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PSEUDO-UMBILICAL SUBMANIFOLDS WITH
M-INDEX =1 IN EUCLIDEAN SPACES

By ToMINOSUKE OTSUKI

1. Pseudo-umbilical submanifolds with M-index 0.

In this note, the author will use the notations in Otsuki [5]. Let M” be an
n-dimensional manifold immersed in the (#-N)-dimensional Euclidean space E™*¥
by a mapping ¢: M"—E™. D We denote this simply by M"e E™*¥. Let w;, w;,
= —Wjiy, W1a=— W1y Dap=—Wpay 1, j=1, 2, -++, ; @, f=n-+1, -, n+ N, are the differential
1-forms associated with the immersion ¢: M"—E™¥ which are defined on B of all
orthonormal frames (p, e, -+, enyx) such that pe M™”, ey, -+, en€ TpM™. Asis well known,
i, Can be written as

(1 1) Wiag= Z A,njwj, Am]=Aaji.
J

Let N, be the normal tangent space to M"™ at peM™ TFor any normal unit
vector e=),&.e,€N,, let

(1.2 De(0, )= 2] Awjoin,
az,]

be the second fundamental form corresponding to e. Let m: N,—R be the mapping
as follows: For any X=7} .£.c.€N,,

1
1.3 mX)=—~ aAuii-

@,

Let #~N, be the kernel of 7 at p which is called the minimal normal space at p.
Let ki M™—R be the first curvature of M™ as an immersed submanifold in E™"¥.
At p such that k(p)=0, let é(p) be the mean curvature normal unit vector, that is

14 2 Aaiea=ku(P)2(D)  ku(p)>0.

At the point p, we make use of only the frames b=(p, ei, -+-, en,x) such that
en1=@(p). Then, we have
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1) We consider Mn as a Riemannian manifold with the metric induced from En»+N

by ¢.
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1.5) Mi(en+1)=Fki(D), M(eni2) ="+ =M (en, n)=0.
If we have
(1. 6) Diepy(@, 0)=ki(P) 3] wiws,

that is, in matrix form,
(1. 6/) ‘AMz]:kl(p)aiJ; 2

we call M™ is pseudo-umbilical at p. If M™ is pseudo-umbulical at each point of
M, the immersion ¢: M"—E"¥ is called pseudo-umbilical
If M™ is umbilical at p, then we have by definition

Do(w, w)=A(e) ), wiw;

for any normal unit vector eeN,, where A(e¢) is a real number depending on e. The
above condition can be written as, in matrix form,

Auiy=2e)dsy, a=n+1, -, n.

Hence we have A(e)=i(e). For any e€”~N,, we get @(w, »)=0, and so M-index
at p is equal to 0. Accordingly, if M™ is not totally geodesic at p, then A(&(p))=0
and so M™ is pseudo-umbilical. The converse is true. We have

LemMA 1. M™ is umbilical and not totally geodesic at p, if and only if M" is
pseudo-umbilical and of M-index 0 at p.

Connecting with lemma and Theorem in [5], we get easily the following
THEOREM 1. If M"™ is an immersed submanifold in E™*Y which is pseudo-

umbilical and of M-index O at every point, then M™ is an n-dimensional sphere or
its subdomain in a linear subspace E™'.

Proof. By the assumption, the index of relative nullity is identically 0. By
Theorem 3 in [5], there exists an (z-+1)-dimensional linear subspace £7"! such that
Mre E™''. Accordingly, M™ is hypersurface in E""* which is umbilical at every
point. Hence M™ is a hypersphere or its subdomain in E™".

2. Pseudo-umbilical submanifolds with M-index 1.

In this section, we suppose that M™ is an n-dimensional manifold immersed in
En¥ which is pseudo-umbilical and of M-index 1 at every point. Then, the first
curvature ki M"—R is not zero everywhere. Since M-index is constant 1, we
take only such frame b=(p, e1, -**, en.nx)€B that

2) In the following we use the notation z+1 i place of (n+1) for sufixes.
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@21 eni1=€(P),
Ani1=Ans1i9)=k:1($)0:),
(2- 2’) An+2 = (A_n_-i—Z?j) x 0)

Ap=(Aﬁij)=0, ‘B=ﬂ+3, "ty n+M

and denote the submanifold of B composed of these frames by B,. On B, from
wis=0 (>n+2) and the structure equations of the immersion ¢: M»—E**¥, we get

r>n+2

0=dwy= 2, 0y N0jp+ Oins1/\Oni1pFOmia NOnszgt+ 35 0Ny,
J
that is
2.3) k10 AN @p i1+ @in g2 A\ O 125=0.
Now, we take a frame (p, ey, -+, en) of M™ such that
2.4 Wini2=Riw;, i=1, -, n
{fi, -+, ha} are the eigen values of the second fundamental form @, ,, (0, ). Since
ffi(en,2)=0 and A,.2x0, we have
2.5 hthet e+ ha=0, (A, -+, An) (0, -+, 0).

It is clear that the number of distinct eigen values of @u(w, ®), €Ny, €-,.20, is
the same. We call such ¢ a generic normal unit vector. Making use of this frame

(2. 3) becomes
w;/\ (kan_uﬁ+}liwn_mﬂ) =0,

hence we can write the second factor as
2. 4) k10n 15+ Ri0n, 25= piw;
for fixed B (>n+2). Accordingly, we have

(i —h)0n, 2= piwi— p;w;.

If the number of distinct eigen values out of {#,, -+, 2.} is not less than 3, then we
have easily

(2. 5) a)_qy._zg=0 and a)_wﬁ=0.
If the number of distinct eigen values out of {4, ---, &,} is equal to 2, we may put
h1:h2:"':]lv0; hv0+1="':hn, 1§Uo§n_1.

If 1<yy<n—1, then we get also (2. 5) from (2. 4). If vo=n—1 and #=3, then (2. 4)
becomes
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klwﬂﬂ ‘l‘hlwl,,i_z,g: 0,
klwlzilﬂ—l_hnwﬁﬂﬁ = PnWn,

hence we may put

(1)"_4_1,3=/2p(0n and wﬂ,;: — —I—Xp(t)n.
1

Furthermore, we can choose e, -+, ¢n.n SO that

Anpa=++=An,x=0,
that is
ky

wn+ln+3:'zwn, [ +2n&3:‘—"—‘2wn,

—_— hl
(!)_w[s:(l)_ﬁzﬁ:o (‘8:”+4, ttey n—|—4), Ax0.

(2. 6)

The case v,=1 is analogous to the case vy=n—1. Making use of these facts, we
get the following

THEOREM 2. Let M"™(n=3) be an n-dimensional submanifold immersed in E™*N
which is pseudo-umbilical and of M-index 1 at every point. Then the number of
eigen values of the second fundamenial form @ w, w) for @ generic normal wunit
vector e is not less than 2. Furthermore,

1) if this number is not less than 3 or if it is equal to 2 and the dimensions
of the eigen spaces corresponding to the two eigen values are greater than 1, then there
exists an (n+2)-dimensional linear subspace E™? of E™'N such that E™'*> M™,

il) if this number is equal to 2 and the dimensisns of the eigen spaces are
n—1 and 1 at every point, then we can choose frames b=(p, ei, -+, en.n)€B such that

Oins1=Fr,
Wani2=Mog (@=1, -, n—1), Wnn i 2= — M=)y (1:0),
@ia=0 (a=n+3, -, n+N),
Oniinis=A0n,  On15=0  (f=n+4, -, n4-N),

wﬂﬁﬁ:ﬂwn, wMﬂZO (ﬂ=ﬂ+4, ey n+N),

where
k12+}l1ﬂ= O.

COROLLARY. In order that there exists an E™'? such that M™ & E™? under the
same assumptions of Theorem 2, it is necessary and sufficient that the linear mapping

Pa: Tp(Mn) b en+zl n M_Np

is trivial, where ¢, is defined by
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n+N
902(X) = s Z wwp(X)ep.

=n+3

3. Pseudo-umbilical submanifolds in E"*? with M-index 1.

Let M™ be an n-dimensional submanifold imbedded in E®*? which is pseudo-
umbilical and of M-index 1 at every point. Then we have a linear mapping ¢;:
Tp(M™)—"~Np=Re,, defined by

Sol(X):a)lb_t_ln_JrZ(X)enM, Xe Tp(Mn).
Then the second curvature of M™ at p is defined by
(G ko(p)= max {|on.1n42(X)|; XeTp(M™), [|X]|=1}.

Now, making use of the fact that &; does not vanish everywhere, we consider
the following mapping ¢: M"—E"™"? by
3.2) =4O =+ 5 8P
where p and ¢ denote the position vectors in E™*2
Case ki(p)=0 at every point peM™.
In this case, we can choose frames b=(p, ei, --+, €,) such that
3.3 Wny1 u:kzwn-

From this we get

dwl,_,_l "_LZ: dkz/\ (t)n+kzd(l)n

= Z wne—lz/\wiﬂg: —kl Z wi/\wiwzo,
B B

hence

3.4) dw,=—d log ks A\ wy,
which shows that the Pfaff equation

3. 9) 0n=0

is completely integrable. Let the family of integral hypersurfaces of (3.5) be Q)
and we may suppose that » is the arclength of an orthogonal trajectory of this
family. By means of the Gauss’ lemma, we have

(3. 6) W, =dv.
By (3.4) and (3. 6), k. is a positive function of ». Differentiating (3. 2) and making
use of win1=Fiw;, (3.3) and (3. 6), we have

o dkl _ kzdi)
3.7 dg= k—lze‘f“ Temz-
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This shows that ¢(M) is generally two dimensional. If dk;=0 along Q(v), then
d(Q(v)) is a curve whose tangent direction is that of & But & varies (#—1)-dimen-
sionally on Q(v). This is impossible since z—1=2. Hence, we have dk,=0 along
Q(@), in other words %, is also a function of ». Hence the image of Q) by ¢ is
a point denoted by ¢g=gq(») and Q(») is contained in a hyper sphere S**'(») with
centor q(») and radius 1/k,(»). Then, (3.7) can be written as

dq_k , R
dv - kl n+2 k12 n+1

and so the right hand side depends only on ». Making use of win;1=Fim;, (3.3)
and (3. 6), we have

dﬂ)in-(-l = Z Wiy /\Cl)]n+l +Winia N\ WOni2nil
J

:kla)j/\wﬁ—l-kgdv/\w@iz,

d(k1w5)=k1’dv/\wi+k1 Z w,/\wﬁ
J

and so
ky

Tl dv N\ w;.

do N\ Wint2=

Substituting win,e=21; Anieijo; in the above equation and making use of (en,2)=0,
we get

’
Awb= -2—1'50‘1’) A"_‘anb:O (d, b:]-; 2) ) n_]-)’
2
3.8
(n—1)k]

An+2nn = Z .
2

Since M-index is 1 at every point of M", A,,230, hence
3.9 k(0)=x0.
Let us use the vector field of £7*? defined over M" by

dq

=h2_Z
(3.10) X=F} a0

=kikoens—Fkien1,

which depends only on » and is normal to M™ by means of (3.3) and (3. 8), we
get
dX:{(klkz)’en.pz—k{’en.;_ﬂdv

FRiko( 2] @n12i€itOnioni1€nin)
2
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— R (D] ©n41ii + Oni1ni9€ny2)
T

= {(klkz),en+2 — kf'€n+1}d1)

(n—1)kldv .

ki
+k1k2’ - k—z Za:waea‘l' kz

n kzd’)en»rl }

_k;[ — k1 (2] waat+dven)+ kzdvenwl,
that is

(3. 11) ‘fi—f =k1k;en Fz—(k{/“l‘klkzz)en_‘.l+nk1k{en.

This shows that dX/dv is linearly independent of X and normal to each Q(»). Since
X(v) and X’(v) are constant vectors along Q(v), there exist linear subspaces E7*'(v)
and E%7*(v) such that

Q@) € ET*'(v), EiH () 1 X ()
and

QW) € E3\(v), Ef () L X (0).
Since eg.1, X(v) and X’(v) are linearly independent, we can put
S )=S"1(v) N ETH () NEF().

Hence Q) is imbedded in S* '(v). M" can be considered as a locus of moving
(n—1)-sphere S™(v) depending on one parameter v.

Now, we consider the second fundamental form of Q(v) as a submanifold of
M™. Since the right hand side of (3.11) depends only on », using (3. 3), (3. 6) and
(3. 8), along Q(v), we have

0=k1k£den+2——(k{’+k1k22)den+1—|—nk1k(den
=k.k} Z Wny20€a— (k' +k:ks?) Z wﬂaea_l_nklk{ Z Wnola

=—kik[(log ks) 3 weea+ (Rl +EikDky D) watatnkik] Y 0nata,
hence we have

Ry, | RlERik?

1
(3.12) @an=" "] = E—ﬂ- % wa on Q@)

On the other hand, we get from (3. 4) and (3. 6)
0=do,= ), waNwar=0 on M".

This shows that (3.12) is true on M". Along Q(v), e, is its normal unit vector
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field and we have

den=— 3 Wanta.
a

According to the principle of Levi-Civita, the second fundamental form of Q(v) as
a hypersurface of M™" is

_ 1 k| RtERE?
aZa),ma)a— " 7 -+ —T——— ;H)a(ﬂa-

This shows that Q(v) is umbilical in M™.
Case k;=0.

In this case, the mapping ¢ is trivial at each point of M". Since ®ni12:2=0,
we get easily

dk
dq=— kfl €ni1.

If »=2, by analogous argument as in Case k.20, we see that k; is a constant and
q is a fixed point. M™ must be contained in an (z+1)-dimensional sphere S™*!
with centor ¢ and radius 1/k;. en.s is the normal unit vector field of M™ in S™'%.
In this case, we have

denio= D, Ony2i€;
?
and so the second fundamental form of M™ in S™! is given by

©i0ins= 3, Anisij0i0;.
2,7
Since Yi.An.2::=0, M™ must be an minimal hypersurface in S**'. Conversely, if a
minimal hypersurface in S®"! can be considered as a submanifold M™ in E**2 in
this case. Thus we get the following theorem.

THEOREM 3. Let M™ be an n-dimensional submanifold in imbedded in E™"*
which is pseudo-umbilical and of M-index 1 at every point. If the second curvature
ky of M™ is not equal to zero at every point, then M™ is imbedded in a submanifold
which is a locus of a moving (n—1)-dimensional sphere S™*(v) such that the radius
r(v) is not constant, the curve of the centor q) is orthogonal to this submanifold
at the corresponding points and not to the n-dimensional linear subspace containing
S*Yv), and S™Yv) is umbilical hypersurface in the locus. If k=0, then M™ is a
minimal submanifold in a (n+1)-dimensional sphere in E™*2,
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