $T_2(M)$ with respect to g^{II} (resp. ∇^{II})

§ 9. Geodesics.

Let V be a torsionless affine connection in M. We denote by $\Gamma_j{}^h{}_i$ the coefficients of V in a coordinate neighborhood $(U,(x^h))$ of M, where $\Gamma_j{}^h{}_i = \Gamma_i{}^h{}_j$. Let \widetilde{C} be a curve in $T_2(M)$ and suppose that \widetilde{C} is expressed locally by equations

(9. 1)
$$\xi^{A} = \xi^{A}(t), \quad \text{i.e.,}$$

$$x^{h} = x^{h}(t), \quad y^{h} = y^{h}(t), \quad z^{h} = z^{h}(t)$$

with respect to the induced coordinates $(\xi^A)=(x^h,y^h,z^h)$ in $\pi_2^{-1}(U)$, t being a para-

meter. We now put along $\widetilde{C} \cap \pi_2^{-1}(U)$

$$(9. 2) v^h = z^h + y^j y^i \Gamma_j{}^h{}_i$$

and

$$\frac{\delta y^{h}}{dt} = \frac{dy^{h}}{dt} + \Gamma_{j}{}^{h}{}_{i} \frac{dx^{j}}{dt} y^{i}, \qquad \frac{\delta^{2}y^{h}}{dt^{2}} = \frac{d}{dt} \left(\frac{\delta y^{h}}{dt}\right) + \Gamma_{j}{}^{h}{}_{i} \frac{dx^{j}}{dt} \frac{\delta y^{i}}{dt};$$

$$\frac{\delta v^{h}}{dt} = \frac{dv^{h}}{dt} + \Gamma_{j}{}^{h}{}_{i} \frac{dx^{j}}{dt} v^{i}, \qquad \frac{\delta^{2}v^{h}}{dt^{2}} = \frac{d}{dt} \left(\frac{\delta v^{h}}{dt}\right) + \Gamma_{j}{}^{h}{}_{i} \frac{dx^{j}}{dt} \frac{\delta v^{i}}{dt},$$
(9. 3)

where $x^h(t)$, $y^h(t)$ and $z^h(t)$ are the functions appearing in (9.1). Denoting by C the projection $\pi_2(\widetilde{C})$ of \widetilde{C} in M, we see that the curve C is expressed as $x^h = x^h(t)$ in $(U, (x_h))$, $x^h(t)$ being the functions appearing in (9.1). Then the quantities

$$y^h, v^h, \frac{\delta y^h}{dt}, \frac{\delta v^h}{dt}, \frac{\delta^2 y^h}{dt^2}, \frac{\delta^2 v^h}{dt^2}$$

defined above are respectively global vector fields along C.

A curve \widetilde{C} in $T_2(M)$ is a geodesic with respect to V^{11} , t being an affine parameter, if and only if its local expression (9.1) satisfies the differential equations

$$\frac{d^2\xi^A}{dt^2} + \tilde{\Gamma}_C{}^A{}_B \frac{d\xi^C}{dt} \frac{d\xi^B}{dt} = 0, \quad \text{i.e.,}$$

$$\frac{d^2x^h}{dt^2} + \tilde{\Gamma}_C{}^h{}_B \frac{d\xi^C}{dt} \frac{d\xi^B}{dt} = 0,$$

$$\frac{d^2y^h}{dt^2} + \tilde{\Gamma}_C{}^{\bar{h}}_B \frac{d\xi^C}{dt} \frac{d\xi^B}{dt} = 0,$$

$$\frac{d^2z^h}{dt^2} + \tilde{\Gamma}_C{}^{\bar{h}}_B \frac{d\xi^C}{dt} \frac{d\xi^B}{dt} = 0,$$

where $\Gamma_{C}{}^{h}{}_{B}$, $\Gamma_{C}{}^{\bar{h}}{}_{B}$ and $\Gamma_{C}{}^{\bar{h}}{}_{B}$ are the coefficients of Γ^{II} given by (7.1), (7.2) and (7.3). The equations (9.4) are equivalent to the equations

(9.5)
$$\frac{d^2x^h}{dt^2} + \Gamma_{j}{}^{h}{}_{i} \frac{dx^j}{dt} \frac{dx^i}{dt} = 0,$$

$$(9. 6) \qquad \frac{d^2y^h}{dt^2} + (y^s\partial_s\Gamma_j{}^h{}_i)\frac{dx^j}{dt}\frac{dx^i}{dt} + 2\Gamma_j{}^h{}_i\frac{dx^j}{dt}\frac{dy^i}{dt} = 0,$$

$$\frac{d^{2}z^{h}}{dt^{2}} + (z^{s}\partial_{s}\Gamma_{j}{}^{h}{}_{i} + y^{t}y^{s}\partial_{t}\partial_{s}\Gamma_{j}{}^{h}{}_{i})\frac{dx^{j}}{dt}\frac{dx^{i}}{dt}$$

$$+4(y^{s}\partial_{s}\Gamma_{j}{}^{h}{}_{i})\frac{dx^{j}}{dt}\frac{dy^{i}}{dt} + 2\Gamma_{j}{}^{h}{}_{i}\frac{dy^{j}}{dt}\frac{dy^{i}}{dt} + 2\Gamma_{j}{}^{h}{}_{i}\frac{dx^{j}}{dt}\frac{dz^{i}}{dt} = 0.$$

Making use of (9.2) and (9.3), we see that the system of differential equations (9.5), (9.6) and (9.7) is equivalent to the system of differential equations

(9.8)
$$\frac{d^2x^h}{dt^2} + \Gamma_{jh_i} \frac{dx^j}{dt} \frac{dx^i}{dt} = 0,$$

(9. 9)
$$\frac{\delta^2 y^h}{dt^2} + R_{kji}{}^h y^k \frac{dx^j}{dt} \frac{dx^i}{dt} = 0,$$

$$\begin{split} \frac{\delta^2 v^h}{dt^2} + R_{kji}{}^h v^k \frac{dx^j}{dt} \frac{dx^i}{dt} + 4R_{kji}{}^h y^k \frac{dx^j}{dt} \frac{\delta y^i}{dt} \\ + (\mathcal{V}_t R_{sji}{}^h - \mathcal{V}_j R_{its}{}^h) y^t y^s \frac{dx^j}{ds} \frac{dx^i}{ds} = 0, \end{split}$$

where R_{kjl}^h denote the components of the curvature tensor of V. That is to say, the system of differential equations (9.8), (9.9) and (9.10) determines in $T_2(M)$ geodesics with respect to the affine connection V^{11} . Thus we have

PROPOSITION 9.1. Let \tilde{C} be a geodesic in $T_2(M)$ with respect to V^{II} , where V is a torsionless affine connection in M, and suppose that \tilde{C} has the local expression (9.1). Then the projection $C=\pi_2(\tilde{C})$ is a geodesic in M with respect to V. The vector field $y^h(t)$ defined along C is a Jacobi field with respect to V. The vector field $v^h(t)$ defined by (9.2) along C satisfies the differential equation (9.10). The affine parameter of \tilde{C} induces naturally an affine parameter along C.

Conversely, if there exists in M a geodesic with respect to ∇ , C having the local expression $x^h = x^h(t)$ with affine parameter t, if there is given a Jacobi vector field $y^h(t)$ along C, and, if there is given a vector field $v^h(t)$ satisfying along C the differential equation (9. 10), then the curve \widetilde{C} defined in $T_2(M)$ by the local expression $x^h = x^h(t)$, $y^h = y^h(t)$, $z^h = v^h(t) - y^j(t)y^i(t)\Gamma_j{}^h{}_i(x^s(t))$ is a geodesic in $T_2(M)$ with respect to ∇^{II} .

Taking account of (9. 8), (9. 9) and (9. 10) we see easily that, if there is given in M a geodesic C with respect to a torsionless affine connection V, C having the local expression $x^h = x^h(t)$, and a Jacobi field $v^h(t)$ along C, then the curve \tilde{C} defined in $T_2(M)$ by the local expression $x^h = x^h(t)$, $y^h = 0$, $z^h = v^h(t)$ is a geodesic with respect to V^{II} ,

We say that M is *complete* with respect to an affine connection (resp. a pseudo-Riemannian metric g) if along any geodesic any affine parameter takes an arbitrarily given real value. Then, taking account of (9.8), (9.9) and (9.10), we have

PROPOSITION 9.2. If M is complete with respect to a torsionless affine connection V (resp. a pseudo-Riemannian metric g), so is $T_2(M)$ with respect to V^{II} (resp. g^{II}).

According to [15], we have from (9.8), (9.9) and (9.10)

PROPOSITION 9.3. Let \tilde{C} be a geodesic in $T_2(M)$ with respect to V^{11} , V being a torsionless affine connection in M. Then the projection $\pi_{12}(\tilde{C})$ of \tilde{C} in the tangent bundle $T_1(M)$ is also a geodesic with respect to V^c , where V^c is the complete lift of the affine connection V in the sense of [15].

BIBLIOGRAPHY

- [1] Dombrowski, P., On the geometry of the tangent bundle. J. Reine und Angew. Math. 210 (1962), 73-88.
- [2] LEDGER, A. J., AND K. YANO, The tangent bundle of a locally symmetric space. J. London Math. Soc. 40 (1965), 487-492.
- [3] Ledger, A. J., and K. Yano, Almost complex structures on tensor bundles. Journal of Differential Geometry. 1 (1967), 355–368.
- [4] Morimoto, A., Note on prolongations of affine connections to tangent bundles. To appear.
- [5] Morimoto, A., Prolongations of G-structures to tangent bundles. To appear.
- [6] Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10 (1958), 338-354.
- [7] Satô, I., Almost analytic vector fields in almost complex manifolds. Tôhoku Math. J. 17 (1965), 185-199.
- [8] Tachibana, S., and M. Okumura, On the almost complex structure of tangent bundles of Riemannian spaces. Tôhoku Math. J. 14 (1962), 156–161.
- [9] TANNO, S., An almost complex structure of the tangent bundle of an almost contact manifold. Tôhoku Math. J. 17 (1965), 7-15.
- [10] Tondeur, P., Structure presque kählérienne sur la fibré des vecteurs covariants d'une variéte riemannienne. C. R. Acad. Sci. Paris 254 (1962), 407-408.
- [11] YANO, K., Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold. Proc. Royal Soc. Edinburgh, Ser. A, 67 (1967), 277-288.
- [12] YANO, K., Tensor fields and connections on cross-section in the cotangent bundle. Tôhoku Math. J. 19 (1967), 32–48.
- [13] YANO, K., AND E. T. DAVIES, On the tangent bundles of Finsler and Riemannian manifold. Rend. Cir. Math. Palermo, Series II, 12 (1963), 1-18.
- [14] Yano, K., and S. Ishihara, Almost complex structures induced in tangent bundles. Kōdai Math. Sem. Rep. 19 (1967), 1–27.
- [15] YANO, K., AND S. KOBAYASHI, Prolongations of tensor fields and connections to

- tangent bundle, I, II. J. Math. Soc. Japan 186 (1966), 194-210, 236-246.
- [16] Yano, K., and A. J. Ledger, Linear connections on tangent bundles. J. London Math. Soc. 39 (1964), 495–500.
- [17] Yano, K., and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle. J. Math. Soc. Japan 19 (1967), 91–113.
- [18] YANO, K., AND E. M. PATTERSON, Horizontal lifts from a manifold to its tangent bundle. J. Math. Soc. Japan 19 (1967), 185–198.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.