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§0. Introduction.

The differential geometry of tangent bundles has been studied by Davies [13],
Dombrowski [1], Kobayashi [15], Ledger [2], [3], [16], Morimoto [4], [5], Okumura
[8], Sasaki [6], Tachibana [8], Tanno [9], Tondeur [10], the present authors [2],
[3], [11], [13], [14], [15], [16], [17], [18] and others and that of cotangent bundles by
Patterson [17], [18], Sat6é [7] and one of the present authors [12], [17], [18].

The purpose of the present paper is to study the differential geometry of
tangent bundles of order 2, the tangent bundle of order 2 Ty(M) of a differentiable
manifold M being defined as the set of all 2-jets of M determined by mappings of
the real line R into M.

In §1, we define the tangent bundles of order 2 and induced coordinates in it
and fix the notations used throughout the paper.

In §2, we study the lifts of functions and two vector fields A and B existing
a priori in To(M).

§ 3 is devoted to the study of lifts of vector fields, 1-forms and derivations, and
§4 to the study of lifts of tensor fields and two linear mappings « and 5. In §5,
we give the local expressions of these lifts.

In §6, we study in more detail the lifts of tensor fields of type (1, 1) and discuss
lifts of torsion tensors and Nijenhuis tensors.

§7 is devoted to the study of lifts of affine connections and also of curvature
tensor and torsion tensor of the connection.

We study lifts of infinitesimal transformations in § 8 and geodesics in 7%(M)
in the last §9.
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§6. Lifts of tensor fields of type (1, 1).
§7. Lafts of affine connections.

§8. Lifts of infinitesimal transformations.
§9. Geodesics.

§1. Tangent bundles of order 2.

Let M be a differentiable manifold® of dimension # and R the real line. We
introduce an equivalence relation ~ in the set of all differentiable mappings
F: R—M as follows. Let =1 be a fixed integer. If two differentiable mappings
F: R—M and G: R—M satisfy the conditions®

dF™0) _ dG0) d'F"0) _ d'G0)

h —Gh “es

the mappings F' and G being respectively represented by xz"=F"¢) and z*=G™{)
(teR) with respect to local coordinates (x*) defined in a coordinate neighborhood
containing the point F*(0)=G"(0), then we say that the two mappings F' and G are
equivalent to each other and write F~G. Each equivalence class determined by
the equivalence relation ~ is called briefly an »-jet of M and denoted by j3(F') if
this class contains a mapping F: R—M such that F(0)=P. The point P is called
the target of the r-jet j5(F). In the sequel, we shall restrict ourselves to the case
r=1 or r=2.

If we denote by T(M) the set of all 2-jets of M and topologize T2(M) in the
natural way, the space T3(M) has the natural bundle structure over M, its bundle
projection m: To(M)—DM being defined by m(j2(F))=P. The space Ty(M) is called
the tangent bundle of ovder 2 over M.

The set Ty(M) of all 1-jets of M is nothing but the tangent bundle of A7 if
Ty(M) is naturally topologized. The bundle projection z;: TW(M)—M of Ty(M) is
defined by m(j3(F))=P. Each 1-jet of M is called a tangent vector of M. If we
introduce a mapping mie: To(M)—Tiy(M) by m(7A(F)=5u(F), F: R—M being an
arbitrary differentiable mapping such that F(0)==P, then T2(M) has a bundle struc-
ture over Ti(M) with bundle projection my,. It is easily verified that the relation

1.2 Ty =T1°T12

holds.

Let U be a coordinate neighborhood of M and (z*) certain coordinates defined
in U. We call the set (U, (z*)) simply a coordinate neighborhood of M. If we take
an arbitrary 2-jet ji4(F) belonging to z,"*(U) and put

2) Manifolds, mappings and objects we discuss are assumed to be differentiable and
of class C». Manifolds under consideration are supposed to be connected.

3) The indices 4,1, j, &, ---, m, t, s run over the range {1,2,---,#} and the so-called Einstein's
summatjon convention is used with respect to this system of indices.
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dF™0) e dzF™0)
dat Tode

1.3 Y=

then we see from (1.1) that the 2-jet ji(F) is expressed in a unique way by the
set (z", y*, 2*), where z* are the coordinates of the target P in (U, (z*). Thus a
system of coordinates (x",y" z") is introduced in the open set =, (U) of Tx(M).
We call (z*, y"* z*) the coordinates induced in =~ (U) from (U, (z")), or, simply
the induced coordinates in 7,”'(U). On putting

1. 4) gh=gh {:TL_—-_-,yh’ Sr:L:Zh’

we denote the induced coordinates (z”, y*, 2*) by (£4) in =, }(U).»

Let (U, (™) and (U’, (2"')) be two intersecting coordinate neighborhoods of M.
Let (¢9)=(z", y", z*) and (£4)=(z", y", 2"") be the coordinates induced respectively
from (U, (z") and (U’, (z"")). Then, denoting by x*'=2"'(x*) the coordinate transfor-
mation in UNU’, the transformation of the induced coordinates in =" (UNU’) is
given by

(L. 5) z' =z (2%), y"'=%%’y”, 2= ?Z 2" af;;; vy,
and its Jacobian matrix by
% 0 0
(1. 6) . L 0
e VeV o g

Let ¢: M—M be a differentiable transformation. The correspondence ji(F')
—jipy (poF), jA(F)eTo(M) determines a differentiable transformation ¢*: T(M)
—To(M), called the transformation induced in To(M) from ¢. If we take a point P
belonging to a coordinate neighborhood (U, (z*)), and, if we suppose that the point
¢(P) belongs to a coordinate neighborhood (U, (#*')), then we can express ¢ locally
by equations

a7 ' ="' (z"),

"' (2?) being n differentiable functions of the variables x* such that [d¢*'[ox"|=0,
where (z") are the ccordinates of P in (U, (x")) and (x*') those of ¢(P) in (U’, (z™)).
Then the induced transformation ¢* is expresssd locally by equations of the form

4) The indices A4, B,C, D, E run over the symbols {1,2,...,n; 1,2, -, 7%; 1,2, -, 7y and
the so-called Einstein’s summation convention is used with respect to this system of
indices,
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. . . 0"
' ="(2"), Y= 7:;71/”,
1. 8)
. agoh' 3290"' .
Zh = Fya 2" + wion Yy )

where (z", y*, 2*) are the induced coordinates of 7(F) in =~“(U) and (z,y",2z")
those of ¢*(j2(F)) in m~X(U”).

Let X be an infinitesimal transformation (a vector field) in M. Then, taking
account of (1.8), we see easily that there naturally corresponds an infinitesimal
transformation X in To(M) having components of the form

1. 9) Xr=xr — Xi=yio, X0,  Xrt=20,X"+yryid0,X"

in 7,~'(U), the functions X" being the components of X in (U, («")) and 9; denoting
the operator

0
%= 5
Hence we have the relation
(1. 10) (exp (X))*=exp (tX)  (teR),

whenever exp (#X) is defined.
If we put Y=rX, f and X being respectively a function and a vector field in
M, then we find in T.(M)

Y=7X+250+i7,
X and ¥ being constructed by (1.9) respectively from X and Y, where U and V
are vector fields having respectively components of the form
(1. 11) 0. Or=0, Ur= %—yiaiX", =X

.12 V. vr=0, Vi=0, Pz xn

I

in 7Y (U) and f=fems, §=14%:f, ﬁ=ziaif-l—yfyi6,0if with respect to the induced
coordinates (z", y", z2*) in =,"(U). Therefore, given a vector field X in M, we obtain
in T2(M) three vector fields /\N’, L7, and ¥V defined by (1.9), (1.11) and (1.12) re-
spectively.

Notations.

We list below notations used frequently in this paper.
1. g%M) is the space of all tensor fields of type (7,s), i.e., of contravariant
degree 7 and covariant degree s, in a differentiable manifold M. An element of
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M) is a function in M, an element of TYM) is a vector field in M, and an
element of g¥M) is a 1-form in M.

2. E.T(M)=rZ.'s TAM).

3. A4(M) is the space of all differential forms in M. A is the space of all s-
forms in M.

ADMD=2 4D, AM)=AM) N T5(M).

4. A mapping ¢: T(M)—T(M’) is said to be linear if we have ¢(aSHbT)
=ap(S)+bp(T) for any element S, Te€ J (M), where @ and b are constants.

§2. Lifts of functions.

Lifts of fumctions. Let f be a function in M. Then f is a mapping f: M—R
and it gives a mapping foF: R—R. For the given function f a 2-jet ja(f<F) of R
is completely determined by giving a 2-jet ji(F), F being a mapping F: R—M
such that P=F(0) and ¢=f(P). Thus, if we put f¥ i(F))=s4(f-F), there exists a
mapping f* Ty(M)—Tx(R) corresponding to f. On the other hand, any element ¢ of
T+(R) can be expressed canonically by a set (A%z), A(c), A™(¢)) of three numbers,
which are the induced coordinates of 7 in 7%(R), because R is covered naturally by
only one coordinate neighborhood R itself. Therefore, for a function f given in M,
there corresponds in T3(M) three functions f°, fT and f respectively defined by

@1 A=A o),  fH@=A%a),  [To)=A"(f*0),

o being an arbitrary element of T»(M). The three functions f°, fI and fI* thus
defined in T3(M) is called respectively the 0-z4, the 1st and the 2xnd lifts of f. A
Sunction f in M is constant if and only if one of its lifts f' and f'7 vanishes
identically in T:(M). A function f in M vanishes identically if and only if its lift
f° does so in To(M).

The lifts 19, fT and f* of a function f in M expressed by f(z*) in (U, (z"))
are represented respectively as

2.2 Fou @, Ry, ™ 20 (@) +y'y'0,0.f (a")

with respect to the induced coordinates (£4)=(x", y* z*) in =,"*(U). We note here
that f° has in #,"(U) the same local representation as f has in (U, (z")).
Taking account of (2. 2), we find

2.3 fo=fome=(f")oms,  fI=(f)om

for fe TYM), where the functions /7 and f¢ defined in TW(M) are respectively the
vertical and the complete lifts of f/ in the sense of [14] and [15]. As consequences
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of (2.2), we find the following formulas:
(f9)’=g""", (fr=r1g°+-fOg,
(F@=/11g"+21g"+f %"

@4

for ¢, feT{(M).

ReEMARK. Let )?Nbe a vector field in 7w(M). Then X vanishes identically in
T:(M) if we have X F1=0 for any function f in M. In fact, if we take account
of (2.2) and denote by (X4)=(X", X% X") the components of X with respect to the
induced coordinates (¢§4)=(z", y", 2"), we see that the condition X f1=0 is expressed
as

X200 f4-y7y 010 0: 1)+ 2 X P10 f+ X F0, f=O.

Thus, if we have Xf=0 for any element f of TYM), we find Xr=Xr=Xr=0
by virtue of the continuity of X. Consequently, a vector field X in To(M) is
completely determined by giving the values of X fI, f being arbitrary elements
of gYM). In the sequel, this remark will be useful in determining values of vector
fields given in Ty(M).

Vector fields A and B. We now consider in each =,~%(U) two local vector
flelds A and B respectively with components of the form

0 0
@.5) Aol B %yn
yh Z/L

with respect to the induced coordinates (&4), (U, (z")) being an arbitrary coordinate
neighborhood of M. Taking account of (1.5) and (1. 6), we can easily verify that
both of the local vector fields A and B thus introduced determine respectively
global vector fields in T%(M), which are also denoted by A and B respectively. We
now obtain the following formulas:

AF=0,  Af1=0, Aft=7,
(2. 6)

Bfo=0, Bf‘z%fl, Bfmni=fn
for fe (M) and

2.7 [A, B]= %A

by virtue of (2.2) and (2. 5).
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§3. Lifts of vector fields, 1-forms and derivations.

Lifts of vector fields. Let X be a vector field in M. We introduce in each
;"% (U) three local vector fields X° X! and X having respective components of
the form

0 0 X*
3.1 Xo={| 0 |, Xi= %X’L, XM= Yo X"
X Yo X" Y0 X" +yry'0,0,. X"

with respect to the induced coordinates (64), where X" denote the components of
X in (U, (™) (Cf. (1. 9), (1.11) and (1.12)). If we take account of (1.5), (1.6) and
the transformation law X" =(3x"'/oxz™) X" of the components of X, then we see that
the local vector fields X° X! and X' above determine respectively global vector
fields in 73(M), which are also denoted by X°¢ X! and X' respectively. The
vector fields X° X! and X' in T»(M) are called respectively the 0-¢4, the 1st and
the 2nd lifts of X. We find

3.2 m12(X %) =0, mp(X )= —;—X", r(X1)=X¢

for Xe (M) because of (3. 1), =i, denoting the differential mapping of the projection
mia: To(M)—T.(M), where the vector fields X” and X¢ defined in Ti(M) denote
respectively the vertical and the complete lifts of X in the sense of [14] and [15].
According to (3.1), a vector field X in M vanishes identically if and only if one
of X° X1 and X' does so in T(M).

Taking account of (3. 1), we find the following formulas:

(fX)=r°X°, (fX)'=f1X"+f°XT,
3.3
(FX)M=fIX0 L QFIXT L fOXTI

for fegyM), XegiM). As immediate consequences of (2. 2) and (3. 1), we have
the following formulas:

Xf0=0, X/1=0, Xoft=(XfY,
(3.4 X170=0, Xifi= D (XFY,  XU=X7R,
XUf=(XPY,  XUP=XP X=X

for feTUM), XeT¥M).
Lifts of 1-forms. Let w be a 1-form in M. We introduce in each =,~(U)
three local 1-forms °, o' and '' having respective components of the form
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o%  (w;,0,0),
(3. 5) o' (YEowi, i, 0),
o' (2FOgws+yFyi0k0 jws, 2970 jws, @)

with respect to the induced coordinates (64), where w; denote the components of w in
(U, (™). Taking account of (1.5), (1. 6) and the transformation law w; =(@x*/0x% )w;
of components of w, we can easily verify that the local 1-forms ° o' and o'
above determine respectively global 1-forms in 73(M), which are also denoted
respectively by «° o' and o'l. These 1-forms o, o' and o' are respectively called
the 0-¢4, the 1st and the 2und lifts of w. From (3.5) we find

3.6) @'=wony=0w" o7y, o'=wComy,

for we T M), where the 1-forms oV and ® defined in T2(M) are respectively the
vertical and the complete lifts of w in the sense of [14] and [15]. According to
(3.5), a 1-form o vanishes identically in M if and only if ome of o° o' and o
does so in To(M).
Taking account of (3. 5), we obtain the formulas
(ol =Fa",  (fo)=flo"+ %,
3.7
(fw)II:fIIw0+2fIwI+f0wII

for fegyM), weg(M). As immediate consequences of (3.1) and (3.5), we find
the following formulas:

(X =0, @(X1)=0 o"(X)=((X))",
CR) @'(X%)=0, o'(XT)= % (o(X))", o (X1 = ((X))',
" X)=((X))’,  o"(X)=(a(X), o (XT)=(o(X)"

for Xe M), weTYM).
Formulas. We have here the following formulas:

[X°, ¥¥I=0, XY, Yi= 5 [X, YT,

3.9 (X1, Y]=0, X1, Y'I=[X, YT,
[X1 YI=[X, YT, X", Yul=[X, Y]"

for X, Yeg¥M). In fact, taking account of (3. 4), we have
[X1, Y= XY — YA =(X (V) —(V (XS
=([X, Y1N)'=[X, Y] Y,
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[XH, YU fi=(X, Y]NH"=[X, YU

for any element f of gY(M). Therefore, if we take account of the Remark stated
in §2, we obtain [XY, Y!]=[X, Y]' and [XY, Y'=[X, Y]. Applying similar
devices, we can prove the other formulas given in (3. 9).

The correspondences X—X° X—X! and X—XU (Xegi{M)) determine re-
spectively one-to-one linear mappings of J3(M) into TYTw(M)). We have, from the
last formulas given in (3. 9),

ProprosiTION 3. 1. The correspondence X—X" (XeTYM)) determines an iso-
morphism of the Lie algebra Ty M) into the Lie algebra TYTo(M)).

According to (3. 1) and (3. 5), we find in each neighborhood z,7*(U) the formulas

<_a->°:_a_ (L)I_l_a_ (L)"_ 9.
oz 0z’ ozt ) 2 oy’ ozt )~ Az’

(da)=da", (da")'=dy, (dat)!t = dz

(3.10)

with respect to the induced coordinateg (£4)=(z", y", 2%), where (U, (z")) is a coordi-
nate neighborhood of M.

Remark. If we take account of (3.1) and (3.5), we see that a tensor field K,
say, of type (1, 2) in 75(M) is completely determined by giving values K(X1, Y'!, »'h),
X and Y being arbitray elements of J3(M) and o an arbitrary element of Y(M).

Lifts of derivations. In this paper we mean by a derivation in M a linear
mapping D: 9 (M)—TJ (M) satisfying the conditions:

(@ D: I5M)—TM),
3. 11 m DESKRXT)=DS)RXT+SRWDT) for S, Teg (M),
(¢c) DI=0,

where I denotes the identity tensor field of type (1, 1) in M.
For a given derivation D in M, there exists a vector field P in M such that

f being an arbitrary element of g¥(M). In each coordinate neighborhood (U, (z"))
of M, taking account of (3.11, a), we can put

9\ _pon 9
(3.13) D( W)—@ 5

Q" being certain functions in U. Thus, taking account of (3.11, b), (3.12) and
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(3. 13), we obtain

0

ox™

0
ox™

DX 52 ) = (POX QXY
in (U, (z") for any clement X=X"d/dx") of I M). That is to say, for any element
X of J¥M), DX has components of the form

(3.14) (DX)r=Pig; X" +Q" X

in (U, (z"), if X has components X* in (U, (z*)). According to (3.11), we have
D(o(X)=Dw)(X)+wo(DX) for any element X of JiM) and any element o of
JYM). Thus, as a consequence of (3.14), Dw has components of the form

(3 15) (Dw)iszajwi—Qi"wn for we g?(M)

in (U, ("), if » has components w; in (U, (z")). The set (P* Q) is called the
components of the derivation D in (U, (z%)).

We suppose that a derivation D has components (P% @;®) and (P", Q")
respectively in (U, (z*) and in (U’, (z*)). Then, as a consequence of (3.14) and
the transformation law X' =(0z" /ox*) X* of the components X* of X, we obtain
the transformation law

axh’
h' — h
P P rr,
(3. 16)
oz [ ox* oz 0Oy
o 9% Hn ox Ol
Qi oxh (axi' Qi+ P ox?  0xi'0x )

of the components of a derivation D in UNU".
If we are given a derivation D in M, we introduce in =,~%(U) three local
vector fields D° D' and D' having components of the form

O 0 Ph,
3. 17) D" 0o | Dt -%P" , D %yt(aiP " —Qu")
pr —y Qs —(Q+ y1y9,QM

with respect to the induced coordinates (£4), where (P, @;*) denote the components
of the given derivation D in (U, (2*)). Thus, taking account of (1.5), (1. 6), (3. 16)
and (3. 17), we see that all of the local vector fields D°, D' and D™ above determine
respectively global vector fields in T2(M), which are denoted also by D°, D! and D™
respectively. These three vector fields D°, D' and DY in T2(M) are called respectively
the 0-¢4, the 1st and the 2nd lifts of the derivation D.

We now find for any derivation D the following formulas:
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D=0, Df*=0, Dufe=(DJY,
(3.18) Df1=0, D'f'= ‘;‘(wa, D'fr'=a(Ddf),
D'fu=fy,  DYi=aDdf),  DUfU=pDdf)

for fegY(M), where aw and fw for any element w of J%M) are functions in Tx(M)
having respectively local representations aw=y'w; and Bo=z'w;+y’y*d;0; in 7, *(U)
with respect to the induced coordinates (£4), the functions w; being the components
of w in (U, (")) (Cf. §5).

Lifts of Lie derivations. The Lie derivation _Lx with respect to a vector field
X is a derivation having components of the form

3.19) Lx: Pt=X" Qit=—0,X",

where X" denote the components of X. Thus, substituting (3.19) in (3. 17), we
have

ProposiTION 3. 2. The formulas
(Lx)'=X" (Lx)'=X1, (L)=X1
hold for Xe T y(M).

Lifts of covariant derivations. Let V be an affine connection in M. Then the
covariant differentiation Fxy with respect to a vector field X is a derivation in M,
which has components of the form

(3. 20) Py Pr=X" — Q=X

I'j%; denoting the coefficients of F and X" the components of X. The covariant
derivative VxZ has components of the form

Vx2Z)h=X%0;Z"4-TI"#:Z7)

for any vector field Z with components Z*. Substituting (3. 20) in (3. 17), we see
that the lifts (Fx)°, (Fx)' and (Fx)'' have respectively components of the form

0 0
7 x)" 0 ((F9k %Xh ’
Xh __ijz ]" jhi
3.21) P
o | 3 vGX—XIT )

— (X728 P4y ryt0 (X * )
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for any element X of giM). Therefore we have, from (3.1) and (3. 21),
PropositioN 3. 3. The formulas
Fx)'=X" (p'=X'"—allX), @p'=X"—pFX)
hold for any element X of T¥M).
In Proposition 3. 3, F is an affine connection in M defined by
PxY=PyX+[X, Y] for X, YeTiM),

and aF and BF for any element F of M) are vector fields in 73(M) having
respectively components

0 0
3. 22) al': 0 |, BF: % Yyl
YRt P LS ST D

with respect to the induced coordinates (§4) in =,"%(U), the functions Fi* being
components of Fin (U, (2") (Cf. §4 or §5). We see easily that the affine connection
7 has coefficients I ,»,=I",»,, I',", being the coefficients of 7. As an immediate conse-
quence of Proposition 3.3, we have

ProrosiTION 3. 4. For any element X of T¥M)

Fo'=X',  (Foli=X"
hold if and only if § X=0.

Derivation determined by a temsor field of type (1,1). When a derivation D
satisfies the condition Df=0 for fegyM), D determines an element F of M)
such that DX=FX for any element X of gy M). In such a case, we denote D by
Dy and call it the derivation determined by a temsor field F of type (1,1). The
derivation Dy has components of the form
(3. 23) Dp. P*=0, Qr=F*,

Fi* being components of F. Substituting (3. 23) in (3. 17), we find
@.24) (De)'=0,  (Dp)'=—aF, (Dp)"=—pF,

aF and BF being defined by (3. 22).
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§4. Lifts of tensor fields.

Lifts of temsor fields. We have introduced in §2 and §3 three kinds of lifts
for functions, vector fields and 1-forms given in M. The operations taking these lifts
are linear mappings I4(M)—TYTo(M)), T{M)—TT(M)) and TYM)—T(T(M))
respectively. Thus we can now define for any element K of g%5(M) its lifts K°,
KT and K, which are elements of g% T»(M)), in such a way that the correspon-
dence K—K°, K—K' and K—K1!' all define linear mappings J5(M)— T T(M)),
which are characterized by the properties

SRTY=S'®T,
1) SRTI=S'R¥T'+S°'®T",

(S®T)II:SII®T0+ZSI® TI+SO®T[I
for S, Teg(M). The conditions (4.1) are compatible with the conditions (2. 4),
(3.3) and (3.7). The tensor fields K° K! and K™ are called respectively the 0-¢4,
the 1st and the 2nd lifts of K. We see that a tensor field K, not belonging to
FUM), vanishes identically in M if and only if one of its lifts K° K and K"

does so in To(M).
Linear mappings 7y. Let T be an element of g5M) (s=1). Then it is a

correspondence
T: (le ey Xs)_’T(le Tty Xs)e gg(M))

X, -+, X, being arbitrary elements of TJYM). If for an element X of (M) we
define an element 7, T of I%_ (M) by

(rX T)(X2) ) Xs): T(-X; -XZ’ tty XS))

Xz, -, Xs being arbitrary elements of T3(M), then the correspondence T—yy T
determines a mapping 7z THM)—T 5 (M) such that y7x(fT+9S)=f(rzx T)+9GxS)
for f,9e Ty M) and T, Segy(M). If T has components of the form T,,,..,**"*, then
rx T has the components X*Ty,,., "7, X* being components of X. We have the

formula

rxe tm T=T(X, ) X)e T3

for any elements X, .-+, X5 of G¥M).
We now have the following formulas:

rono=0, TleOZO, TXU K(’:(TxK)O,
. 2) o K10, r ot Kl %(rx KY,  rynK'=(x KL,

T K=(x K)°, T K'=(x K)', Txuu K=y K)!
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for Xegy(M), Keg(M). In fact, if we suppose that K=w® S, weTAM), Se T (M),
then we have

Txo K'=7x0 (0" Q@ S")=0"(X"S°=0,

TxiK'=7x1 (0’ @S+’ ®ShH)= %(w(X))OS"

~ %(rx<w®s>)° - —é—(u Ky,

Txn KM =731 (0" Q S'+20' @ ST+ 0" Q S1)
= ((@(X)N"S "+ 2(o(X)'S"+(w(X))°S ")
=(X)S)'=x(0@SN"=x K)"

by virtue of (3.8) and (4.1). Thus, according to 7x(fS+Hg9T)=frxS+97rxT

for S, Tegy(M) and f,gegYM), we can prove these three formulas for any ele-

ment K of g(M). In a similar way, we can prove the other formulas given in (4. 2).
Lifts of differential forms. We now obtain the following formulas:

, (wAR)’=w A7, (@Am)'=0' A7+’ A7,
@9 (WA =" An'+20" A1+’ Azt
for w, meAx(M). Moreover we have the following formulas:
(XY, YU, -, Z=(0(X, ¥, -+, 2))",
4.9 (X, Y1, - Z=(o(X, Y, -+, Z))',
(X, Y, -, 2 =(0(X, Y, -, )T

for wedy (M), X,Y,--,Z being arbitrary element of gi(M). The formulas (4. 4)
are immediate consequences of (4. 2).
We obtain directly from (2. 2) and (3. 5)

(4.5) @r°=dr%,  @nN'=dihH, @NH"=df
for fegy(M). We next have the following formulas:
4.6) (do)’=d(0"), (do)'=dw), (do)'=do")
for weJUM). In fact, taking account of (3.4), (3.8) and (3.9), we have
2Ada)(X T, Y1)= X100 Y1) ¥ o (X 1) — o (X1, Y1)
=Xo(Y)—Yo(X)—o(X, Y])°
=2(do)(X, Y))*=2(dw)*(X", Y.
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Therefore, according to the Remark stated in § 3, we have (dw)°=d(«°). By similar
devices, we have the other formulas given in (4. 6).
If we consider a differential form » which has the local expression w=fdz“/\

e Adz®, fegyU) in (U, (z*)), we obtain
do=dfNdz/\--- Ndz*
and hence, taking account of (4. 3), (4.5) and (4. 6),

(o) =@ PNz -+ Adz)°+(df ) A (da A\ -+ N das)!
=@ ON@zN\ - Ndx*)+(df YN Az N\ -+ Ndx)!
=d(f (dxt/\ - ANdx*)"+f(dz N\ -+ Ndx™)")
=d(fdz" N\ Ndz¥) =d(0")

by virtue of (3.10). Therefore, taking account of the identity (w+r)'=w'+=z' for
o, n€dx(M), we have (dw)'=d(w') for any element w of A4(M). Similarly, we obtain
(dw)’=d(0®) and (dw)X=d(w") for any element o of A«(M). Thus we have

ProrosiTION 4. 1. The formulas
(dw)°=d("), (do)'=d(o"), (do)''=d(o™)
hold for any element o of Ax(M).

Lie devivatives with respect to lifts. Denoting by _Lx the operator of Lie
derivation with respect to a vector field X, we have directly from (3. 4)

Lxof°=0, Lx f1=0, Lxofr=(Lxf),
@D Lwfo—0, Lo flm g (LxfV,  Lxfi=(Lxf)
Lxuf'=(Lx ) Lxufl=(Lxf), LxuflU=(Lx

for fegy(M), Xeg M) and directly from (3. 9)

Lx Y°=0, Lx YI=0, Lxo YI=(Lx Y),
4. 8) Lx1 Y°=0, Lx1 Y= -;—(IX Y)", Lx1 Y=(LxY)),

LxnY'=(LxY), LxuY'=(Lx Y), Lyu Y=Ly Y)!

for X, YegyM). We have now the following formulas:
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Lx00°=0, Lxo0'=0, Lxo'"'=(Lx w),
“4.9) Lx10°=0, Lx1o'= %(IX o)’ Lxt o"=(Lx o),
Lx11 0"=(Lx ), Lxi1o'=(Lx ), Lxit o=(Lx o)

for Xe g (M), weTM). In fact, taking an arbitrary vector field Y in M, we have
(Lx0 )Y )= _Lx (@(Y™M)—0"(Lx0 Y)=0,

(Lx1 )Y =Lx1 (@(Y)—o(Lx1 Y= %(J’x (o(Y)—a(Lx V)

= 5 (L VW= (Lx (YD)
(Lxm ")V =_Lxu (@(YT)—o"(Lxn YT =(Lx(o(Y)—o(Lx Y
=(Lx )(Y)N'=(Lx )(YT)
by virtue of (3.4), (3.8), (4.7) and (4. 8). Consequently, Y being arbitrary, we find
Lx =0, Lx10'=1/2)(Lx ®)’, Lx11 0"'=(Lx ). Similarly, we obtain the other

formulas given in (4.9). We have here

PROPOSITION 4. 2. For any element K of (M) the formulas

Lx0 K°=0, Lx KI=0 Lxo K''=(Lx K),
L1 K0=0, Lo Ki=p (Lx K, Lo KM=(Lx K,
LxuK'=(Lx K)°, Lxu K'=(Lx K)Y, Lxu K=(Lx K)!

hold, X being an arbitrary element of T¥M).

Proof. These formulas have been already proved in (4.7), (4.8) and (4.9)
respectively for K belonging to M), T¥M) or TYM). Then we assume that
these formulas are established for K belonging to I5(M), where r=p, s=¢g. Taking
an arbitrary element S of L(M) and an element T of I%-L(M), we have

Lo SRTY=Lx0(S® T)=(Lxs SID TS D (Lo T)=0,

La @ T = L1 (S' T°+S°® T
~(LaSY@ TS @ (Lr TO+HLn SO TSR (Lxt T
(xSRI D (Lx TN

= S (LrH@THS®(Lx TI)'= 2 (LxS®TY,
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Lxu(SQTM=_Lxu(STQTH2STQ T+S'Q T
=(Lxu SN T'+ST"Q (Lx1n TO)+2(Lxt STHQ T
F2STR (Lx1t THH(Lxu SHRQ T4 S QR (Lx1 S
=(Lx SR TH+SR(Lx TH'=(Lx SR T)"

by virtue of (4.1). Similarly, we can prove the other formulas given in Proposition
4.2 for K=S®T. Consequently, we have proved Proposition 4.2 as consequences
of Lx(S+T)=_rLxS+Lx T for S, TeTy(M).

Linear mappings o and B. We shall define a linear mapping a: T4(M)
—T1_(To(M)) (s=1). Let T be an element of g5(M). Then T™ is a correspondence

T (X, -, X)—T(Xy, -, X)e Ti(TM)),

X, X being arbitrary elements of J¥T:(M)). If we consider a correspondence
aT such that

(4. 10) aT: (X, -, X)—TWA, X, -, X)e THTAM)),

X, o, X, being arbitrary elements of J¥7:(M)) and A the vector field defined by
(2.5). Then aT is an element of I%_,(T:(M)). Then the correspondence a: T—aT
determines a linear mapping «: T¥M)—T5_«(To(M)). Thus we have from (4. 10)

aw=o0""(A) for weJ M),
4. 11)
adf=f1 for fegyM).

When 7T has the form T=w®S, 0eT(M), SeT (M), taking account of (4.1), we
find

(4.12) aT=(am)S® (T=w®S)
because of the formulas
(4. 13) »*(A)=0, o'(A)=0, o''(A)=aw
for we JYM), which are direct consequences of (2.5) and (3. 5).
We shall next define a linear mapping f: M) —Ti_(To(M)) (s=1). Let T
be an element of g%5(M). If we consider a correspondence

(4. 14) BT: (X, -, X)—T(B, X, -+, X)e TT_(To(M)),

X., -+, X, being arbitrary elements of TTy(M)) and B the vector field defined by
(2.5), then BT is an element of T5_i(T2(M)). Thus the correspondence B 7—pT
defines a linear mapping f: Ji(M)—T5-«(T(M)). We have now
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Po=w''(B) for weg M),
Bldf)=r1 for fegy(M).

(4. 15)

When T has the form T=0®S, we T M), Seg (M), taking account of (4.1), we
obtain

(4. 16) BT=(Bw)S’+(aw)ST

by virtue of the formulas
4.17) »*(B)=0, o' (B)= é—am, o'"(B)=po

for we gUM), which are direct consequences of (2. 5) and (3. 5).

§5. Local expressions.

In this section, we would like to find local expressions of the lifts of tensor
fields in M. By components of a tensor field T in M we always mean those of 7°
in coordinate neighborhood (U, (#*)) of M and by components of a tensor field T
in 7w(M) those of T with respect to the induced coordinates (§4)=(x", y*, 2") in
m"Y(U). The local expression of a function f, a vector field X and a 1-form o
have been already given by (2. 2), (3.1) and (3. 5) respectively.

Tensor fields of type (1,1). Let F be an element of g¥(M), which is expressed
by

F—"“—— Fi"dx’ “a—

dx’

in (U, 2"). Taking the 0-th lift, we find

a 0
poe(roie 2,)

g
0
=(F")°dz W

by virtue of (3.10) and (4.1). Taking the 1st lift, we have

il I
FI:(Fihdxz® ax’b>
0 1 0 )
— A 7 P ‘2 - NAYS '
Fy (@ + 5 o @ )+ (VI ® 1

by virtue of (3.10) and (4.1). Taking the 2nd lift, we obtain
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a II
Fri— (Fﬁd:c‘@ W)

0 0 0
=<Fih>°(dz1®a—w+dyz®7y; e ® - )

oz

0 oz

+ (2 @y i @ )+ (P (4 @)

by virtue of (3.10) and (4.1). Therefore we see that the lifts F°, FFT and F! of
F have respectively the components of the form

0 0 0 0 0 0
I 0 0 0], It -%-Fi” 0 0],
0 0 Yo B B 0
(5.1)
EF 0 0
FIIZ ysasF,-" Fi"’ 0 ,

250"+t y"0,0: 5 2900t F
where F;* denote the components of F. We have from (5. 1)

PropoSITION 5.1. A tensor field F of type (1,1) is of vank v, if and only if
Fisof rank v, if and only if F1 is of vank 2r, or, if and only if F is of rank 3r.

Let I be the identity tensor field of type (1,1). Then, substituting Fi*=d? in
(5.1), we find

0o 0 0 0 0 0 I 0 0
(5.2) % (o 0 0], It %I 0 0], Im |0 I 0.
I 0 O 0 I 0 0 0 I

Therefore the 2nd lift I™ of the identity tensor field I of type (1,1) is the identity
tensor field of type (1, 1) in To2(M). We have from (3.1) and (5. 2)

[°X°=0,  I°XT=0, I°'X1=X",
G.3)

IX°=0, IIXI=%X°, [XU=Xm1,

for Xe gy M).
Tensor fields of type (0,2). Let g be an element of JYM). Then we can
easily verify that its lifts ¢° ¢' and ¢" have respectively components of the form
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qji 0 0 ysasgﬁ i 0
g% |0 0 0|, gt 0ji 0 0],
0 0 0 0 0 0
5. 4)
20507+ Y'Y 00595 2970950 9ji
g 2y863gﬁ 2y33sgﬂ 01,
g i 0 0

where g¢;; denote the components of g.
Given an element h of GYT.(M)), we denote by

h(de, de)=hepds°de®

the quadratic differential form corresponding to 7, if & is symmetric, Aoz being the
components of h. Let g be a pseudo-Riemannian metric in M. Then, taking
account of (5. 4), we obtain

gO(dE’ dE) = gjidx]dxzy
(5. 5) g'(dg, d&)=2g sdx'oy?,
gYI(dE, dE)=2g ;idxIov*+ 29 ;:0y70y",

the differential forms dy* and 0z* being defined respectively by

V2
5y”=dy”+{s i}y dz,
h h /
o R_|_astaS Ly gitaS 2
(5. 6) ov d<z +‘”{t s})+{i l}<z+yy{t SDdx

el (ol [ ) e

where ljhi} denote the Christoffel’s symbols constructed from g and v* are defined by
7)h=z”+{ h .}y’y].
ji
We have, from (5. 5),

PROPOSITION 5. 2. Let g be a pseudo-Riemannian metric in M (with r positive
and n—rvr negative signs). Then ¢ is a pseudo-Riemannian metvic in To2(M) (with
n-+r negative and 2n—rv positive signs).

Let ¢ be a 2-form of the maximum rank in M. Then ¢! is also a 2-form of
the maximum rank in 7x(M) because of (5.4). When ¢=dy, » being a 1-form,
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then ¢"'=d(»'") as an immediate consequence of Proposition 4. 1. Thus we have

ProrosiTION 5.3. If ¢ is a 2-form defining an (almost) symplectic structure
in M, then ¢ defines an (almost) symplectic structure in To(M).

Tensor fields of type (2,0). Let G be a tensor field of type (2,0) in M. Then
we can easily verify that its lifts G°, G' and G! have respectively components of
the form

0o 0 0 0 0 0
1 it
G lo o 0| et |0 0 EG] ,
1 .. "
0 0 G 0 36" vol
5.7
0 0 Gt
G™T (0 —;— Gt y°0,G 7t )

Gt 0,67 2°0,GIH-yty°0,0,GT

where G7¢ denote the components of G.
Tensor fields aT and BT. We shall give the local expressions of a7 and BT
defined in §4. Taking account of (2.5) and (3.5), we have from (4. 11) and (4. 15)

(5. 8) av=y'w;  Po=z0rw;+yydw; for weTYM)

with respect to the induced coordinates (z*, %", z2*) in =,"}(U), where w; denote the
components of w. Especially, we have from (5. 8)

5.9) a(dz")=y", Bldx™)=2z"
in =~} U).
Let T be an element of J5(M) (s=1) and assume that T has the expression
0 0
T="To g Mrd2" Q@ dz? @ - @ dx*s @ POy K- ® Py

in (U, (#*). Then, taking account of (4.12), we have

aT=a<dxf®(Tji?.@s"l"’"dx“@m®dx%®~a—j,7®“'® d >>

Pz
— j hyhr\0 0 7, a a
=a(dz?)(Tjiga 't *)dz? Q) - Q dx 8®W®W®E)z—’"

by virtue of (3.10), since a(T+S)=aT-+aS for T,SeT3M). Thus, according to

(5.9), we obtain

9 0
e O O

(5. 10) aT=Tjiyadv " )dz2 @ - Q dz's @
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with respect to the induced coordinates (¢4) in =z,"(U). Especially, for any element
F of M), aT has components of the form

0
(5. 11) aF: 0 |
i

F;* denoting the components of F. For an element S of T¥M), aS has components
of the form

0 0 0
(5.12) asS: 0 0 O
yiSy» 0 0

where S;;* denote the components of S.
Let F be an element of Ji(M) with local expression

F: Fihdx.l __a._

ox" "

Then, taking account of (4. 16), we have

pi-o(awo (0 2,)

) a \° . a \!
— (P ) + atdrh (P50
0 . 0 1 )
— B PP s + (o) B+ (PO )
) )
= G VR N+ FN)

by virtue of (3.10) and (5. 9), since B(T+S)=pT+pS for T, Se T5(M). This means
that BF has components of the form

0
1 .
(5.13) BE: 7?/771"‘
2ty ryio F i
for any element Fe M), where F;* denote the components of F.

By similar devices, we see that, for an element S of T}(M), 58S has components
of the form
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0 0 0
(5.14) BS: —;—'y’“Sm" 0 0],
25 S+ Yty 0,55 y*Sk® 0

where S;* denote the components of S.
If we take account of (3.1) and (5. 8), we obtain the following formulas:

X%aw)=0, X (Bw)=(0(X))",
(5. 15) XY aw)= -%— (w(X))", XY Bw)=a(Lx v)+(a(dm))(X),
XTaw)=a(Lx ), X(Bw)=p(Lx )
for we TUAM) and Xe TYM).

§6. Lifts of tensor fields of type (1, 1).

Formulas. Let F be an element of Ti(M). Then, taking account of (3.1)
and (5. 1), we find easily the following

FoX =0, FPX1=0 FoX1=(FX),
6.1) F1X0=(, F1X1=%(FX)°, F1X"=(FX)!,
FuXo=(FX), FUXi=(FX)| FUuxtu—(gpx)u

for Fe (M), X being an arbitrary element of G ¥M).

For any two elements F and G of (M), we defined an element FG of Ji(M)
by (FG)X=F(GX), X being an arbitrary element of JYM). Then we find the
following formulas:

GiFO=0, GUF1=0 GUF1=(GF)",
6. 2) G'F°=0, G'F'= %(GF)", G'FI'=(GF)},
GIIFO___(GF)O’ GIIFI:(GF)I’ GIIFII:(GF)II

for G, Feg¥M). In fact, taking account of (6.1), we have
(G°FOXN=G"(F°X1)=0,
(GTFHXU=GIF'XM)=GY(FX)'= %(G(FX))I = %(GF)"XII
(GUFMHXU=GFIXT) =G FX)'=(GEFX)'=(GF)"X"

for any element X of Ji(M). Thus we have G'F'=(GF)", GIF'=(1/2)(GF)" and
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GUFU=(GF)". The other formulas given in (6. 2) are proved in a similar way.
We see from (6.2) that, for any element F of JiM), F° F! and FU are
commutative with each other and the identities

(6. 3) (F2=0, (F13¥=0  for FegiM)

hold.
Let P(t) be a polynomial of £ and Feg!(M). Then, taking account of (6. 2),

we obtain

(6. 4) (PFENI=PFM)
and hence, for example,
(6. 5) (F24-DI=(F1)2 4], (F+F)YI=(F1)i pu

for any element F of Ji(M).

A tensor field F' of type (1, 1) is called an almost complex structure if F2+I=0.
A tensor field F' is called an f-structure of rank v if F*+F=0 and F is of rank 7
everywhere. Thus, taking account of Proposition 5.1, we have from (6. 5)

ProprosiTiON 6.1. Let F be an element of TXM). Then F is an almost
complex structure in To:(M) if and only if F is so in M. FY is an f-structure of
rank 3r in To(M) if and only if F is an f-structure of rank r in M.

Contraction in Lifts. Let F be an element of Ti(M). We denote by c(F) the
element of gY(M) obtained by contraction, i.e., ¢(F)=F;* if F has components F;*.
Then we have from (5. 1)

(6. 6) c(F)=0, c(FH=0, c(FI)=3(c(F))°
for Fegi(M). For example, we have
6.7 (0 ® X))=0, (0 @ X)H=0, (0 ® X)) =3(w(X))",

X and o being respectively elements of J{(M) and FUM).
Torsion temsors and Nijemhuis temsors. Let S be an element of M) such
that S=ZQ Q@ r, Ze Ty(M), w,ze T(M). Then, taking account of (3. 8) and (4. 1),

we have the following formulas:
o SUXM, YI=(S(X, Y))°,  S(XM, YI=(S(X, V),
(6. 8)
ST, Y=(S(X, V)

for SegyM), X and Y being arbitrary elements of T i(M).
Let there be given two elements G and F of giM). Then their torsion tensor
Nr,¢ is by definition a tensor field of type (1, 2) given by

Nro(X, Y)=[FX,GY]+[GX, FY]+FGLX, Y]+GF[X, Y]

6.9
©-9 —F[X,GY]—F[GX, Y]—GIX, FY]—-GIFX, Y],
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X and Y being arbitrary elements of §M). Thus, taking account of (3.9), (6. 1)
and (6. 2), we obtain

Npo,ao( X1, Y)=0,  Npo,e1(X", Y)=0,
Fyo, (X1, Y1) =(Nr,a(X, Y))",
(6.10) N1, or(X1, ¥1)= > (NeolX, Y)Y,
Np1,eu(X1, Y)=(Nr,6(X, Y))',
Ny, eu(X", Y1) =(Nrp,a(X, Y),
X and Y being arbitrary elements of JiM). Thus, we have from (6. 10)

Npo,q0=0, Ny1,g1= ';—(NF.G)O’
(6. 11) NFO'GIZO, NFI'GIIZ(NF'G)I,
NFO'GII“-“—(NF,G)O, NFII,GII—:(NF,G)II

for F,Geg{M) by virtue of (6. 8).
The Nijenhuis tensor Ny of an element F'of (M) is defined by Nr=(1/2)Nr,r.
Thus we have from (6. 11)

PROPOSITION 6. 2. For any element F of Ti{(M)

NFOZO, NFI=—;—(NF)O, NFIIZ(NF)“
hold.

ProposiTION 6.3. Let F be an almost complex structuve inm M. Then the
almost complex structure F is a complex structuve in To(M) if and only if F is
so in M.

§7. Lifts of affine connections.

Lifts of affine connections. Let  be an affine connection in M, which has
coefficients I'/%, in (U, (z")). We now introduce in z,~(U) an affine connection /!
having coefficients ¢4y with respect to the induced coordinates (£4)=(z", y*, 2")
such that

M) 0000
(7.1 Fee)=| 0 0 0
0 0 o

for each fixed index 4,
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&)t A0
(7.2) (Fdg) =) 0 0
0 0 0
for each fixed % and
£ 20t ()"
(7.3) (Fdhm)=|2T )0 2Tk 0
()° 0 0

for each fixed index %, where (I"j%)° (I'j4)' and (I';%)" denote respectively the
0-th, the 1st and the 2nd lifts of the functions 7I';%, given in (U, (z*). We note
here that the transformation law of coefficients /';# of an affine connection is
given by

oz [ 0x? Oz %zl
= Y o T A
@4 Filo= G <6xf' oo LI G )

in UNU’. Thus, taking account of (1.5), (1.6), (7.1), (7.2) and (7. 3), we know
by virtue of (7. 4) that the affine connection ™' introduced above in each =,~Y(U)
determines globally in 7x(M) an affine connection, which is denoted also by P
The affine connection V' constructed thus in T,(M) is called the [ift of the affine
connection V given in M.

We obtain here the following formulas:

i Y0=0, 7% Y1=0, P, Y=z Y)Y,
@5 7L Y'=0, 7Y, Yi= %(VX Y)Y, P YU=(@xY),
ViYIII YO:(VX Y)0> Vi;?n YI:(VX Y)I fvg‘n YH:(VX Y)H

for X, YegyM). In fact, taking account of (3.1), (7.1), (7.2) and (7. 3), we see
that 5 Y has components of the form

oy
dx?

g Y= X3 I = X0, T,

P Y= X0 S POV QL)Y T 2|

0
oy’

F9X) [ WY+ It Yi]

[oY™ ) )
=ysas(Xf( +Fj”zY’>>=y383(Xfl7,Yh),

dox?
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i YIe=X1 [aixz (205 Y9 9°0,0s Y 2) (205 i1y *0idel ") Y
F-2(°0sL" ) (y'0, Y 1)+ 17 74(2°0s Y '+ 'y°0,0s Yi)]

+(y*F0r X7 )[aiyf (2°0s Y "4 9'9°0:0s Y ) +-2(y°0s " /0) Y421 4 (3y°0s Y")]

+<zkaka+ymylamazXf>[aa7 (@0, Yy 03, Y M)+ I' Yi]

=2°0(X9(0, Y "+ I # Y1)+ 9'y°0,:0(X %0, Y "+ 1"/ Y'?))
=2°0s(X IV , Y )+ y'y°0,05( XV , Y 7).

Therefore we find VY, Y"=(Fx Y)!. Similarly, we obtain the other formulas
given in (7. 5).
Comparing (7.5) with (4. 2) or (6.1), we find easily the formulas

(7. 6) pUYO=FY), FUYI=(FY), PUYT=F )

for YeJy(M).
We also obtain the following formulas:

i =0, Pl w'=0, P ol =( x 0)",
@.7 P 00 =0, P ol= %(VX 0, T ol=0xo)
Vi o’=Vx 0)°, fuo'=Fx ), Vi o=V x w)!

for XeJHM), weTYUM). In fact, taking an arbitrary element Y of gi(M), we have
P oYY D)=V g (@ (Y1)~ (7 ¥
=l x(o(Y)—olx Y)"
=(xo)(¥YN'=Fx o) (Y

by virtue of (3. 8) and (7. 5). Thus we have I'};; o= x w)", because Y is arbitrary.
The other formulas given in (7.7) are proved in a similar way.
We have from (7.7) the formulas

7.8) Filg=F w)°, Fiigl= w)l, Filgll=F w)!
for we JAM). In fact, we have from (4. 2) and (7. 7)
rxu(THoM) =" o= yo) =z Vo) =7yul o)t

for any element X of g¥M). Thus we have Fo"=Fw)". Similarly, we can
prove the other formulas given in (7. 8).
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We have here from (7. 6) and (7. 8)
ProrosiTIiON 7. 1. For any element K of (M)
FtK'=FK), FVUK'=FK), PJUKU=FK)!
hold.

We have directly from Proposition 7. 1 the formulas

7, K0=0, i, K1=0, il K= K",
(7.9 g K°=0, i KI:%(VXK)()’ i K= ¢ K)',
ru K=V ¢K), Vin K'=VxK)', P K= xK)!

for Xegy(M), Kegy(M) by virtue of (4. 2).
The Curvature and the torsion temsors. Denoting by T the torsion tensor of
an affine connection 7 in M, we have by definition

TX, )=y Y-V X)—[X, Y] for X, YeJiM).
Taking the second lift, we obtain
(TG V)= Y1y X —[X1, Y1)
T, vy

by virtue of Proposition 7.1 and (3.9), where 7 denotes thNe torsion tensor of P,
This equation implies, together with (6.8), T(XY, YIH)=T(X", Y1), Thus, we
have T1'=T, since X and Y are arbitrary. Therefore we have

ProOPOSITION 7. 2. The torsion temnsor of the lift V' of an affine connection V
given in M coincides with the 2nd lift T of the torsion tensor T of V.

The curvature tensor R of an affine connection V in M is a tensor field of
type (1, 3) such that, for any two elements X and Y of g¥M), R(X,Y) is an
element of Ti(M) satisfying the condition

RX, V2= xVyZ—VyV x2)—V iy piZ
for any element Z of i(M). Taking the 2nd lift, we find
(RX, V2= Vi Z0 =V Vi Z) =V g,y Z1
=R(x1, yuyzu

by virtue of Proposition 7.1 and (3.9), where R denotes the curvature tensor of
I On the other hand, we can verify (R(X, Y)Z)"'=R (X, YIZ by virtue of
Vet KM=V K)" given in (4.2). Therefore we find ﬁ(X“, YIHZI=RI(X!1 Yz
which implies B=R! since X, Y and Z are arbitrarily taken. Thus we have
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ProrosITION 7. 3. The curvature tensor of the lift V'L of an affine connection
V given in M coincides with the 2nd lift R of the curvature tensor R of V.

As a corollary to Propositions 7.1 and 7. 3, we have

ProPOSITION 7.4. Let T and R be vespectively the torsion and the curvalure
tensors of an affine conmection V given in M. According as T=0, V'T=0, R=0 or
VR=0, we have T"=0, F'T11=0, R"=0 or VUIRU=0. In particular, T.(M) is
locally symmetric with respect to the lift V' of V if and only if M is so with
respect to V.

Let g be a pseudo-Riemannian metric in M and F the Riemannian connection
determined by ¢g. Then we have from Proposition 7.1

pugl—=(Fg)1=0).

On the other hand, since F is torsionless, so is F!! by virtue of Proposition 7. 2.
Consequently, FI' should coincide with the Riemannian connection determined by
g'. Thus we have

ProrosiTION 7. 5. Let g be a pseudo-Riemannian metrvic in M and V its Rieman-
nian connection. Then the lift VU of V is the Riemannian conneclion determined by
the 2nd lift ¢ of g.

We have from Propositions 7.4 and 7.5

PROPOSITIONS 7. 6. Let g be a pseudo-Riemannian metric in M. Then T5(M)
is locally symmetric with respect to g™ if and only if M is so with respect to g.

Let P be an element of Ji(M). Then we have from (4. 2)
Tyt P =(rgry P)1,

in which both sides belong to T T:(M)).
If we take account of (6. 6), we find

c(rxyyir PY=c((rary P)')=3(c(Grxry )’
which implies

PRrROPOSITION 7. 7. Let g be a pseudo-Riemannian melric in M. Then the Ricci
tensor K of ¢ coincides with 3K°, where K denotes the Ricci tensor of g.

If ¢ is an Finstein metric in 73(M), we have K=ag¢"" with a constant ¢, K
being the Ricci tensor of ¢'". However, we have from proposition 7.7 K=3K".
Thus we have @¢''=3K?", which, together with (5. 4), implies @=0. Therefore we
have

PROPOSITION 7.8. Let g be a pseudo-Riemannian wmetvic in M. If g is an
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Einstein metric in To(M), then g is of zero Ricci temsor. If g is of constant
curvature, then g is locally flat.

Let I?CB denote the components of the Ricci tensor K=3K° of g and Ges
the contravariNant components of ¢'. Then, taking account of (5.4) and (5.7), we
have £ =I?CBGCB=3(Kﬁg”)°, where Kj; denote the components of the Ricci tensor
of g and ¢’ the contravariant components of g. Thus we have

PrOPOSITION 7.9. Let g be a pseudo-Riemannian metric in M. Let k and E
be the curvature scalars of g and ¢ rvespectively. Then E=3k’. If g is of con-
stant curvature scalar, so is g'%.

A pseudo-Riemannian metric ¢ is of constant curvature 2 in M if
R(X, Y)Z=k(9(Z, Y)X—9(Z, X)Y) for X, YeqyM)

with a constant k, R denoting the curvature tensor of ¢g. Taking the 2nd lift,
we have

RUXY, YIZU=(R(X, Y)Z)"'=(k(9(Z, Y)X—9(Z, X) Y )"
:k[gII(ZII’ YII)X0+2QI(ZH, YII)XI‘I‘QO(ZH, YII)XII
__gII(ZII, XII) YO—ZQI(ZH, XII) YI_QO(ZH, XII) YII]'

If we take account of I°XU=X° [IXU=XT given in (5.3), we have from the
equation above

RII(XII’ YII)ZII
(7. 10) :k[gII(ZII, YII)IOXII_,_ZQI(ZII, YII)IIXII+QO(ZII, YII)XII
_— gII(ZII, XII)[O YII —ng(ZH, XII)] I YII—QO(ZH, XII) YII]

which gives the curvature tensor RY of g™ in To(M) when g is of constant curva-
ture in M.

§ 8. Lifts of infinitesimal transformations.

Let ¢ be a pseudo-Riemannian metric in /. Then we have from Proposition
4.2

@1 Lxg"=(Lx9), Lx1g"=(Lxg)', Lyng"=(Lx"

for any element X of g¥M). If X is a Killing vector field with respect to ¢, i.e.,
if _£xg=0, then X° XT and X™ are so with respect to ¢'*. Thus, taking account
of (5. 2), we have

ProposiTION 8. 1. Let g be a pseudo-Riemannian metvic in M. If X is a
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Killing vector field with vespect to g in M, then X° X', X are all Killing vector
fields with respect to the pseudo-Riemannian metric g™ in To(M).

Similarly, taking account of Proposition 6.1, we have

ProrosiTION 8. 2. If X is an (almost) analytic vector field in M with respect
to an (almost) complex structure F, i.e., if Lx F=0, then X° X' and X are so
also in To(M) with respect to the (almost) complex structure F'.,

Let X be a conformal Killing vector field in M with respect to a pseudo-
Riemannian metric g. Then we have Ly g=ag, acTYM). Thus, taking account
of (8.1), we obtain

eCXH gII =aIIg0+2aIgI+a0gII’
which implies

ProrosiTiON 8. 3. Let X be a conformal Killing vector field in M with respect
to a pseudo-Riemannian metric g. Then X is conformal in T.(M) with respect to
g if and only if X is homothetic, i.e., if and only if Lxg=ag holds with a con-
stant a. If this is the case, X' is necessarily homothetic.

Let V7 be an affine connection in M. Then, for any element X of JiM), the
Lie derivative of V' with respect to X is an element LxV of M) defined by

(8 2) (IX V)(K Z)=IX (VYZ)—IY (VXZ)_.J:'[x,Y]Z,

X, Y and Z belonging to giM). Thus, taking account of (3.9), (8.2) and Proposi-
tion 4.2, we obtain

(Lyn PDYYY, ZN= L1 Tyu ZN =V u (Lxn1 Z) =V {gum Z"
=(Lx VyZ)—Vy (LxZ)—Vix 31 Z)
=((Lx VXY, 2" =(Lx (Y, ZM)
for any element Y and Z of giM). Thus we find
8.2) LyuV=(Lx )M

Similarly, we can prove the other formulas given in Proposition 8.4. Thus we
have

ProprosITION 8.4. Let V be an affine connection in M. Then, for any element
X of M), the formulas

Ly V=(Lx V),  LxytV'=(Lx ),  Lxul"=(Lyx "
hold in To(M).
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A vector field X is called an infinitesimal affine transformation with respect
to an affine connection V if _LxV=0. As a consequence of Proposition 8.4, we
have

ProrosiTION 8.5. Let V be an affine conmection in M. If X is an in-
Sinitesimal affine transformation in M with respect to V, then X° X' and X are
so also in To(M) with respect to V'

A vector field X in M is called an infinitesimal projective transformation with
respect to an affine connection F if

(Lx VXY, Z)=9(2)Y+9(Y)Z,
» being a certain element of J%M). Taking the 2nd lift, we have
(Lx PV, Z0)=7%(Z ) Y O+27/(Z ) Y 922 ) Y
YN Z0+ 2 (Y Z 7Y IHZ
by virtue of Propositton 8. 4. Thus we have

ProprosiTION 8. 6. Let X be an infinitesimal projective transformation in M
with respect to an affine connection V. Then X is an infinitesimal projective
transformation with respect to V' if and onlf if X is affine. If this is the case,
XU §s necessarily affine with respect to V.

Let X be an element of gi(M) and exp (¢X) denote a local 1-parameter group
of transformations of M generated by X. Then, according to (1.10) and (3. 1), X!
generates a local 1-parameter group of 7%(}/) and

exp (¢X')=(exp (¢X))*
holds. Hence we have
ProrosiTION 8. 7. If a vector field X in M is complete in the sense that it
generates a global 1-parameter group of transformations of M, then X' is also

complete in To(M).

Remark. From the local expressions (3. 1) of X° and X!, we see immediately
that X° and X! are complete in 7>(M) whether X is complete in M or not.

Taking account of the Remark stated above, we have, from Propositions 8.1
and 8.7,

ProrosiTiON 8.8. If M is homogeneous pseudo-Riemannian manifold with
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metric g, so is To(M) with metric g™.
Similarly, we have from Proposition 8. 2

ProrosiTiON 8.9. If M is homogeneous (abmost) complex manifold with (almost)
complex structure F, so is Tu(M) with (almost) complex structure F',

Similarly, we have from Proposition 8.5

ProrosiTioN 8.10. If a group G of affine transformations of M with respect
to an affine connection V is transitive in M, the group G* of affine transformations
of To(M) with respect to V' is transitive in To(M), where G* denotes the group of
transformations genevated by vector fields X° X' and X', X in M being an
arbitrary element belonging to the Lie algebva of vector fields gemerating G.

Let M be a pseudo-Riemannian (resp. affine) symmetric space with metric g
(resp. connection ). If we take an arbitrary point P in M, then there exists in M
a symmetry Sp with center P, that is to say, Sy is in M an isometry of ¢ (resp.
an affine transformation of ) such that So(P)=P, (Sp)?=identity. We note here
that M is identified with the zero-cross section M of T »(M), which is defined by
equations y*=0, z"=0 with respect to the induced coordinates (£4)=(z", ¥*, 2*) in
each =" (U). For any point P of M we denote by P the point of M corresponding
to P. Then the transformation (Sy)* induced from S; (Cf. §1) is a symmetry with
center P with respect to ¢'' (resp. /). On the other hand, 7%(M) is homogeneous
with respect to ¢! (resp. F''Y), because M is so with respect to g (resp. V). There-
fore, taking an arbitrary point ¢ in T»(M), we know that there exists an isometry
(resp. an affine transformation) ¢ such that @(P)=s. Hence, the transformation
@o(Sp)*e@! is a symmetry with center o, ie., To(M) is symmetric with respect to
" (resp. V). Thus we have

ProposiTiON 8.11. [If M is symmetric with vespect to a pseudo-Riemannian
metric g (vesp. an affine connection V), so is To(M) with respect to g™ (resp. V')

§9. Geodesics.

Let 7 be a torsionless affine connection in M. We denote by ['* the coef-
ficients of  in a coordinate neighborhood (U, (")) of M, where I"j#,=1I",, Let C
be a curve in Ty(M) and suppose that C is expressed locally by equations

g1=84), e,

CY; gh=xMt),  Yr=yMP), =2

with respect to the induced coordinates (&4)=(z", y", 2") in =" (U), ¢ being a para-
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meter. We now put along C Nr.~Y(U)

9.2 vh=zh - yrytl
and
M d dx’ dw . 0% ’L_ d(ﬁy ) dx? oy |
dt i “ar v drr— dt \ dt g dt dt’
9. 3)
A e d ! ot d (E) dx? ov*
ar ar g O det — dt \ dt “dt -

where z2™(¢), y"(¢) aLnd z"({) are the functions appearing in (9.1). Denoting by C
the projection 7, (C) of C in M, we see that the curve C is expressed as z"=z"(¢)
in (U, (x1)), x™(¢) being the functions appearing in (9. 1). Then the quantities

o, DU Byt 0
T dt dt ) der’ di?
defined above are respectively global vector fields along C.

A curve C in To(M) is a geodesic with respect to P, ¢ being an affine para-
meter, if and only if its local expression (9. 1) satisfies the differential equations

@A o el deP .
ar Tl =% e

Eot g, A AT
ar CE G dt

9. 4)
By g O dE

ar TH e =0

d’z" |~ = d&° d&b

h

dar By dar

where I'¢"p, I'¢"*5 and FCﬁB are the coefficients of VI given by (7.1), (7.2) and
(7. 3). The equations (9. 4) are equivalent to the equations

a’x? . Aw dx'
d2 . N 7 dxt dz? dy*
©-6) vl l) a’t dt 2l ar At
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d?zh dz? d
ar +(2° 0sI” i+ y'y*0,0s 1 ) dxt dxl:
0.7
dxz? dy dy dy dx! dz*
+4(1/ asF] 1,) dt +2Fj i dt +2F] i df at =

Making use of (9.2) and (9. 3), we see that the system of differential equations
9.5), 9.6) and (9.7) is equivalent to the the system of differential equations

a2z dx? dz*
©-8 g Mg =0
R . dx? drt
©-9 . TR g =0,
P da' d _da? oy
g+ Rut dj; - G HARu
9. 10)

dx? dx*
(7 Rosi"—V jRus 'y dﬁ ;s =0,

where Ry;* denote the components of the curvature tensor of V. That is to
say, the system of differential equations (9. 8), (9.9) and (9. 10) determines in T»(M)
geodesics with respect to the affine connection V™. Thus we have

ProposiTioN 9. 1. Let C be a geodesic in Toy(M) with respect to V', where
is a torsionless ajffine connection in M, and suppose that C has the local expression
9.1). Then the projection c=7Tg(Cv) is a geodesic in M with respect to V. The
vector field y*({) defined along C is a Jacobi field with vespect to V. The vector
field v™(t) defined by (9.2) along C satisfies the differential equation (9.10). The
affine parameter of C induces naturally an affine pavameter along C.

Conversely, if there exists in M a geodesic with respect to V, C having the
local expression x"=x™t) with affine pavameter t, if theve is given a Jacobi vector
field y™(t) along C, and, if there is given a vector field v™(t) satisfying along C the
differential equation (9. 10), then the curve C defined in To(M) by the local expression
zh=xM{®), y*=y"{), 2"=v"E)—y Oy (x*(t)) is a geodesic in T:(M) with respect
to V1T,

Taking account of (9. 8), (9.9) and (9. 10) we see easily that, if there is given
in M a geodesic C with respect to a torsionless affine connection V, C having the
local expression x"=z"{t), and a Jacobi field v*({) along C, then the curve ¢ defined
in To(M) by the local expression x"=z"{), y*=0, 2"=0v™{) is a geodesic with re-
spect to 1,
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We say that M is complete with respect to an affine connection (resp. a pseudo-
Riemannian metric ¢) if along any geodesic any affine parameter takes an arbitrarily
given real value. Then, taking account of (9. 8), (9.9) and (9. 10), we have

ProrosITION 9. 2. If M is complete with respect to a torsionless ajffine con-
nection V (vesp. a pseudo-Riemannian metric g), so is T(M) with respect to V'

(resp. g'M).
According to [15], we have from (9. 8), (9.9) and (9. 10)

ProrosiTion 9.3. Let C be a geodesic in To(M) with vespect to V'Y, V being a
torsionless affine connection in M. Then the projection 0::(C) of C in the tangent
bundle T\(M) is also a geodesic with respect to V°, wheve VC is the complete lift of
the affine connection V in the sense of [15].
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