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A RENEWAL TYPE THEOREM
ON CONTINUOUS-TIME (J, X)-PROCESSES

By Hironisa HaTori AND TosuHio MORI

1. Let {X(#); t=0} be a continuous-time, real-valued stochastic process. If the
process X(#) is measurable, then the expected time during which X(#) stays in an
interval [z, x+#4] is given by

(1) E{S:f[x,x+n1(X(t))dt}=SjP{x§X(t)§x+h}dz‘,

where Ip(-) is the indicator function of the set B. Thus theorems which state
that the expression on the right in (1) converges to a limit as xz—co may be
regarded as continuous-time analogues of ordinary renewal theorems. In this paper
we shall prove one of such theorems for a special class of stochastic processes,
which are continuous-time versions of (J, X)-processes introduced by Pyke [4]. The
method of the proof is essentially that of Chung, Pollard [1] and Maruyama [3].

2. Let {(J@®), X(?)); t=0} be a Markov process with the state space {1, 2,---, N}
X R, having the following properties:

(@) X(©0)=0.

(b) Its transition probability function is written as
(2) Pi{(7, x), {k} X (=00, y]} =Qeju(y—)

for any #>0 and j, ke{1,2,---, N}. It follows from this assumption that {J(#); =0}
is a Markov process with the transition probability function Q;;x(+co).
(c) For every j=xk

. Qoo
a = lim *——m(, ) <00,
t—+0

Put a;;=—Xixsa;, and denote the matrix (a;:) by A.
(d) For each j, ke{1,2,--, N}

[{m,(l‘) = (Qtjlr(m)/Ql,jk( +c0)
satisfies that

(3) lim £y ju() = Tiel)

in distribution if j=% and @;>0, and

(4) lim I §55() =11, ()
t—+0
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in distribution, where Hy, 7, ke{1,2,---, N}, is some distribution function, n=[1/¢],
and H™ represents the x-fold convolution of H.

Denote by 7, the characteristic function of Hj. It follows from (4) that for
every j Hj; is an infinitely divisible distribution function, and therefore its charac-
teristic function has the expression 7,;(0)=¢% with

Ou
1+4-u®
where m, is real, ;=0 and v, is a measure defined on the class of Borel sets of
the real line such that

R e B )

S dviu)<co  and S w*dy j(u) < oo.
lul>1

lulst
Let ¢, denote the characteristic function of X(¢), and let
0;i(0)=E{e?*®] J(0)=j7}.
Then we have from (2)
N oo
et a(0)= kZlSOkt(ﬁ)S e dQ) s ()
=(1+a;;4t)et 1P ;(0)+ kgj @548 j1(0)0(0) 1 0(4E)

as 4¢—0, thus obtaining

20 g £ ODor O+ T sk OO,
)

1. e,

(5) %D o),

where @) represents the N-dimensional column vector whose j-th components
are ¢;(f), and

au+6(0) @12712(0) ainnin(0)

@21721(0) A2z+E2(0) a:nn2n(0)
H(0)= : :

anni(0)  awayn(0) - ayy+En(t)

Introducing the Laplace integral
00, 5)= S“ o O)etdt,
0

we obtain from (5) that
(6) D0, s)=(sI—H(0)) e,
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in distribution, where I is the N by N identity matrix, and e is the N-dimensional
column vector whose components are all equal to 1.

Throughout the remainder of this paper we assume that the matrix A=H(0)
is indecomposable. This assumption implies that s=0 is a proper value of A with
multiplicity 1, and that every proper value except s=0 has negative real part.

Let £(0) denote the proper value of H(#) such that lims, £(#)=0. Then by
the assumption on A, we can choose positive 8§, and ¢ so small that for |0|<6,
H(#) has no proper values except {(#) in the half plane (s)>—e,. Moreover
RE@G))=0 holds for every 6. In fact, let z be a proper vector corresponding the
proper value {(6): H(0)z=((#)z. We can assume that every component z, of z
does not exceed 1 in absolute value and some z,, is equal to 1. Then

%(C(ﬁ))=]_§ @01 R (30021 + R 5950 85Dz = ;.'] @305 @395,=0.

Now employing the same method as in [2], we can prove from (6) that

a(f)
s—L()

where @(0,s) is the Laplace transform of ¢,(0), ¢(0)=1, ¥(0, s) is uniformly bounded
for s>0 in a neighborhood of #=0, and finite lims_.+o 7'(0, s) cxists. Morcover we
can prove that there exist positive constants K and e such that
(8) lpu(0)— a(0)e* ™| < Ke
for 10| <8, and for #>0.

If we assume that every 7;x(#) has continuous second derivatives in a ncigh-
borhood of =0, then it is easy to show that {(¢) and o¢(f) have the same property.

Applying the method of [2], we see that m=—i{’(0) is real and {’/(0)<0. From
o(—0)=0(0) it follows that ¢’(0) is pure imaginary.

(7) (0, s)=

+¥(0, s),

RemArk 1. The inequality (8) with the assumption above cnables us Lo prove
a central limit theorem for the process X(#). The method of the proof is similar
to that of [2].

Lastly we add the following assumption: for every 60, either at least one
£1(0)=0 or there exist j,ke{l,2,---, N} (j=k) such that @;>0 and |[7;x(0)<1.
This assumption implies that for every 60 the matrix H(#) is regular. In fact,
if det H(#)=0, 00, then there exists a column vector z=0 such that H(#)z=0.
We may assume that every component z, of z does not exceed 1 in absolute value
and some z,, is equal to 1. Then

( 9 ) —010]0—810(0):]‘;}0 Zjalojvlof(o)'

From R(&,,(0)=0, |7,,/(®]I=1 and |z,|=1, (9) holds only if &,(0)=0 and z;7,,;(0)=1
for every j such that a,,,>0. Therefore |z;]=1 if @,,>0. Since the equality (9)
replaced jo by 7, must hold if |z, |=1, and since A is indecomposable, it follows
that £,0)=0 for every j and |7;x(0)|=1 for every j, k& such that a@;;>0. This
proves our assertion.
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3. We shall now prove the following

THEOREM. Under the assumptions in the preceding section

. B mo,
(10) limg Plo=X(O)=s+h}di— | ™
X0 J 0
0 if m<0.

Proof. The theorem follows from the following:

. igm Fds  if m>0,
a1 limS EAFX(O)—2)}dt— | 7 =0

ZT—00 J 0
0 if m<Q0,

where F(x)e LY(R') is an arbitrary non-negative continuous even function such
that its Fourier transform

j‘(0)=5 Fx)e " dx
belongs to LY(R!) and vanishes outside a finite interval (—c,¢). In order to prove
that (11) implies (10), we may apply the same method as that employed by
Maruyama [3], and therefore we do not reproduce it. The remaining part of the
proof, i. e., the proof of (11) is also quite similar to [1] and [3].

The integral on the left in (11) is written as

lim Swe““‘E{F(X(t)—x)}dz‘

a—+0 J0

12) = lim iSme““dz‘gc e~ f(0)p(0)dO

a—+0 27[ 0 —C

= lim —I—S e MEF(0)D(6, a)db.
ast0 27 )¢

For any 6>0, it follows from the regularity of matrix H(f), 60, that

liMge 1o (8, 2)=@(0, 0) is bounded on every compact interval excluding the origin,

and therefore by Riemann-Lebesgue lemma

13) lim lim 51“5 3£ (0)D(0, @) =0,
z—00 a—+0 4T Je>|0]>6
If 6 is sufficiently small, then by (7) and again by Riemann-Lebesgue lemma
. oL o) B
(14) £1_1:£1° al—l»IPoé;S-ae 1(0) {@(0, «) a0 ’dﬁ——O.
Now we shall evaluate
. N SN S (/%)) . .1 Sé ‘ e a(0) J
5 Wt ) = =— OR | —————tdb.
(15) lim lim 5n S-ae a—ggy W=lim lim o2y SOR < =
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Denote by R(0), [(#) and R.(0), I,(0) the real part and imaginary part of —Z(0) and
o() respectively. Then R(#)=0(0?) is non-negative for small ¢, I(0)=—ml+O(0?),
R(0)=1+0(0* and L(0)=—is’(0)0+0?). Divide the integrand on the right in
(15) as follows:

af+Ry(cos Oxz—1) | f-(RR\+1I)

(16) CESAENE @l RELE % Ox
af - Ry SA@ R —IR,}

+ @ R+ T + (@t R T sin .

We have casily
.1 (7 af-Ri(cos fz—1)
a7 32110 o S_;_——ﬁ(a+]€)2+12 v —0,
and by Riemann-Lebesgue lemma
i L0 L(RRATL) 10 fRRAIL)

(18) },71_1;1;10 aliI}_lO *2'7:‘8_5 (a+R)2+IZ COS ﬂxd0 = ilj’)?o Z{*S_E——WZ—COS Oxd()—()

The boundedness of (d/d0) ({(0)/0) implies that (f-(RL—IR.)0)/(R*41?) is of bounded
variation at the origin, and therefore

b L S fi@tRL-IR) | sinbz
2o )T (@RI 7

__1 _‘]L‘S‘s f'(RIl—[Rl)o X Sin Ox db‘

Mo T RARIE 0

(19)

g L RE— IR

=M TR )

)
2m

To evaluate the integral corresponding the third term of (16), we note that

1 af R £(0)
2 — —
@0) Jim }if?ozng_,; T TP
and
1 (° o o
2 3 - F . — =
@D Jim lim 2758—5f Rl{a%mzoz (@t RP+T? }‘w 0

To prove (21) let us write the integral in (21) as follows:

g a(R*+I?—m?0?) s 20°R
R .
S R i R F 7T O R e (T
The first integral does not exceed
k) « IRZ_{_IZ__m202|
S_ﬁf‘Rl a2+m2(12 . R2+IZ d(/
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in absolute value, which converges as a—-0 to
IRZ_I_[2_m2(IZI .
R*4-]2 -
The integrand of the second integral is uniformly bounded and converges to 0 as
a—+0, hence the integral converges to 0. From (20) and (21) it follows that

. .o 10 af R _ S
(22) lim lim —S_B @LRILTE do= Sl

§-4+0 a—40 2n

17), (18), (19) and (22) together prove

23) lim lim lim ”1'85_56_“” Z(ﬁ?((g)) di= fg)) (%Jr 1 )

=40 x—oo a—+0 277
and the theorem follows from (13), (14) and (23).

ReMARK 2. This proof is also applicable to show that under the assumptions
of the theorem

lim f-R,
00

|m|

ﬂkh .
o if m>0,
limg PI()=k, 2= X(D=s-+h}dt=| ™
Z—00 J0
0

if m<0
holds, where n;=1im;.., P{J({#)=Fk}.
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