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§ 0. Introduction.

The differential geometry of tangent bundles has been studied by Davies [13],
Dombrowski [1], Kobayashi [15], Ledger [2], [3], [16], Morimoto [4], [5], Okumura
[8], Sasaki [6], Tachibana [8], Tanno [9], Tondeur [10], the present authors [2],
[3], [11], [13], [14], [15], [16], [17], [18] and others and that of cotangent bundles by
Patterson [17], [18], Sato [7] and one of the present authors [12], [17], [18P

The purpose of the present paper is to study the differential geometry of
tangent bundles of order 2, the tangent bundle of order 2 T2(M) of a differentiate
manifold M being defined as the set of all 2-jets of M determined by mappings of
the real line R into M.

In § 1, we define the tangent bundles of order 2 and induced coordinates in it
and fix the notations used throughout the paper.

In § 2, we study the lifts of functions and two vector fields A and B existing
a priori in T2(M).

§ 3 is devoted to the study of lifts of vector fields, 1-forms and derivations, and
§ 4 to the study of lifts of tensor fields and two linear mappings a and β. In § 5,
we give the local expressions of these lifts.

In § 6, we study in more detail the lifts of tensor fields of type (1,1) and discuss
lifts of torsion tensors and Nijenhuis tensors.

§ 7 is devoted to the study of lifts of afrlne connections and also of curvature
tensor and torsion tensor of the connection.

We study lifts of infinitesimal transformations in § 8 and geodesies in Γ2(M)
in the last § 9.
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§ 6. Lifts of tensor fields of type (1,1).
§ 7. Lifts of afHne connections.
§ 8. Lifts of infinitesimal transformations.
§ 9. Geodesies.

§ 1. Tangent bundles of order 2.

Let M be a differentiable manifold2) of dimension n and R the real line. We
introduce an equivalence relation ~ in the set of all differentiable mappings
F: R—>M as follows. Let r ^ l be a fixed integer. If two differentiable mappings
F: R-^M and G: R-+M satisfy the conditions8'

I D dt ' ' df df

the mappings F and G being respectively represented by xh=Fh(t) and xh=Gh(t)
(teR) with respect to local coordinates (xh) defined in a coordinate neighborhood
containing the point FΛ(0)=GΛ(0), then we say that the two mappings F and G are
equivalent to each other and write F—G. Each equivalence class determined by
the equivalence relation — is called briefly an r-jet of M and denoted by jr

Έ(F) if
this class contains a mapping F: R-^M such that F(0)=P. The point P is called
the target of the r-jet jr(F). In the sequel, we shall restrict ourselves to the case
r = l or r=2.

If we denote by T2(M) the set of all 2-jets of M and topologize T2(M) in the
natural way, the space T2(M) has the natural, bundle structure over M, its bundle
projection π2: T2(M)-+M being defined by π2(j2

F(F))=F. The space T2(M) is called
the tangent bundle of order 2 over M.

The set 7\(Λf) of all 1-jets of M is nothing but the tangent bundle of M, if
Γi(M) is naturally topologized. The bundle projection πx\ Γi(M)-*M of 7\(M) is
defined by 7Ti(ip(^))=P- Each 1-jet of M is called a tangent vector of M. If we
introduce a mapping π12: Γ2(M)->Γi(M) by π12(MF))=MF)9 F: R-+M being an
arbitrary differentiable mapping such that F(0)=P, then T2(M) has a bundle struc-
ture over Ti(M) with bundle projection π12. It is easily verified that the relation

(1. 2) π2 = πi°πi2

holds.
Let U be a coordinate neighborhood of M and O^) certain coordinates defined

in U. We call the set (£/", (^Λ)) simply a coordinate neighborhood of M If we take
an arbitrary 2-jet j\(F) belonging to τr2~

1(t/) and put

2) Manifolds, mappings and objects we discuss are assumed to be differentiable and
of class C°°. Manifolds under consideration are supposed to be connected.

3) The indices h, i, j , &,-•-, m, t, s run over the range {1,2, , n} and the so-called Einstein's
summation convention is used with respect to this system of indices.
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(1.3)
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h dFh(0) . d2Fh(0)

dt dt2

then we see from (1.1) that the 2-jet j\(F) is expressed in a unique way by the
set (xh,yh,zh), where xh are the coordinates of the target P in (U,(xh)). Thus a
system of coordinates (xh,yh,zh) is introduced in the open set π2~

1(U) of T2(M).
We call (xh,yh,zh) the coordinates induced in π2~\U) from (U,(xh)), or, simply
the induced coordinates in π2~\U). On putting

(1.4) fh=y\

we denote the induced coordinates (xh,yh,zh) by (ξA) in π2~
1(t/).4)

Let (U,(xh)) and (U',(xh')) be two intersecting coordinate neighborhoods of M.
Let (ξA) = (xh,yh,zh) and (ξA')=(xh\yh',zh') be the coordinates induced respectively
from (U, (xh)) and (£/', (#Λ')) Then, denoting by xh'=xh'(xi) the coordinate transfor-
mation in UΠU', the transformation of the induced coordinates in π2~

1(UΠU/) is
given by

(1. 5) xh'=xh\xi)} \

and its Jacobian matrix by

za = dxjdx
j-V'VΊ

(1.6)

dxh

θ2xh' s

\ dxjdx&^ , S + - dx'dx*

0

0

dx3 J

Let φ: M-+M be a differentiable transformation. The correspondence j2

P(F)
- ^ C P ) (φ°F), jl(F)£T2(M) determines a differentiable transformation ^*: T2(M)
—>T2(M), called the transformation induced in T2{M) from φ. If we take a point P
belonging to a coordinate neighborhood (U, (xh)), and, if we suppose that the point
φ(P) belongs to a coordinate neighborhood (ί/7, (xh')), then we can express ψ locally
by equations

φh'(xh) being n differentiable functions of the variables xh such that \dφh'/dxh\^0,
where (xh) are the coordinates of P in (U,(xh)) and (xh>) those of φ(P) in (U',(xh>)).
Then the induced transformation ^* is expresssd locally by equations of the form

4) T h e indices AtBtC,DtE run over the symbols {1,2, ».,»; 1,2, •-,»; 1,2,--,^} and

the so-called Einstein's summation convention is used wi th respect to this system of

indices,
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h, .„ .. ., dψh> .

x —φ \χ ) , y ~ h y ,

(1.8)

where (xh,yh,zh) are the induced coordinates of fP(F) in π2~\U) and (xh>, yh>, zh>)
those of <p*ϋ2

P(F)) in π2~\Uf).
Let X be an infinitesimal transformation (a vector field) in M Then, taking

account of (1. 8), we see easily that there naturally corresponds an infinitesimal
transformation X in T2(M) having components of the form

in π2~\U), the functions Xh being the components of X in (£/, (J?71)) and dt denoting

the operator

d

Hence we have the relation

(1.10) (exp (tX))*=exp (fX) (UR),

whenever exp(tX) is defined.
If we put Y=fX, f and X being respectively a function and a vector field in

M, then we find in T2(M)

Ϋ=fX+2gU+hV,

X and Ϋ being constructed by (1. 9) respectively from X and F, where 0 and V
are vector fields having respectively components of the form

(1.11) 0: Uh=0, Ulι^=—yidiXh, 0%=Xh;

(1.12) V: Vh=0, Y*=0, V*=X*

in π2~\U) and f=f°π12, g=yldif, h = zidif
J

Γy
:ιyidjdif with respect to the induced

coordinates (xh, yh, zh) in π2~\U). Therefore, given a vector field X in M, we obtain
in T2{M) three vector fields X, 0, and V defined by (1. 9), (1.11) and (1.12) re-
spectively.

Notations.

We list below notations used frequently in this paper.
i . ΞΓrs(M) is the space of all tensor fields of type (r, 5), i.e., of contravariant

degree r and covariant degree 5, in a differentiate manifold M An element of
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is a function in M, an element of £ΓJ(M) is a vector field in M, and an
element of ζΓl(M) is a 1-form in M.

is the space of all differential forms in M. Λs is the space of all s-
forms in M.

Λ*(M)=Σ ΛS(M), ΛS(M)=Λ*(M) n £ΓΪ(M).
s

4. A mapping ψ\ 3'(M)—>£Γ'(MO is said to be /wmr if we have <p(aS+bT)
=aφ(S)+bφ(T) for any element S, ΓG£Γ(M), where a and & are constants.

§2. Lifts of functions.

Lifts of functions. Let / be a function in M. Then / is a mapping /: M-^R
and it gives a mapping /°F: j£—•#. For the given function / a 2-jet j2

a(f°F) of i?
is completely determined by giving a 2-jet j%(JF), F being a mapping F: R-+M
such that P=F(0) and a=f(F). Thus, if we put f*ϋ\(F))=j2

a(foF), there exists a
mapping /*: T2(M)-*T2(R) corresponding to /. On the other hand, any element τ of
T2(R) can be expressed canonically by a set (A°(τ), Aτ(τ), Au(τ)) of three numbers,
which are the induced coordinates of τ in T2(R), because R is covered naturally by
only one coordinate neighborhood R itself. Therefore, for a function / given in M,
there corresponds in T2(M) three functions /°, fι and fn respectively defined by

(2. 1) f\σ)=A\f\σ)\ f\σ) = A\f\σ)\ fn(σ) = Au(f*(σ)),

σ being an arbitrary element of T2(M). The three functions /°, f1 and / π thus
defined in T2(M) is called respectively the O-th, the 1st and the 2nd /ϋ/ίs of /. A
function f in M is constant if and only if one of its lifts f1 and fu vanishes
identically in T2(M). A function f in M vanishes identically if and only if its lift
f° does so in T2(M).

The lifts /°, P and fu of a function f in M expressed by f(xh) in (U,(xh))
are represented respectively as

(2.2) f°: f{xh\ P\ yWafi), fn: gfdif(xh)+yψdjdtf(^)

with respect to the induced coordinates (ζA) = (xh

iy
h,zh) in π2~\U). We note here

that f° has in π2~\U) the same local representation as / has in (U,(xh)).
Taking account of (2. 2), we find

(2.3) fo=foπ2=(fv)oπi2y f*=(f°)oπi2

for /€ g°o(M), where the functions fv and fc defined in 7\(M) are respectively the
vertical and the complete lifts of / in the sense of [14] and [15]. As consequences
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of (2. 2), we find the following formulas:

(fg)°=g°f°, (fg)τ =fIg° +f°oτ,
(2.4)

( / g ) n = / i V + 2 /igi+ /ogii

for flf, /€£Γβ°(M).

REMARK. Let XJoe a vector field in T2(M). Then Z vanishes identically in
T2(M) if we have Z / π = 0 for any function / in M In fact, if we take account
of (2. 2) and denote by (XΛ) = (X\ Xn, Xn) the components of Z^with respect to the
induced coordinates (ξΛ) = (xh,yh,zh), we see that the condition Xfu=0 is expressed
as

0 1
yh 1

B:

0

z1

Thus, if we have Xfu=0 for any element / of £ΓS(M), we find X?=XK=X%=0
by virtue of the continuity of X. Consequently, a vector field X in T2(M) is
completely determined by giving the values of Xfu, f being arbitrary elements
of £ΓS(M). In the sequel, this remark will be useful in determining values of vector
fields given in T2(M).

Vector fields A and B. We now consider in each π2~\U) two local vector
fields A and B respectively with components of the form

(2.5) A:

with respect to the induced coordinates (ξA), (U,(xh)) being an arbitrary coordinate
neighborhood of M. Taking account of (1. 5) and (1. 6), we can easily verify that
both of the local vector fields A and B thus introduced determine respectively
global vector fields in T2(M), which are also denoted by A and B respectively. We
now obtain the following formulas:

Af°=0, AP=0, Afu=f\
(2.6)

for/€£ΓS(M) and

(2.7)

by virtue of (2. 2) and (2. 5).
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§ 3. Lifts of vector fields, 1-forms and derivations.

Lifts of vector fields. Let X be a vector field in M. We introduce in each
π2~

1(U) three local vector fields X°, X1 and X 1 1 having respective components of
the form

(3.1) X1 —

0

tdiXh

xh

yldiXh

with respect to the induced coordinates (ξA), where Xh denote the components of
X in (U, (xh)) (Cf. (1. 9), (1. 11) and (1. 12)). If we take account of (1. 5), (1. 6) and
the transformation law Xh'=(dxh'/dxh)Xh of the components of X, then we see that
the local vector fields X°, X1 and Xu above determine respectively global vector
fields in T2(M), which are also denoted by X°, X1 and X 1 1 respectively. The
vector fields X°, X1 and Xu in T2(M) are called respectively the O-th, the 1st and
the 2nd lifts of X. We find

(3.2) l_
2

for Xe 3&M) because of (3.1), π12 denoting the differential mapping of the projection
π12: Γ2(M)-> Ti(M), where the vector fields Xv and X° defined in T^M) denote
respectively the vertical and the complete lifts of X in the sense of [14] and [15].
According to (3.1), a vector field X in M vanishes identically if and only if one
of X", X1 and Xn does so in Γ2(M).

Taking account of (3.1), we find the following formulas:

(3.3)

for /e £Π(M), Xe ζΓl(M). As immediate consequences of (2. 2) and (3.1), we have
the following formulas:

(3.4) Xτf°=0,

Xnf°=(Xf)0,

X°fl=0,

XV^

Xnfn=(Xf)u

for/e£ΓS(M),
Lifts of 1-f orms. Let ω be a 1-form in M. We introduce in each πf

three local 1-forms ω", ωι and ω11 having respective components of the form
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ω°: (<ϋi, 0, 0),

(3. 5) ω1: (ykdkωu ωu 0),

with respect to the induced coordinates (ξA), where ωt denote the components of ω in
(U,(xh)). Taking account of (1. 5), (1. 6) and the transformation law ωi> = (dxιldxί')ωi

of components of ω, we can easily verify that the local 1-forms ω°, ω1 and ω11

above determine respectively global 1-forms in T2(M), which are also denoted
respectively by ω°, ω1 and ω11. These 1-forms ω°, ωι and ω11 are respectively called
the 0.-th, the 15/ and the 2nd lifts of ω. From (3. 5) we find

(3. 6) ωo — ω°π2=a)v°πi2, ω1 = ωG°πi2

for ω€£Γί(M), where the 1-forms ωv and ω° defined in T2(M) are respectively the
vertical and the complete lifts of ω in the sense of [14] and [15]. According to
(3. 5), a I'form ω vanishes identically in M if and only if one of ω°, ωι and ω11

does so in T2(M).
Taking account of (3. 5), we obtain the formulas

(3.7)

for /€£Γί(M), ω€£ΓΪ(M). As immediate consequences of (3.1) and (3.5), we find
the following formulas:

ω°(X°) = 0, ω 0 ^ 1 ) - 0 ω\Xn) = (ω(X))°,

(3. 8) ωI(X°)=0, ω\X')=^{ω{X)

ω"(X«) - « ! ) ) » w^X') = (ω(X))\

for
Formulas. We have here the following formulas:

(3. 9) [X\ r°]=0, [X11, F I ] = K Y]1,

[Xu, Y«]=[X, Yf, \.xι\ YU1=[X, Y]u

for X, Ys 3l(M). In fact, taking account of (3. 4), we have

=ax,
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for any element / of £ΓS(M). Therefore, if we take account of the Remark stated
in §2, we obtain [X11, F I ]=[X, Y]1 and [Xu,Yll]=[X,Y]n. Applying similar
devices, we can prove the other formulas given in (3. 9).

The correspondences X-> X\ X—Xι and X - X u (Xe^KM)) determine re-
spectively one-to-one linear mappings of Έll(M) into £Π(Γ2(M)). We have, from the
last formulas given in (3. 9),

PROPOSITION 3.1. The correspondence X—>Xn (XeζΓKM)) determines an iso-
morphism of the Lie algebra £ΓJ(M) into the Lie algebra £Γo(T2(M)).

According to (3.1) and (3. 5), we find in each neighborhood π2~
ι(U) the formulas

)

π

dxV ~ 2 dy% ' \ dx* ) ~ 3xι '
(3. 10)

(dxh)°=dxh, (dxhγ = dyh, (dxh)u = dzh

with respect to the induced coordinateg (ξA) = (xh, yh, zh), where (U, (χh)) is a coordi-
nate neighborhood of M.

REMARK. If we take account of (3.1) and (3. 5), we see that a tensor field K,
say, of type (1, 2) in T2(M) is completely determined by giving values K(XΠ, F π , ω11),
X and Y being arbitray elements of £Π(M) and ω an arbitrary element of £Π(M).

Lifts of derivations. In this paper we mean by a derivation in M a linear
mapping D: £Γ(M)-+£f(M) satisfying the conditions:

(a) D: Zr

s(M)-*Zrs(M),

(3.11) (b) D(S®T) = (DS)(g)T-{-S®(DT) for S,TζζΓ(M),

(c) DI=0,

where / denotes the identity tensor field of type (1, 1) in M.
For a given derivation D in M, there exists a vector field P in M such that

(3.12) Pf=Df,

/being an arbitrary element of £ΓS(M). In each coordinate neighborhood (U,(xh))
of My taking account of (3.11, a), we can put

Qιh being certain functions in U. Thus, taking account of (3.11, b), (3. 12) and
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(3.13), we obtain

D[Xh J
dxh

in (£7, {xh)) for any element X=Xh(d/dxh) of £TJ(M). That is to say, for any element
X of £Γo(M), DX has components of the form

(3. 14) (DX)h=P%Xh+QihXi

in (£7, (xh)), if X has components Xh in (U,{xh))> According to (3.11), we have
) = (Dω)(X)+o)(DX) for any element X of £Γo(Λf) and any element ω of

). Thus, as a consequence of (3. 14), Dω has components of the form

(3.15) (Dω)i= ihωh for ω € £Γi(M)

in (U,(xh)), if ω has components <»* in (U,(xh)). The set (Ph,Qih) is called the
components of the derivation D in (U,(xh)).

We suppose that a derivation Z> has components (PΛ, Q/) and (PΛ ', Qί>h')
respectively in (U,(xh)) and in (U',(xh')). Then, as a consequence of (3.14) and
the transformation law Xth'={dxh'ldxh) Xh of the components Xh of X, we obtain
the transformation law

(3.16)

dχi

of the components of a derivation Z) in UΠ U'.
If we are given a derivation Z) in Λf, we introduce in π τ\U) three local

vector fields JD°, D1 and Z)π having components of the form

(3. 17)

0

Z>π:

with respect to the induced coordinates (ξA), where (PΛ, Q^) denote the components
of the given derivation D in (£7, (^)). Thus, taking account of (1. 5), (1. 6), (3. 16)
and (3.17), we see that all of the local vector fields D°, Dι and Du above determine
respectively global vector fields in T2(M), which are denoted also by D°, D1 and Du

respectively. These three vector fields D°, Dι and Du in T2(M) are called respectively
the O-th, the 1st and the 2nd lifts of the derivation D.

We now find for any derivation D the following formulas:
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D°f°=0, Dy°=0, DllP={Df)\

1 'r Dιψ=a(Ddf\

Dnfn=β(Ddf)Dιfn=a(Ddf),

for / € 2"S(Λf), where aω and βω for any element ω of £ΓS(M) are functions in T2(M)
having respectively local representations aω=yιωi and βω=zιωί-\-yJyίdjWi in π2~\U)
with respect to the induced coordinates (ξA), the functions ωt being the components
of ω in (JJ,(xh)) (Cf. §5).

Lifts of Lie derivations. The Lie derivation Xx with respect to a vector field
X is a derivation having components of the form

(3.19) Ph=X\

where Xth denote the components of X. Thus, substituting (3. 19) in (3. 17), we
have

PROPOSITION 3. 2. The formulas

Uχ)u=Xu

hold for

Lifts of coυariant derivations. Let V be an afΉne connection in M. Then the
covariant differentiation Vx with respect to a vector field X is a derivation in M,
which has components of the form

(3. 20) Ph=X\

Γj\ denoting the coefficients of V and Xth the components of X. The covariant
derivative VxZ has components of the form

for any vector field Z with components Zh. Substituting (3. 20) in (3. 17), we see
that the lifts (7x)°, (Fx)1 and (Pχ)u have respectively components of the form

(3. 21)
Xh
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for any element X of 3l(M). Therefore we have, from (3.1) and (3. 21),

PROPOSITION 3. 3. The formulas

hold for any element X of

In Proposition 3. 3, F is an affine connection in M defined by

, Y] for X, F€£Γί(M),

and aF and βF for any element F of £Γί(M) are vector fields in T2(M) having
respectively components

(3.22) aF:

0

0 βF:

with respect to the induced coordinates (ξA) in π2~KU), the functions Fi1 being
components of F in (U, (xh)) (Cf. § 4 or § 5). We see easily that the affine connection
F has coefficients fJ

h

t=Γι

h

J, Γ3

h

% being the coefficients of F. As an immediate conse-
quence of Proposition 3. 3, we have

PROPOSITION 3. 4. For any element X of £&

(Fx)
ι=X\ (Fz)

u=Xn

hold if and only if FX=0.

Derivation determined by a tensor field of type (1, 1). When a derivation D
satisfies the condition Df=0 for /e£ΓS(M), D determines an element F of 3\(M)
such that ΌX^FX for any element X of £ΓίCM). In such a case, we denote D by
DF and call it the derivation determined by a tensor field F of type (1, 1). The
derivation DF has components of the form

(3.23) DF: Ph=0, Qih=Ft\

Fih being components of F. Substituting (3. 23) in (3. 17), we find

(3. 24) (DF)*=0, (DFγ = -aF,

aF and βF being defined by (3. 22).
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§ 4. Lifts of tensor fields.

Lifts of tensor fields. We have introduced in § 2 and § 3 three kinds of lifts
for functions, vector fields and 1-forms given in M. The operations taking these lifts
are linear mappings £Γί(M)-*£Γί(Γa(Λ0), £Γί(Λ0->ff5(Γa(M)) and £Π(M)-*£Π(T2(M))
respectively. Thus we can now define for any element K of ζίr

s(M) its lifts K°,
Kι and X"11, which are elements of £Π(Γ2(M)), in such a way that the correspon-
dence K-*K°, K-+K1 and K->Kn all define linear mappings £rϊ(ΛO->£rϊ(Γ2(Λf)),
which are characterized by the properties

(S®T)°=S°(g)T0,

(4. 1) (S<g)T)τ=Sι<g)T0+S0<8)Tι,

(S(g) T)u=Su(g)T0+2SI(g)T1+S0(g)Tn

for S, T€£Γ(M). The conditions (4.1) are compatible with the conditions (2.4),
(3. 3) and (3. 7). The tensor fields K°, Kι and Kn are called respectively the 0-th,
the 1st and the 2nd lifts of i£, We see that a tensor field K, not belonging to
£Γ2(M), vanishes identically in M if and only if one of its lifts K°, Kι and Kn

does so in T2(M).
Linear mappings γx. Let T be an element of 3r

s(M) (s^l) . Then it is a
correspondence

T: (X1," ,Xs)-T(X1,'")Xs)GErro(M),

Xl9'"9X8 being arbitrary elements of 3Ί(M). If for an element X of £Γί(M) we
define an element γx T of £Π-i (M) by

- , X,) = T(X, X2, -., X),

X2, ~',Xs being arbitrary elements of £Π(M), then the correspondence T—>γxT
determines a mapping r z : £Γί(M)->£ΓΪ-i(M) such that γx{fT+gS)=f{ϊxT)+g{γxS)
for/, g€£ΓS(M) and Γ ,SG£ΓΪ(M). If T has components of the form ΆlZ2...Zs

hί" hr, then
^ z T has the components XkTkl2ι...Xs

hi-'"hr, Xk being components of X We have the
formula

for any elements Xi, ~,Xs of £Π(M).
We now have the following formulas:

(4.2)
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for X€£rί(Af), KGg(M). In fact, if we suppose that K=ω®S,
then we have

ϊxo K° = ϊxo (ω° (X) S °) = ω%X°)S ° = 0,

by virtue of (3.8) and (4.1). Thus, according to Tx(fS + gT)=fϊχS-{-gϊχT
for S,Te%r

s(M) and /, ge£Π(M), we can prove these three formulas for any ele-
ment K of £Γ(M"). In a similar way, we can prove the other formulas given in (4. 2).

Lifts of differential forms. We now obtain the following formulas:

(4.3)

for ω, πsΛ*(M). Moreover we have the following formulas:

ω\X*\ yπ ...,Z")=«I, Y, ..;Z))°,

(4. 4) ω\X*\ F " , .-, Z I I) = (ω(Z, F, - , Z))1,

F», - , ^ ) = M I , F, •••,Z))"

for ojG l̂̂ ίM), X, Y,'~,Z being arbitrary element of <3\(M). The formulas (4.4)
are immediate consequences of (4. 2).

We obtain directly from (2. 2) and (3. 5)

(4. 5)

for /€£Γo(M). We next have the following formulas:

(4. 6) (dω)°=d(ω°), (dω)τ=d(ω)τ, (dω)u = d(ωu)

for ωe£Π(M). In fact, taking account of (3. 4), (3. 8) and (3. 9), we have

2(dω°)(Xu, YII)=Xuω0(Yu)-Yuω0(X1I)-ω°([Xu

f Yu])

= (Xω(Y)-Yω(X)-ω([X, F]))°

= 2((dω)(X, Y)y=2(dω)°(Xn, F π ) .
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Therefore, according to the Remark stated in §3, we have (dώ)0=d(ω°). By similar
devices, we have the other formulas given in (4. 6).

If we consider a differential form ω which has the local expression ω=fdxHΛ
~-Λdxιs, feζlKU) in (U,(xh)), we obtain

Λ'~ Λdxτs

and hence, taking account of (4. 3), (4. 5) and (4. 6),

=d(f1(dxlιΛ' 'Λdxιs)0+f%dxlίΛ 'Λdxts)1)

=-d{fdx^/\~ /\dx%s)ι=d(ωι)

by virtue of (3. 10). Therefore, taking account of the identity (ω-\-πy = ωι+πι for
ω, πeΛ*(M), we have (dω)1=d(ωI) for any element ω of Λ*(M). Similarly, we obtain
(dωf=d(ωQ) and (dω)u=d(ω11) for any element ω of Λ*(M). Thus we have

PROPOSITION 4. 1. The formulas

hold for any element ω of Λ*(M).

Lie derivatives with respect to lifts. Denoting by £χ the operator of Lie
derivation with respect to a vector field X, we have directly from (3. 4)

(4.7) \

XχuP=Uxf)°, £x^P = Uxf)\ Xzn fu = Uzf)11

for /€£Π(M), Xe£&M) and directly from (3. 9)

Xxo F°=0, Xxo ¥'=0, Xxo Yu={£x Y)\

(4.8) χzτ F°=0, Xxi Yl=j(Xx Y)*, Xzi Yn = Uχ Y)\

Xxu Y°=Uχ Y)\ Xzn Y'HXx Y)\ Xx" Yu = Uχ Y)u

for X, F€£Γo(M). We have now the following formulas:
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(4.9) Xχiω»=0, £χia>t=±-Uχωy, Xχi ωu=(

Xxnω^UxO))0, Xχnωτ=Uχωy, Xχnωu=(Xχω)u

for XG3Ί(M), co€3";(M). In fact, taking an arbitrary vector field F in M, we have

F I I)=0,

= \{{Xχ o>)( F))°= ~ Ux ω)\ F"),

(Yn)

by virtue of (3. 4), (3. 8), (4. 7) and (4. 8). Consequently, F being arbitrary, we find
Xxoω^O, Xχτωτ=(l/2)(χχωy, Xxn ωu=(Xx ω)u. Similarly, we obtain the other
formulas given in (4. 9). We have here

PROPOSITION 4. 2. For any element K of Sf(M) the formulas

Xx«K»=0,

hold, X being an arbitrary element of

Proof. These formulas have been already proved in (4.7), (4.8) and (4. 9)
respectively for K belonging to £ΓS(M), 3Ί(M) or £Γ?(M). Then we assume that
these formulas are established for K belonging to £Π(M), where r^kp, s^q. Taking
an arbitrary element S of "2ι

m(M) and an element T of 3q-h(M), we have

=χχ« (s <8> r»)=(χχ» s°) (x)

=χχi (s 1 ® r»+s°(g) r 1 )

= U χ i S I ) ( g ) Γ » + S I ® U χ i

ί (8) (J7x Γ)°)

Γ))°=
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by virtue of (4. 1). Similarly, we can prove the other formulas given in Proposition
4. 2 for K=S(g)T. Consequently, we have proved Proposition 4. 2 as consequences
of Xz(S+T)=XχS+Xχ T for S, T€ζTr

s(M).
Linear mappings a and β. We shall define a linear mapping a: £Γί(M)

-+£Π-i(Γ2(M)) (5^1). Let Tbe an element of 2T(M). Then Γ " is a correspondence

Γ": (I i , . . . , Xe)

y?i, ~ yXs being arbitrary elements of EΓίC^CM)). If we consider a correspondence
αϊ 1 such that

(4.10) aT: (1 2 , »., Xt)^Tu(A, I 2 , . - , is)€2Όr(T2(M)),

X2,'-,XS being arbitrary elements of £l(T2(M)) and 4̂ the vector field defined by
(2. 5). Then aT is an element of £Γί-i(T2(M)). Then the correspondence α: T->αΓ
determines a linear mapping a: ζ[r

s(M)—>ζlrs-i(T2(M)). Thus we have from (4. 10)

aω=ωu(A) for
(4. 11)

α J / = / τ for /€£ΓJ(M).

When 71 has the form Γ=ω(g)S, ω€£ΓJ(M), SG£Γ(M), taking account of (4. 1), we
find

(4.12) aT-=(a«>)S° (T^

because of the formulas

(4.13) ω°(A)=0, ωτ(A)=0, ωu(A)=aω

for ω€£Γ?(M), which are direct consequences of (2. 5) and (3. 5).

We shall next define a linear mapping β: £Π(M)^£Π-i(Γ2(M)) (s^l). Let T
be an element of £ΓΪ(M). If we consider a correspondence

(4.14) βT: ( I 2 , . - , X,)-+T*(B, X2, - ,

X2, ~;XS being arbitrary elements of 2Ί(T2(M)) and .δ the vector field defined by
(2. 5), then βT is an element of 2Ί-i(Γ2(M)). Thus the correspondence jS: J->/3T
defines a linear mapping /3: SΊCMJ-^EΓΪ-iC^CM)). We have now
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βω=ωu(B) for
(4. 15)

β(df)=fu for /€£Γί(M).

When T has the form Γ=ω(g)S, ω€£Π(M), Ste£Γ(M), taking account of (4.1), we
obtain

(4. 16) βT=(βω)S°+(aω)Sτ

by virtue of the formulas

(4.17) ω°(B) = 0, ω\B)=\aω, ωΊΊ(B) = βω
Li

for α>€£Γi(M), which are direct consequences of (2. 5) and (3. 5).

§ 5. Local expressions.

In this section, we would like to find local expressions of the lifts of tensor
fields in M. By components of a tensor field T in M we always mean those of T
in coordinate neighborhood (U,(xh)) of M and by components of a tensor field T
in T2(M) those of T with respect to the induced coordinates (ξA) = (xh,yh,zh) in
π2~

1(U). The local expression of a function /, a vector field X and a 1-form ω
have been already given by (2. 2), (3. 1) and (3. 5) respectively.

Tensor fields of type (1, 1). Let F be an element of £Γ1(M), which is expressed
by

in (U,xh)). Taking the O-th lift, we find

by virtue of (3.10) and (4.1). Taking the 1st lift, we have

by virtue of (3.10) and (4.1). Taking the 2nd lift, we obtain
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by virtue of (3.10) and (4.1). Therefore we see that the lifts F", F1 and Fu of
F have respectively the components of the form

(5.1)

Fu.

where Fih denote the components of F. We have from (5.1)

PROPOSITION 5.1. A tensor field F of type (1,1) is of rank r, if and only if
F° is of rank r, if and only if F1 is of rank 2r, or, if and only if Fu is of rank 3r.

Let / be the identity tensor field of type (1, 1). Then, substituting Fih=δ% in
(5.1), we find

(5.2) 7°:

0

0

i

0

0

0

0

0

0

71:

0

\ i

0

0

0

7

7

0

0

0

7

0

0

0

7

Therefore the 2nd lift Iu of the identity tensor field I of type (1, 1) is the identity
tensor field of type (1, 1) in T2(M). We have from (3.1) and (5. 2)

(5.3)
PX°=0,

_1_
2

PXU=X°,

PXU=XU.

for
Tensor fields of type (0,2). Let g be an element of ζT0

2(M). Then we can
easily verify that its lifts g°, gι and g11 have respectively components of the form
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(5.4)

2ysdsgjί 0

0 0

where gji denote the components of g.
Given an element h of ζΓ°2(T2(M)), we denote by

h(dξ,dξ)=hcBdξcdξB

the quadratic differential form corresponding to h, if h is symmetric, HOB being the
components of h. Let g be a pseudo-Riemannian metric in M. Then, taking
account of (5. 4), we obtain

(5.5) g\dξydξ)=2gjίdxjδy\

gu(dξ, dξ)=

the differential forms δyh and δzh being defined respectively by

δyh=dyh+\ .\ysdx\

(5.6)

. . [ denote the ChristoffeΓs symbols constructed from g^ and vh are defined by

h

where

We have, from (5. 5),

PROPOSITION 5. 2. Let g be a pseudo-Riemannian metric in M (with r positive
and n—r negative signs). Then g11 is a pseudo-Riemannian metric in T2(M) (with
n-\-r negative and 2n—r positive signs).

Let φ be a 2-form of the maximum rank in M. Then <pu is also a 2-form of
the maximum rank in T2(M) because of (5. 4). When φ=dη, η being a 1-form,
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then φu=d(ηu) as an immediate consequence of Proposition 4. 1. Thus we have

PROPOSITION 5. 3. // φ is a 2-form defining an (almost) symplectic structure
in M, then φ11 defines an (almost) symplectic structure in T2(M).

Tensor fields of type (2, 0). Let G be a tensor field of type (2, 0) in M. Then
we can easily verify that its lifts G°, G1 and G1 have respectively components of
the form

(5.7)

G11:

0

0

0

0

0

0

0

0 Λ

0 G1:

0

0
o \

1_
T

where Gjί denote the components of G.
Tensor fields aT and βT. We shall give the local expressions of aT and βT

defined in § 4. Taking account of (2. 5) and (3. 5), we have from (4. 11) and (4. 15)

(5.8) for

with respect to the induced coordinates (xh,yh,zh) in π2~
1(U), where ωt denote the

components of ω. Especially, we have from (5. 8)

(5.9) a(dxh) = yh, β(dxh) = zh

in π2-\U).
Let T be an element of £Π(M) (s^l) and assume that T has the expression

(x) dx%* (x)T—T f

in (U,(xh)). Then, taking account of (4. 12), we have

aT=a(dxH
d

dxhr

d

by virtue of (3.10), since a(T+S)=aT+aS for T,S€ζrr

s(M). Thus, according to

(5. 9), we obtain

(5.10) aT= * (x) (x)dxι*<g)
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with respect to the induced coordinates (ξA) in π2~\U). Especially, for any element
F of ζΓ[(M), aT has components of the form

(5. 11) aF:

0

0

y*Fih

Fih denoting the components of F. For an element S of £Π(M), aS has components
of the form

(5.12)

where Sjih denote the components of S.
Let F be an element of 3\(M) with local expression

Then, taking account of (4.16), we have

dzh

by virtue of (3.10) and (5. 9), since β(T+S)=βT+βSίor Γ,Se£Π(M). This means
that βF has components of the form

(5.13) βF:

for any element F€£Γί(M), where Fih denote the components of F.
By similar devices, we see that, for an element S of 3Ί(M), βS has components

of the form
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0 0

ykSu

h 0(5.14) βS:

where Sjih denote the components of S.
If we take account of (3. 1) and (5. 8), we obtain the following formulas:

X°(aω) = 0, X\βω) = (ω(X))\

(5. 15) X\aω)= ±- (ω(X))°, Xι{βω) = aUχ ω) + (a(dω))(X),

for ω£ζrϊ(M) and

§ 6. Lifts of tensor fields of type (1,1).

Formulas. Let F be an element of 3\(M). Then, taking account of (3.1)
and (5. 1), we find easily the following

F°X°=0, F0Xτ=0

(6.1) FτX°=0, FιXι=\

FUX°=(FX)°, FnXτ = (FX)τ,

for FG £Γi(M), X being an arbitrary element of £TJ(M).
For any two elements F and G of £Π(M), we defined an element FG of 2Ί(M)

by (FG)X=F(GX), X being an arbitrary element of £Π(M). Then we find the
following formulas:

(6.2) GTF°=0, G ^ ^ ^ - ί G F ) 0 , G I F I I =(GF) 1 ,

GllF°=(GF)°, GUF1=(GF)\ GUFU = (GF)U

for G, F€ £Π(Λ0 In fact, taking account of (6. 1), we have

(G°F°)Xu=G\F0Xu)=0f

(GuFu)Xu=Gu(FuXu)=Gu(FX)u=(G(FX))u = (

for any element X of ζtt(M). Thus we have Gψ°=(GF)0, GIFΓ-(1/2)(GF)° and



DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES 341

GllFn=(GF)u. The other formulas given in (6. 2) are proved in a similar way.
We see from (6. 2) that, for any element F of £Γί(M), F°, Fι and Fu are

commutative with each other and the identities

(6.3) (F°)2=0, ( F 1 ) 3 ^ for F€£Γί(M)

hold.
Let P(f) be a polynomial of t and Fe EΓ1(M). Then, taking account of (6. 2),

we obtain

(6.4) (P(F))U=P(FU)

and hence, for example,

(6.5) ( F 2 + / ) Π = ( F Π ) 2 + / , (Fs+F)n=(Fuy+Fu

for any element F of ζΓ\(M).
A tensor field F of type (1, 1) is called an almost complex structure if F 2 + / = 0 .

A tensor field F is called an f-structure of rank r if F 3 + F = 0 and F is of rank r
everywhere. Thus, taking account of Proposition 5. 1, we have from (6. 5)

PROPOSITION 6.1. Let F be an element of £Π(M). Then F π is an almost
complex structure in T2(M) if and only if F is so in M. F π is an f-structure oj
rank 3r in T2(M) if and only if F is an f-structure of rank r in M.

Contraction in Lifts. Let F be an element of £l(M). We denote by c(F) the
element of ζΓ°0(M) obtained by contraction, i.e., c(F)=Fi

ι if F has components FΛ
Then we have from (5.1)

(6.6)

for F€£Π(M). For example, we have

(6. 7) c(

X and ω being respectively elements of £ΓJ(M) and ζΓl(M).
Torsion tensors and Nijenhuis tensors. Let S be an element of £Π(M) such

that S=Z®ω®π, ZsSKM), ωyπQ^\{M). Then, taking account of (3. 8) and (4. 1),
we have the following formulas:

( , YU)=(S(X, F))°, S\XU, Yn)=(S(X, F))1,
(6.8)

SU(XU, YU)=(S(X, Y))u

for S€ £Π(Λf), X and F being arbitrary elements of 3\(M).
Let there be given two elements G and F of £Γ!(M). Then their torsion tensor

NF,G is by definition a tensor field of type (1, 2) given by

NFtβ(X, Y)=[FX,GY] + [GX,FY]+FG[X, Y]+GF[X, Y]
(6.9)

-F[X9GF]-F[GX, Y]-G[X,FY]-G[FX} F],
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X and Y being arbitrary elements of £TJ(M). Thus, taking account of (3. 9), (6.1)
and (6. 2), we obtain

(6. 10)

X, Y))U,

X and Y being arbitrary elements of SI&M). Thus, we have from (6. 10)

(6. 11) i\frolGi=O,

Npo, GU = (iV>, G)°, JVjfir, Gil = (Afc, β ) Π

for F,G€2*ί(M) by virtue of (6. 8).
The Nijenhuis tensor NF of an element Fof 2Ί(M) is defined by NF=(1/2)NF,F-

Thus we have from (6.11)

PROPOSITION 6. 2. For any element F of £Γ1(M)

1

hold.

PROPOSITION 6. 3. Let F be an almost complex structure in M. Then the
almost complex structure Fu is a complex structure in T2(M) if and only if F is
so in M.

§7. Lifts of affine connections.

Lifts of affine connections. Let V be an afϊine connection in M, which has
coefficients Γj\ in (U,(xh)). We now introduce in π2~

1(U) an affine connection Fu

having coefficients ΓC

AB with respect to the induced coordinates (ξA)=(xh,yh,zh)
such that

p θ ° 0 0\

(7.1) ( Γ Λ ) = 0 0 0

\ 0 0 0/

for each fixed index h,



DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES 343

(7. 2)

for each fixed /z and

(7.3)

(f Λύ = 0

0

(ΓΛ)

0

for each fixed index Λ, where (Γjhi)°, (Γ/\y and (Γj

h

ι)
11 denote respectively the

O-th, the 1st and the 2nd lifts of the functions Γj\ given in (U,(xh)). We note
here that the transformation law of coefficients Γj\ of an affine connection is
given by

(7.4)
dxh> dx1

dxh dxv

in Uf) U'. Thus, taking account of (1. 5), (1. 6), (7. 1), (7. 2) and (7. 3), we know
by virtue of (7. 4) that the affine connection ί711 introduced above in each π2~\U)
determines globally in T2(M) an affine connection, which is denoted also by Fn.
The affine connection Fu constructed thus in T2(M) is called the lift of the afβne
connection V given in M.

We obtain here the following formulas:

(7. 5)

F* F=0,

1^ Y°=0,

. Yτ=o,

_ τ 1

for X, F€£ΓJ(Λf). In fact, taking account of (3.1), (7.1), (7. 2) and (7. 3), we see
that Γ^II F 1 1 has components of the form

=XΨj Y\

= X* \^j- (ysds Y
h)+(ysdsΓj\) Γ* + Γj\(ysds Y*)

+ Γj\

y- (ysds Y
h) + Γj\

j Yh\



344 KENTARO YANO AND SHIGERU ISHIHARA

dA F')]

j\ F*))

j Yh).

Therefore we find F y π YU=(FX F ) π . Similarly, we obtain the other formulas
given in (7. 5).

Comparing (7. 5) with (4. 2) or (6. 1), we find easily the formulas

(7.6) FUY°=(FY)°, FUYI=(FY)\

for
We also obtain the following formulas:

(7. 7) Fχl ω°=0, Γ»χ ω 1 ^ -ί(Γχα))0, Fχl ω" =

Fχll ω« = {Fxω)\ FχI1 ω* = {Fxω)\ Fχll ώ" =

for X€3"o(M), ωc^r CM). In fact, taking an arbitrary element Fof £l(M), we have

by virtue of (3. 8) and (7. 5). Thus we have Fι

χτi ωlι=(Fxoj)u, because F is arbitrary.
The other formulas given in (7. 7) are proved in a similar way.

We have from (7. 7) the formulas

(7.8) FIIo)°=(Fα))0,

for <ϋ€£Γ;(M). In fact, we have from (4. 2) and (7. 7)

for any element X of £Γί(M). Thus we have Fπω I I=(Fω) 1 1. Similarly, we can
prove the other formulas given in (7. 8).
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We have here from (7. 6) and (7. 8)

PROPOSITION 7.1. For any element K of <3(M)

F1 1 K*=(PK)», F π Kι = (PK)\ F π Ku = (FK)n

hold.

We have directly from Proposition 7.1 the formulas

(7.9) F£ K°=0,

for XeEΓJCM), Ke£r

s(M) by virtue of (4. 2).
7%β Curvature and the torsion tensors. Denoting by T the torsion tensor of

an afϊine connection F in M, we have by definition

T(X, Y)=(PXY-VYX)-[X, Y] for X,

Taking the second lift, we obtain

(T(X, F))II = (FyII γπ-P?nχn)-[χπ, Y"]

=T(XU, Yu)

by virtue of Proposition 7. 1 and (3. 9), where T denotes the torsion tensor of F π .
This equation implies, together with (6. 8), Tn(Xn, Yn)=f(Xn, Yn). Thus, we
have Tn=T, since X and Y are arbitrary. Therefore we have

PROPOSITION 7. 2. The torsion tensor of the lift Pn of an afflne connection V
given in M coincides with the 2nd lift Tu of the torsion tensor T of V.

The curvature tensor R of an afϊine connection F in M is a tensor field of
type (1, 3) such that, for any two elements X and Y of £Γί(M), R(X, Y) is an
element of %\(M) satisfying the condition

R(X, Y)Z={VxVYZ-VγVxZ)-Vίx,YΊZ

fpr any element Z of £Π(M). Taking the 2nd lift, we find

{R(X, Y)ZY1 = (P^n Pτ\τ Z*-P% FχlI Z")-PlzlItTlli Z"

=R(XU, Yn)Zu

by virtue of Proposition 7. 1 and (3. 9), where R denotes the curvature tensor of
F π . On the other hand, we can verify (R(X, Y)Z)τi = Ru(Xu, YU)ZU by virtue of
Pzn KU = (PZK)U given in (4. 2). Therefore we find R(XU, YU)ZU = RU(XU, YU)ZU,
which implies R=RU since X, Y and Z are arbitrarily taken. Thus we have
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PROPOSITION 7. 3. The curvature tensor of the lift V11 of an affine connection
V given in M coincides with the 2nd lift Ru of the curvature tensor R of V.

As a corollary to Propositions 7.1 and 7. 3, we have

PROPOSITION 7. 4. Let T and R be respectively the torsion and the curvature
tensors of an affine connection V given in M. According as T=0, FT=0, R=0 or
FR=0, we have Tu=0, VιιTιι=0, Rn=Q or PURU=O. In particular, T2(M) is
locally symmetric with respect to the lift Fu of V if and only if M is so with
respect to V.

Let Q be a pseudo-Riemannian metric in M and V the Riemannian connection
determined by g. Then we have from Proposition 7. 1

On the other hand, since V is torsionless, so is Vu by virtue of Proposition 7. 2.
Consequently, Pu should coincide with the Riemannian connection determined by
g11. Thus we have

PROPOSITION 7. 5. Let g be a pseudo-Riemannian metric in M and V its Rieman-
nian connection. Then the lift Vu of V is the Riemannian connection determined by
the 2nd lift g11 of g.

We have from Propositions 7. 4 and 7. 5

PROPOSITIONS 7. 6. Let g be a pseudo-Riemannian metric in M. Then Ί\(M)
is locally symmetric with respect to g11 if and only if M is so with respect to g.

Let P be an element of £Π(M). Then we have from (4. 2)

γxnΪYu pπ=(

in which both sides belong to
If we take account of (6. 6), we find

c(ϊxurγu Pu)=

which implies

PROPOSITION 7. 7. Let g be a pseudo-Riemannian metric in M. Then the Ricci
tensor K of g11 coincides with 3K°, where K denotes the Ricci tensor of g.

If g11 is an Einstein metric in T2(M), we have K=agu with a constant a, K
being the Ricci tensor of gu. However, we have from proposition 7. 7 K=3K°.
Thus we have agu=3K°, which, together with (5. 4), implies a=0. Therefore we
have

PROPOSITION 7. 8. Let g be a pseudo-Riemannian metric in M. If g11 is an
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Einstein metric in T2(M), then g11 is of zero Ricci tensor. If g11 is of constant
curvature, then g11 is locally flat.

Let KCB denote the components of the Ricci tensor K=3K° of g11 and GGB

the contravariant components of g11. Then, taking account of (5. 4) and (5. 7), we
have k = KCBGCB=3(Kjigjί)°, where Kji denote the components of the Ricci tensor
of g and gjί the contravariant components of g. Thus we have

PROPOSITION 7. 9. Let g be a pseudo-Riemannian metric in M. Let k and k
be the curvature scalars of g and g11 respectively. Then k = 3k°. If g is of con-
stant curvature scalar, so is g11.

A pseudo-Riemannian metric g is of constant curvature k in M if

R(X, Y)Z= k(g(Z, Y)X- g(Z, X) Y) for X, Fe £Γ ί(M)

with a constant k, R denoting the curvature tensor of g. Taking the 2nd lift,
we have

RU(XU, Yu)Zn=(R(X, Y)Z)u=(k(g(Z, Y)X-g(Z,X)Y))u

= k[gll(Zu, Yu)X°+2gI(Zu, Yu)Xι+g%Zu, Yn)Xu

-gιι(Zι\ Xu) Y0-2g1(Zn

f X11) Yι-g\Zι\ Xu) Yn].

If we take account of PXιι=X\ IIXU=X1 given in (5. 3), we have from the
equation above

Rι\Xι\ YlI)Zu

(7. 10) =k[gu(Zu, Yu)I0Xn+2g\Zn, Yn)IIXn+g%ZI\ Yn)Xn

-gu(Zn, Xιι)PYu-2g\Zι\ Xu)I1Yu-g\Z1\ Xu)Yn]

which gives the curvature tensor Rn of g11 in T2(M) when g is of constant curva-
ture in M.

§ 8. Lifts of infinitesimal transformations.

Let g be a pseudo-Riemannian metric in M. Then we have from Proposition
4.2

(8.1) Xxo gιl=Uχ g)°, Xzi ΰu=Uχ g)\ Xxu g"=u* ώ11

for any element X of £Π(M). If X is a Killing vector field with respect to g, i.e.,
if Xχg=0, then X°, X1 and X 1 1 are so with respect to g11. Thus, taking account
of (5. 2), we have

PROPOSITION 8.1. Let g be a pseudo-Riemannian metric in M. If X is a



348 KENTARO YANO AND SHIGERU ISHIHARA

Killing vector field with respect to g in M, then X°, X1, Xu are all Killing vector
fields with respect to the pseudo-Riemannian metric g11 in T2(M).

Similarly, taking account of Proposition 6.1, we have

PROPOSITION 8. 2. If X is an (almost) analytic vector field in M with respect
to an (almost) complex structure F, i.e., if Xx F=0, then X°,XI and Xu are so
also in T2(M) with respect to the (almost) complex structure Fu.

Let X be a conformal Killing vector field in M with respect to a pseudo-
Riemannian metric g. Then we have Xχg=ag, a£ζΓ°0(M). Thus, taking account
of (8. 1), we obtain

which implies

PROPOSITION 8. 3. Let X be a conformal Killing vector field in M with respect
to a pseudo-Riemannian metric g. Then X11 is conformal in T2(M) with respect to
g11 if and only if X is homothetic, i.e., if and only if Xxg=ag holds with a con-
stant a. If this is the case, Xu is necessarily homothetic.

Let V be an affine connection in M. Then, for any element X of £ΓJ(7kf), the
Lie derivative of V with respect to X is an element Xx V of ζΓ&M) defined by

(8. 2) (Xx P)( Y, Z)=Xχ (VYZ)-XY (P' χZ)-Xιx,γ,Z,

X, Y and Z belonging to 3Ί(M). Thus, taking account of (3.9), (8.2) and Proposi-
tion 4. 2, we obtain

(Xχiι F»)(y» Z")=Xxiι (FJ?Π Z^-FJk (Xxu ZII)-FΓ

IiII,r

= (Xχ (VγZ)-Vγ (XχZ)-PίXtY,Zy

= ((Xχ F)(F, Z))1I = Ux nu(Yn, Z")

for any element Y and Z of £ΓJ(M). Thus we find

(8.2)

Similarly, we can prove the other formulas given in Proposition 8. 4. Thus we
have

PROPOSITION 8. 4. Let V be an affine connection in M. Then, for any element
X of ζΓl(M), the formulas

hold in T2(M).
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A vector field X is called an infinitesimal affine transformation with respect
to an aίRne connection V if XχP=0. As a consequence of Proposition 8.4, we
have

PROPOSITION 8. 5. Let V be an affine connection in M. If X is an in-
finitesimal affine transformation in M with respect to F, then X°, X1 and X11 are
so also in T2(M) with respect to F π .

A vector field X in M is called an infinitesimal projective transformation with
respect to an aίϊine connection V if

η being a certain element of £Γ?(M). Taking the 2nd lift, we have

Uχiι Pn)(Yu, Z^) = rf\Z^)Y«+^\Z^)Y^r?(Z^)Y™

+V

U( Yu)Z°+2η1( Yϊl)Zι+η\ Yn)Zu

by virtue of Propositton 8. 4. Thus we have

PROPOSITION 8. 6. Let X be an infinitesimal projective transformation in M
with respect to an affine connection V. Then Xu is an infinitesimal projective
transformation with respect to Fu if and onlf if X is affine. If this is the case,
X11 is necessarily affine with respect to Pn.

Let X be an element of &&M) and exp (tX) denote a local 1-parameter group
of transformations of M generated by X. Then, according to (1. 10) and (3. 1), X 1 1

generates a local 1-parameter group of T2(M) and

holds. Hence we have

PROPOSITION 8. 7. // a vector field X in M is complete in the sense that it
generates a global 1-parameter group of transformations of M, then Xu is also
complete in T2(M).

REMARK. From the local expressions (3.1) of X° and X1, we see immediately
that X° and X1 are complete in T2(M) whether X is complete in M or not.

Taking account of the Remark stated above, we have, from Propositions 8. 1
and 8. 7,

PROPOSITION 8. 8. // M is homogeneous pseudo-Riemannian manifold with
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metric g, so is T2{M) with metric g11.

Similarly, we have from Proposition 8. 2

PROPOSITION 8. 9. / / M is homogeneous {almost) complex manifold with {almost)
complex structure F, so is T2{M) with {almost) complex structure Fu.

Similarly, we have from Proposition 8. 5

PROPOSITION 8.10. // a group G of affine transformations of M with respect
to an affine connection F is transitive in M, the group G* of affine transformations
of T2{M) with respect to Fu is transitive in T2{M), where G* denotes the group of
transformations generated by vector fields X°, X1 and Xu, X in M being an
arbitrary element belonging to the Lie algebra of vector fields generating G.

Let M be a pseudo-Riemannian (resp. affine) symmetric space with metric g
(resp. connection F). If we take an arbitrary point P in M, then there exists in M
a symmetry SP with center P, that is to say, SF is in M an isometry of g (resp.
an affine transformation of V) such that SP(P)=P, {SP)

2=identity. We note here
that M is identified with the zero-cross section M of Γ2(M), which is defined by
equations yh=0, zh=0 with respect to the induced coordinates {ξA) = {xh,yh

fz
h) in

each π2-\U). For any point P of Λfwe denote by P the point of M corresponding
to P. Then the transformation (SP)* induced from SP (Cf. § 1) is a symmetry with
center P with respect to g11 (resp. Fu). On the other hand, T2{M) is homogeneous
with respect to g11 (resp. Fu), because M is so with respect to g (resp. F). There-
fore, taking an arbitrary point σ in T2{M), we know that there exists an isometry
(resp. an affine transformation) φ such that φ(P)=σ. Hence, the transformation
^o(SP)*o0~1 is a symmetry with center σ, i.e., T2{M) is symmetric with respect to
gJJ (resp. Fu). Thus we have

PROPOSITION 8. 11. If M is symmetric with respect to a pseudo-Riemannian
metric g {resp, an affine connection F), so is T2{M) with respect to g11 {resp. Fu)

§ 9. Geodesies.

Let F be a torsionless affine connection in M. We denote by Γj\ the coef-
ficients of F in a coordinate neighborhood {U,{xh)) of M, where Γj\ = Γτ

hj. Let C
be a curve in T2{M) and suppose that C is expressed locally by equations

ξΛ=ξΛ(f), i.e.,

(9.1) xh=x\f), yh=yh(t), zh=zh{t)

with respect to the induced coordinates (ξA) = (xh,yh,zh) in πz'KU)f t being a para-
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meter. We now put along Cf]π2'~
1(U)

(9.2) vh=zh+y3yiΓj\

and

P\nιh rloifo ri Ύ>3 §2/l/^ d / ()ΊJ \

yι> ^ = - ^ h r H - r ,dt

(9.3)
δvh dv^ dχ3_ % <5V _ d /δv^_\

+ j % dt V' ΊF~~dt\ dt )Λ j ι

dx3

dt

dx3

δlf
dt

δv%

^ Γ ~ dt + j % dt V' ΊF~dt\ dt )Λ j ι dt dt '

where xh(t), yh(t) and z\t) are the functions appearing in (9.1). Denoting by C
the projection π2(C) of C in M, we see that the curve C is expressed as xh=xh(t)
in (U,(xh)), xh(t) being the functions appearing in (9. 1). Then the quantities

δyi dυh δ2yh δ2vh

yh vh

"' ' dt ' dt ' dt2' dt2

defined above are respectively global vector fields along C.
A curve C in T2(M) is a geodesic with respect to F π , t being an affine para-

meter, if and only if its local expression (9. 1) satisfies the differential equations

dt2

d2xh

dt2

(9.4)

dt

dt

dξ°
dt

dξc

dt

dt

dξB

dt

dξB

dt2 ' °" dt dt '

where Γ Λ , ΓCKB and ΓJ*Έ are the coefficients of Fn given by (7. 1), (7. 2) and
(7. 3). The equations (9. 4) are equivalent to the equations

(9. 5) A£ " " *

(9 6) ^ + « » ™ w
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Making use of (9. 2) and (9. 3), we see that the system of differential equations
(9. 5), (9. 6) and (9. 7) is equivalent to the the system of differential equations

9 dV , „ „ dx3 dx%

dt dt

kdx3 dx' h kdx> δy*

df ' "K3% " dt dt ' κn υ dt dt
(9.10)

yk-r,j?«.»w-^-^- =0,

where Rujih denote the components of the curvature tensor of V. That is to
say, the system of differential equations (9. 8), (9. 9) and (9. 10) determines in T2(M)
geodesies with respect to the afrine connection Fu. Thus we have

PROPOSITION 9.1. Let C be a geodesic in T2(M) with respect to Fu, where V
is a torsionless ajfίne connection in M, and suppose that C has the local expression
(9.1). Then the projection C=π2(C) is a geodesic in M with respect to V. The
vector field yh(t) defined along C is a facobi field with respect to F, The vector
field vh(t) defined by (9. 2) along C satisfies the differential equation (9. 10). The
affine parameter of C induces naturally an affine parameter along C.

Conversely, if there exists in M a geodesic with respect to F, C having the
local expression xh—χ\t) with affine parameter t, if there is given a facobi vector
field yh(t) along C, and, if there is given a vector field vh(t) satisfying along C the
differential equation (9.10), then the curve C defined in T2(M) by the local expression
xh=x\t), yh=yh(t), zh=vh(t)—yί(f)yι(t)Γj

hί(xs(t)) is a geodesic in T2(M) with respect
to Fu.

Taking account of (9. 8), (9. 9) and (9. 10) we see easily that, if there is given
in M a geodesic C with respect to a torsionless affine connection F, C having the
local expression xh = xh(t)f and a facobi field vh(t) along C, then the curve C defined
in T2(M) by the local expression xh=xh(t), yh=0, zh=vh(t) is a geodesic with re-
spect to Fu,
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We say that M is complete with respect to an afϊine connection (resp. a pseudo-

Riemannian metric g) if along any geodesic any affine parameter takes an arbitrarily

given real value. Then, taking account of (9. 8), (9. 9) and (9. 10), we have

PROPOSITION 9. 2. / / M is complete with respect to a torsionless affine con-

nection F {resp. a pseudo-Riemannian metric g), so is T2(M) with respect to Fu

(resp. g11).

According to [15], we have from (9. 8), (9. 9) and (9. 10)

PROPOSITION 9. 3. Let C be a geodesic in T2(M) with respect to Fu, V being a

torsionless affine connection in M. Then the projection πi2(C) of C in the tangent

bundle 7\(M) is also a geodesic with respect to Fc, where Fc is the complete lift of

the affine connection F in the sense of [15].
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