DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES OF ORDER 2

By Kentaro Yano and Shigeru Ishihara
Dedicated to Professor Shisanji Hokari on his Sixtieth Birthday

§ 0. Introduction.

The differential geometry of tangent bundles has been studied by Davies [13], Dombrowski [1], Kobayashi [15], Ledger [2], [3], [16], Morimoto [4], [5], Okumura [8], Sasaki [6], Tachibana [8], Tanno [9], Tondeur [10], the present authors [2], [3], [11], [13], [14], [15], [16], [17], [18] and others and that of cotangent bundles by Patterson [17], [18], Satô [7] and one of the present authors [12], [17], [18].1)

The purpose of the present paper is to study the differential geometry of tangent bundles of order 2, the tangent bundle of order $2 T_{2}(M)$ of a differentiable manifold M being defined as the set of all 2-jets of M determined by mappings of the real line R into M.

In $\S 1$, we define the tangent bundles of order 2 and induced coordinates in it and fix the notations used throughout the paper.

In $\S 2$, we study the lifts of functions and two vector fields A and B existing a priori in $T_{2}(M)$.
$\S 3$ is devoted to the study of lifts of vector fields, 1 -forms and derivations, and $\S 4$ to the study of lifts of tensor fields and two linear mappings α and β. In $\S 5$, we give the local expressions of these lifts.

In §6, we study in more detail the lifts of tensor fields of type $(1,1)$ and discuss lifts of torsion tensors and Nijenhuis tensors.
§ 7 is devoted to the study of lifts of affine connections and also of curvature tensor and torsion tensor of the connection.

We study lifts of infinitesimal transformations in $\S 8$ and geodesics in $T_{2}(M)$ in the last $\S 9$.

Contents

§ 1. Tangent bundles of order 2.
§ 2. Lifts of functions.
§3. Lifts of vector fields, 1 -forms and derivations.
§4. Lifts of tensor fields.
§5. Local expressions.
Received November 27, 1967.

1) The numbers in brackets [] refer to Bibliography at the end of the paper.
$\S 6$. Lifts of tensor fields of type $(1,1)$.
§7. Lifts of affine connections.
§8. Lifts of infinitesımal transformations.
§ 9. Geodesics.

§ 1. Tangent bundles of order 2.

Let M be a differentiable manifold ${ }^{2}$) of dimension n and R the real line. We introduce an equivalence relation \sim in the set of all differentiable mappings $F: R \rightarrow M$ as follows. Let $r \geqq 1$ be a fixed integer. If two differentiable mappings $F: R \rightarrow M$ and $G: R \rightarrow M$ satisfy the conditions ${ }^{3)}$

$$
\begin{equation*}
F^{h}(0)=G^{h}(0), \quad \frac{d F^{h}(0)}{d t}=\frac{d G^{h}(0)}{d t}, \quad \cdots, \quad \frac{d^{r} F^{h}(0)}{d t^{r}}=\frac{d^{r} G^{h}(0)}{d t^{r}} \tag{1.1}
\end{equation*}
$$

the mappings F and G being respectively represented by $x^{h}=F^{h}(t)$ and $x^{h}=G^{h}(t)$ $(t \in R)$ with respect to local coordinates $\left(x^{h}\right)$ defined in a coordinate neighborhood containing the point $F^{h}(0)=G^{h}(0)$, then we say that the two mappings F and G are equivalent to each other and write $F \sim G$. Each equivalence class determined by the equivalence relation \sim is called briefly an r-jet of M and denoted by $j_{\mathrm{P}}^{r}(F)$ if this class contains a mapping $F: R \rightarrow M$ such that $F(0)=\mathrm{P}$. The point P is called the target of the r-jet $j_{P}^{r}(F)$. In the sequel, we shall restrict ourselves to the case $r=1$ or $r=2$.

If we denote by $T_{2}(M)$ the set of all 2 -jets of M and topologize $T_{2}(M)$ in the natural way, the space $T_{2}(M)$ has the natural. bundle structure over M, its bundle projection $\pi_{2}: T_{2}(M) \rightarrow M$ being defined by $\pi_{2}\left(j_{\mathrm{P}}^{2}(F)\right)=\mathrm{P}$. The space $T_{2}(M)$ is called the tangent bundle of order 2 over M.

The set $T_{1}(M)$ of all 1-jets of M is nothing but the tangent bundle of M, if $T_{1}(M)$ is naturally topologized. The bundle projection $\pi_{1}: T_{1}(M) \rightarrow M$ of $T_{1}(M)$ is defined by $\pi_{1}\left(j_{\mathrm{P}}^{1}(F)\right)=\mathrm{P}$. Each 1 -jet of M is called a tangent vector of M. If we introduce a mapping $\pi_{12}: T_{2}(M) \rightarrow T_{1}(M)$ by $\pi_{12}\left(j_{\mathrm{P}}^{2}(F)\right)=j_{\mathrm{P}}^{1}(F), F: R \rightarrow M$ being an arbitrary differentiable mapping such that $F(0)=\mathrm{P}$, then $T_{2}(M)$ has a bundle structure over $T_{1}(M)$ with bundle projection π_{12}. It is easily verified that the relation

$$
\begin{equation*}
\pi_{2}=\pi_{1} \circ \pi_{12} \tag{1.2}
\end{equation*}
$$

holds.
Let U be a coordinate neighborhood of M and $\left(x^{h}\right)$ certain coordinates defined in U. We call the set $\left(U,\left(x^{h}\right)\right)$ simply a coordinate neighborhood of M. If we take an arbitrary 2 -jet $j_{P}^{2}(F)$ belonging to $\pi_{2}{ }^{-1}(U)$ and put

[^0]\[

$$
\begin{equation*}
y^{h}=\frac{d F^{h}(0)}{d t}, \quad z^{h}=\frac{d^{2} F^{n}(0)}{d t^{2}} \tag{1.3}
\end{equation*}
$$

\]

then we see from (1.1) that the 2 -jet $j_{P}^{2}(F)$ is expressed in a unique way by the set (x^{h}, y^{h}, z^{h}), where x^{h} are the coordinates of the target P in $\left(U,\left(x^{h}\right)\right)$. Thus a system of coordinates $\left(x^{h}, y^{h}, z^{h}\right)$ is introduced in the open set $\pi_{2}{ }^{-1}(U)$ of $T_{2}(M)$. We call $\left(x^{h}, y^{h}, z^{h}\right)$ the coordinates induced in $\pi_{2}^{-1}(U)$ from ($U,\left(x^{h}\right)$), or, simply the induced coordinates in $\pi_{2}{ }^{-1}(U)$. On putting

$$
\begin{equation*}
\xi^{h}=x^{h}, \quad \xi^{\bar{h}}=y^{h}, \quad \xi^{\bar{h}}=z^{h}, \tag{1.4}
\end{equation*}
$$

we denote the induced coordinates $\left(x^{h}, y^{h}, z^{h}\right)$ by $\left(\xi^{4}\right)$ in $\pi_{2}^{-1}(U) .^{4}$
Let ($U,\left(x^{h}\right)$) and $\left(U^{\prime},\left(x^{h^{\prime}}\right)\right)$ be two intersecting coordinate neighborhoods of M. Let $\left(\xi^{A}\right)=\left(x^{h}, y^{h}, z^{h}\right)$ and $\left(\xi^{A^{\prime}}\right)=\left(x^{h^{\prime}}, y^{h^{\prime}}, z^{h^{h^{\prime}}}\right)$ be the coordinates induced respectively from ($\left.U,\left(x^{h}\right)\right)$ and $\left(U^{\prime},\left(x^{h^{\prime}}\right)\right)$. Then, denoting by $x^{h^{\prime}}=x^{h^{\prime}}\left(x^{i}\right)$ the coordinate transformation in $U \cap U^{\prime}$, the transformation of the induced coordinates in $\pi_{2}{ }^{-1}\left(U \cap U^{\prime}\right)$ is given by

$$
\begin{equation*}
x^{h^{\prime}}=x^{h^{\prime}}\left(x^{i}\right), \quad y^{h^{\prime}}=\frac{\partial x^{h^{\prime}}}{\partial x^{h}} y^{h}, \quad z^{h^{\prime}}=\frac{\partial x^{h^{\prime}}}{\partial x^{h}} z^{h}+\frac{\partial^{2} x^{h^{\prime}}}{\partial x^{j} \partial x^{2}} y^{\jmath} y^{2}, \tag{1.5}
\end{equation*}
$$

and its Jacobian matrix by
(1. 6)

$$
\left(\begin{array}{ccc}
\frac{\partial x^{h^{\prime}}}{\partial x^{h}} & 0 & 0 \\
\frac{\partial^{2} x^{h^{\prime}}}{\partial x^{i} \partial x^{s}} y^{s} & \frac{\partial x^{i^{\prime}}}{\partial x^{2}} & 0 \\
\frac{\partial^{2} x^{h^{\prime}}}{\partial x^{j} \partial x^{s}} z^{s}+\frac{\partial^{3} x^{h^{\prime}}}{\partial x^{j} \partial x^{t} \partial x^{s}} y^{t} y^{s} & 2 \frac{\partial^{2} x^{i^{\prime}}}{\partial x^{j} \partial x^{s}} y^{s} & \frac{\partial x^{j^{\prime}}}{\partial x^{j}}
\end{array}\right)
$$

Let $\varphi: M \rightarrow M$ be a differentiable transformation. The correspondence $j_{\mathrm{P}}^{2}(F)$ $\rightarrow j_{\varphi(\mathrm{P})}^{2}(\varphi \circ F), j_{\mathrm{P}}^{2}(F) \in T_{2}(M)$ determines a differentiable transformation $\varphi^{*}: T_{2}(M)$ $\rightarrow T_{2}(M)$, called the transformation induced in $T_{2}(M)$ from φ. If we take a point P belonging to a coordinate neighborhood ($U,\left(x^{h}\right)$), and, if we suppose that the point $\varphi(\mathrm{P})$ belongs to a coordinate neighborhood $\left(U^{\prime},\left(x^{h^{\prime}}\right)\right)$, then we can express φ locally by equations

$$
\begin{equation*}
x^{h^{\prime}}=\varphi^{h^{\prime}}\left(x^{h}\right), \tag{1.7}
\end{equation*}
$$

$\varphi^{h^{\prime}}\left(x^{h}\right)$ being n differentiable functions of the variables x^{h} such that $\left|\partial \varphi^{h^{\prime}}\right| \partial x^{h} \mid \neq 0$, where $\left(x^{h}\right)$ are the coordinates of P in $\left(U,\left(x^{h}\right)\right)$ and $\left(x^{h^{\prime}}\right)$ those of $\varphi(\mathrm{P})$ in $\left(U^{\prime},\left(x^{h^{\prime}}\right)\right)$. Then the induced transformation φ^{*} is expresssd locally by equations of the form
4) The indices A, B, C, D, E run over the symbols $\{1,2, \cdots, n ; \overline{1}, \overline{2}, \cdots, \bar{n} ; \overline{\overline{1}}, \overline{\overline{2}}, \cdots, \overline{\bar{n}}\}$ and the so-called Einstenns summation convention is used with respect to this system of indices.

$$
x^{h^{\prime}}=\varphi^{h^{\prime}}\left(x^{h}\right), \quad y^{h^{\prime}}=\frac{\partial \varphi^{h^{\prime}}}{\partial x^{h}} y^{h}
$$

(1. 8)

$$
z^{h^{\prime}}=\frac{\partial \varphi^{h^{\prime}}}{\partial x^{h}} z^{h}+\frac{\partial^{2} \varphi^{h^{\prime}}}{\partial x^{j} \partial x^{\imath}} y^{\jmath} y^{2}
$$

where $\left(x^{h}, y^{h}, z^{h}\right)$ are the induced coordinates of $j_{\mathrm{P}}^{2}(F)$ in $\pi_{2}^{-1}(U)$ and ($x^{h^{\prime}}, y^{h^{\prime}}, z^{h^{\prime}}$) those of $\varphi^{*}\left(j_{\mathrm{P}}^{2}(F)\right)$ in $\pi_{2}^{-1}\left(U^{\prime}\right)$.

Let X be an infinitesimal transformation (a vector field) in M. Then, taking account of (1.8), we see easily that there naturally corresponds an infinitesimal transformation \tilde{X} in $T_{2}(M)$ having components of the form

$$
\begin{equation*}
\tilde{X}^{h}=X^{h}, \quad \tilde{X}^{\bar{h}}=y^{i} \partial_{i} X^{h}, \quad \tilde{X^{\bar{h}}}=z^{i} \partial_{i} X^{h}+y^{\jmath} y^{i} \partial_{j} \partial_{i} X^{h} \tag{1.9}
\end{equation*}
$$

in $\pi_{2}^{-1}(U)$, the functions X^{h} being the components of X in $\left(U,\left(x^{h}\right)\right)$ and ∂_{i} denoting the operator

$$
\partial_{i}=\frac{\partial}{\partial x^{2}}
$$

Hence we have the relation

$$
\begin{equation*}
(\exp (t X))^{*}=\exp (t \tilde{X}) \quad(t \in R) \tag{1.10}
\end{equation*}
$$

whenever $\exp (t X)$ is defined.
If we put $Y=f X, f$ and X being respectively a function and a vector field in M , then we find in $T_{2}(M)$

$$
\tilde{Y}=\tilde{f} \tilde{X}+2 \tilde{g} \tilde{U}+\tilde{h} \tilde{V}
$$

\tilde{X} and \tilde{Y} being constructed by (1.9) respectively from X and Y, where \tilde{U} and \tilde{V} are vector fields having respectively components of the form

$$
\begin{array}{lll}
\tilde{U}: \quad \tilde{U}^{n}=0, & \tilde{U}^{\bar{n}}=\frac{1}{2} y^{i} \partial_{i} X^{h}, & \tilde{U}^{\bar{n}}=X^{n} \tag{1.11}\\
\tilde{V}: \quad \tilde{V}^{n}=0, & \tilde{V}^{\bar{n}}=0, & \tilde{V}^{\bar{n}}=X^{n}
\end{array}
$$

in $\pi_{2}^{-1}(U)$ and $\tilde{f}=f \circ \pi_{12}, \tilde{g}=y^{i} \partial_{i} f, \tilde{h}=z^{i} \partial_{i} f+y^{j} y^{i} \partial_{j} \partial_{i} f$ with respect to the induced coordinates $\left(x^{h}, y^{h}, z^{h}\right)$ in $\pi_{2}^{-1}(U)$. Therefore, given a vector field X in M, we obtain in $T_{2}(M)$ three vector fields \tilde{X}, \tilde{U}, and \tilde{V} defined by (1.9), (1.11) and (1.12) respectively.

Notations.

We list below notations used frequently in this paper.

1. $\mathscr{I}_{s}^{r}(M)$ is the space of all tensor fields of type (r, s), i.e., of contravariant degree r and covariant degree s, in a differentiable manifold M. An element of
$\mathscr{I}_{0}^{0}(M)$ is a function in M, an element of $\mathscr{I}_{0}^{1}(M)$ is a vector field in M, and an element of $\mathscr{T}_{1}^{0}(M)$ is a 1 -form in M.
2.

$$
\mathscr{I}(M)=\sum_{r, s} \mathscr{I}_{s}^{r}(M)
$$

3. $\Lambda_{*}(M)$ is the space of all differential forms in $M . \Lambda_{s}$ is the space of all $s-$ forms in M.

$$
\Lambda_{*}(M)=\sum_{s} \Lambda_{s}(M), \quad \Lambda_{s}(M)=\Lambda_{*}(M) \cap \mathscr{I}_{s}^{0}(M)
$$

4. A mapping $\varphi: \mathscr{I}(M) \rightarrow \mathscr{T}\left(M^{\prime}\right)$ is said to be linear if we have $\varphi(a S+b T)$ $=a \varphi(S)+b \varphi(T)$ for any element $S, T \in \mathscr{I}(M)$, where a and b are constants.

§ 2. Lifts of functions.

Lifts of functions. Let f be a function in M. Then f is a mapping $f: M \rightarrow R$ and it gives a mapping $f \circ F: R \rightarrow R$. For the given function f a 2 -jet $j_{a}^{2}(f \circ F)$ of R is completely determined by giving a 2 -jet $j_{\mathrm{P}}^{2}(F), F$ being a mapping $F: R \rightarrow M$ such that $\mathrm{P}=F(0)$ and $a=f(\mathrm{P})$. Thus, if we put $f^{*}\left(j_{\mathrm{P}}^{2}(F)\right)=j_{a}^{2}(f \circ F)$, there exists a mapping $f^{*}: T_{2}(M) \rightarrow T_{2}(R)$ corresponding to f. On the other hand, any element τ of $T_{2}(R)$ can be expressed canonically by a set $\left(A^{0}(\tau), A^{\mathrm{I}}(\tau), A^{\mathrm{II}}(\tau)\right)$ of three numbers, which are the induced coordinates of τ in $T_{2}(R)$, because R is covered naturally by only one coordinate neighborhood R itself. Therefore, for a function f given in M, there corresponds in $T_{2}(M)$ three functions f^{0}, f^{I} and $f^{I I}$ respectively defined by

$$
\begin{equation*}
f^{0}(\sigma)=A^{0}\left(f^{\sharp}(\sigma)\right), \quad f^{\mathrm{I}}(\sigma)=A^{\mathrm{I}}\left(f^{\sharp}(\sigma)\right), \quad f^{\mathrm{I}}(\sigma)=A^{\mathrm{II}}\left(f^{\sharp}(\sigma)\right), \tag{2.1}
\end{equation*}
$$

σ being an arbitrary element of $T_{2}(M)$. The three functions f^{0}, f^{I} and $f^{\text {II }}$ thus defined in $T_{2}(M)$ is called respectively the $0-t h$, the $1 s t$ and the $2 n d$ lifts of $f . A$ function f in M is constant if and only if one of its lifts f^{1} and $f^{I I}$ vanishes identically in $T_{2}(M)$. A function f in M vanishes identically if and only if its lift f^{0} does so in $T_{2}(M)$.

The lifts f^{0}, f^{I} and $f^{\text {II }}$ of a function f in M expressed by $f\left(x^{h}\right)$ in ($U,\left(x^{h}\right)$) are represented respectively as

$$
\begin{equation*}
f^{0}: f\left(x^{h}\right), \quad f^{\mathrm{I}}: y^{i} \partial_{i} f\left(x^{h}\right), \quad f^{\mathrm{I}}: z^{i} \partial_{i} f\left(x^{h}\right)+y^{\jmath} y^{i} \partial_{j} \partial_{i} f\left(x^{h}\right) \tag{2.2}
\end{equation*}
$$

with respect to the induced coordinates $\left(\xi^{A}\right)=\left(x^{h} ، y^{h}, z^{h}\right)$ in $\pi_{2}^{-1}(U)$. We note here that f^{0} has in $\pi_{2}^{-1}(U)$ the same local representation as f has in ($U,\left(x^{h}\right)$).

Taking account of (2.2), we find

$$
\begin{equation*}
f^{0}=f \circ \pi_{2}=\left(f^{V}\right) \circ \pi_{12}, \quad f^{\mathrm{I}}=\left(f^{C}\right) \circ \pi_{12} \tag{2.3}
\end{equation*}
$$

for $f \in \mathscr{I}_{0}^{0}(M)$, where the functions f^{V} and f^{C} defined in $T_{1}(M)$ are respectively the vertical and the complete lifts of f in the sense of [14] and [15]. As consequences
of (2.2), we find the following formulas:
(2. 4)

$$
\begin{gathered}
(f g)^{0}=g^{0} f^{0}, \quad(f g)^{\mathrm{I}}=f^{\mathrm{I}} g^{0}+f^{0} g^{\mathrm{I}} \\
(f g)^{\mathrm{I}}=f^{\mathrm{II}} g^{0}+2 f^{\mathrm{I}} g^{\mathrm{I}}+f^{0} g^{\mathrm{II}}
\end{gathered}
$$

for $g, f \in \mathscr{I}_{0}^{0}(M)$.
Remark. Let \tilde{X} be a vector field in $T_{2}(M)$. Then \tilde{X} vanishes identically in $T_{2}(M)$ if we have $\tilde{X} f^{\mathrm{II}}=0$ for any function f in M. In fact, if we take account of (2.2) and denote by $\left(\tilde{X}^{A}\right)=\left(\tilde{X}^{n}, \tilde{X}^{\bar{n}}, \tilde{X}^{\overline{\bar{n}}}\right)$ the components of \tilde{X} with respect to the induced coordinates $\left(\xi^{A}\right)=\left(x^{h}, y^{h}, z^{h}\right)$, we see that the condition $\tilde{X} f^{\mathrm{II}}=0$ is expressed as

$$
\tilde{X}^{k}\left(z^{i} \partial_{k} \partial_{i} f+y^{j} y^{i} \partial_{k} \partial_{j} \partial_{i} f\right)+2 \tilde{X}^{\bar{k}} y^{i} \partial_{k} \partial_{i} f+\tilde{X}^{\bar{k}} \overline{\bar{\epsilon}}_{k} f=0
$$

Thus, if we have $\tilde{X} f^{I I}=0$ for any element f of $\mathscr{I}_{0}^{0}(M)$, we find $\tilde{X}^{n}=\tilde{X}^{\bar{n}}=\tilde{X}^{\overline{\bar{n}}}=0$ by virtue of the continuity of \tilde{X}. Consequently, a vector field \tilde{X} in $T_{2}(M)$ is completely determined by giving the values of $\tilde{X} f^{\text {II }}, f$ being arbitrary elements of $\mathscr{I}_{0}^{0}(M)$. In the sequel, this remark will be useful in determining values of vector fields given in $T_{2}(M)$.

Vector fields A and B. We now consider in each $\pi_{2}{ }^{-1}(U)$ two local vector fields A and B respectively with components of the form

$$
A:\left(\begin{array}{c}
0 \tag{2.5}\\
0 \\
y^{h}
\end{array}\right), \quad B:\left(\begin{array}{c}
0 \\
\frac{1}{2} y^{h} \\
z^{h}
\end{array}\right)
$$

with respect to the induced coordinates $\left(\xi^{A}\right),\left(U,\left(x^{h}\right)\right)$ being an arbitrary coordinate neighborhood of M. Taking account of (1.5) and (1.6), we can easily verify that both of the local vector fields A and B thus introduced determine respectively global vector fields in $T_{2}(M)$, which are also denoted by A and B respectively. We now obtain the following formulas:

$$
\begin{equation*}
A f^{0}=0, \quad A f^{\mathrm{I}}=0, \quad A f^{\mathrm{II}}=f^{\mathrm{I}} \tag{2.6}
\end{equation*}
$$

$$
B f^{0}=0, \quad B f^{\mathrm{I}}=\frac{1}{2} f^{\mathrm{I}}, \quad B f^{\mathrm{II}}=f^{\mathrm{II}}
$$

for $f \in \mathscr{I}_{0}^{0}(M)$ and

$$
\begin{equation*}
[A, B]=\frac{1}{2} A \tag{2.7}
\end{equation*}
$$

by virtue of (2.2) and (2.5).

§ 3. Lifts of vector fields, 1 -forms and derivations.

Lifts of vector fields. Let X be a vector field in M. We introduce in each $\pi_{2}{ }^{-1}(U)$ three local vector fields X^{0}, X^{I} and $X^{\text {II }}$ having respective components of the form

$$
X^{0}=\left(\begin{array}{c}
0 \tag{3.1}\\
0 \\
X^{n}
\end{array}\right), \quad X^{\mathrm{I}}=\left(\begin{array}{c}
0 \\
\frac{1}{2} X^{h} \\
y^{i} \partial_{i} X^{n}
\end{array}\right), \quad X^{\mathrm{II}}=\left(\begin{array}{c}
X^{h} \\
y^{i} \partial_{i} X^{h} \\
y^{i} \partial_{i} X^{h}+y^{\jmath} y^{i} \partial_{j} \partial_{i} X^{n}
\end{array}\right)
$$

with respect to the induced coordinates (ξ^{A}), where X^{h} denote the components of X in ($U,\left(x^{h}\right)$) (Cf. (1.9), (1.11) and (1.12)). If we take account of (1.5), (1.6) and the transformation law $X^{h^{\prime}}=\left(\partial x^{h^{\prime}} \mid \partial x^{h}\right) X^{h}$ of the components of X, then we see that the local vector fields X^{0}, X^{I} and $X^{\text {II }}$ above determine respectively global vector fields in $T_{2}(M)$, which are also denoted by X^{0}, X^{I} and $X^{\text {II }}$ respectively. The vector fields X^{0}, X^{I} and $X^{\text {II }}$ in $T_{2}(M)$ are called respectively the $0-t h$, the $1 s t$ and the $2 n d$ lifts of X. We find

$$
\begin{equation*}
\pi_{12}\left(X^{0}\right)=0, \quad \pi_{12}\left(X^{\mathrm{I}}\right)=\frac{1}{2} X^{V}, \quad \pi_{12}\left(X^{\mathrm{II}}\right)=X^{C} \tag{3.2}
\end{equation*}
$$

for $X \in \mathscr{I}_{0}^{1}(M)$ because of (3.1), π_{12} denoting the differential mapping of the projection $\pi_{12}: T_{2}(M) \rightarrow T_{1}(M)$, where the vector fields X^{V} and X^{C} defined in $T_{1}(M)$ denote respectively the vertical and the complete lifts of X in the sense of [14] and [15]. According to (3.1), a vector field X in M vanishes identically if and only if one of X^{0}, X^{1} and $X^{\text {II }}$ does so in $T_{2}(M)$.

Taking account of (3.1), we find the following formulas:

$$
(f X)^{0}=f^{0} X^{0}, \quad(f X)^{\mathrm{I}}=f^{\mathrm{I}} X^{0}+f^{0} X^{\mathrm{I}}
$$

$$
(f X)^{\mathrm{II}}=f^{\mathrm{II}} X^{0}+2 f^{\mathrm{I}} X^{\mathrm{I}}+f^{0} X^{\mathrm{II}}
$$

for $f \in \mathscr{T}_{0}^{0}(M), X \in \mathscr{I}_{0}^{1}(M)$. As immediate consequences of (2.2) and (3.1), we have the following formulas:

$$
\begin{array}{lll}
X^{0} f^{0}=0, & X^{0} f^{\mathrm{I}}=0, & X^{0} f^{\mathrm{II}}=(X f)^{0}, \\
X^{\mathrm{I}} f^{0}=0, & X^{\mathrm{I}} f^{\mathrm{I}}=\frac{1}{2}(X f)^{0}, & X^{\mathrm{I}} f^{\mathrm{II}}=(X f)^{\mathrm{I}}, \tag{3.4}\\
X^{\mathrm{II}} f^{0}=(X f)^{0}, & X^{\mathrm{II}} f^{\mathrm{I}}=(X f)^{\mathrm{I}}, & X^{\mathrm{II}} f^{\mathrm{II}}=(X f)^{\mathrm{II}}
\end{array}
$$

for $f \in \mathscr{I}_{0}^{0}(M), X \in \mathscr{I}_{0}^{1}(M)$.
Lifts of 1 -forms. Let ω be a 1 -form in M. We introduce in each $\pi_{2}{ }^{-1}(U)$ three local 1 -forms ω^{0}, ω^{I} and ω^{II} having respective components of the form

$$
\begin{align*}
\omega^{0}: & \left(\omega_{i}, 0,0\right) \\
\omega^{\mathrm{I}}: & \left(y^{k} \partial_{k} \omega_{i}, \omega_{i}, 0\right) \tag{3.5}\\
\omega^{\mathrm{II}}: & \left(z^{k} \partial_{k} \omega_{i}+y^{k} y^{j} \partial_{k} \partial_{j} \omega_{i}, 2 y^{j} \partial_{j} \omega_{i}, \omega_{i}\right)
\end{align*}
$$

with respect to the induced coordinates $\left(\xi^{A}\right)$, where ω_{i} denote the components of ω in $\left(U,\left(x^{h}\right)\right)$. Taking account of (1.5), (1.6) and the transformation law $\omega_{i}=\left(\partial x^{2} / \partial x^{i^{\prime}}\right) \omega_{i}$ of components of ω, we can easily verify that the local 1 -forms $\omega^{0}, \omega^{\mathrm{I}}$ and ω^{II} above determine respectively global 1 -forms in $T_{2}(M)$, which are also denoted respectively by $\omega^{0}, \omega^{\mathrm{I}}$ and ω^{II}. These 1 -forms $\omega^{0}, \omega^{\mathrm{I}}$ and ω^{II} are respectively called the 0 -th, the $1 s t$ and the $2 n d$ lifts of ω. From (3.5) we find

$$
\begin{equation*}
\omega^{0}=\omega^{\circ} \pi_{2}=\omega^{V} \circ \pi_{12}, \quad \omega^{\mathrm{I}}=\omega^{C} \circ \pi_{12} \tag{3.6}
\end{equation*}
$$

for $\omega \in \mathscr{L}_{0}^{1}(M)$, where the 1 -forms ω^{V} and ω^{C} defined in $T_{2}(M)$ are respectively the vertical and the complete lifts of ω in the sense of [14] and [15]. According to (3.5), a 1-form ω vanishes identically in M if and only if one of $\omega^{0}, \omega^{\mathrm{I}}$ and ω^{II} does so in $T_{2}(M)$.

Taking account of (3.5), we obtain the formulas

$$
\begin{gather*}
(f \omega)^{0}=f^{0} \omega^{0}, \quad(f \omega)^{\mathrm{I}}=f^{\mathrm{I}} \omega^{0}+f^{0} \omega^{\mathrm{I}} \\
(f \omega)^{\mathrm{II}}=f^{\mathrm{II}} \omega^{0}+2 f^{\mathrm{I}} \omega^{\mathrm{I}}+f^{0} \omega^{\mathrm{II}} \tag{3.7}
\end{gather*}
$$

for $f \in \mathscr{I}_{0}^{0}(M), \omega \in \mathscr{T}_{1}^{n}(M)$. As immediate consequences of (3.1) and (3.5), we find the following formulas:

$$
\begin{array}{lll}
\omega^{0}\left(X^{0}\right)=0, & \omega^{0}\left(X^{\mathrm{I}}\right)=0 & \omega^{0}\left(X^{\mathrm{II}}\right)=(\omega(X))^{0} \\
\omega^{\mathrm{I}}\left(X^{0}\right)=0, & \omega^{\mathrm{I}}\left(X^{\mathrm{I}}\right)=\frac{1}{2}(\omega(X))^{0}, & \omega^{\mathrm{I}}\left(X^{\mathrm{II}}\right)=(\omega(X))^{\mathrm{I}} \tag{3.8}\\
\omega^{\mathrm{II}}\left(X^{0}\right)=(\omega(X))^{0}, & \omega^{\mathrm{II}}\left(X^{\mathrm{I}}\right)=(\omega(X))^{\mathrm{I}}, & \omega^{\mathrm{II}}\left(X^{\mathrm{II}}\right)=(\omega(X))^{\mathrm{II}}
\end{array}
$$

for $X \in \mathscr{I}_{0}^{1}(M), \omega \in \mathscr{I}_{1}^{0}(M)$.
Formulas. We have here the following formulas:

$$
\begin{align*}
{\left[X^{0}, Y^{0}\right] } & =0, & {\left[X^{\mathrm{I}}, Y^{\mathrm{I}}\right] } & =\frac{1}{2}[X, Y]^{0}, \\
{\left[X^{\mathrm{I}}, Y^{0}\right] } & =0, & {\left[X^{\mathrm{II}}, Y^{\mathrm{I}}\right] } & =[X, Y]^{\mathrm{I}} \tag{3.9}\\
{\left[X^{\mathrm{II}}, Y^{0}\right] } & =[X, Y]^{0}, & {\left[X^{\mathrm{II}}, Y^{\mathrm{II}}\right] } & =[X, Y]^{\mathrm{II}}
\end{align*}
$$

for $X, Y \in \mathscr{I}_{0}^{1}(M)$. In fact, taking account of (3.4), we have

$$
\begin{aligned}
{\left[X^{\mathrm{II}}, Y^{\mathrm{I}}\right] f^{\mathrm{II}} } & =X^{\mathrm{II}}\left(Y^{\mathrm{I}} f^{\mathrm{II}}\right)-Y^{\mathrm{I}}\left(X^{\mathrm{II}} f^{\mathrm{II}}\right)=\left(X(Y f)^{\mathrm{I}}-(Y(X f))^{\mathrm{I}}\right. \\
& =([X, Y] f)^{\mathrm{I}}=[X, Y]^{\mathrm{I}} f^{\mathrm{II}}
\end{aligned}
$$

$$
\left[X^{\mathrm{II}}, Y^{\mathrm{II}}\right] f^{\mathrm{II}}=([X, Y] f)^{\mathrm{II}}=[X, Y]^{\mathrm{II}} f^{\mathrm{II}}
$$

for any element f of $\mathscr{I}_{0}^{0}(M)$. Therefore, if we take account of the Remark stated in $\S 2$, we obtain $\left[X^{\text {II }}, Y^{1}\right]=[X, Y]^{\text {I }}$ and $\left[X^{\text {II }}, Y^{\text {II }}\right]=[X, Y]^{\text {II }}$. Applying similar devices, we can prove the other formulas given in (3. 9).

The correspondences $X \rightarrow X^{0}, X \rightarrow X^{\text {I }}$ and $X \rightarrow X^{\text {II }}\left(X \in \mathscr{I}_{0}^{1}(M)\right)$ determine respectively one-to-one linear mappings of $\mathscr{I}_{0}^{1}(M)$ into $\mathscr{I}_{0}^{1}\left(T_{2}(M)\right.$). We have, from the last formulas given in (3.9),

Proposition 3.1. The correspondence $X \rightarrow X^{11}\left(X \in \mathscr{I}_{0}^{1}(M)\right)$ determines an isomorphism of the Lie algebra $\mathscr{I}_{0}^{1}(M)$ into the Lie algebra $\mathscr{I}_{0}^{1}\left(T_{2}(M)\right.$).

According to (3.1) and (3.5), we find in each neighborhood $\pi_{2}^{-1}(U)$ the formulas

$$
\begin{align*}
\left(\frac{\partial}{\partial x^{2}}\right)^{0} & =\frac{\partial}{\partial z^{2}}, & \left(\frac{\partial}{\partial x^{2}}\right)^{\mathrm{I}} & =\frac{1}{2} \frac{\partial}{\partial y^{2}}, \\
\left(d x^{h}\right)^{0} & =d x^{h}, & \left(d x^{h}\right)^{\mathrm{I}} & =d y^{h}, \tag{3.10}
\end{align*}
$$

with respect to the induced coordinateg $\left(\xi^{A}\right)=\left(x^{h}, y^{h}, z^{h}\right)$, where $\left(U,\left(x^{h}\right)\right)$ is a coordinate neighborhood of M.

Remark. If we take account of (3.1) and (3.5), we see that a tensor field K, say, of type (1,2) in $T_{2}(M)$ is completely determined by giving values $K\left(X^{\text {II }}, Y^{\mathrm{II}}, \omega^{\mathrm{II}}\right)$, X and Y being arbitray elements of $\mathscr{I}_{0}^{1}(M)$ and ω an arbitrary element of $\mathscr{T}_{1}^{0}(M)$.

Lifts of derivations. In this paper we mean by a derivation in M a linear mapping $D: \mathscr{I}(M) \rightarrow \mathscr{I}(M)$ satisfying the conditions:
(a) $D: \mathscr{I}_{s}^{r}(M) \rightarrow \mathscr{I}_{s}^{r}(M)$,
(b) $D(S \otimes T)=(D S) \otimes T+S \otimes(D T) \quad$ for $\quad S, T \in \mathscr{T}(M)$,
(c) $D I=0$,
where I denotes the identity tensor field of type $(1,1)$ in M.
For a given derivation D in M, there exists a vector field P in M such that

$$
\begin{equation*}
P f=D f \tag{3.12}
\end{equation*}
$$

f being an arbitrary element of $\mathscr{T}_{0}^{0}(M)$. In each coordinate neighborhood $\left(U,\left(x^{h}\right)\right)$ of M, taking account of (3.11, a), we can put

$$
\begin{equation*}
D\left(\frac{\partial}{\partial x^{2}}\right)=Q_{i}{ }^{h} \frac{\partial}{\partial x^{h}}, \tag{3.13}
\end{equation*}
$$

$Q_{i}{ }^{h}$ being certain functions in U. Thus, taking account of (3.11, b), (3.12) and
(3.13), we obtain

$$
D\left(X^{h} \frac{\partial}{\partial x^{h}}\right)=\left(P^{i} \partial_{i} X^{h}+Q_{i}{ }^{h} X^{i}\right) \frac{\partial}{\partial x^{h}}
$$

in ($\left.U,\left(x^{h}\right)\right)$ for any element $X=X^{h}\left(\partial / \partial x^{h}\right)$ of $\mathscr{I}_{0}^{1}(M)$. That is to say, for any element X of $\mathcal{I}_{0}^{1}(M), D X$ has components of the form

$$
\begin{equation*}
(D X)^{h}=P^{i} \partial_{i} X^{h}+Q_{i}{ }^{h} X^{i} \tag{3.14}
\end{equation*}
$$

in ($U,\left(x^{h}\right)$), if X has components X^{h} in $\left(U,\left(x^{h}\right)\right)$. According to (3.11), we have $D(\omega(X))=(D \omega)(X)+\omega(D X)$ for any element X of $\mathscr{T}_{0}^{1}(M)$ and any element ω of $\mathscr{I}_{1}^{0}(M)$. Thus, as a consequence of (3.14), D ω has components of the form

$$
\begin{equation*}
(D \omega)_{i}=P^{j} \partial_{j} \omega_{i}-Q_{i}^{h} \omega_{h} \quad \text { for } \quad \omega \in \mathscr{T}_{1}^{0}(M) \tag{3.15}
\end{equation*}
$$

in ($U,\left(x^{h}\right)$), if ω has components ω_{i} in $\left(U,\left(x^{h}\right)\right.$). The set $\left(P^{h}, Q_{i}^{h}\right)$ is called the components of the derivation D in $\left(U,\left(x^{h}\right)\right)$.

We suppose that a derivation D has components ($P^{h}, Q_{i}{ }^{h}$) and ($P^{h^{\prime}}, Q_{i}{ }^{{ }^{h^{\prime}}}$) respectively in $\left(U,\left(x^{h}\right)\right)$ and in $\left(U^{\prime},\left(x^{h^{\prime}}\right)\right)$. Then, as a consequence of (3.14) and the transformation law $X^{h^{\prime}}=\left(\partial x^{h^{\prime}} / \partial x^{h}\right) X^{h}$ of the components X^{h} of X, we obtain the transformation law

$$
\begin{align*}
P^{h^{\prime}} & =\frac{\partial x^{h^{\prime}}}{\partial x^{h}} P^{h} \\
Q_{i},^{h^{\prime}} & =\frac{\partial x^{h^{\prime}}}{\partial x^{h}}\left(\frac{\partial x^{2}}{\partial x^{i^{\prime}}} Q_{i}{ }^{h}+P^{\prime} \frac{\partial x^{j^{\prime}}}{\partial x^{j}} \frac{\partial_{2} x^{h}}{\partial x^{j^{\prime}} \partial x^{i^{\prime}}}\right) \tag{3.16}
\end{align*}
$$

of the components of a derivation D in $U \cap U^{\prime}$.
If we are given a derivation D in M, we introduce in $\pi_{2}{ }^{-1}(U)$ three local vector fields $D^{0}, D^{\text {I }}$ and $D^{\text {II }}$ having components of the form

$$
D^{0}:\left(\begin{array}{c}
0 \tag{3.17}\\
0 \\
P^{h}
\end{array}\right), \quad D^{\mathrm{I}}:\left(\begin{array}{c}
0 \\
\frac{1}{2} P^{h} \\
-y^{\imath} Q_{i}{ }^{h}
\end{array}\right), \quad D^{\mathrm{I}:}\left(\begin{array}{c}
P^{h} \\
\frac{1}{2} y^{2}\left(\partial_{i} P^{h}-Q_{i}{ }^{h}\right) \\
-\left(z^{2} Q_{i}{ }^{h}+y^{\jmath} y^{i} \partial_{j} Q_{i}{ }^{h}\right)
\end{array}\right)
$$

with respect to the induced coordinates $\left(\xi^{A}\right)$, where ($P^{h}, Q_{i}{ }^{h}$) denote the components of the given derivation D in ($U,\left(x^{h}\right)$). Thus, taking account of (1.5), (1.6), (3.16) and (3.17), we see that all of the local vector fields D^{0}, D^{I} and $D^{\text {II }}$ above determine respectively global vector fields in $T_{2}(M)$, which are denoted also by D^{0}, D^{I} and $D^{\text {II }}$ respectively. These three vector fields $D^{\mathrm{o}}, D^{\mathrm{I}}$ and $D^{\text {II }}$ in $T_{2}(M)$ are called respectively the $0-t h$, the $1 s t$ and the $2 n d$ lifts of the derivation D.

We now find for any derivation D the following formulas:

$$
\begin{array}{lll}
D^{0} f^{0}=0, & D^{\mathrm{I}} f^{0}=0, & D^{\mathrm{II}} f^{0}=(D f)^{0}, \\
D^{0} f^{\mathrm{I}}=0, & D^{\mathrm{I} f^{\mathrm{I}}=\frac{1}{2}(D f)^{0},} & D^{\mathrm{II} f^{\mathrm{I}}=\alpha(D d f),} \tag{3.18}\\
D^{0} f^{\mathrm{II}}=(D f)^{0}, & D^{\mathrm{I} f^{\mathrm{II}}=\alpha(D d f),} & D^{\mathrm{II}} f^{\mathrm{II}}=\beta(D d f)
\end{array}
$$

for $f \in \mathscr{I}_{0}^{0}(M)$, where $\alpha \omega$ and $\beta \omega$ for any element ω of $\mathscr{I}_{1}^{0}(M)$ are functions in $T_{2}(M)$ having respectively local representations $\alpha \omega=y^{2} \omega_{i}$ and $\beta \omega=z^{2} \omega_{i}+y^{j} y^{i} \partial_{j} \omega_{i}$ in $\pi_{2}^{-1}(U)$ with respect to the induced coordinates (ξ^{A}), the functions ω_{i} being the components of ω in ($U,\left(x^{h}\right)$) (Cf. §5).

Lifts of Lie derivations. The Lie derivation \mathcal{L}_{X} with respect to a vector field X is a derivation having components of the form

$$
\begin{equation*}
\mathcal{L}_{X}: \quad P^{h}=X^{h}, \quad Q_{i}{ }^{h}=-\partial_{i} X^{h}, \tag{3.19}
\end{equation*}
$$

where X^{h} denote the components of X. Thus, substituting (3.19) in (3.17), we have

Proposition 3. 2. The formulas

$$
\left(\mathcal{L}_{X}\right)^{0}=X^{0}, \quad\left(\mathcal{L}_{X}\right)^{\mathrm{I}}=X^{\mathrm{I}}, \quad\left(\mathcal{L}_{X}\right)^{\mathrm{II}}=X^{\mathrm{II}}
$$

hold for $X \in \mathscr{T}_{0}^{1}(M)$.
Lifts of covariant derivations. Let V be an affine connection in M. Then the covariant differentiation ∇_{X} with respect to a vector field X is a derivation in M, which has components of the form

$$
\begin{equation*}
\nabla_{X}: \quad P^{h}=X^{h}, \quad Q_{i}^{h}=X^{j} \Gamma_{j}^{h} \imath \tag{3.20}
\end{equation*}
$$

$\Gamma_{j}{ }^{h}{ }_{i}$ denoting the coefficients of ∇ and X^{h} the components of X. The covariant derivative $\nabla_{X} Z$ has components of the form

$$
\left(\nabla_{X} Z\right)^{h}=X^{j}\left(\partial_{j} Z^{h}+\Gamma_{j}{ }^{h}{ }_{i} Z^{i}\right)
$$

for any vector field Z with components Z^{h}. Substituting (3.20) in (3.17), we see that the lifts $\left(\nabla_{X}\right)^{0},\left(\nabla_{X}\right)^{\mathrm{I}}$ and $\left(\nabla_{X}\right)^{\mathrm{II}}$ have respectively components of the form

$$
\left(\nabla_{X}\right)^{0}:\left(\begin{array}{c}
0 \\
0 \\
X^{n}
\end{array}\right), \quad\left(\nabla_{X}\right)^{\mathrm{I}}:\left(\begin{array}{c}
0 \\
\frac{1}{2} X^{h} \\
-X^{\jmath} y^{\imath} \Gamma_{j}{ }^{{ }^{k}}
\end{array}\right)
$$

$$
\left(\nabla_{X}\right)^{\mathrm{II}}:\left(\begin{array}{c}
X^{h} \tag{3.21}\\
\frac{1}{2} y^{i}\left(\partial_{i} X^{h}-X^{j} \Gamma_{j}{ }_{i}{ }_{i}\right) \\
-\left(X^{\jmath} z^{i} \Gamma_{j}{ }_{j}{ }_{i}+y^{\jmath} y^{i} \partial_{j}\left(X^{k} \Gamma_{k}{ }^{h}{ }_{\imath}\right)\right.
\end{array}\right)
$$

for any element X of $\mathscr{I}_{0}^{1}(M)$. Therefore we have, from (3.1) and (3.21),
Proposition 3. 3. The formulas

$$
\left(\nabla_{X}\right)^{0}=X^{0}, \quad\left(\nabla_{X}\right)^{\mathrm{I}}=X^{\mathrm{I}}-\alpha(\hat{\nabla} X), \quad\left(\nabla_{X}\right)^{\mathrm{II}}=X^{\mathrm{II}}-\beta(\hat{\nabla} X)
$$

hold for any element X of $\mathscr{I}_{0}^{1}(M)$.
In Proposition 3.3, \hat{V} is an affine connection in M defined by

$$
\hat{\nabla}_{X} Y=\nabla_{Y} X+[X, Y] \quad \text { for } \quad X, Y \in \mathscr{I}_{0}^{1}(M)
$$

and αF and βF for any element F of $\mathscr{T}_{1}^{1}(M)$ are vector fields in $T_{2}(M)$ having respectively components

$$
\alpha F:\left(\begin{array}{c}
0 \tag{3.22}\\
0 \\
y^{i} F_{i}{ }^{h}
\end{array}\right), \quad \beta F:\left(\begin{array}{c}
0 \\
\frac{1}{2} y^{i} F_{i}^{h} \\
z^{i} F_{i}^{h}+y^{\jmath} y^{i} \partial_{j} F_{i}{ }^{h}
\end{array}\right)
$$

with respect to the induced coordinates $\left(\xi^{A}\right)$ in $\pi_{2}{ }^{-1}(U)$, the functions $F_{i}{ }^{h}$ being components of F in $\left(U,\left(x^{h}\right)\right)(\mathrm{Cf}$. §4 or $\S 5)$. We see easily that the affine connection $\hat{\nabla}$ has coefficients $\hat{\Gamma}_{j}{ }^{h}{ }_{\imath}=\Gamma_{\imath}{ }^{h}{ }_{j}, \Gamma_{\jmath}{ }_{\imath}{ }_{\imath}$ being the coefficients of ∇. As an immediate consequence of Proposition 3.3, we have

Proposition 3.4. For any element X of $\mathscr{T}_{0}^{1}(M)$

$$
\left(\nabla_{X}\right)^{\mathrm{I}}=X^{\mathrm{I}}, \quad\left(\nabla_{X}\right)^{\mathrm{I}}=X^{\mathrm{II}}
$$

hold if and only if $\hat{\nabla} X=0$.
Derivation determined by a tensor field of type (1, 1). When a derivation D satisfies the condition $D f=0$ for $f \in \mathscr{I}_{0}^{0}(M), D$ determines an element F of $\mathscr{I}_{1}^{1}(M)$ such that $D X=F X$ for any element X of $\mathscr{T}_{0}^{1}(M)$. In such a case, we denote D by D_{F} and call it the derivation determined by a tensor field F of type (1,1). The derivation D_{F} has components of the form

$$
\begin{equation*}
D_{F}: \quad P^{h}=0, \quad Q_{i}{ }^{h}=F_{i}{ }^{h} \tag{3.23}
\end{equation*}
$$

$F_{i}{ }^{h}$ being components of F. Substituting (3.23) in (3.17), we find

$$
\begin{equation*}
\left(D_{F}\right)^{0}=0, \quad\left(D_{F}\right)^{\mathrm{I}}=-\alpha F, \quad\left(D_{F}\right)^{\mathrm{II}}=-\beta F, \tag{3.24}
\end{equation*}
$$

αF and βF being defined by (3.22).

§4. Lifts of tensor fields.

Lifts of tensor fields. We have introduced in § 2 and § 3 three kinds of lifts for functions, vector fields and 1 -forms given in M. The operations taking these lifts are linear mappings $\mathscr{I}_{0}^{0}(M) \rightarrow \mathscr{I}_{0}^{0}\left(T_{2}(M)\right), \mathscr{T}_{0}^{1}(M) \rightarrow \mathscr{I}_{0}^{1}\left(T_{2}(M)\right)$ and $\mathscr{I}_{1}^{0}(M) \rightarrow \mathscr{I}_{1}^{0}\left(T_{2}(M)\right)$ respectively. Thus we can now define for any element K of $\mathscr{I}_{s}^{r}(M)$ its lifts K^{0}, K^{I} and K^{II}, which are elements of $\mathscr{T}_{s}^{r}\left(T_{2}(M)\right.$), in such a way that the correspondence $K \rightarrow K^{0}, K \rightarrow K^{1}$ and $K \rightarrow K^{I I}$ all define linear mappings $\mathscr{I}_{s}^{r}(M) \rightarrow \mathscr{I}_{s}^{r}\left(T_{2}(M)\right.$), which are characterized by the properties

$$
\begin{align*}
& (S \otimes T)^{0}=S^{0} \otimes T^{0}, \\
& (\mathrm{~S} \otimes T)^{\mathrm{I}}=\mathrm{S}^{\mathrm{I}} \otimes T^{0}+S^{0} \otimes T^{\mathrm{I}}, \tag{4.1}\\
& (\mathrm{~S} \otimes T)^{\mathrm{II}}=S^{\mathrm{II}} \otimes T^{0}+2 S^{\mathrm{I}} \otimes T^{\mathrm{I}}+\mathrm{S}^{0} \otimes T^{\mathrm{II}}
\end{align*}
$$

for $S, T \in \mathscr{I}(M)$. The conditions (4.1) are compatible with the conditions (2.4), (3.3) and (3.7). The tensor fields K^{0}, K^{I} and $K^{\text {II }}$ are called respectively the 0 -th, the 1 st and the $2 n d$ lifts of K. We see that a tensor field K, not belonging to $\mathscr{T}_{0}^{0}(M)$, vanishes identically in M if and only if one of its lifts K^{0}, K^{1} and $K^{I I}$ does so in $T_{2}(M)$.

Linear mappings γ_{x}. Let T be an element of $\mathscr{T}_{s}^{r}(M)(s \geqq 1)$. Then it is a correspondence

$$
T:\left(X_{1}, \cdots, X_{s}\right) \rightarrow T\left(X_{1}, \cdots, X_{s}\right) \in \mathscr{I}_{0}^{r}(M),
$$

X_{1}, \cdots, X_{s} being arbitrary elements of $\mathscr{I}_{0}^{1}(M)$. If for an element X of $\mathscr{I}_{0}^{1}(M)$ we define an element $\gamma_{x} T$ of $\mathscr{I}_{s-1}^{s}(M)$ by

$$
\left(\gamma_{X} T\right)\left(X_{2}, \cdots, X_{s}\right)=T\left(X, X_{2}, \cdots, X_{s}\right)
$$

X_{2}, \cdots, X_{s} being arbitrary elements of $\mathscr{I}_{0}^{1}(M)$, then the correspondence $T \rightarrow \gamma_{X} T$ determines a mapping $\gamma_{X}: \mathscr{I}_{s}^{r}(M) \rightarrow \mathscr{I}_{s-1}^{r}(M)$ such that $\gamma_{X}(f T+g S)=f\left(\gamma_{X} T\right)+g\left(\gamma_{X} S\right)$ for $f, g \in \mathscr{I}_{0}^{0}(M)$ and $T, S \in \mathscr{I}_{s}^{r}(M)$. If T has components of the form $T_{2_{1} 2_{2} \cdots \cdots s}^{n_{\mathrm{s}} \cdots h r}$, then $\gamma_{X} T$ has the components $X^{k} T_{k_{2} \cdots r_{s}}^{h_{1} \cdots h r}, X^{k}$ being components of X. We have the formula

$$
\gamma_{X_{s}} \cdots \gamma_{X_{1}} T=T\left(X_{1}, \cdots, X_{s}\right) \in \mathscr{I}_{0}^{r}(M)
$$

for any elements X_{1}, \cdots, X_{s} of $\mathscr{I}_{0}^{1}(M)$.
We now have the following formulas:

$$
\begin{array}{lll}
\gamma_{X 0} K^{0}=0, & \gamma_{X^{\mathrm{I}}} K^{0}=0, & \gamma_{X^{\mathrm{II}}} K^{0}=\left(\gamma_{X} K\right)^{0}, \\
\gamma_{x_{0}} K^{\mathrm{I}}=0, & \gamma_{X^{\mathrm{I}}} K^{\mathrm{I}}=\frac{1}{2}\left(\gamma_{X} K\right)^{0}, & \gamma_{X I \mathrm{II}} K^{\mathrm{I}}=\left(\gamma_{X} K\right)^{\mathrm{I}}, \tag{4.2}\\
\gamma_{X_{0}} K^{\mathrm{II}}=\left(\gamma_{X} K\right)^{0}, & \gamma_{X^{\mathrm{I}}} K^{\mathrm{II}}=\left(\gamma_{X} K\right)^{\mathrm{I}}, & \gamma_{X I \mathrm{II}} K^{\mathrm{II}}=\left(\gamma_{X} K\right)^{\mathrm{II}}
\end{array}
$$

for $X \in \mathscr{I}_{0}^{1}(M), K \in \mathscr{I}(M)$. In fact, if we suppose that $K=\omega \otimes S, \omega \in \mathscr{I}_{1}^{0}(M), S \in \mathscr{I}(M)$, then we have

$$
\begin{aligned}
\gamma_{X^{0}} K^{0} & =\gamma_{X^{0}}\left(\omega^{0} \otimes S^{0}\right)=\omega^{0}\left(X^{0}\right) S^{0}=0, \\
\gamma_{X^{\mathrm{I}}} K^{\mathrm{I}} & =\gamma_{X^{\mathrm{I}}}\left(\omega^{\mathrm{I}} \otimes S^{0}+\omega^{0} \otimes S^{\mathrm{I}}\right)=\frac{1}{2}(\omega(X))^{0} S^{0} \\
& =\frac{1}{2}\left(\gamma_{X}(\omega \otimes S)\right)^{0}=\frac{1}{2}\left(\gamma_{X} K\right)^{0}, \\
\gamma_{X^{\mathrm{II}}} K^{\mathrm{II}} & =\gamma_{X}{ }^{\mathrm{II}}\left(\omega^{\mathrm{II}} \otimes S^{0}+2 \omega^{\mathrm{I}} \otimes S^{\mathrm{I}}+\omega^{0} \otimes S^{\mathrm{II}}\right) \\
& =\left((\omega(X))^{\mathrm{II}} S^{0}+2(\omega(X))^{\mathrm{I}} S^{\mathrm{I}}+(\omega(X))^{0} S^{\mathrm{II}}\right) \\
& =(\omega(X) S)^{\mathrm{II}}=\left(\gamma_{X}(\omega \otimes S)\right)^{\mathrm{II}}=\left(\gamma_{X} K\right)^{\mathrm{II}}
\end{aligned}
$$

by virtue of (3.8) and (4.1). Thus, according to $\gamma_{X}(f S+g T)=f \gamma_{X} S+g \gamma_{X} T$ for $S, T \in \mathscr{I}_{s}^{r}(M)$ and $f, g \in \mathscr{I}_{0}^{0}(M)$, we can prove these three formulas for any element K of $\mathscr{I}(M)$. In a similar way, we can prove the other formulas given in (4. 2).

Lifts of differential forms. We now obtain the following formulas:

$$
\begin{gather*}
(\omega \wedge \pi)^{0}=\omega^{0} \wedge \pi^{0}, \quad(\omega \wedge \pi)^{\mathrm{I}}=\omega^{\mathrm{I}} \wedge \pi^{0}+\omega^{0} \wedge \pi^{\mathrm{I}}, \\
(\omega \wedge \pi)^{\mathrm{II}}=\omega^{\mathrm{II}} \wedge \pi^{0}+2 \omega^{\mathrm{I}} \wedge \pi^{\mathrm{I}}+\omega^{0} \wedge \pi^{\mathrm{II}} \tag{4.3}
\end{gather*}
$$

for $\omega, \pi \epsilon \Lambda_{*}(M)$. Moreover we have the following formulas:

$$
\begin{gather*}
\omega^{0}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}, \cdots, Z^{\mathrm{II}}\right)=(\omega(X, Y, \cdots, Z))^{0} \\
\omega^{\mathrm{I}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}, \cdots, Z^{\mathrm{II}}\right)=(\omega(X, Y, \cdots, Z))^{\mathrm{I}} \tag{4.4}\\
\omega^{\mathrm{II}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}, \cdots, Z^{\mathrm{II}}\right)=(\omega(X, Y, \cdots, Z))^{\mathrm{II}}
\end{gather*}
$$

for $\omega \in \Lambda_{*}(M), \quad X, Y, \cdots, Z$ being arbitrary element of $\mathscr{I}_{0}^{1}(M)$. The formulas (4.4) are immediate consequences of (4.2).

We obtain directly from (2.2) and (3.5)

$$
\begin{equation*}
(d f)^{0}=d\left(f^{0}\right), \quad(d f)^{\mathrm{I}}=d\left(f^{\mathrm{I}}\right), \quad(d f)^{\mathrm{I}}=d\left(f^{\mathrm{II}}\right) \tag{4.5}
\end{equation*}
$$

for $f \in \mathscr{I}_{0}^{0}(M)$. We next have the following formulas:

$$
\begin{equation*}
(d \omega)^{0}=d\left(\omega^{0}\right), \quad(d \omega)^{\mathrm{I}}=d(\omega)^{\mathrm{I}}, \quad(d \omega)^{\mathrm{II}}=d\left(\omega^{\mathrm{II}}\right) \tag{4.6}
\end{equation*}
$$

for $\omega \in \mathscr{I}_{1}^{0}(M)$. In fact, taking account of (3.4), (3.8) and (3.9), we have

$$
\begin{aligned}
2\left(d \omega^{0}\right)\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right) & =X^{\mathrm{II}} \omega^{0}\left(Y^{\mathrm{II}}\right)-Y^{\mathrm{II}} \omega^{0}\left(X^{\mathrm{II}}\right)-\omega^{\mathrm{o}}\left(\left[X^{\mathrm{II}}, Y^{\mathrm{II}}\right]\right) \\
& =(X \omega(Y)-Y \omega(X)-\omega([X, Y]))^{0} \\
& =2((d \omega)(X, Y))^{0}=2(d \omega)^{0}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right) .
\end{aligned}
$$

Therefore, according to the Remark stated in § 3, we have $(d \omega)^{0}=d\left(\omega^{0}\right)$. By similar devices, we have the other formulas given in (4.6).

If we consider a differential form ω which has the local expression $\omega=f d x^{\imath_{1}} \wedge$ $\cdots \wedge d x^{\imath s}, f \in \mathscr{I}_{0}^{0}(U)$ in $\left(U,\left(x^{h}\right)\right)$, we obtain

$$
d \omega=d f \wedge d x^{2_{1}} \wedge \cdots \wedge d x^{\imath_{s}}
$$

and hence, taking account of (4.3), (4.5) and (4.6),

$$
\begin{aligned}
& (d \omega)^{\mathrm{I}}=(d f)^{\mathrm{I}} \wedge\left(d x^{q_{1}} \wedge \cdots \wedge d x^{\imath_{s}}\right)^{0}+(d f)^{0} \wedge\left(d x^{c_{1}} \wedge \cdots \wedge d x^{\imath_{s}}\right)^{\mathrm{I}} \\
& =\left(d f^{\mathrm{I}}\right) \wedge\left(d x^{\imath_{1}} \wedge \cdots \wedge d x^{q_{s}}\right)^{0}+\left(d f^{0}\right) \wedge\left(d x^{\imath_{1}} \wedge \cdots \wedge d x^{2 s}\right)^{\mathrm{I}} \\
& =d\left(f^{\mathrm{I}}\left(d x^{2_{1}} \wedge \cdots \wedge d x^{2 s}\right)^{0}+f^{0}\left(d x^{2_{1}} \wedge \cdots \wedge d x^{\imath s}\right)^{\mathrm{I}}\right) \\
& =d\left(f d x^{2_{1}} \wedge \cdots \wedge d x^{\imath_{s}}\right)^{\mathrm{I}}=d\left(\omega^{\mathrm{I}}\right)
\end{aligned}
$$

by virtue of (3.10). Therefore, taking account of the identity $(\omega+\pi)^{1}=\omega^{\mathrm{I}}+\pi^{\mathrm{I}}$ for $\omega, \pi \in \Lambda_{*}(M)$, we have $(d \omega)^{\mathrm{I}}=d\left(\omega^{\mathrm{I}}\right)$ for any element ω of $\Lambda_{*}(M)$. Similarly, we obtain $(d \omega)^{0}=d\left(\omega^{0}\right)$ and $(d \omega)^{\mathrm{II}}=d\left(\omega^{\mathrm{II}}\right)$ for any element ω of $\Lambda_{*}(M)$. Thus we have

Proposition 4.1. The formulas

$$
(d \omega)^{0}=d\left(\omega^{0}\right), \quad(d \omega)^{\mathrm{I}}=d\left(\omega^{\mathrm{I}}\right), \quad(d \omega)^{\mathrm{II}}=d\left(\omega^{\mathrm{II}}\right)
$$

hold for any element ω of $\Lambda_{*}(M)$.
Lie derivatives with respect to lifts. Denoting by \mathcal{L}_{X} the operator of Lie derivation with respect to a vector field X, we have directly from (3.4)

$$
\begin{array}{lll}
\mathcal{L}_{X^{0}} f^{0}=0, & \mathcal{L}_{X 0} f^{\mathrm{I}}=0, & \mathcal{L}_{X 0} f^{\mathrm{II}}=\left(\mathcal{L}_{X} f\right)^{0}, \\
\mathcal{L}_{X^{\mathrm{I}}} f^{0}=0, & \mathcal{L}_{X^{\mathrm{I}}} f^{\mathrm{I}}=\frac{1}{2}\left(\mathcal{L}_{X} f\right)^{0}, & \mathcal{L}_{X \mathrm{I}} f^{\mathrm{II}}=\left(\mathcal{L}_{X} f\right)^{\mathrm{I}}, \tag{4.7}\\
\mathcal{L}_{X I \mathrm{II}} f^{0}=\left(\mathcal{L}_{X} f\right)^{0}, & \mathcal{L}_{X^{\mathrm{II}}} f^{\mathrm{I}}=\left(\mathcal{L}_{X} f\right)^{\mathrm{I}}, & \mathcal{L}_{X I \mathrm{II}} f^{\mathrm{II}}=\left(\mathcal{L}_{X} f\right)^{\mathrm{II}}
\end{array}
$$

for $f \in \mathscr{I}_{0}^{0}(M), X \in \mathscr{I}_{0}^{1}(M)$ and directly from (3.9)

$$
\begin{array}{lll}
\mathcal{L}_{X^{0}} Y^{0}=0, & \mathcal{L}_{X^{0}} Y^{\mathrm{I}}=0, & \mathcal{L}_{X 0} Y^{\mathrm{II}}=\left(\mathcal{L}_{X} Y\right)^{0}, \\
\mathcal{L}_{X^{\mathrm{I}}} Y^{0}=0, & \mathcal{L}_{X^{\mathrm{I}}} Y^{\mathrm{I}}=\frac{1}{2}\left(\mathcal{L}_{X} Y\right)^{0}, & \mathcal{L}_{X} Y^{\mathrm{II}}=\left(\mathcal{L}_{X} Y\right)^{\mathrm{I}}, \tag{4.8}\\
\mathcal{L}_{X^{\mathrm{II}}} Y^{0}=\left(\mathcal{L}_{X} Y\right)^{0}, & \mathcal{L}_{X^{\mathrm{II}}} Y^{\mathrm{I}}=\left(\mathcal{L}_{X} Y\right)^{\mathrm{I}}, & \mathcal{L}_{X^{\mathrm{II}}} Y^{\mathrm{II}}=\left(\mathcal{L}_{X} Y\right)^{\mathrm{II}}
\end{array}
$$

for $X, Y \in \mathscr{I}_{0}^{1}(M)$. We have now the following formulas:

for $X \in \mathscr{I}_{0}^{1}(M), \omega \in \mathscr{I}_{1}^{0}(M)$. In fact, taking an arbitrary vector field Y in M, we have

$$
\begin{aligned}
\left(\mathcal{L}_{X^{0}} \omega^{0}\right)\left(Y^{\mathrm{II}}\right) & =\mathcal{L}_{X^{0}}\left(\omega^{0}\left(Y^{\mathrm{II}}\right)\right)-\omega^{0}\left(\mathcal{L}_{X^{0}} Y^{\mathrm{II}}\right)=0 \\
\left(\mathcal{L}_{X^{\mathrm{I}}} \omega^{\mathrm{I}}\right)\left(Y^{\mathrm{II}}\right) & =\mathcal{L}_{X^{\mathrm{I}}}\left(\omega^{\mathrm{I}}\left(Y^{\mathrm{II}}\right)\right)-\omega^{\mathrm{I}}\left(\mathcal{L}_{X^{\mathrm{I}}} Y^{\mathrm{II}}\right)=\frac{1}{2}\left(\mathcal{L}_{X}(\omega(Y))-\omega\left(\mathcal{L}_{X} Y\right)\right)^{0} \\
& =\frac{1}{2}\left(\left(\mathcal{L}_{X} \omega\right)(Y)\right)^{0}=\frac{1}{2}\left(\mathcal{L}_{X} \omega\right)^{0}\left(Y^{\mathrm{II}}\right) \\
\left(\mathcal{L}_{X^{\mathrm{II}}} \omega^{\mathrm{II}}\right)\left(Y^{\mathrm{II}}\right) & =\mathcal{L}_{X^{\mathrm{II}}}\left(\omega^{\mathrm{II}}\left(Y^{\mathrm{II}}\right)\right)-\omega^{\mathrm{II}}\left(\mathcal{L}_{X} \mathrm{II} Y^{\mathrm{II}}\right)=\left(\mathcal{L}_{X}(\omega(Y))-\omega\left(\mathcal{L}_{X} Y\right)\right)^{\mathrm{II}} \\
& =\left(\left(\mathcal{L}_{X} \omega\right)(Y)\right)^{\mathrm{II}}=\left(\mathcal{L}_{X} \omega\right)^{\mathrm{II}}\left(Y^{\mathrm{II}}\right)
\end{aligned}
$$

by virtue of (3.4), (3.8), (4.7) and (4.8). Consequently, Y being arbitrary, we find $\mathcal{L}_{X 0} \omega^{0}=0, \mathcal{L}_{X} \omega^{\mathrm{I}}=(1 / 2)\left(\mathcal{L}_{X} \omega\right)^{0}, \mathcal{L}_{X I \mathrm{II}} \omega^{\mathrm{II}}=\left(\mathcal{L}_{X} \omega\right)^{\mathrm{II}}$. Similarly, we obtain the other formulas given in (4.9). We have here

Proposition 4.2. For any element K of $\mathscr{I}(M)$ the formulas

$$
\begin{array}{lll}
\mathcal{L}_{X^{0}} K^{0}=0, & \mathcal{L}_{X^{0}} K^{\mathrm{I}}=0 & \mathcal{L}_{X^{0}} K^{\mathrm{II}}=\left(\mathcal{L}_{X} K\right)^{0} \\
\mathcal{L}_{X^{\mathrm{I}}} K^{0}=0, & \mathcal{L}_{X^{\mathrm{I}}} K^{\mathrm{I}}=\frac{1}{2}\left(\mathcal{L}_{X} K\right)^{0}, & \mathcal{L}_{X^{\mathrm{I}}} K^{\mathrm{II}}=\left(\mathcal{L}_{X} K\right)^{\mathrm{I}} \\
\mathcal{L}_{X^{\mathrm{II}}} K^{0}=\left(\mathcal{L}_{X} K\right)^{0}, & \mathcal{L}_{X^{\mathrm{II}}} K^{\mathrm{I}}=\left(\mathcal{L}_{X} K\right)^{\mathrm{I}}, & \mathcal{L}_{X^{\mathrm{II}}} K^{\mathrm{II}}=\left(\mathcal{L}_{X} K\right)^{\mathrm{II}}
\end{array}
$$

hold, X being an arbitrary element of $\mathscr{I}_{0}^{1}(M)$.
Proof. These formulas have been already proved in (4.7), (4.8) and (4.9) respectively for K belonging to $\mathscr{I}_{0}^{0}(M), \mathscr{I}_{0}^{1}(M)$ or $\mathscr{I}_{1}^{0}(M)$. Then we assume that these formulas are established for K belonging to $\mathscr{I}_{s}^{r}(M)$, where $r \leqq p, s \leqq q$. Taking an arbitrary element S of $\mathscr{L}_{m}^{l}(M)$ and an element T of $\mathscr{I}_{q-m}^{p-l}(M)$, we have

$$
\begin{aligned}
\mathcal{L}_{X^{0}}(S \otimes T)^{0} & =\mathcal{L}_{X^{0}}\left(S^{0} \otimes T^{0}\right)=\left(\mathcal{L}_{X^{0}} S^{0}\right) \otimes T^{0}+S^{0} \otimes\left(\mathcal{L}_{X^{0}} T^{0}\right)=0 \\
\mathcal{L}_{X^{\mathrm{I}}}(S \otimes T)^{\mathrm{I}} & =\mathcal{L}_{X^{\mathrm{I}}}\left(S^{\mathrm{I}} \otimes T^{0}+S^{0} \otimes T^{\mathrm{I}}\right) \\
& =\left(\mathcal{L}_{X^{\mathrm{I}}} S^{\mathrm{I}}\right) \otimes T^{0}+S^{\mathrm{I}} \otimes\left(\mathcal{L}_{X^{\mathrm{I}}} T^{0}\right)+\left(\mathcal{L}_{X^{\mathrm{I}}} S^{0}\right) \otimes T^{\mathrm{I}}+S^{0} \otimes\left(\mathcal{L}_{X^{\mathrm{I}}} T^{\mathrm{I}}\right) \\
& =\frac{1}{2}\left(\left(\mathcal{L}_{X} S\right)^{0} \otimes T^{0}+S^{0} \otimes\left(\mathcal{L}_{X} T\right)^{0}\right) \\
& =\frac{1}{2}\left(\left(\mathcal{L}_{X} S\right) \otimes T+S \otimes\left(\mathcal{L}_{X} T\right)\right)^{0}=\frac{1}{2}\left(\mathcal{L}_{X} S \otimes T\right)^{0}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{X^{\mathrm{II}}}(\mathrm{~S} \otimes T)^{\mathrm{II}}= & \mathcal{L}_{X^{\mathrm{II}}}\left(\mathrm{~S}^{\mathrm{II}} \otimes T^{0}+2 S^{\mathrm{I}} \otimes T^{\mathrm{I}}+S^{0} \otimes T^{\mathrm{II}}\right) \\
= & \left(\mathcal{L}_{X^{\mathrm{II}}} S^{\mathrm{II}}\right) \otimes T^{0}+S^{\mathrm{II}} \otimes\left(\mathcal{L}_{X^{\mathrm{II}}} T^{0}\right)+2\left(\mathcal{L}_{X^{\mathrm{II}}} S^{\mathrm{I}}\right) \otimes T^{\mathrm{I}} \\
& +2 S^{\mathrm{I}} \otimes\left(\mathcal{L}_{X^{\mathrm{II}}} T^{\mathrm{I}}\right)+\left(\mathcal{L}_{X^{\mathrm{II}}} S^{0}\right) \otimes T^{\mathrm{II}}+S^{0} \otimes\left(\mathcal{L}_{X^{\mathrm{II}}} S^{\mathrm{II}}\right) \\
= & \left(\left(\mathcal{L}_{X} S\right) \otimes T+S \otimes\left(\mathcal{L}_{X} T\right)\right)^{\mathrm{II}}=\left(\mathcal{L}_{X} S \otimes T\right)^{\mathrm{II}}
\end{aligned}
$$

by virtue of (4.1). Similarly, we can prove the other formulas given in Proposition 4. 2 for $K=S \otimes T$. Consequently, we have proved Proposition 4.2 as consequences of $\mathcal{L}_{X}(S+T)=\mathcal{L}_{X} S+\mathcal{L}_{X} T$ for $S, T \in \mathscr{I}_{s}^{r}(M)$.

Linear mappings α and β. We shall define a linear mapping α : $\mathscr{I}_{s}^{r}(M)$ $\rightarrow \mathscr{I}_{s-1}^{r}\left(T_{2}(M)\right)(s \geqq 1)$. Let T be an element of $\mathscr{I}_{s}^{r}(M)$. Then $T^{\text {II }}$ is a correspondence

$$
T^{\mathrm{II}}: \quad\left(\tilde{X}_{1}, \cdots, \tilde{X}_{s}\right) \rightarrow T^{\mathrm{II}}\left(\tilde{X}_{1}, \cdots, \tilde{X}_{s}\right) \in \mathscr{T}_{0}^{r}\left(T_{2}(M)\right),
$$

$\tilde{X}_{1}, \cdots, \tilde{X}_{s}$ being arbitrary elements of $\mathscr{I}_{0}^{1}\left(T_{2}(M)\right)$. If we consider a correspondence αT such that

$$
\begin{equation*}
\alpha T: \quad\left(\tilde{X}_{2}, \cdots, \tilde{X}_{s}\right) \rightarrow T^{\mathrm{I}}\left(A, \tilde{X}_{2}, \cdots, \tilde{X}_{s}\right) \in \mathscr{I}_{0}^{r}\left(T_{2}(M)\right), \tag{4.10}
\end{equation*}
$$

$\tilde{X}_{2}, \cdots, \tilde{X}_{s}$ being arbitrary elements of $\mathscr{I}_{0}^{1}\left(T_{2}(M)\right)$ and A the vector field defined by (2. 5). Then αT is an element of $\mathscr{S}_{s-1}^{r}\left(T_{2}(M)\right)$. Then the correspondence $\alpha: T \rightarrow \alpha T$ determines a linear mapping α : $\mathscr{T}_{s}^{r}(M) \rightarrow \mathscr{I}_{s-1}^{r}\left(T_{2}(M)\right.$). Thus we have from (4.10)

$$
\begin{array}{lll}
\alpha \omega=\omega^{\mathrm{II}}(A) & \text { for } & \omega \in \mathscr{I}_{1}^{0}(M), \\
\alpha d f=f^{\mathrm{I}} & \text { for } & f \in \mathscr{I}_{0}^{0}(M) . \tag{4.11}
\end{array}
$$

When T has the form $T=\omega \otimes S, \omega \in \mathscr{T}_{1}^{0}(M), S \in \mathscr{I}(M)$, taking account of (4.1), we find

$$
\begin{equation*}
\alpha T=\left(\alpha(\omega) S^{0} \quad(T=\omega \otimes, S)\right. \tag{4.12}
\end{equation*}
$$

because of the formulas

$$
\begin{equation*}
\omega^{0}(A)=0, \quad \omega^{\mathrm{I}}(A)=0, \quad \omega^{\mathrm{II}}(A)=\alpha \omega \tag{4.13}
\end{equation*}
$$

for $\omega \in \mathscr{I}_{i}^{0}(M)$, which are direct consequences of (2.5) and (3.5).
We shall next define a linear mapping β : $\mathscr{I}_{s}^{r}(M) \rightarrow \mathscr{T}_{s-1}^{r}\left(T_{2}(M)\right)(s \geqq 1)$. Let T be an element of $\mathscr{I}_{s}^{r}(M)$. If we consider a correspondence

$$
\begin{equation*}
\beta T: \quad\left(\tilde{X}_{2}, \cdots, \tilde{X}_{s}\right) \rightarrow T^{\mathrm{II}}\left(B, \tilde{X}_{2}, \cdots, \tilde{X}_{s}\right) \in \mathscr{I}_{s-1}^{r}\left(T_{2}(M)\right) \tag{4.14}
\end{equation*}
$$

$\tilde{X}_{2}, \cdots, X_{s}$ being arbitrary elements of $\mathscr{I}_{0}^{1}\left(T_{2}(M)\right)$ and B the vector field defined by (2.5), then βT is an element of $\mathscr{I}_{s-1}^{r}\left(T_{2}(M)\right)$. Thus the correspondence $\beta: T \rightarrow \beta T$ defines a linear mapping β : $\mathscr{I}_{s}^{r}(M) \rightarrow \mathscr{S}_{s-1}^{r}\left(T_{2}(M)\right.$. We have now

$$
\begin{array}{rlll}
\beta \omega & =\omega^{\mathrm{II}}(B) & \text { for } & \omega \in \mathscr{I}_{1}^{0}(M), \tag{4.15}\\
\beta(d f) & =f^{\mathrm{II}} & \text { for } & f \in \mathscr{T}_{0}^{0}(M) .
\end{array}
$$

When T has the form $T=\omega \otimes S, \omega \in \mathscr{T}_{1}^{0}(M), S \in \mathscr{T}(M)$, taking account of (4.1), we obtain

$$
\begin{equation*}
\beta T=(\beta \omega) S^{0}+(\alpha \omega) S^{1} \tag{4.16}
\end{equation*}
$$

by virtue of the formulas

$$
\begin{equation*}
\omega^{0}(B)=0, \quad \omega^{\mathrm{T}}(B)=\frac{1}{2} \alpha \omega, \quad \omega^{\mathrm{T} \mathrm{I}}(B)=\beta \omega \tag{4.17}
\end{equation*}
$$

for $\omega \in \mathscr{I}_{1}^{0}(M)$, which are direct consequences of (2.5) and (3.5).

§ 5. Local expressions.

In this section, we would like to find local expressions of the lifts of tensor fields in M. By components of a tensor field T in M we always mean those of T in coordinate neighborhood ($U,\left(x^{h}\right)$) of M and by components of a tensor field \tilde{T} in $T_{2}(M)$ those of \widetilde{T} with respect to the induced coordinates $\left(\xi^{4}\right)=\left(x^{h}, y^{h}, z^{h}\right)$ in $\pi_{2}{ }^{-1}(U)$. The local expression of a function f, a vector field X and a 1 -form ω have been already given by (2.2), (3.1) and (3.5) respectively.

Tensor fields of type (1, 1). Let F be an element of $\mathscr{I}_{1}^{1}(M)$, which is expressed by

$$
F=F_{i}^{h} d x^{2} \otimes \frac{\partial}{\partial x^{h}}
$$

in $\left.\left(U, x^{h}\right)\right)$. Taking the 0 -th lift, we find

$$
\begin{aligned}
F^{0} & =\left(F_{i}^{h} d x^{2} \otimes \frac{\partial}{\partial x^{h}}\right)^{0} \\
& =\left(F_{i}^{h}\right)^{0} d x^{2} \otimes \frac{\partial}{\partial y^{h}}
\end{aligned}
$$

by virtue of (3.10) and (4.1). Taking the 1st lift, we have

$$
\begin{aligned}
F^{\mathrm{I}} & =\left(F_{i}^{h} d x^{2} \otimes \frac{\partial}{\partial x^{h}}\right)^{\mathrm{I}} \\
& =\left(F_{i}^{h}\right)^{0}\left(d y^{2} \otimes \frac{\partial}{\partial x^{h}}+\frac{1}{2} d x^{2} \otimes \frac{\partial}{\partial y^{h}}\right)+\left(F_{i}^{h}\right)^{\mathrm{I}} d y^{2} \otimes \frac{\partial}{\partial z^{h}}
\end{aligned}
$$

by virtue of (3.10) and (4.1). Taking the 2nd lift, we obtain

$$
\begin{aligned}
F^{\mathrm{II}}= & \left(F_{i}^{h} d x^{2} \otimes \frac{\partial}{\partial x^{h}}\right)^{\mathrm{II}} \\
= & \left(F_{i}^{h}\right)^{\mathrm{o}}\left(d z^{2} \otimes \frac{\partial}{\partial y^{h}}+d y^{2} \otimes \frac{\partial}{\partial y^{h}}+d x^{2} \otimes \frac{\partial}{\partial x^{h}}\right) \\
& +\left(F_{i}{ }^{h}\right)^{\mathrm{I}}\left(2 d y^{2} \otimes \frac{\partial}{\partial z^{h}}+d x^{2} \otimes \frac{\partial}{\partial y^{h}}\right)+\left(F_{i}{ }^{h}\right)^{\mathrm{II}}\left(d x^{2} \otimes \frac{\partial}{\partial z^{h}}\right)
\end{aligned}
$$

by virtue of (3.10) and (4.1). Therefore we see that the lifts F^{0}, F^{1} and $F^{I I}$ of F have respectively the components of the form

$$
F^{0}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
F_{i}{ }^{h} & 0 & 0
\end{array}\right), \quad F^{\mathrm{I}}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
\frac{1}{2} F_{i}{ }^{h} & 0 & 0 \\
y^{s} \partial_{s} F_{i}{ }^{h} & F_{i}{ }^{h} & 0
\end{array}\right),
$$

$$
F^{\mathrm{I}}:\left(\begin{array}{ccc}
F_{i}{ }^{h} & 0 & 0 \tag{5.1}\\
y^{s} \partial_{s} F_{i}{ }^{h} & F_{i}{ }^{h} & 0 \\
z^{s} \partial_{s} F_{i}{ }^{h}+y^{t} y^{s} \partial_{t} \partial_{s} F_{i}{ }^{h} & 2 y^{s} \partial_{s} F_{i}{ }^{h} & F_{i}{ }^{h}
\end{array}\right) \text {, }
$$

where $F_{i}{ }^{h}$ denote the components of F. We have from (5.1)
Proposition 5.1. A tensor field F of type $(1,1)$ is of rank r, if and only if F^{0} is of rank r, if and only if F^{I} is of rank $2 r$, or, if and only if $F^{\text {II }}$ is of rank $3 r$.

Let I be the identity tensor field of type (1, 1). Then, substituting $F_{i}{ }^{h}=\delta_{i}^{h}$ in (5.1), we find

$$
I^{0}:\left(\begin{array}{lll}
0 & 0 & 0 \tag{5.2}\\
0 & 0 & 0 \\
I & 0 & 0
\end{array}\right), \quad I^{\mathrm{I}}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
\frac{1}{2} I & 0 & 0 \\
0 & I & 0
\end{array}\right), \quad I^{\mathrm{I}}:\left(\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right) .
$$

Therefore the 2 nd lift I^{11} of the identity tensor field I of type $(1,1)$ is the identity tensor field of type $(1,1)$ in $T_{2}(M)$. We have from (3.1) and (5.2)

$$
\begin{equation*}
I^{0} X^{0}=0, \quad I^{0} X^{\mathrm{I}}=0, \quad I^{0} X^{\mathrm{II}}=X^{0} \tag{5.3}
\end{equation*}
$$

$$
I^{\mathrm{I}} X^{0}=0, \quad I^{\mathrm{I}} X^{\mathrm{I}}=\frac{1}{2} X^{0}, \quad I^{\mathrm{I}} X^{\mathrm{II}}=X^{\mathrm{II}}
$$

for $X \in \mathscr{I}_{0}^{1}(M)$.
Tensor fields of type (0,2). Let g be an element of $\mathscr{I}_{2}^{0}(M)$. Then we can easily verify that its lifts g^{0}, g^{I} and $g^{\text {II }}$ have respectively components of the form

$$
g^{0}:\left(\begin{array}{ccc}
g_{j i} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad g^{\mathrm{I}}:\left(\begin{array}{ccc}
y^{s} \partial_{s} g_{j i} & g_{j i} & 0 \\
g_{j i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

$$
g^{\mathrm{I}:}:\left(\begin{array}{ccc}
z^{s} \partial_{s} g_{j i}+y^{t} y^{s} \partial_{t} \partial_{s} g_{j i} & 2 y^{s} \partial_{s} g_{j i} & g_{j i} \tag{5.4}\\
2 y^{s} \partial_{s} g_{j i} & 2 y^{s} \partial_{s} g_{j i} & 0 \\
g_{j i} & 0 & 0
\end{array}\right),
$$

where $g_{j i}$ denote the components of g.
Given an element \tilde{h} of $\mathscr{I}_{2}^{0}\left(T_{2}(M)\right.$, we denote by

$$
\tilde{h}(d \xi, d \xi)=\tilde{h}_{c B} d \xi^{c} d \xi^{B}
$$

the quadratic differential form corresponding to \tilde{h}, if \tilde{h} is symmetric, $\tilde{h}_{C B}$ being the components of \tilde{h}. Let g be a pseudo-Riemannian metric in M. Then, taking account of (5.4), we obtain

$$
g^{0}(d \xi, d \xi)=g_{j i} d x^{\jmath} d x^{2}
$$

$$
\begin{align*}
g^{\mathrm{I}}(d \xi, d \xi) & =2 g_{j i} d x^{j} \delta y^{2}, \tag{5.5}\\
g^{\mathrm{II}}(d \xi, d \xi) & =2 g_{j i} d x^{j} \delta v^{2}+2 g_{j i} \delta y^{j} \delta y^{2},
\end{align*}
$$

the differential forms δy^{h} and δz^{h} being defined respectively by

$$
\delta y^{h}=d y^{h}+\left\{\begin{array}{c}
h \\
s^{h}
\end{array}\right\} y^{s} d x^{2},
$$

$$
\begin{align*}
& \delta v^{h}=d\left(z^{h}+y^{t} y^{s}\left\{\begin{array}{c}
h \\
t
\end{array}\right\}\right. \tag{5.6}\\
& =d z^{h}+2\left\{\begin{array}{c}
h \\
i
\end{array} t\right\} y^{t} d y^{2}+\left[y ^ { t } y ^ { s } \left(\partial_{i}\left\{\begin{array}{c}
h \\
t
\end{array}\right\}\right.\right.
\end{align*}
$$

where $\left\{\begin{array}{c}h \\ j \\ j\end{array}\right\}$ denote the Christoffel's symbols constructed from $g_{j i}$ and v^{h} are defined by

$$
v^{h}=z^{h}+\left\{\begin{array}{c}
h \\
j \\
i
\end{array}\right\} y^{l} y^{J} .
$$

We have, from (5.5),
Proposition 5. 2. Let g be a pseudo-Riemannian metric in M (with r positive and $n-r$ negative signs). Then $g^{\text {II }}$ is a pseudo-Riemannian metric in $T_{2}(M)$ (with $n+r$ negative and $2 n-r$ positive signs).

Let φ be a 2 -form of the maximum rank in M. Then φ^{II} is also a 2 -form of the maximum rank in $T_{2}(M)$ because of (5.4). When $\varphi=d \eta, \eta$ being a 1 -form,
then $\varphi^{\mathrm{II}}=d\left(\eta^{\mathrm{II}}\right)$ as an immediate consequence of Proposition 4.1. Thus we have
Proposition 5.3. If φ is a 2-form defining an (almost) symplectic structure in M, then $\varphi^{\text {II }}$ defines an (almost) symplectic structure in $T_{2}(M)$.

Tensor fields of type $(2,0)$. Let G be a tensor field of type $(2,0)$ in M. Then we can easily verify that its lifts G^{0}, G^{1} and G^{1} have respectively components of the form

$$
\begin{align*}
& G^{\mathrm{o}}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & G^{j i}
\end{array}\right), \\
& G^{\mathrm{I}}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \frac{1}{2} G^{j i} \\
0 & \frac{1}{2} G^{j i} & y^{s} \partial_{s} G^{j i}
\end{array}\right), \tag{5.7}\\
& G^{\mathrm{II}}:\left(\begin{array}{ccc}
0 & 0 & G^{j i} \\
0 & \frac{1}{2} G^{j i} & y^{s} \partial_{s} G^{j i} \\
G^{j i} & y^{s} \partial_{s} G^{j i} & z^{s} \partial_{s} G^{j i}+y^{t} y^{s} \partial_{t} \partial_{s} G^{j i}
\end{array}\right),
\end{align*}
$$

where $G^{j i}$ denote the components of G.
Tensor fields αT and βT. We shall give the local expressions of αT and βT defined in $\S 4$. Taking account of (2.5) and (3.5), we have from (4.11) and (4. 15)

$$
\begin{equation*}
\alpha \omega=y^{2} \omega_{i}, \quad \beta \omega=z^{k} \partial_{k} \omega_{i}+y^{\jmath} y^{i} \partial_{j} \omega_{i} \quad \text { for } \quad \omega \in \mathscr{T}_{1}^{0}(M) \tag{5.8}
\end{equation*}
$$

with respect to the induced coordinates $\left(x^{h}, y^{h}, z^{h}\right)$ in $\pi_{2}{ }^{-1}(U)$, where ω_{i} denote the components of ω. Especially, we have from (5.8)

$$
\begin{equation*}
\alpha\left(d x^{h}\right)=y^{h}, \quad \beta\left(d x^{h}\right)=z^{h} \tag{5.9}
\end{equation*}
$$

in $\pi_{2}{ }^{-1}(U)$.
Let T be an element of $\mathscr{L}_{s}^{r}(M)(s \geqq 1)$ and assume that T has the expression

$$
T=T_{\imath_{1} \imath_{2} \cdots l_{s}} h_{1 \cdots h r} d x^{\imath_{1}} \otimes d x^{\imath_{2}} \otimes \cdots \otimes d x^{\imath_{s}} \otimes \frac{\partial}{\partial x^{h_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{h r}}
$$

in ($U,\left(x^{h}\right)$). Then, taking account of (4.12), we have

$$
\begin{aligned}
\alpha T & =\alpha\left(d x^{\jmath} \otimes\left(T_{j i_{2} \cdots \imath_{s}}^{h_{1} \cdots h_{r} r} d x^{\imath_{2}} \otimes \cdots \otimes d x^{\imath_{s}} \otimes \frac{\partial}{\partial x^{h_{\imath}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{h r}}\right)\right) \\
& =\alpha\left(d x^{j}\right)\left(T_{j i_{2} \cdots v_{s}} h_{1} \cdots h_{r}\right)^{0} d x^{\imath_{2}} \otimes \cdots \otimes d x^{\imath_{s}} \otimes \frac{\partial}{\partial z^{h_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial z^{h_{r}}}
\end{aligned}
$$

by virtue of (3.10), since $\alpha(T+S)=\alpha T+\alpha S$ for $T, S \in \mathscr{T}_{s}^{r}(M)$. Thus, according to (5.9), we obtain

$$
\begin{equation*}
\alpha T=\left(y^{j} T_{j i_{2} \cdots l_{s}}^{h_{1} \cdots h_{r} r}\right) d x^{\imath_{2}} \otimes \cdots \otimes \otimes x^{\imath_{s}} \otimes \frac{\partial}{\partial z^{h_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial z^{h_{r}}} \tag{5.10}
\end{equation*}
$$

with respect to the induced coordinates $\left(\xi^{A}\right)$ in $\pi_{2}^{-1}(U)$. Especially, for any element F of $\mathscr{I}_{1}^{1}(M), \alpha T$ has components of the form

$$
\alpha F:\left(\begin{array}{c}
0 \tag{5.11}\\
0 \\
y^{i} F_{i}{ }^{h}
\end{array}\right),
$$

$F_{i}{ }^{h}$ denoting the components of F. For an element S of $\mathscr{I}_{2}^{1}(M), \alpha S$ has components of the form

$$
\alpha S:\left(\begin{array}{ccc}
0 & 0 & 0 \tag{5.12}\\
0 & 0 & 0 \\
y^{j} S_{j i}{ }^{h} & 0 & 0
\end{array}\right)
$$

where $S_{j i}{ }^{h}$ denote the components of S.
Let F be an element of $\mathscr{T}_{1}^{1}(M)$ with local expression

$$
F=F_{i}{ }^{h} d x^{\imath} \otimes \frac{\partial}{\partial x^{h}}
$$

Then, taking account of (4.16), we have

$$
\begin{aligned}
\beta F & =\beta\left(d x^{2} \otimes\left(F_{i}^{h} \frac{\partial}{\partial x^{h}}\right)\right) \\
& =\beta\left(d x^{i}\right)\left(F_{i}^{h} \frac{\partial}{\partial x^{h}}\right)^{0}+\alpha\left(d x^{i}\right)\left(F_{i}^{h} \frac{\partial}{\partial x^{h}}\right)^{\mathrm{I}} \\
& =\beta\left(d x^{i}\right)\left(F_{i}{ }^{h}\right)^{0} \frac{\partial}{\partial z^{h}}+\left(d x^{i}\right)\left(\left(F_{i}^{h}\right)^{\mathrm{I}} \frac{\partial}{\partial z^{h}}+\frac{1}{2}\left(F_{i}{ }^{h}\right)^{0} \frac{\partial}{\partial y^{h}}\right) \\
& =\frac{1}{2} y^{i}\left(F_{i}^{h}\right)^{0} \frac{\partial}{\partial y^{h}}+\left(z^{\imath}\left(F_{i}^{h}\right)^{0}+y^{2}\left(F_{i}^{h}\right)^{\mathrm{I}}\right) \frac{\partial}{\partial z^{h}}
\end{aligned}
$$

by virtue of (3.10) and (5.9), since $\beta(T+S)=\beta T+\beta S$ for $T, S \in \mathscr{T}_{s}^{r}(M)$. This means that βF has components of the form

$$
\beta F:\left(\begin{array}{c}
0 \tag{5.13}\\
\frac{1}{2} y^{i} F_{i}{ }^{h} \\
z^{i} F_{i}{ }^{h}+y^{j} y^{i} \partial_{j} F_{i}{ }^{h}
\end{array}\right)
$$

for any element $F \in \mathscr{I}_{1}^{1}(M)$, where $F_{i}{ }^{h}$ denote the components of F.
By similar devices, we see that, for an element S of $\mathscr{I}_{2}^{1}(M), \beta S$ has components of the form

$$
\beta S:\left(\begin{array}{ccc}
0 & 0 & 0 \tag{5.14}\\
\frac{1}{2} y^{k} S_{k i}{ }^{h} & 0 & 0 \\
z^{k} S_{k i}{ }^{h}+y^{t} y^{s} \partial_{t} S_{s i}{ }^{h} & y^{k} S_{k i}{ }^{h} & 0
\end{array}\right),
$$

where $S_{j i}{ }^{h}$ denote the components of S.
If we take account of (3.1) and (5.8), we obtain the following formulas:

$$
\begin{array}{ll}
X^{0}(\alpha \omega)=0, & X^{0}(\beta \omega)=(\omega(X))^{0}, \\
X^{\mathrm{I}}(\alpha \omega)=\frac{1}{2}(\omega(X))^{0}, & X^{\mathrm{I}}(\beta \omega)=\alpha\left(\mathcal{L}_{X} \omega\right)+(\alpha(d \omega))(X), \tag{5.15}\\
X^{\mathrm{II}}(\alpha \omega)=\alpha\left(\mathcal{L}_{X} \omega\right), & X^{\mathrm{II}}(\beta \omega)=\beta\left(\mathcal{L}_{X} \omega\right)
\end{array}
$$

for $\omega \in \mathscr{I}_{1}^{0}(M)$ and $X \in \mathscr{I}_{0}^{1}(M)$.

§6. Lifts of tensor fields of type (1, 1).

Formulas. Let F be an element of $\mathscr{I}_{1}^{1}(M)$. Then, taking account of (3.1) and (5.1), we find easily the following

$$
F^{0} X^{0}=0, \quad F^{0} X^{\mathrm{I}}=0 \quad F^{0} X^{\mathrm{II}}=(F X)^{0}
$$

$$
\begin{equation*}
F^{\mathrm{I}} X^{0}=0, \quad F^{\mathrm{I}} X^{\mathrm{I}}=\frac{1}{2}(F X)^{0}, \quad F^{\mathrm{I}} X^{\mathrm{II}}=(F X)^{\mathrm{I}} \tag{6.1}
\end{equation*}
$$

$$
F^{\mathrm{II}} X^{0}=(F X)^{0}, \quad F^{\mathrm{II}} X^{\mathrm{I}}=(F X)^{\mathrm{I}}, \quad F^{\mathrm{II}} X^{\mathrm{II}}=(F X)^{\mathrm{II}}
$$

for $F \in \mathscr{I}_{1}^{1}(M), X$ being an arbitrary element of $\mathscr{I}_{0}^{1}(M)$.
For any two elements F and G of $\mathscr{I}_{1}^{1}(M)$, we defined an element $F G$ of $\mathscr{I}_{1}^{1}(M)$ by $(F G) X=F(G X), X$ being an arbitrary element of $\mathscr{I}_{0}^{1}(M)$. Then we find the following formulas:

$$
\begin{array}{lll}
G^{0} F^{0}=0, & G^{0} F^{\mathrm{I}}=0 & G^{0} F^{\mathrm{II}}=(G F)^{0}, \\
G^{\mathrm{I}} F^{0}=0, & G^{\mathrm{I}} F^{\mathrm{I}}=\frac{1}{2}(G F)^{0}, & G^{\mathrm{I}} F^{\mathrm{II}}=(G F)^{\mathrm{I}}, \tag{6.2}\\
G^{\mathrm{II}} F^{0}=(G F)^{0}, & G^{\mathrm{II}} F^{\mathrm{I}}=(G F)^{\mathrm{I}}, & G^{\mathrm{II}} F^{\mathrm{II}}=(G F)^{\mathrm{II}}
\end{array}
$$

for $G, F \in \mathscr{I}_{2}^{1}(M)$. In fact, taking account of (6.1), we have

$$
\begin{aligned}
&\left(G^{0} F^{0}\right) X^{\mathrm{II}}=G^{0}\left(F^{0} X^{\mathrm{II}}\right)=0 \\
&\left(G^{\mathrm{I}} F^{\mathrm{I}}\right) X^{\mathrm{II}}=G^{\mathrm{I}}\left(F^{\mathrm{I}} X^{\mathrm{II}}\right)=G^{\mathrm{I}}(F X)^{\mathrm{I}}=\frac{1}{2}(G(F X))^{\mathrm{I}}=\frac{1}{2}(G F)^{0} X^{\mathrm{II}} \\
&\left(G^{\mathrm{II}} F^{\mathrm{II}}\right) X^{\mathrm{II}}=G^{\mathrm{II}}\left(F^{\mathrm{II}} X^{\mathrm{II}}\right)=G^{\mathrm{II}}(F X)^{\mathrm{II}}=(G(F X))^{\mathrm{II}}=(G F)^{\mathrm{II}} X^{\mathrm{II}}
\end{aligned}
$$

for any element X of $\mathscr{T}_{0}^{1}(M)$. Thus we have $G^{0} F^{0}=(G F)^{0}, G^{1} F^{\mathrm{I}}=(1 / 2)(G F)^{0}$ and
$G^{\mathrm{II}} F^{\mathrm{II}}=(G F)^{\mathrm{II}}$. The other formulas given in (6.2) are proved in a similar way.
We see from (6.2) that, for any element F of $\mathscr{T}_{1}^{1}(M), F^{0}, F^{\mathrm{I}}$ and $F^{\text {II }}$ are commutative with each other and the identities

$$
\begin{equation*}
\left(F^{0}\right)^{2}=0, \quad\left(F^{1}\right)^{3}=0 \quad \text { for } \quad F \in \mathscr{I}_{1}^{1}(M) \tag{6.3}
\end{equation*}
$$

hold.
Let $P(t)$ be a polynomial of t and $F \in \mathscr{I}_{1}^{1}(M)$. Then, taking account of (6.2), we obtain
(6. 4)

$$
(P(F))^{\mathrm{II}}=P\left(F^{\mathrm{II}}\right)
$$

and hence, for example,

$$
\begin{equation*}
\left(F^{2}+I\right)^{\mathrm{II}}=\left(F^{\mathrm{II}}\right)^{2}+I, \quad\left(F^{3}+F\right)^{\mathrm{II}}=\left(F^{\mathrm{II}}\right)^{3}+F^{\mathrm{II}} \tag{6.5}
\end{equation*}
$$

for any element F of $\mathscr{T}_{1}^{1}(M)$.
A tensor field F of type (1,1) is called an almost complex structure if $F^{2}+I=0$. A tensor field F is called an f-structure of rank r if $F^{3}+F=0$ and F is of rank r everywhere. Thus, taking account of Proposition 5.1, we have from (6.5)

Proposition 6.1. Let F be an element of $\mathscr{I}_{1}^{1}(M)$. Then F^{II} is an almost complex structure in $T_{2}(M)$ if and only if F is so in M. $F^{\text {II }}$ is an f-structure of rank $3 r$ in $T_{2}(M)$ if and only if F is an f-structure of rank r in M.

Contraction in Lifts. Let F be an element of $\mathscr{I}_{1}^{1}(M)$. We denote by $c(F)$ the element of $\mathscr{I}_{0}^{0}(M)$ obtained by contraction, i.e., $c(F)=F_{i}{ }^{\imath}$ if F has components $F_{i}{ }^{h}$. Then we have from (5.1)

$$
\begin{equation*}
c\left(F^{0}\right)=0, \quad c\left(F^{\mathrm{I}}\right)=0, \quad c\left(F^{\mathrm{II}}\right)=3(c(F))^{0} \tag{6.6}
\end{equation*}
$$

for $F \in \mathscr{I}_{1}^{1}(M)$. For example, we have
(6. 7) $\quad c\left((\omega \otimes X)^{0}\right)=0, \quad c\left((\omega \otimes X)^{\mathrm{I}}\right)=0, \quad c\left((\omega \otimes X)^{\mathrm{II}}\right)=3(\omega(X))^{0}$,
X and ω being respectively elements of $\mathscr{I}_{0}^{1}(M)$ and $\mathscr{I}_{1}^{0}(M)$.
Torsion tensors and Nijenhuis tensors. Let S be an element of $\mathscr{I}_{2}^{\frac{1}{2}}(M)$ such that $S=Z \otimes \omega \otimes \pi, Z \in \mathscr{I}_{0}^{1}(M), \omega, \pi \in \mathscr{I}_{1}^{0}(M)$. Then, taking account of (3. 8) and (4.1), we have the following formulas:

$$
\begin{gather*}
S^{0}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)=(S(X, Y))^{0}, \quad S^{\mathrm{I}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)=(S(X, Y))^{\mathrm{I}}, \\
S^{\mathrm{II}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)=(S(X, Y))^{\mathrm{II}} \tag{6.8}
\end{gather*}
$$

for $S \in \mathscr{I}_{2}^{1}(M), X$ and Y being arbitrary elements of $\mathscr{I}_{0}^{1}(M)$.
Let there be given two elements G and F of $\mathscr{T}_{1}^{1}(M)$. Then their torsion tensor $N_{F, G}$ is by definition a tensor field of type $(1,2)$ given by

$$
\begin{align*}
N_{F, G}(X, Y)= & {[F X, G Y]+[G X, F Y]+F G[X, Y]+G F[X, Y] } \\
& -F[X, G Y]-F[G X, Y]-G[X, F Y]-G[F X, Y], \tag{6.9}
\end{align*}
$$

X and Y being arbitrary elements of $\mathscr{I}_{0}^{1}(M)$. Thus, taking account of (3.9), (6.1) and (6.2), we obtain

$$
\begin{align*}
& N_{F^{0}, G^{0}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)=0, \quad N_{F 0, G \mathrm{I}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)=0, \\
& F_{F^{0}, G^{\mathrm{II}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)}=\left(N_{F, G}(X, Y)\right)^{0}, \\
& N_{F^{\mathrm{I}}, G^{\mathrm{I}}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)=\frac{1}{2}\left(N_{F, G}(X, Y)\right)^{0}, \tag{6.10}\\
& N_{F^{\mathrm{I}}, G^{\mathrm{II}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)}=\left(N_{F, G}(X, Y)\right)^{\mathrm{I}}, \\
& N_{F^{\mathrm{II}}, G^{\mathrm{II}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)}=\left(N_{F, G}(X, Y)\right)^{\mathrm{II}},
\end{align*}
$$

X and Y being arbitrary elements of $\mathscr{I}_{0}^{1}(M)$. Thus, we have from (6.10)
(6. 11)

$$
\begin{array}{ll}
N_{F^{0}, G G^{0}}=0, & N_{F^{\mathrm{I}, G \mathrm{I}}}=\frac{1}{2}\left(N_{F, G}\right)^{0}, \\
N_{F^{0}, G \mathrm{I}}^{\mathrm{I}}=0, & N_{F^{\mathrm{I}}, G^{\mathrm{II}}}=\left(N_{F, G}\right)^{\mathrm{I}}, \\
N_{F^{0}, G \mathrm{II}}=\left(N_{F, G}\right)^{0}, & N_{F^{\mathrm{II}}, G^{\mathrm{II}}}=\left(N_{F, G}\right)^{\mathrm{II}}
\end{array}
$$

for $F, G \in \mathscr{I}_{1}^{1}(M)$ by virtue of (6.8).
The Nijenhuis tensor N_{F} of an element F of $\mathscr{L}_{1}^{1}(M)$ is defined by $N_{F}=(1 / 2) N_{F, F}$. Thus we have from (6.11)

Proposition 6.2. For any element F of $\mathscr{I}_{1}^{1}(M)$

$$
N_{F^{0}}=0, \quad N_{F^{\mathrm{I}}}=\frac{1}{2}\left(N_{F}\right)^{0}, \quad N_{F \mathrm{II}}=\left(N_{F}\right)^{\mathrm{II}}
$$

hold.
Proposition 6.3. Let F be an almost complex structure in M. Then the almost complex structure F^{II} is a complex structure in $T_{2}(M)$ if and only if F is so in M.

§ 7. Lifts of affine connections.

Lifts of affine connections. Let ∇ be an affine connection in M, which has coefficients $\Gamma_{j}{ }^{h} \imath$ in $\left(U,\left(x^{h}\right)\right.$). We now introduce in $\pi_{2}{ }^{-1}(U)$ an affine connection $\Gamma^{\text {II }}$ having coefficients $\tilde{\Gamma}_{C}{ }^{A}{ }_{B}$ with respect to the induced coordinates $\left(\xi^{4}\right)=\left(x^{h}, y^{h}, z^{h}\right)$ such that

$$
\left(\tilde{\Gamma}_{c^{h} B}\right)=\left(\begin{array}{ccc}
\left(\Gamma_{j}{ }^{h}\right)^{0} & 0 & 0 \tag{7.1}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

for each fixed index h,

$$
\left(\tilde{\Gamma}_{c} \bar{h}_{B}\right)=\left(\begin{array}{ccc}
\left.\left(\Gamma_{j}{ }^{h}\right)^{I}\right)^{1} & \left.\left(\Gamma_{j}{ }^{h}\right)^{0}\right)^{0} & 0 \tag{7.2}\\
\left(\Gamma_{j}{ }_{2}\right)^{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

for each fixed \bar{h} and

$$
\left(\tilde{\Gamma}_{c}^{\overline{\bar{h}}}{ }_{B}\right)=\left(\begin{array}{ccc}
\left(\Gamma_{j}{ }_{\imath}\right)^{\mathrm{II}} & \left.2\left(\Gamma_{j}{ }^{h}\right)^{\mathrm{I}}\right)^{\mathrm{I}} & \left(\Gamma_{j}{ }^{{ }^{h} i}\right)^{0} \tag{7.3}\\
2\left(\Gamma_{j}{ }^{h}\right)^{\mathrm{I}} & 2\left(\Gamma_{j}{ }^{h}{ }^{\imath}\right)^{0} & 0 \\
\left(\Gamma_{j}{ }_{\imath}\right)^{0} & 0 & 0
\end{array}\right)
$$

for each fixed index $\overline{\bar{h}}$, where $\left(\Gamma_{j}{ }^{h}\right)^{0}$, $\left(\Gamma_{j}{ }^{h}{ }_{\imath}\right)^{\mathrm{I}}$ and $\left(\Gamma_{j}{ }_{j}{ }^{h}\right)^{\text {II }}$ denote respectively the 0 -th, the 1st and the 2nd lifts of the functions $\Gamma_{j}{ }^{h}{ }_{\imath}$ given in ($U,\left(x^{h}\right)$). We note here that the transformation law of coefficients $\Gamma_{j}{ }^{h} \imath$ of an affine connection is given by

$$
\begin{equation*}
\Gamma_{j^{\prime}}{ }^{h^{h^{\prime}}}{ }^{\prime}=\frac{\partial x^{h^{\prime}}}{\partial x^{h}}\left(\frac{\partial x^{j}}{\partial x^{j^{\prime}}} \frac{\partial x^{2}}{\partial x^{i^{\prime}}} \Gamma_{j}{ }^{h} i+\frac{\partial^{2} x^{h}}{\partial x^{j^{\prime}} \partial x^{i^{\prime}}}\right) \tag{7.4}
\end{equation*}
$$

in $U \cap U^{\prime}$. Thus, taking account of (1.5), (1.6), (7.1), (7.2) and (7.3), we know by virtue of (7.4) that the affine connection $V^{\text {II }}$ introduced above in each $\pi_{2}^{-1}(U)$ determines globally in $T_{2}(M)$ an affine connection, which is denoted also by ∇^{II}. The affine connection $\nabla^{\text {II }}$ constructed thus in $T_{2}(M)$ is called the lift of the affine connection ∇ given in M.

We obtain here the following formulas:

$$
\begin{array}{lll}
\nabla_{X^{0}}^{\mathrm{II}} Y^{0}=0, & \nabla_{X}^{\mathrm{II}} Y^{\mathrm{I}}=0, & \nabla_{X}^{\mathrm{II}} Y^{\mathrm{II}}=\left(\nabla_{X} Y\right)^{0}, \\
\nabla_{X^{\mathrm{I}}}^{\mathrm{II}} Y^{0}=0, & \nabla_{X}^{\mathrm{II}} Y^{\mathrm{I}}=\frac{1}{2}\left(\nabla_{X} Y\right)^{0}, & \nabla_{X^{\mathrm{I}}}^{\mathrm{II}} Y^{\mathrm{II}}=\left(\nabla_{X} Y\right)^{\mathrm{I}}, \tag{7.5}\\
\nabla_{X}^{\mathrm{II}} Y^{0}=\left(\nabla_{X} Y\right)^{0}, & \nabla_{X}^{\mathrm{III}} Y^{\mathrm{I}}=\left(\nabla_{X} Y\right)^{\mathrm{I}} & \nabla_{X X}^{\mathrm{II}} Y^{\mathrm{II}}=\left(\nabla_{X} Y\right)^{\mathrm{II}}
\end{array}
$$

for $X, Y \in \mathscr{I}_{0}^{1}(M)$. In fact, taking account of (3.1), (7.1), (7.2) and (7.3), we see that $V_{X I \mathrm{II}}^{\mathrm{II}} Y^{\mathrm{II}}$ has components of the form

$$
\begin{aligned}
& \left(\nabla_{X_{\mathrm{II}}^{\mathrm{II}}} Y^{\mathrm{II}}\right)^{h}=X^{j}\left(\frac{\partial Y^{h}}{\partial x^{j}}+\Gamma_{j}{ }^{h}{ }_{\imath} Y^{i}\right)=X^{j} \nabla_{j} Y^{h}, \\
& \left(\nabla_{X I \mathrm{II}}^{\mathrm{II}} Y^{\mathrm{II}}\right)^{\bar{h}}=X^{j}\left[\frac{\partial}{\partial x^{j}}\left(y^{s} \partial_{s} Y^{h}\right)+\left(y^{s} \partial_{s} \Gamma_{j}{ }^{h}\right) Y^{i}+\Gamma_{j}{ }^{h}{ }_{i}\left(y^{s} \partial_{s} Y^{i}\right)\right] \\
& +\left(y^{s} \partial_{s} X^{j}\right)\left[\frac{\partial}{\partial y^{j}}\left(y^{s} \partial_{s} Y^{h}\right)+I_{j}{ }^{h}{ }_{\imath} Y^{i}\right] \\
& =y^{s} \partial_{s}\left(X^{j}\left(\frac{\partial Y^{h}}{\partial x^{j}}+\Gamma_{j}{ }^{h}{ }_{\imath} Y^{i}\right)\right)=y^{s} \partial_{s}\left(X^{j} \nabla_{j} Y^{h}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(\nabla_{X^{\mathrm{II}}}^{\mathrm{II}} Y^{\mathrm{II}}\right)^{\bar{h}}=X^{\jmath}\left[\frac{\partial}{\partial x^{j}}\left(z^{s} \partial_{s} Y^{h}+y^{t} y^{s} \partial_{t} \partial_{s} Y^{h}\right)+\left(z^{s} \partial_{s} \Gamma_{j}{ }^{h}{ }_{i}+y^{t} y^{s} \partial_{t} \partial_{s} \Gamma_{j}{ }^{h}{ }^{h}\right) Y^{\imath}\right. \\
& \left.+2\left(y^{s} \partial_{s} \Gamma_{j}{ }^{h}{ }_{i}\right)\left(y^{t} \partial_{t} Y^{i}\right)+\Gamma_{j}{ }^{h}{ }^{h}\left(z^{s} \partial_{s} Y^{i}+y^{t} y^{s} \partial_{t} \partial_{s} Y^{i}\right)\right] \\
& +\left(y^{k} \partial_{k} X^{j}\right)\left[\frac{\partial}{\partial y^{j}}\left(z^{s} \partial_{s} Y^{h}+y^{t} y^{s} \partial_{t} \partial_{s} Y^{h}\right)+2\left(y^{s} \partial_{s} \Gamma_{j}{ }_{i}\right) Y^{i}+2 \Gamma_{j}{ }^{h}{ }_{i}\left(y^{s} \partial_{s} Y^{i}\right)\right] \\
& +\left(z^{k} \partial_{k} X^{\jmath}+y^{m} y{ }^{l} \partial_{m} \partial_{l} X^{j}\right)\left[\frac{\partial}{\partial z^{\jmath}}\left(z^{s} \partial_{s} Y^{h}+y^{t} y^{s} \partial_{t} \partial_{s} Y^{h}\right)+I_{j}{ }_{j}{ }^{h} Y^{i} Y^{i}\right] \\
& =z^{s} \partial_{s}\left(X^{j}\left(\partial_{j} Y^{h}+\Gamma_{j}{ }^{h}{ }_{\imath} Y^{i}\right)\right)+y^{t} y^{s} \partial_{t} \partial_{s}\left(X^{j}\left(\partial_{j} Y^{h}+\Gamma_{j}{ }^{h}{ }_{\imath} Y^{i}\right)\right) \\
& =z^{s} \partial_{s}\left(X^{j} \nabla_{\jmath} Y^{h}\right)+y^{t} y^{s} \partial_{t} \partial_{s}\left(X^{j} \nabla_{\jmath} Y^{h}\right) .
\end{aligned}
$$

Therefore we find $\nabla_{X^{I I}}^{\mathrm{II}} Y^{\mathrm{II}}=\left(\nabla_{X} Y\right)^{\mathrm{II}}$. Similarly, we obtain the other formulas given in (7.5).

Comparing (7.5) with (4.2) or (6.1), we find easily the formulas

$$
\begin{equation*}
\nabla^{\mathrm{II}} Y^{0}=(\nabla Y)^{0}, \quad \nabla^{\mathrm{II}} Y^{\mathrm{I}}=(\nabla Y)^{\mathrm{I}}, \quad \nabla^{\mathrm{II}} Y^{\mathrm{II}}=(\nabla Y)^{\mathrm{II}} \tag{7.6}
\end{equation*}
$$

for $Y \in \mathscr{I}_{0}^{1}(M)$.
We also obtain the following formulas:

$$
\begin{array}{lll}
\nabla_{X^{0}}^{\mathrm{II}} \omega^{0}=0, & \nabla_{X^{0}}^{\mathrm{II}} \omega^{\mathrm{I}}=0, & \nabla_{X^{0}}^{\mathrm{II}} \omega^{\mathrm{II}}=\left(\nabla_{X} \omega\right)^{0}, \\
\nabla_{X^{\mathrm{I}}}^{\mathrm{II}} \omega^{0}=0, & \nabla_{X^{\mathrm{I}}}^{\mathrm{II}} \omega^{\mathrm{I}}=\frac{1}{2}\left(\nabla_{X} \omega\right)^{0}, & \nabla_{X^{\mathrm{I}}}^{\mathrm{II}} \omega^{\mathrm{II}}=\left(\nabla_{X} \omega\right)^{\mathrm{I}} \tag{7.7}\\
\nabla_{X \mathrm{II}^{\mathrm{II}}}^{\mathrm{II}} \omega^{0}=\left(\nabla_{X} \omega\right)^{0}, & \nabla_{X^{\mathrm{II}}}^{\mathrm{II}} \omega^{\mathrm{I}}=\left(\nabla_{X} \omega\right)^{\mathrm{I}}, & \nabla_{X^{\mathrm{II}}}^{\mathrm{II}} \omega^{\mathrm{II}}=\left(\nabla_{X} \omega\right)^{\mathrm{II}}
\end{array}
$$

for $X \in \mathscr{I}_{0}^{1}(M), \omega \in \mathscr{I}_{1}^{0}(M)$. In fact, taking an arbitrary element Y of $\mathscr{L}_{0}^{1}(M)$, we have

$$
\begin{aligned}
\left(\nabla_{X}^{\mathrm{IIII}} \omega^{\mathrm{II}}\right)\left(Y^{\mathrm{II}}\right) & =\nabla_{X}^{\mathrm{III}}\left(\omega^{\mathrm{II}}\left(Y^{\mathrm{II}}\right)\right)-\omega^{\mathrm{II}}\left(\nabla_{X}^{\mathrm{II}}{ }^{\mathrm{II}}\right) \\
& =\left(\nabla_{X}(\omega(Y))-\omega\left(\nabla_{X} Y\right)\right)^{\mathrm{II}} \\
& =\left(\left(\nabla_{X} \omega\right)(Y)\right)^{\mathrm{II}}=\left(\nabla_{X} \omega\right)^{\mathrm{II}}\left(Y^{\mathrm{II}}\right)
\end{aligned}
$$

by virtue of (3.8) and (7.5). Thus we have $\nabla_{x^{\mathrm{II}}}^{\mathrm{II}} \omega^{\mathrm{II}}=\left(\nabla_{X} \omega\right)^{\mathrm{II}}$, because Y is arbitrary. The other formulas given in (7.7) are proved in a similar way.

We have from (7.7) the formulas

$$
\begin{equation*}
\nabla^{\mathrm{II}} \omega^{0}=(\nabla \omega)^{0}, \quad \nabla^{\mathrm{II}} \omega^{\mathrm{I}}=(\nabla \omega)^{\mathrm{I}}, \quad \nabla^{\mathrm{II}} \omega^{\mathrm{II}}=(\nabla \omega)^{\mathrm{II}} \tag{7.8}
\end{equation*}
$$

for $\omega \in \mathscr{T}_{1}^{0}(M)$. In fact, we have from (4.2) and (7.7)

$$
\gamma_{X}{ }^{\mathrm{II}}\left(\nabla^{\mathrm{II}} \omega^{\mathrm{II}}\right)=\nabla_{X}^{\mathrm{II}}{ }^{\mathrm{II}} \omega^{\mathrm{II}}=\left(\nabla_{X} \omega\right)^{\mathrm{II}}=\left(\gamma_{X}(\nabla \omega)\right)^{\mathrm{II}}=\gamma_{X} \mathrm{II}(\nabla \omega)^{\mathrm{II}}
$$

for any element X of $\mathscr{I}_{0}^{1}(M)$. Thus we have $\nabla^{\mathrm{II}} \omega^{\mathrm{II}}=(\nabla \omega)^{\mathrm{II}}$. Similarly, we can prove the other formulas given in (7.8).

We have here from (7. 6) and (7. 8)
Proposition 7.1. For any element K of $\mathscr{I}(M)$

$$
\nabla^{\text {II }} K^{0}=(\nabla K)^{0}, \quad \nabla^{\text {II }} K^{\mathrm{I}}=(\nabla K)^{\mathrm{I}}, \quad \nabla^{\text {II }} K^{\text {II }}=(\nabla K)^{\text {II }}
$$

hold.
We have directly from Proposition 7.1 the formulas

$$
\begin{array}{lll}
\nabla_{X}^{\mathrm{II}} K^{0}=0, & \nabla_{X}^{\mathrm{II}} K^{\mathrm{I}}=0, & \nabla_{X^{\mathrm{II}}}^{\mathrm{II}} K^{\mathrm{II}}=\left(\nabla_{X} K\right)^{0}, \\
\nabla_{X^{\mathrm{I}}}^{\mathrm{II}} K^{0}=0, & \nabla_{X}^{\mathrm{II}} K^{\mathrm{I}}=\frac{1}{2}\left(\nabla_{X} K\right)^{0}, & \nabla_{X}^{\mathrm{II}} K^{\mathrm{II}}=\left(\nabla_{X} K\right)^{\mathrm{I}}, \tag{7.9}\\
\nabla_{X}^{\mathrm{III}} K^{0}=\left(\nabla_{X} K\right)^{0}, & \nabla_{X X I \mathrm{II}}^{\mathrm{II}} K^{\mathrm{I}}=\left(\nabla_{X} K\right)^{\mathrm{I}}, & \nabla_{X{ }^{\mathrm{II}}}^{\mathrm{II}} K^{\mathrm{II}}=\left(\nabla_{X} K\right)^{\mathrm{II}}
\end{array}
$$

for $X \in \mathscr{I}_{0}^{1}(M), K \in \mathscr{T}_{s}^{r}(M)$ by virtue of (4.2).
The Curvature and the torsion tensors. Denoting by T the torsion tensor of an affine connection ∇ in M, we have by definition

$$
T(X, Y)=\left(\nabla_{X} Y-\nabla_{Y} X\right)-[X, Y] \quad \text { for } \quad X, Y \in \mathscr{I}_{0}^{1}(M) .
$$

Taking the second lift, we obtain

$$
\begin{aligned}
(T(X, Y))^{\mathrm{II}} & =\left(\nabla_{X}^{\mathrm{II}} Y^{\mathrm{II}}-V_{Y}^{\mathrm{II}} X^{\mathrm{II}}\right)-\left[X^{\mathrm{II}}, Y^{\mathrm{II}}\right] \\
& =\widetilde{T}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right)
\end{aligned}
$$

by virtue of Proposition 7.1 and (3.9), where \widetilde{T} denotes the torsion tensor of ∇^{11}. This equation implies, together with (6.8), $T^{\text {II }}\left(X^{\text {II }}, Y^{\text {II }}\right)=\widetilde{T}\left(X^{\text {II }}, Y^{\text {II }}\right)$. Thus, we have $T^{\text {II }}=\widetilde{T}$, since X and Y are arbitrary. Therefore we have

Proposition 7.2. The torsion tensor of the lift $\nabla^{\text {II }}$ of an affine connection ∇ given in M coincides with the $2 n d$ lift $T^{\text {II }}$ of the torsion tensor T of ∇.

The curvature tensor R of an affine connection V in M is a tensor field of type $(1,3)$ such that, for any two elements X and Y of $\mathscr{I}_{0}^{1}(M), R(X, Y)$ is an element of $\mathscr{T}_{1}^{1}(M)$ satisfying the condition

$$
R(X, Y) Z=\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z\right)-\nabla_{[X, Y]} Z
$$

for any element Z of $\mathscr{T}_{1}^{1}(M)$. Taking the 2 nd lift, we find

$$
\begin{aligned}
(R(X, Y) Z)^{\mathrm{II}} & =\left(\nabla_{X^{\mathrm{II}}}^{\mathrm{II}} \nabla_{Y^{\mathrm{II}}}^{\mathrm{II}} Z^{\mathrm{II}}-\nabla_{Y^{\mathrm{II}}}^{\mathrm{II}} \nabla_{X^{\mathrm{II}}}^{\mathrm{II}} Z^{\mathrm{II}}\right)-\nabla_{\left[X I \mathrm{I}, Y^{\mathrm{II}}\right.}^{\mathrm{II}} Z^{\mathrm{II}} \\
& =\tilde{R}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right) Z^{\mathrm{II}}
\end{aligned}
$$

by virtue of Proposition 7.1 and (3.9), where \tilde{R} denotes the curvature tensor of ∇^{II}. On the other hand, we can verify $(R(X, Y) Z)^{\text {II }}=R^{\text {II }}\left(X^{\text {II }}, Y^{\text {II }}\right) Z^{\text {II }}$ by virtue of $\nabla_{X^{\text {II }}} K^{\mathrm{II}}=\left(\nabla_{X} K\right)^{\mathrm{II}}$ given in (4.2). Therefore we find $\tilde{R}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right) Z^{\mathrm{II}}=R^{\mathrm{II}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right) Z^{\mathrm{II}}$, which implies $\tilde{R}=R^{1 I}$ since X, Y and Z are arbitrarily taken. Thus we have

Proposition 7.3. The curvature tensor of the lift ∇^{II} of an affine connection ∇ given in M coincides with the $2 n d$ lift $R^{1 I}$ of the curvature tensor R of ∇.

As a corollary to Propositions 7.1 and 7.3, we have
Proposition 7.4. Let T and R be respectively the torsion and the curvature tensors of an affine connection ∇ given in M. According as $T=0, \nabla T=0, R=0$ or $\nabla R=0$, we have $T^{\mathrm{II}}=0, \nabla^{\mathrm{II}} T^{\mathrm{II}}=0, R^{\mathrm{II}}=0$ or $\nabla^{\mathrm{II}} R^{\mathrm{II}}=0$. In particular, $T_{2}(M)$ is locally symmetric with respect to the lift ∇^{II} of ∇ if and only if M is so with respect to ∇.

Let g be a pseudo-Riemannian metric in M and ∇ the Riemannian connection determined by g. Then we have from Proposition 7.1

$$
\nabla^{\mathrm{II}} g^{\mathrm{II}}=(\nabla g)^{\mathrm{II}}=0 .
$$

On the other hand, since ∇ is torsionless, so is ∇^{11} by virtue of Proposition 7. 2. Consequently, $\nabla^{\text {II }}$ should coincide with the Riemannian connection determined by $g^{\text {II }}$. Thus we have

Proposition 7. 5. Let g be a pseudo-Riemannian metric in M and V its Riemannian connection. Then the lift ∇^{II} of ∇ is the Riemannian connection determined by the $2 n d$ lift $g^{\text {II }}$ of g.

We have from Propositions 7.4 and 7.5
Propositions 7.6. Let g be a pseudo-Riemannian metric in M. Then $T_{2}(M)$ is locally symmetric with respect to $g^{1 \mathrm{II}}$ if and only if M is so with respect to g.

Let P be an element of $\mathscr{I}_{3}^{1}(M)$. Then we have from (4.2)
in which both sides belong to $\mathscr{T}_{1}^{1}\left(T_{2}(M)\right)$.
If we take account of (6.6), we find
which implies
Proposition 7.7. Let g be a pseudo-Riemannian metric in M. Then the Ricci tensor \tilde{K} of $g^{\text {II }}$ coincides with $3 K^{0}$, where K denotes the Ricci tensor of g.

If $g^{\text {II }}$ is an Einstein metric in $T_{2}(M)$, we have $\tilde{K}=a g^{\text {II }}$ with a constant a, \tilde{K} being the Ricci tensor of $g^{\text {II }}$. However, we have from proposition $7.7 \tilde{K}=3 \mathrm{~K}^{0}$. Thus we have $a g^{I I}=3 K^{0}$, which, together with (5.4), implies $a=0$. Therefore we have

Proposition 7. 8. Let g be a pseudo-Riemannian metric in M. If $g^{I I}$ is an

Einstein metric in $T_{2}(M)$, then $g^{I I}$ is of zero Ricci tensor. If $g^{I I}$ is of constant curvature, then $g^{1 \mathrm{I}}$ is locally flat.

Let $\tilde{K}_{C B}$ denote the components of the Ricci tensor $\tilde{K}=3 K^{0}$ of $g^{1 I}$ and $\tilde{G}^{c B}$ the contravariant components of $g^{1 \mathrm{I}}$. Then, taking account of (5.4) and (5.7), we have $\tilde{k}=\widetilde{K}_{C B} \widetilde{G}^{C B}=3\left(K_{j i} g^{j i}\right)^{0}$, where $K_{j i}$ denote the components of the Ricci tensor of g and $g^{j i}$ the contravariant components of g. Thus we have

Proposition 7.9. Let g be a pseudo-Riemannian metric in M. Let k and \tilde{k} be the curvature scalars of g and $g^{I I}$ respectively. Then $\tilde{k}=3 k^{0}$. If g is of constant curvature scalar, so is $g^{1 \mathrm{II}}$.

A pseudo-Riemannian metric g is of constant curvature k in M if

$$
R(X, Y) Z=k(g(Z, Y) X-g(Z, X) Y) \quad \text { for } \quad X, Y \in \mathscr{I}_{0}^{1}(M)
$$

with a constant k, R denoting the curvature tensor of g. Taking the 2 nd lift, we have

$$
\begin{aligned}
R^{\mathrm{II}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right) Z^{\mathrm{II}}= & (R(X, Y) Z)^{\mathrm{II}}=(k(g(Z, Y) X-g(Z, X) Y))^{\mathrm{II}} \\
= & k\left[g^{\mathrm{II}}\left(Z^{\mathrm{II}}, Y^{\mathrm{II}}\right) X^{0}+2 g^{\mathrm{I}}\left(Z^{\mathrm{II}}, Y^{\mathrm{II}}\right) X^{\mathrm{I}}+g^{\mathrm{O}}\left(Z^{\mathrm{II}}, Y^{\mathrm{II}}\right) X^{\mathrm{II}}\right. \\
& \left.-g^{\mathrm{II}}\left(Z^{\mathrm{II}}, X^{\mathrm{II}}\right) Y^{0}-2 g^{\mathrm{I}}\left(Z^{\mathrm{II}}, X^{\mathrm{II}}\right) Y^{\mathrm{I}}-g^{0}\left(Z^{\mathrm{II}}, X^{\mathrm{II}}\right) Y^{\mathrm{II}}\right] .
\end{aligned}
$$

If we take account of $I^{0} X^{\text {II }}=X^{0}, I^{I} X^{\text {II }}=X^{\text {I }}$ given in (5.3), we have from the equation above

$$
\begin{align*}
& R^{\mathrm{II}}\left(X^{\mathrm{II}}, Y^{\mathrm{II}}\right) Z^{\mathrm{II}} \\
= & k\left[g^{\mathrm{II}}\left(Z^{\mathrm{II}}, Y^{\mathrm{II}}\right) I^{0} X^{\mathrm{II}}+2 g^{\mathrm{I}}\left(Z^{\mathrm{II}}, Y^{\mathrm{II}}\right) I^{\mathrm{I}} X^{\mathrm{II}}+g^{0}\left(Z^{\mathrm{II}}, Y^{\mathrm{II}}\right) X^{\mathrm{II}}\right. \tag{7.10}\\
& \left.-g^{\mathrm{II}}\left(Z^{\mathrm{II}}, X^{\mathrm{II}}\right) I^{0} Y^{\mathrm{II}}-2 g^{\mathrm{I}}\left(Z^{\mathrm{II}}, X^{\mathrm{II}}\right) I^{\mathrm{I}} Y^{\mathrm{II}}-g^{0}\left(Z^{\mathrm{II}}, X^{\mathrm{II}}\right) Y^{\mathrm{II}}\right]
\end{align*}
$$

which gives the curvature tensor $R^{\text {II }}$ of $g^{\text {II }}$ in $T_{2}(M)$ when g is of constant curvature in M.

§ 8. Lifts of infinitesimal transformations.

Let g be a pseudo-Riemannian metric in M. Then we have from Proposition 4. 2
(8.1) $\quad \mathcal{L}_{X^{0}} g^{\mathrm{II}}=\left(\mathcal{L}_{X} g\right)^{0}, \quad \mathcal{L}_{X^{\mathrm{I}}} g^{\mathrm{II}}=\left(\mathcal{L}_{X} g\right)^{\mathrm{I}}, \quad \mathcal{L}_{X^{\mathrm{II}}} g^{\mathrm{II}}=\left(\mathcal{L}_{X} g\right)^{\mathrm{II}}$
for any element X of $\mathscr{I}_{0}^{1}(M)$. If X is a Killing vector field with respect to g, i.e., if $\mathcal{L}_{X} g=0$, then X^{0}, X^{I} and $X^{\text {II }}$ are so with respect to g^{11}. Thus, taking account of (5.2), we have

Proposition 8.1. Let g be a pseudo-Riemannian metric in M. If X is a

Killing vector field with respect to g in M, then $X^{0}, X^{1}, X^{\text {II }}$ are all Killing vector fields with respect to the pseudo-Riemannian metric g^{II} in $T_{2}(M)$.

Similarly, taking account of Proposition 6.1, we have
Proposition 8.2. If X is an (almost) analytic vector field in M with respect to an (almost) complex structure F, i.e., if $\mathcal{L}_{X} F=0$, then X^{0}, X^{I} and $X^{\text {II }}$ are so also in $T_{2}(M)$ with respect to the (almost) complex structure F^{II}.

Let X be a conformal Killing vector field in M with respect to a pseudoRiemannian metric g. Then we have $\mathcal{L}_{X} g=a g, a \in \mathscr{I}_{0}^{0}(M)$. Thus, taking account of (8.1), we obtain

$$
\mathcal{L}_{X^{\mathrm{II}}} g^{\mathrm{II}}=a^{\mathrm{II}} g^{0}+2 a^{\mathrm{I}} g^{\mathrm{I}}+a^{0} g^{\mathrm{II}}
$$

which implies
Proposition 8. 3. Let X be a conformal Killing vector field in M with respect to a pseudo-Riemannian metric g. Then X^{11} is conformal in $T_{2}(M)$ with respect to $g^{I I}$ if and only if X is homothetic, i.e., if and only if $\mathcal{L}_{X} g=a g$ holds with a constant a. If this is the case, $X^{\text {II }}$ is necessarily homothetic.

Let ∇ be an affine connection in M. Then, for any element X of $\mathscr{I}_{0}^{1}(M)$, the Lie derivative of ∇ with respect to X is an element $\mathcal{L}_{X} \nabla$ of $\mathscr{L}_{2}^{1}(M)$ defined by

$$
\begin{equation*}
\left(\mathcal{L}_{X} \nabla\right)(Y, Z)=\mathcal{L}_{X}\left(\nabla_{Y} Z\right)-\mathcal{L}_{Y}\left(\nabla_{X} Z\right)-\mathcal{L}_{[X, Y]} Z \tag{8.2}
\end{equation*}
$$

X, Y and Z belonging to $\mathscr{T}_{0}^{1}(M)$. Thus, taking account of (3.9), (8.2) and Proposition 4.2, we obtain

$$
\begin{aligned}
\left(\mathcal{L}_{X}{ }^{\mathrm{II}} \nabla^{\mathrm{II}}\right)\left(Y^{\mathrm{II}}, Z^{\mathrm{II}}\right) & =\mathcal{L}_{X^{\mathrm{II}}}\left(\nabla_{Y}^{\mathrm{II}} Z^{\mathrm{II}}\right)-\nabla_{Y}^{\mathrm{III}}\left(\mathcal{L}_{X^{\mathrm{II}}} Z^{\mathrm{II}}\right)-\nabla_{[X}^{\mathrm{II}}, \boldsymbol{Y}^{\mathrm{II}]} \\
& Z^{\mathrm{II}} \\
& =\left(\mathcal{L}_{X}\left(\nabla_{Y} Z\right)-\nabla_{Y}\left(\mathcal{L}_{X} Z\right)-\nabla_{[X, Y]} Z\right)^{\mathrm{II}} \\
& =\left(\left(\mathcal{L}_{X} \nabla\right)(Y, Z)\right)^{\mathrm{II}}=\left(\mathcal{L}_{X} \nabla\right)^{\mathrm{II}}\left(Y^{\mathrm{II}}, Z^{\mathrm{II}}\right)
\end{aligned}
$$

for any element Y and Z of $\mathscr{I}_{0}^{1}(M)$. Thus we find

$$
\begin{equation*}
\mathcal{L}_{X^{\mathrm{II}}} \nabla^{\mathrm{II}}=\left(\mathcal{L}_{X} \nabla\right)^{\mathrm{II}} . \tag{8.2}
\end{equation*}
$$

Similarly, we can prove the other formulas given in Proposition 8.4. Thus we have

Proposition 8.4. Let \bar{V} be an affine connection in M. Then, for any element X of $\mathscr{I}_{0}^{1}(M)$, the formulas

$$
\mathcal{L}_{X^{0}} \nabla^{\mathrm{II}}=\left(\mathcal{L}_{X} \nabla\right)^{0}, \quad \mathcal{L}_{X^{\mathrm{I}}} \nabla^{\mathrm{II}}=\left(\mathcal{L}_{X} \nabla\right)^{\mathrm{I}}, \quad \mathcal{L}_{X^{\mathrm{II}}} \nabla^{\mathrm{II}}=\left(\mathcal{L}_{X} \nabla\right)^{\mathrm{II}}
$$

hold in $T_{2}(M)$.

A vector field X is called an infinitesimal affine transformation with respect to an affine connection ∇ if $\mathcal{L}_{X} \nabla=0$. As a consequence of Proposition 8.4, we have

Proposition 8.5. Let ∇ be an affine connection in M. If X is an infinitesimal affine transformation in M with respect to ∇, then X^{0}, X^{1} and X^{11} are so also in $T_{2}(M)$ with respect to ∇^{II}.

A vector field X in M is called an infinitesimal projective transformation with respect to an affine connection ∇ if

$$
\left(\mathcal{L}_{X} \nabla\right)(Y, Z)=\eta(Z) Y+\eta(Y) Z,
$$

η being a certain element of $\mathscr{T}_{1}^{0}(M)$. Taking the 2 nd lift, we have

$$
\begin{aligned}
\left(\mathcal{L}_{X^{\mathrm{II}}} \nabla^{\mathrm{II}}\right)\left(Y^{\mathrm{II}}, Z^{\mathrm{II}}\right)= & \eta^{\mathrm{II}}\left(Z^{\mathrm{II}}\right) Y^{0}+2 \eta^{\mathrm{I}}\left(Z^{\mathrm{II}}\right) Y^{\mathrm{I}}+\eta^{0}\left(Z^{\mathrm{II}}\right) Y^{\mathrm{II}} \\
& +\eta^{\mathrm{II}}\left(Y^{\mathrm{II}}\right) Z^{0}+2 \eta^{\mathrm{I}}\left(Y^{\mathrm{II}}\right) Z^{\mathrm{I}}+\eta^{0}\left(Y^{\mathrm{II}}\right) Z^{\mathrm{II}}
\end{aligned}
$$

by virtue of Propositton 8.4. Thus we have
Proposition 8.6. Let X be an infinitesimal projective transformation in M with respect to an affine connection ∇. Then X^{11} is an infinitesimal projective transformation with respect to $\nabla^{\text {II }}$ if and onlf if X is affine. If this is the case, $X^{\text {II }}$ is necessarily affine with respect to ∇^{II}.

Let X be an element of $\mathscr{T}_{0}^{1}(M)$ and $\exp (t X)$ denote a local 1-parameter group of transformations of M generated by X. Then, according to (1.10) and (3.1), $X^{\text {II }}$ generates a local 1-parameter group of $T_{2}(M)$ and

$$
\exp \left(t X^{\mathrm{II}}\right)=(\exp (t X))^{*}
$$

holds. Hence we have
Proposition 8.7. If a vector field X in M is complete in the sense that it generates a global 1-parameter group of transformations of M, then $X^{\text {II }}$ is also complete in $T_{2}(M)$.

Remark. From the local expressions (3.1) of X^{0} and X^{1}, we see immediately that X^{0} and X^{I} are complete in $T_{2}(M)$ whether X is complete in M or not.

Taking account of the Remark stated above, we have, from Propositions 8.1 and 8.7,

Proposition 8.8. If M is homogeneous pseudo-Riemannian manifold with
metric g, so is $T_{2}(M)$ with metric $g^{1 \mathrm{I}}$.
Similarly, we have from Proposition 8.2
Proposition 8. 9. If M is homogeneous (almost) complex manifold with (almost) complex structure F, so is $T_{2}(M)$ with (almost) complex structure F^{II}.

Similarly, we have from Proposition 8.5
Proposition 8.10. If a group G of affine transformations of M with respect to an affine connection $\bar{\nabla}$ is transitive in M, the group G^{*} of affine transformations of $T_{2}(M)$ with respect to $\nabla^{\text {II }}$ is transitive in $T_{2}(M)$, where G^{*} denotes the group of transformations generated by vector fields X^{0}, X^{1} and X^{11}, X in M being an arbitrary element belonging to the Lie algebra of vector fields generating G.

Let M be a pseudo-Riemannian (resp. affine) symmetric space with metric g (resp. connection \bar{V}). If we take an arbitrary point P in M, then there exists in M a symmetry S_{P} with center P , that is to say, S_{P} is in M an isometry of g (resp. an affine transformation of V) such that $S_{\mathrm{P}}(\mathrm{P})=\mathrm{P},\left(S_{\mathrm{P}}\right)^{2}=$ identity. We note here that M is identified with the zero-cross section \bar{M} of $T_{2}(M)$, which is defined by equations $y^{h}=0, z^{h}=0$ with respect to the induced coordinates $\left(\xi^{A}\right)=\left(x^{h}, y^{h}, z^{h}\right)$ in each $\pi_{2}{ }^{-1}(U)$. For any point P of M we denote by $\overline{\mathrm{P}}$ the point of \bar{M} corresponding to P . Then the transformation $\left(S_{\mathrm{P}}\right)^{*}$ induced from $S_{\mathrm{P}}(\mathrm{Cf} . \S 1)$ is a symmetry with center $\overline{\mathrm{P}}$ with respect to $g^{\text {II }}$ (resp. $\nabla^{\text {II }}$). On the other hand, $T_{2}(M)$ is homogeneous with respect to g^{II} (resp. ∇^{II}), because M is so with respect to g (resp. ∇). Therefore, taking an arbitrary point σ in $T_{2}(M)$, we know that there exists an isometry (resp. an affine transformation) $\tilde{\varphi}$ such that $\tilde{\varphi}(\overline{\mathrm{P}})=\sigma$. Hence, the transformation $\tilde{\varphi} \circ\left(S_{\mathrm{P}}\right){ }^{*} \circ \tilde{\varphi}^{-1}$ is a symmetry with center σ, i.e., $T_{2}(M)$ is symmetric with respect to $g^{\text {II }}$ (resp. ${ }^{\text {II }}$). Thus we have

Proposition 8.11. If M is symmetric with respect to a pseudo-Riemannian metric g (resp. an affine connection V), so is $T_{2}(M)$ with respect to $g^{I I}$ (resp. V^{II})

§ 9. Geodesics.

Let V be a torsionless affine connection in M. We denote by $\Gamma_{\rho}{ }_{2}{ }_{2}$ the coefficients of \bar{V} in a coordinate neighborhood $\left(U,\left(x^{h}\right)\right)$ of M, where $\Gamma_{j}{ }^{h}{ }_{2}=\Gamma_{2}{ }^{h}{ }_{\jmath}$. Let \tilde{C} be a curve in $T_{2}(M)$ and suppose that \tilde{C} is expressed locally by equations

$$
\begin{equation*}
\xi^{A}=\xi^{A}(t), \quad \text { i.e., } \tag{9.1}
\end{equation*}
$$

with respect to the induced coordinates $\left(\xi^{A}\right)=\left(x^{h}, y^{h}, z^{h}\right)$ in $\pi_{2}^{-1}(U), t$ being a para-
meter. We now put along $\tilde{C} \cap \pi_{2}^{-1}(U)$

$$
\begin{equation*}
v^{h}=z^{h}+y^{j} y^{i} \Gamma_{j}{ }^{h}{ }_{\imath} \tag{9.2}
\end{equation*}
$$

and

$$
\frac{\delta y^{h}}{d t}=\frac{d y^{h}}{d t}+\Gamma_{j}{ }^{h} i \frac{d x^{j}}{d t} y^{2}, \quad \frac{\delta^{2} y^{h}}{d t^{2}}=\frac{d}{d t}\left(\frac{\delta y^{h}}{d t}\right)+\Gamma_{j}{ }^{h} i \frac{d x^{j}}{d t} \frac{\delta y^{2}}{d t} ;
$$

$$
\begin{equation*}
\frac{\delta v^{h}}{d t}=\frac{d v^{h}}{d t}+\Gamma_{j}{ }^{h} \imath \frac{d x^{j}}{d t} v^{2}, \quad \frac{\delta^{2} v^{h}}{d t^{2}}=\frac{d}{d t}\left(\frac{\delta v^{h}}{d t}\right)+\Gamma_{j}{ }^{h} \frac{d x^{j}}{d t} \frac{\delta v^{2}}{d t}, \tag{9.3}
\end{equation*}
$$

where $x^{h}(t), y^{h}(t)$ and $z^{h}(t)$ are the functions appearing in (9.1). Denoting by C the projection $\pi_{2}(\tilde{C})$ of \tilde{C} in M, we see that the curve C is expressed as $x^{h}=x^{h}(t)$ in ($U,\left(x_{h}\right)$), $x^{h}(t)$ being the functions appearing in (9.1). Then the quantities

$$
y^{h}, v^{h}, \frac{\delta y^{h}}{d t}, \frac{\delta v^{h}}{d t}, \frac{\delta^{2} y^{h}}{d t^{2}}, \frac{\delta^{2} v^{h}}{d t^{2}}
$$

defined above are respectively global vector fields along C.
A curve \tilde{C} in $T_{2}(M)$ is a geodesic with respect to $V^{\text {II }}, t$ being an affine parameter, if and only if its local expression (9.1) satisfies the differential equations

$$
\begin{aligned}
& \frac{d^{2} \xi^{A}}{d t^{2}}+\tilde{\Gamma}_{C^{A}}{ }_{B} \frac{d \xi^{C}}{d t} \frac{d \xi^{B}}{d t}=0, \\
& \frac{d^{2} x^{h}}{d t^{2}}+\tilde{\Gamma}_{C^{h}}{ }_{B} \frac{d \xi^{C}}{d t} \cdot \frac{d \xi^{B}}{d t}=0
\end{aligned}
$$

$$
\begin{align*}
& \frac{d^{2} y^{h}}{d t^{2}}+\tilde{\Gamma}_{c}^{\bar{h}_{B}} \frac{d \xi^{C}}{d t} \frac{d \xi^{B}}{d t}=0 \tag{9.4}\\
& \frac{d^{2} z^{h}}{d t^{2}}+\tilde{\Gamma}_{C} \overline{\bar{n}}_{B} \frac{d \xi^{C}}{d t} \frac{d \xi^{B}}{d t}=0
\end{align*}
$$

where $\Gamma_{c}{ }^{h}, \Gamma_{C} \overline{\bar{h}}_{B}$ and $\Gamma_{c^{\prime}}{ }_{B}$ are the coefficients of $\nabla^{\text {II }}$ given by (7.1), (7.2) and (7.3). The equations (9.4) are equivalent to the equations

$$
\begin{equation*}
\frac{d^{2} x^{h}}{d t^{2}}+\Gamma_{j}{ }^{h_{i}} \frac{d x^{j}}{d t} \frac{d x^{2}}{d t}=0 \tag{9.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} y^{h}}{d t^{2}}+\left(y^{s} \partial_{s} \Gamma_{j}^{h_{i}}\right) \frac{d x^{j}}{d t} \frac{d x^{2}}{d t}+2 \Gamma_{j}{ }^{h_{i}} \frac{d x^{j}}{d t} \frac{d y^{2}}{d t}=0 \tag{9.6}
\end{equation*}
$$

$$
\frac{d^{2} z^{h}}{d t^{2}}+\left(z^{s} \partial_{s} \Gamma_{j}{ }^{h} i+y^{t} y^{s} \partial_{t} \partial_{s} \Gamma_{j}{ }^{h}{ }_{\imath}\right) \frac{d x^{j}}{d t} \frac{d x^{\imath}}{d t}
$$

$$
\begin{equation*}
+4\left(y^{s} \partial_{s} \Gamma_{j}{ }^{h} i\right) \frac{d x^{j}}{d t} \frac{d y^{2}}{d t}+2 \Gamma_{j}{ }^{h} i \frac{d y^{j}}{d t} \frac{d y^{2}}{d t}+2 \Gamma_{j}{ }^{h} \frac{d x^{\jmath}}{d t} \frac{d z^{2}}{d t}=0 . \tag{9.7}
\end{equation*}
$$

Making use of (9.2) and (9.3), we see that the system of differential equations (9.5), (9.6) and (9.7) is equivalent to the the system of differential equations

$$
\begin{equation*}
\frac{d^{2} x^{h}}{d t^{2}}+\Gamma_{j}^{h} i \frac{d x^{3}}{d t} \cdot \frac{d x^{2}}{d t}=0 \tag{9.8}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\delta^{2} y^{h}}{d t^{2}}+R_{k j i}{ }^{h} y^{k} \frac{d x^{\jmath}}{d t} \frac{d x^{2}}{d t}=0 \tag{9.9}\\
& \frac{\delta^{2} v^{h}}{d t^{2}}+R_{k j i}{ }^{h} v^{k} \frac{d x^{\jmath}}{d t} \frac{d x^{2}}{d t}+4 R_{k j i}{ }^{h} y^{k} \frac{d x^{\jmath}}{d t} \frac{\delta y^{2}}{d t} \\
& \tag{9.10}\\
& \\
&
\end{align*}
$$

where $R_{k j i}{ }^{h}$ denote the components of the curvature tensor of ∇. That is to say, the system of differential equations (9.8), (9.9) and (9.10) determines in $T_{2}(M)$ geodesics with respect to the affine connection $\nabla^{\text {II }}$. Thus we have

Proposition 9.1. Let \tilde{C} be a geodesic in $T_{2}(M)$ with respect to ∇^{II}, where ∇ is a torsionless affine connection in M, and suppose that \widetilde{C} has the local expression (9.1). Then the projection $C=\pi_{2}(\widetilde{C})$ is a geodesic in M with respect to ∇. The vector field $y^{h}(t)$ defined along C is a Jacobi field with respect to ∇. The vector field $v^{h}(t)$ defined by (9.2) along C satisfies the differential equation (9.10). The affine parameter of \tilde{C} induces naturally an affine parameter along C.

Conversely, if there exists in M a geodesic with respect to ∇, C having the local expression $x^{h}=x^{h}(t)$ with affine parameter t, if there is given a Jacobi vector field $y^{h}(t)$ along C, and, if there is given a vector field $v^{h}(t)$ satisfying along C the differential equation (9.10), then the curve \widetilde{C} defined in $T_{2}(M)$ by the local expression $x^{h}=x^{h}(t), y^{h}=y^{h}(t), z^{h}=v^{h}(t)-y^{j}(t) y^{2}(t) \Gamma_{j}{ }^{h}{ }_{i}\left(x^{s}(t)\right)$ is a geodesic in $T_{2}(M)$ with respect to ∇^{II}.

Taking account of (9.8), (9.9) and (9.10) we see easily that, if there is given in M a geodesic C with respect to a torsionless affine connection ∇, C having the local expression $x^{h}=x^{h}(t)$, and a Jacobi field $v^{h}(t)$ along C, then the curve \tilde{C} defined in $T_{2}(M)$ by the local expression $x^{h}=x^{h}(t), y^{h}=0, z^{h}=v^{h}(t)$ is a geodesic with respect to ∇^{II}.

We say that M is complete with respect to an affine connection (resp. a pseudoRiemannian metric g) if along any geodesic any affine parameter takes an arbitrarily given real value. Then, taking account of (9.8), (9.9) and (9.10), we have

Proposition 9. 2. If M is complete with respect to a torsionless affine connection Γ (resp. a pseudo-Riemannian metric g), so is $T_{2}(M)$ with respect to $\nabla^{\text {II }}$ (resp. $g^{\text {II }}$).

According to [15], we have from (9.8), (9.9) and (9.10)
Proposition 9. 3. Let \tilde{C} be a geodesic in $T_{2}(M)$ with respect to $\Gamma^{\text {II }}, \nabla$ being a torsionless affine connection in M. Then the projection $\pi_{12}(\widetilde{C})$ of \widetilde{C} in the tangent bundle $T_{1}(M)$ is also a geodesic with respect to ∇^{c}, where ∇^{c} is the complete lift of the affine connection $\bar{\nabla}$ in the sense of [15].

Bibliography

[1] Dombrowski, P., On the geometry of the tangent bundle. J. Reme und Angew. Math. 210 (1962), 73-88.
[2] Ledger, A. J., and K. Yano, The tangent bundle of a locally symmetric space. J. London Math. Soc. 40 (1965), 487-492.
[3] Ledger, A. J., and K. Yano, Almost complex structures on tensor bundles. Journal of Differential Geometry. 1 (1967), 355-368.
[4] Morimoto, A., Note on prolongations of affine connections to tangent bundles. To appear.
[5] Morimoto, A., Prolongations of G-structures to tangent bundles. To appear.
[6] Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10 (1958), 338-354.
[7] SATô, I., Almost analytic vector fields in almost complex manifolds. Tôhoku Math. J. 17 (1965), 185-199.
[8] Tachibana, S., and M. Okumura, On the almost complex structure of tangent bundles of Riemannian spaces. Tôhoku Math. J. 14 (1962), 156-161.
[9] Tanno, S., An almost complex structure of the tangent bundle of an almost contact manifold. Tôhoku Math. J. 17 (1965), 7-15.
[10] Tondeur, P., Structure presque kählérienne sur la fibré des vecteurs covarıants d'une variéte riemannienne. C. R. Acad. Scı. Parıs 254 (1962), 407-408.
[11] Yano, K., Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold. Proc. Royal Soc. Edinburgh, Ser. A, 67 (1967), 277-288.
[12] Yano, K., Tensor fields and connections on cross-section in the cotangent bundle. Tôhoku Math. J. 19 (1967), 32-48.
[13] Yand, K., and E. T. Davies, On the tangent bundles of Finsler and Riemannian manifold. Rend. Cir. Math. Palermo, Series II, 12 (1963), 1-18.
[14] Yano, K., and S. Ishihara, Almost complex structures induced in tangent bundles. Kōdai Math. Sem. Rep. 19 (1967), 1-27.
[15] Yano, K., and S. Kobayashi, Prolongations of tensor fields and connections to
tangent bundle, I, II. J. Math. Soc. Japan 186 (1966), 194-210, 236-246.
[16] Yano, K., and A. J. Ledger, Linear connections on tangent bundles. J. London Math. Soc. 39 (1964), 495-500.
[17] Yano, K., and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle. J. Math. Soc. Japan 19 (1967), 91-113.
[18] Yano, K., and E. M. Patterson, Horizontal lifts from a manifold to its tangent bundle. J. Math. Soc. Japan 19 (1967), 185-198.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: 2) Manifolds, mappings and objects we discuss are assumed to be differentiable and of class C^{∞}. Manifolds under consideration are supposed to be connected.
 3) The indices $h, i, j, k, \cdots, m, t, s$ run over the range $\{1,2, \cdots, n\}$ and the so-called Einstein's summation convention is used with respect to this system of indices.
