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SUBMANIFOLDS IN FUBINIAN MANIFOLDS

BY MITSUE AKO

In the theory of surfaces in the 3-dimensional Euclidean space Es, the following
well known theorem of Bonnet plays an important role. Theorem of Bonnet: Let
S be a 2-dimensional Riemannian space with the fundamental tensor g and there be
given on S a symmetric tensor h of type (0,2) which satisfies equations of Gauss
and Codazzi, then S is realized in E* as a surface having g and h as the first and
the second fundamental tensors respectively; Moreover, this realization is unique
up to motions in Es.

In the case of complex space, we can easily foresee a theorem similar to that
of Bonnet, but we do not find it in literature. One of the purposes of the present
paper is to establish theorem of Bonnet for complex analytic hypersurfaces in a
Fubinian manifold (i.e. the complex projective space with the natural Kahlerian
metric) and we shall study some topics in the theory of surfaces in spaces, Fubinian
or locally Fubinian. A Kahlerian manifold of constant holomorphic curvature is
called a locally Fubinian manifold (Tashiro and Tachibana [5], Yano [7]).

We introduce, in §0, terminologies, notations and the structure equations for
surfaces in a Riemannian or Kahlerian manifold. In § 1, we prepare formulae for
a complex hypersurface in a locally Fubinian manifold which are useful in the next
three sections. As a direct result of those formulae we obtain a proposition (Smyth
[4]) for an invariant Einstein hypersurface in a locally Fubinian manifold. Recently
we had an opportunity to see [4], where Smyth has accomplished the classification
of simply connected complex hypersurfaces of Fubinian manifold which are complete
and Einstein. § 2 is devoted to prove the theorem of Bonnet in a Fubinian manifold.
In §§ 3 and 4, we study some properties of submanifolds not necessarily invariant
in a locally Fubinian manifolds and characterize totally geodesic or totally umbilical
submanifolds in a locally Fubinian manifold.

§ 0. Formulae for surfaces in manifolds, Riemannian or Kahlerian.

Let M be a complex manifold of complex dimension n with complex structure
F and S a complex manifold of complex dimension n—1 with complex structure /.
We assume that there is given a complex analytic immersion ξ: S—>My whose
differential B: Tp(S)->Tξm(M) is injective at each point p of S, where TP(S) and
THp)(M) denote the tangent space of S at p and the tangent space of M at ξ(p),
respectively. Thus, ζ being complex analytic, we have by definition
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(0.1) Bof=FoB,

which implies that the subspace BTP(S) of TξCp)(M) is invariant under the action
of F at each point ξ(p) belonging to f(S). The pair (S, ξ) of an (n—l)-dimensional
complex manifold S and a complex analytic immersion ξ: S—>M will be called a
complex analytic hypersurface in M. However, we denote simply by S a complex
analytic hypersurface (S, ξ) and identify the complex analytic manifold S with its
image ξ(S) by the immersion ζ. A complex analytic hypersurface S is sometimes
called briefly a complex hypersurface or an invariant hypersurface.

Before going further we introduce here the structure equations for a submani-
fold of a Riemannian manifold.

Let M be a Riemannian manifold of dimension 2n and S a differentiate1)
manifold of dimension 2(n—l) and ξ a differentiate immersion from S into M
whose differential B is injective. The pair (S, ξ) of such S and ξ is called a surface
of M and simply denoted by S. It is well known that a Riemannian metric g can
be induced on S from the Riemannian metric G in M by the immersion ζ, that is

(0.2) g=B*G

B* being the dual map of the differential B of the immersion ξ. Let us denote by
(ξh)2) local coordinates in each coordinate neighborhood of M and by G=(Gji) the
Riemannian metric tensor in M with respect to (ξh). (The quantities in parentheses
denote the components in the local coordinate system (ξh).) We denote by <X, F>
the inner product of two vectors X and Y on M with respect to G, i.e.

XJ and 3™ being respective components of X and Y with respect to (fΛ).
Hereafter, X, Y> Z and W will denote vector fields on S, that is, fields of vectors

tangent to S. Then BX is a vector field in M tangent to S which is Ίtesθted by
X, and so on. Denoting by V the covariant differentiation along M with respect
to G, we can put

(0.3) VχY=FxY-\-NχY, X=BX and 7=BY,

where VXY is the tangential part of ΨXΫ and NXYis the normal part of F^F. As
an immediate consequence of the definition (0. 3) for F, we easily verify that the
correspondence F, which assigns a vector field VXY to a pair of two vector fields
X and F tangent to S, is a metric covariant differentiation along S (i.e. Fχ#=0)
and torsionless. That is to say, F is the Riemannian connection determined by the

1) The differentiability of manifolds, mappings and geometric objects are assumed to
be of class C°° throughout this paper.

2) The indices h,i,j, run over the range l,2, ,2w and indices a,b,c,d,e,f the
range 1,2, •••, 2»—2, where 2^—2 is the real dimension of S.

3) We use the summation convention.
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induced metric g on S. The metric connection thus introduced is called the induced
connection on S.

Let U be a sufficiently small coordinate neighborhood of S, in which there
exist two fields C and D of unit normal vectors to S which are mutually orthogonal
at each point of U. The second term Nx Y in the right hand side of (0. 3) is then
written, by using C and Z), as

(0. 4) Nx Y= h(X, Y)C+k(X, Y)D,

where h and k are both symmetric bilinear forms on tangent space at each point
of 5.

The equations of Weingarten (cf. for example, Yano [7]) are reduced to

VxΫ=FxY+h(X, Y)C+HX, Y)D

(0.5) VxC=-Tχ +KX)D,

for any two vector fields X and Y on S, where Tx and Tx are respectively the
tangential parts of FXC and FXD along S and / is a 1-form on S. The two vector
fields Tx and Tx

f thus defined satisfy

{Tx, Y)=h(X, Y)

and

(Γx', Y)=K(X, F),

where (,) denotes the inner product with respect to the induced metric g. In fact,
we have <FxC,C)=0 since <C, C>=1. This implies that the normal part of VXC is
expressed by D alone and thus we get the second equation of (0. 5). Similarly we
can show that the normal part of VXD is expressed by C alone. On the other hand,
we have

since C and D are mutually orthogonal. From this we see that if we denote by
l(X)D the normal part of FXC, then the normal part of FXD is —Ϊ(X)C. If we
take as Y a tangent vector field on S, then we have <C, F>=0. Differentiating
covariantly the both sides of this equation, we have

Substituting the first and the second equations of (0. 5) into the equation above we
get (Tx, Y) = h(X, F). By the same method we can verify (Tχ'f Y)=K(X, F).

We shall now write down equations of Gauss, Codazzi and Ricci for a (2^—2)-
dimensional surface in a 2^-dimensional manifold, for the later use. By virtue of
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Ricci identity, we have

(0. 6) Ϋ ^

where K is the curvature tensor of M and W=BW, V=BV, 7=BY and X=BX,
Wy F, Y and X being vector fields on S. Differentiating covariantly the both sides
of (0. 5)

FyΫ=FvY+h(Vy Y)C+k{Vy Y)D

along S, we have

FwVyΫ=FwFyY-h(Vy Y)Tw-k{Vy Y)Tw'

+ {hW,VvY)+W{h{V, Y))-l(W)k{V> Y)}C

+ {£(W, VvY)+ W{k{ Vy F))+/(W)h Vy X))D.

By the definition of the induced connection, we have

h , VI Y)C+k(ίWy VI Y)D

because of [W, V] — [Wy F] . Thus the left hand side of (0. 6) are reduced to, for a
vector field X on S,

-FyFWΫ-FίW>y,Ϋy X}

=(FwFvY-FvFwY-FίWtV2Y, X)

y Y)h{ Vy X) ~ k( Vy Y)k{ Wy X) + £( Wy Y)k{ Vy X)

because of (TV, X)=h( Wy X) and (TV7, X)=R Wf X). Therefore, if we take account
of (0. 6), we have, denoting by K the curvature tensor of S,

K(BWyBVyBY,BX)=K(Wy Vy F,X)-{h{WyX)k{Vy Y)~h(W, Y)h(VyX)
(0.7) . . . .

+ k(WyX)k(Vy Y)-k(W, Y)k{VyX)}y

which is the equation of Gauss,
The equation of Codazzi follows by replacing X by C in (0. 6). It is written as

K(BWyBVyBYyC)=h(WyPvY)+W(h(Vy Y))-l(W)k(Vy Y)
(0.8) „ „

-h(VyFWY)~V(h(Wy Y)) + l(V)k(Wy Y) ~ h{ [ Wy V]y Y).

On the other hand, differentiating Λ(F, Y) and h(W, Y) covariantly, we obtain
respectively

W(h(Vy Y))-h(VyFWY)=h(FWVy Y) + {{VWh)Vy Y)

and
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-VihW, Y))+hW,VvY)=-hVvW, Y)-({Vvh)W, Y).

Thus, if we substitute these two equations above into (0. 8), the equation of Codazzi
reduces to

(0. 9) K(BW,BV,BY, C)=((Fwh)V-(Pvh)W-ϊ(W)kV+ϊ(V)kW, Y).

Replacing C by D in (0. 9), we get

(0.10) K(BW,BV,BY,D)=((Fwk)V-(Pvk)WVKW)hV-ϊ(V)hW, Y).

A direct computation shows that the normal part of VψVψC has the form

{-~KV)ϊ(W)-h(hV, W)}C+{W(jl(V))-K(hV, W)}D

and that of VLψtψβ has the form

hlW, V])D.

On the other hand, as is well known, we find

W(Ϊ(V))-V(Ϊ(W))-Ϊ([W, V])=2(dϊ)(W, V),

where dl denotes the exterior differential form of the 1-form /. Thus we have

(0.11) K(BW,BV,C,D)=2(dlXW, V)-k(hV, W)+k(hW, F),

which is the equation of Ricci.

Summing up (0. 7), (0. 8), (0.10) and (0.11), we have

K(BW,BV,BY,BX)=K(W, V, Y,X)-{h(W,X)h(V, Y)-h(W, Y)h(V}X)

+κw,x)k(v, Y)-hw, Y)E(V,x)h

K{BW1BV)BY,C)={{Vwh)V-{Vvh)W-KW)kV+KV)kW,Y\
(0.12)

K{BW,BV,BY,D)={(Vwk)V-(Vvk)W+l{W)hV-l(V)hW, Y)

and

K(BW,BV,C,D)=2{dϊ)(W, V)-k{hV, W)+k(hW, V).

In the rest of this section we assume that the enveloping manifold M is
Kahlerian manifold with the structure (F, G). We further assume that the surface
(S, ξ) is a complex analytic hypersurface, that is, S is a complex manifold of complex
dimension n—\ with complex structure / and the immersion ξ: S->M is complex
analytic. Then the induced metric g on S given by (0. 2) is Hermitian, that is,

(0.13) (fX,fY)=(X,Y)
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for any two vector fields X and Y on S, where (X, Y) denotes the inner product
of X and Y with respect to g. In fact, the equation (0. 2) is equivalent to the
condition that <BX,BY)=(X, Y) for any vector fields X and Y on S. On the
other hand we have (BX, BY} = (FBX,FBY), because the metric G on M is
Hermitian. Taking account of (0.1) and (0. 2), we obtain

(FBX, FBY) = (BfX, BfY)

and

(BfX,BfYy=(fXJY)

respectively. Thus we have the equation (0.13), which shows that the structure
(/, g) is Hermitian. But it is easily verified that this structure (/, g) is Kahlerian.
In fact Fχf=0 for any vector field J o n S, where V is the induced connection given
by (0. 3). (For the proof of this statement, cf. Smyth [4] and Yano [7], for example.)
Thus we conclude that a complex analytic hypersurface in a Kahlerian manifold is
Kahlerian,

§ 1. Formulae for complex hypersurfaces in a locally Fubinian manifold.

The aim of this section is to investigate complex analytic hypersurfaces in a
locally Fubinian manifold M, but we consider, for the present, a little more general
case where M is Kahlerian. Throughout this section an immersion ξ: S-+M is
assumed to be complex analytic, S being a complex manifold, where M and S are
of complex dimension n and n—\ respectively. Then S has a Kahlerian structure
(/, g) as was stated in §0.

We now define a 2-form / on each tangent space of S as follows:

a. l) ?(χ, Y)=(fχ, n

where X and Y are arbitrary vector fields on S. We easily see that / is anti-
symmetric.

Restricting ourselves to a sufficiently small coordinate neighborhood U of S, we
choose a field C of unit normal vectors to S. Then FC is another field of unit
normal vectors to S which is orthogonal to C. Thus we can take FC as D intro-
duced in § 0. Then the 2-forms h and k defined in (0. 4) satisfy

(l. 2) k(χ, Y)=-kfx, n Kx, γ)=hfχ, n

because of PχF=0. Moreover, from (1. 2) together with symmetry of h and ky we
can see that h and k are both pure tensors, (cf. Yano [7]) that is,

(1. 3) h(X, Y)+h(fX,fY)=0

and
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(1. 3)' k(X, Y)+k(fX,fY)=0.

Next let us introduce tensors h and k on S of type (1,1) by

(hX, Y)=h(X, Y) and (kX, Y)=k(X, Y)

for any pair of vector fields X and F, then we have

fh=-k

if we take account of (1. 2). We note that the second equation of (0. 5) implies
the third in the case of Kahlerian manifold, since VχF=0. We get again from (1. 2)

Trace h=Trace k=0,

which shows that any invariant hypersurface S of a Kahlerian manifold M is
γninimal in M. (cf. Schouten and Yano [3], Yano [7].)

We assume, in the rest of this section, that the enveloping manifold M is
locally Fubinian, so the curvature tensor K of M has the following form:

K(W,V, Ϋ,X)=-j-{<ff,XχΫ9 7>-<W9 ΫχV,X>+<FW,ZχFVt f>
(I- 4) _ _ _ _ _ _ _ _

-<FW9 YXFV9 X)-2(FW, VXFY9 X}}

for any vector fields X, Ϋ, V and W in M, c being a constant (Yano [7]). Equations
(0.12) of Gauss, Codazzi and Ricci for an invariant hypersurface in a locally
Fubinian manifold take the following form:

)-(W, YXV9X)+(fW9XXfV9 Y)

, YXfV9X)-2(fW9 VXfY9X)}
(1.5) „ .

K{W9 F, Y,X)-{h(W,X)h(V9 Y)-h(W, Y)KV,X)

9 Y)-Rw, Y)Rv,x)}
(Equation of Gauss),

(1. 6) (Fwh)V-{Vvh)W-K W)kV+ϊ( V)kT^=0, (Equation of Codazzi)

and

(1. 7) 2(dϊχW, V)-k(W,hV)+k(V,hW)+ ^f(W, V)=0 (Equation of Ricci).

Next let us denote the Ricci tensor of M and that of S by R and R respec-
tively. Then we have, from (1. 4),
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(1. 8) R(BX, BY)=R(X, Y)- -^-(X9 Y)+(hX, hY)+(kX, kY).

We further get, if we take account of (1. 7),

) Y).

The formulations in § 0 and § 1 will be reformulated by using local coordinate
expressions or the so-called tensor calculus.

Let M be a Riemannian manifold of dimension N and S a differentiate manifold
of dimension N' where N—N'=2. The immersion ζ: S^M is expressed by
equations

(1.9) ξh=ξh(va)

in local coordinates (ξh) of M and (ηa) of S. The equations (1. 9) are regarded as
equations defining the surface S in M with respect to local coordinates (ξh) and (ηa).
The differential B of ξ is represented by a matrix

(l. 10) (Ba

h)=dj\ da^d/dy*.

On the other hand, for any fixed index a, (Ba

h) are regarded as components of a
vector field Ba tangent to S and the (n—1) tangent vector fields Ba span the tangent
space Tp(S).at each point p belonging to S. Thus, any vector X=(Xa) tangent to
S can be mapped to a vector X=BX on M by the differential B of ξ and X has
components of the form

We explain here the so-called van der Wearden-Bortolotti derivative along a
surface. We denote by S(M) the tangent bundle of M and by S(S) the restriction
of a(M) to S. We define a s by

n-times r2-times

where the vector bundle g*(S) is dual to g(S). A Sr\-valued tensor field T of
type (tut2) is defined as follows: Let Xlf ~-yXt2 be vector fields on Sand Ϋl9 •••, Ϋh

covector fields on S, all being arbitrary chosen. Then, T(XU ~-,Xt2; Ϋi, •••, Ϋtx) is
a cross-section of the tensor bundle Srl If we fix a system of local coordinate (ξh)
of M and (jja) of S, we have the local representation of a SrS-valued tensor field T
of type (ίi, £2), that is T has the components of the form

T
δi—δίj ii t r i

α i α £2 ϊιi hr2
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with two kinds of indices a,b,c, ~ and h,i,j, ••• which run respectively over the
range 1,2, •• ,ΛΓ/ and 1,2, « ,iV. Indices (#, &, c, •••) are called indices of the first
kind and (7M, i, •••) are called indices of the second kind. It can be seen that the
transformation law of T under a coordinate transformation of (fh) is same as that
of a tensor which is of the same type of T with respect to indices of the second
kind. Ba

h defined by (1.10) is an example of such tensors. In fact, if Ba

h is trans-
formed to 'Ba

h and "Ba

h under coordinate transformations (va)-*(ya) and (ξh)->(ζh)
respectively, then we have

and

B H L - t _ L t . B ,

which mean that Ba

h is a aj-valued tensor of type (0,1). Van der Wearden-
Bortolotti derivative is now defined as an assignment of a ϋ K-valued tensor of type
(h, t2+l) to a Srl-valued tensor of type (tu t2). The assignment Ψc defining the
van der Wearden-Bortolotti differentiation is characterized by the following three
conditions:

(1. ID
and

( i ) Ψc is a derivation

(ii) 'FcT=BcΨjT, if f is a Sri-valued tensor of type (0, 0)

(iii) fVcT=VcTy if T is a gj-valued tensor of type (tl9t2),

where V is the covariant differentiation with respect to G and V with respect to g
respectively. If we take a £Γ>valued tensor of type (1,1) having components T Λ Λ ,
for example, we find directly from the definitions of van der Wearden-Bortolotti
differentiation Ψc

(1.12)

where {J

h

ι\ denote the Christoffel symbols constructed with the metric G on M
and {Λ} the Christoffel symbols constructed with the induced metric g on S. One
can easily verify

(1.13) 'r&Ji=BckFtPji=0, 'VcgH=Vcgu=Q

_ι_Γί i 1

f
a

c d
d

c b

lft l / l

2Vβ«,
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and that Ψc commutes with all contractions with respect to indices of the first and
of the second kind respectively.

As is well known, the relation between T?Ί} and {Λ} is given by

(1.14) ΛI-KIΛ
where Ba

h is defined in such a way that (Ba

h,GhιC
ι,GhιD

ι) is the inverse matrix
of (Ba

h,Ch,Dh) (Yano_[7]).
The vector field V^Ϋ has components of the form

XΨj Ϋh=XbBbΦj(Ba

h Ya).

By making use of van der Wearden-Bortolotti derivative and taking account of (ii)
and (iii) given in (1.11), we have

=Xb{(ΨbBa

h)Ya+Ba

hfVbY
a}

=(XΨb Ya)Ba

h+Xb Ya('VbBa

h).

On the other hand we have, from (1.12)

h

kj

C

b a

Relation (1.14) shows that ΨbBa

h is a linear combination of C and D, so we may
put

ΨbBa

h=hbaC
h-\-kbaD

h,

where

and

% ~ G ί h l h

These equalities show that hba and kba are both symmetric tensors and they give
local expressions of h and k in (0. 4) respectively.

Thus we can see that the tangential part Vx Y and the normal part Nx Y of
VjY are given by
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BaψXY)a

and

(hbaX
b Ya)Ch+(kbaX

b Ya)D\

The equations of Weingarten (0. 5) are now written as, using van der Wearden-
Bortolotti derivative,

'PbBah=hbaC
h+kbaD

h,

ΨbD
h=-kb

aBa

h-lbC\

In fact,

which shows that the tangential part of ΨbC
ι is —kb

aBa

i. By the similar method,
we can verify that the tangential part of fVbD

τ is —kb

aBa

z. On the other hand we
have

0='Fb(GihC
iDh)=Gih{(ΨbC

i)D»>+CiΨbD
h},

from which we can see that if we denote by lbD
h the normal part of ΨbC

h, then
the normal part of ΨbD

h is —lbC
h.

Now we assume that the enveloping manifold M is Kahlerian and S is a
complex analytic hypersurface of M. Since S is assumed to be invariant under F,
FBa must be also tangent to S and then we can put

(1.16) FfBa*=fa>Bb\

where Fi1 are components of F and fb

a define a tensor field of type (1,1) on S.
Comparing equations (0.1) and (1.16), we can easily see that the tensor (fb

a)
coincides with the tensor / defining the complex structure of S.

The components gba of the induced metric g on S are given by

(1.17) Qta^GjiBJBJ^ζB*, Ba),

by virtue of (BX, BY)=(X, Y). The components fba of / are given by

which are also written as
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d 18) fba=FJiB^Bai=<FBh Ba},

where Fji are components of fundamental 2-form F on M and are given by

We shall here prove the following Proposition 1.1 by using method of local
coordinate expressions mentioned above.

PROPOSITION 1.1. ([4]) Let M be a locally Fubinian manifold and S be an
invariant hypersurface of M. If S is Einstein, then it is locally symmetric.

Proof. By our assumption for M and S, M can be covered by a system of
complex coordinate neighborhoods

Then we can introduce a complex coordinate system (ua) on S defined by

such that the equation of S can be written as

zκ=z\ua\

where zκ(ua) are complex analytic functions of complex variables ua. Since S is a
complex analytic hypersurface in a locally Fubinian manifold, the almost complex

structure f=(fa

b) on S is reduced to the numerical components ( * ) with

respect to local complex coordinate system on S. It is well known that non-
vanishing components of the curvature tensor are Kδfβ$ (Yano [7]). We have

(1.19) Kδrβs = -2hfδ hδβ + ~ (gδiigrβ+fSsfrβ-2fs?fβ*)

if we take account of (1. 5) and pureness of hba and hybridness5) of gba and fba>
The equations (1. 6) in the complex coordinate system are written as

4) Greek indices κ,λ,μ,~- r u n over the range 1,2, « ,w, while a,β,γ,~ the range

1,2, •-.,«—1. We give the value 1,2, ••-,#; ϊ , 2, •••,« to i,j,k, - and the value ϊ , 2, •• ,n—l;

1, 2, •••,«—1 to a,b>c,' in the complex coordinate system.

5) A tensor T...b...a- is said to be hybrid with respect to b and a if

(For detail, see Yano [7].) The curvature tensor KdCba is hybrid with respect to d and c

(or b and a), that is K(fW,fV, Y, X)-K(W, V, Y, X)=Q.
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(1.20) Pδkfs-ilδkfs=O, conj. (i.e. Fiftr«+i&Ar«=0)

because of (1. 2).

From the assumption that S is Einstein, we get, by transvecting gδS to (1.19),

(1.21) hf

shδβ=Agΐβ,

where A is a non-zero constant. Transvecting h? to (1. 20), we have

hfaFδh«+UδAgεf=0,

because of (1. 21). Transvecting hβ

7 to these equations we get

(1.22) Pδhε«+Ushaε=0, conj.

On the other hand (1. 6) gives the equation

(1.23) Pεkfs-il,hfs=0, conj.

Differentiating (1.19) covariantly along S we get

FeKδm = -2[(Fεhfs)hδβ+hfsψehδβ)].

The right hand member is zero by virtue of (1. 22) and (1. 23) which is obtained
by the assumption that S is Einstein. By the same method, we can get

?sKδfβ~0,

which shows, together with PεKδfβ&=0, that S is locally symmetric. q.e.d.

§2. Realization of a Kahlerian manifold in a Fubinian manifold.

As we referred at the beginning of this paper a Fubinian manifold is a homo-
geneous Kahlerian manifold with constant holomorphic sectional curvature which
is simply connected. A Fubinian manifold M of n complex dimensions is identified
with the coset space G/H, G being the group of all complex (n+l)x(n+l) matrices
operating on a complex vector space L of n+1 complex dimensions and preserving
Hermitian form <X, F> (i.e. <J, Ϋ) = (JζΎ» of signature 0 (or n-2) if M is of
positive (or negative) holomorphic sectional curvature, and H is a subgroup of G
which consists of all matrices leaving a particular vector having magnitude 1 (or —1)
in L. That is, a Fubinian manifold M=G/H is regarded as a sort of Klein space
having G as its fundamental group of motions.

Let M be a Fubinian manifold of complex dimension n and S be a Kahlerian
manifold of complex dimension n—1 having a structure (/, g). The question arises
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if S can be realized as an complex analytic hypersurface in M. In other words,
when can a complex analytic immersion ξ: S^M exist in the sense of § 0 ? To
answer this question, we must, first of all, determine 2n—l vector fields Ba=(Ba

h)
and C=(Ch) in M mentioned in the previous section, where

(2.1)
dξ*

(va) being a parameter on S. The field C being determined we take FC as another
vector field which is orthogonal to C and Ba. The vector field Ba and C should
satisfy the conditions

<Bb,Ba>-gba=0,

<C, 0 - 1 = 0 ,(2.2)

and

(2.3)

where <, > denotes the inner product with respect to G, the metric of M.
Now we look for the system of partial differential equations which Ba and C

should satisfy and the integrability conditions of these equations.

In order that S is immersed in M, Ba and C must satisfy (1.13) and (2. 3).
Thus a necessary and sufficient condition for S to be complex analytically
immersed in Mis that Ba

h and Ch are solutions of the system of partial differential
equations

(2.4)

c
b a

h
m I

dCh

m I

with an algebraic additional condition

(2 5) G •FhJBaιCfι=0

and satisfy identically the conditions (2.2). In (2.4), {J\} are the Christoffel
symbols constructed from G, Uc

a} the Christoffel symbols constructed from g, hba

and kba=—fb

chca the second fundamental tensors and 4 is the third fundamental
tensor of S, fb being the complex structure of S.

Let there be given differentiate functions Λδα, 4 on a Kahlerian manifold S
whose structure is denoted by (/, g). These functions are assumed to satisfy the
following conditions.
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(Cl) hba = haby

(C2) QaίdQc2b —faidfcib —fdcfba K~ ^-dcba = haιdhφ -\-faeheιdhc-]ffb

f,

(C3) Fίdhφ-ίίdfcl

ahab=0

and

(C4) dίdlc2-hίc

afdf>hba + -J-/*,=0,

where i^ c δ α is the curvature tensor of S and n(n+l)c is the curvature scalar of M.
(C2), (C3) and (C4) are nothing but the equations of Gauss, Codazzi and Ricci (1. 5),
(1.6) and (1.7), respectively. We shall now show that the system of partial
differential equations (2. 4) with additional condition (2. 5) is completely integrable,
if hba and la satisfy the conditions (Cl), (C2), (C3) and (C4) mentioned above.
Differentiating the right hand side of the first equation given in (2. 4) and taking
skew-symmetric parts, we have

d +

where Blc

ci
i

a=Bc

kBb

jBa!'. The coefficients of Ch and Dh are zero, because hba and la

satisfy (C3) and kba——fbhCa' On the other hand, the curvature tensor of a Fubinian
manifold is given by (1. 4) which can be written as

(2. 6) Kujih= -j-(β&ji-%Gki+Fk

hFji-FfFki-2FihFkj).

Thus, if we take account of the additional condition (2. 5), we have

B%iKm

h= - j - Bd\δ*gba-δUca+fcdfba-fbdfc*-2fadfcb)

So the coefficient of Bd

h must be zero, since (C2) is valid. Therefore we have

(2 7) d^Bl__^B^

In the next step, differentiating the right hand side of the second equation
given in (2. 4) and taking skew-symmetric parts, we obtain
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+Fi

hCi[dclb-dblc+hc

akba-hb

akca]

because of the additional condition (2. 5), where Bfb=Bc

kBb

3. The coefficient of Ba

ft

is zero because of (C3). (2. 6) shows that

Therefore the coefficient of FihC% in

d2Ch d2Ch

is zero because of (C4) and then we have

d2°h d*Ch - o

Summing up (2. 7) and (2. 8), we can now conclude that the system of partial
differential equations (2. 4) with additional condition (2. 5) are completely integrable.

Now we examine the initial conditions (2. 2). Let Ba

h and Ch be the system
of solutions of the system of the partial differential equations (2. 4) with additional
condition (2. 5). Then we have

} Ba>-gba} =hcb(Ba, C)+hca(Bb, C>

a, FC)+kca<Bb,

<Ba, cy = \b

c

a\<B« cy+hba{(c, o -

-hb

c{(Ba, Bcy-gac}+lb(Ba,

and

d
ί<C,C>-l} = -2Ae

β<β.,C>.

The system of these three equations is regarded as a system of homogeneous partial
differential equations with unknown functions (Bb,Bay—gba, (Ba,Cy and <C, C>—1.
Therefore, if
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(Bb, Ba>-gba=0, <Ba, C>=0

and

are satisfied at a point (ηa) for a system of solutions Ba

h and Ch of (2. 4) with
additional condition (2. 5), then they are satisfied identically also for the solutions
Ba

h and C \ That is to say, if we choose the solutions Ba

h and Ch of (2. 4) with
additional condition (2. 5) which satisfy (2. 2) at an initial point, then the system
of solutions Ba

h and Ch satisfies identically (2. 2) at each point.
Since the number of unknown functions Ba

h and Ch is 2w(2n—1), while the
number of the relations in (2. 2) is 2n2—n, so we can choose a system of solutions
of (2. 4) under the initial conditions (2. 2) with (2n2—n) arbitrary constants. After
Ba are determined, we can get ξh(ya) by solving

which include 2n arbitrary constants. Thus we conclude:
In order that a complex {n—l)-dimensional Kahlerian manifold S with Kahlerian

structure (/δ

α, gba) be immersed as a complex analytic hypersurface of a complex n-
dimensional Fubinian manifold M with Kahlerian structure (F/, Gμ\ it is necessary
and sufficient that functions hba and fa given on S satisfy equations of Gauss,
Codazzi and Ricci (C2), (C3) and (C4). Then the 1-st fundamental tensor of S, as
a submanifold of Λf, is gδα, the 2-nd fundamental tensors are hba and &&α and the
third fundamental tensor is ld and the solutions include 2n2+n arbitrary constants.

On the other hand it is well known that a Fubinian manifold M admits the
Lie group of analytic motions of dimension 2n2-\-n.

Thus we have

THEOREM 2.1. Let S be a complex in—1)-dimensional simply connected Kahlerian
manifold with Kahlerian structure (/, g) and M a complex n-dimensional Fubinian
manifold whose curvature scalar is given by n(n-{-Y)Cy c being given in (C4). We
assume that there are given differentiable functions hba and la satisfying (C1)-(C4),
then there exists a complex analytic immersion ξ from S to M which makes S a
complex analytic hypersurf ace of M having the induced structure (/, g), the second
fundamental tensors h and —fh and the third fundamental tensor L Moreover, S
is uniquely determined up to analytic motions of M.

§ 3. Totally geodesic submanifold in a locally Fubinian manifold.

In the previous two sections we have studied complex analytic hypersurfaces
in a (locally) Fubinian manifold. In this section we consider a little more general
submanifold in a locally Fubinian manifold. The notations and terminologies in
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§§ 1 and 2 are used also in this section.
Let M be a Kahlerian manifold of real dimension 2n and S6) a connected,

orientable submanifold of M whose real dimension is 2n—2. We shall restrict
ourselves to a sufficiently small neighborhood in which there exist two fields of
unit normal vectors to S. First, we fix two normal vector fields C and D to S
which are mutually orthogonal. It is well known that a Riemannian metric g on
S can be induced from the Riemannian metric G of M. We denote by <, > the
inner product with respect to G and by (,) the inner product with respect to g
Now we put, for a tangent vector X on S

(3.1) F(BX)=T(X)+N(X),

where T(X) denotes the tangential part and N(X) the normal part of F(BX). Since
T(X) is tangent to S, we may put

(T(X),BY)=(AX, F),

A being a tensor on S of type (1,1) and Fan arbitrary vector on S. On the other
hand N(X) is expressed as

N(X)=ά(X)C+β(X)D,

where ά and β are 1-forms on & If we define a 2-form Λ by

Ά{X, Y)={AX, Y)

for any pair of vector fields X and F on S, then we have, denoting by F the
fundamental 2-form of M,

(3. 2) Ά(X, Y) - F(BX, B F).

(3.3) ά(X)=F(BX,C)

and

(3.4) β(X)=F(BXtD)

for any vector fields X and F on S. (3. 2) shows that Ά is a skew-symmetric
bilinear form. We define ||«|| and \\β\\ respectively by

and

where a and β are contravariant tensors of degree 1 defined by (a,X)=ά(X) and
(β,X)=β(X) respectively. Then we have by direct calculation

6) We here use an identification of a differentiate manifold 5 with ξ(S), where £ is
a differentiate immersion from S into M, whose differential B: Tp(S)->TξCp)(M) is injectiye.
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/Q r-\ II 119 1

(3.5) N I 2 = 1

and

(3.6) \\β\\2=l

Thus we have

IMIΉIfll2,

which implies

LEMMA 3.1. If ά(X)=0 at a point p for any vector X on S, then β(X)=0 at
p, and vice versa.

In the case in which ά(X) is identically zero for any X on S, S should be invariant
under F. O'Neil [2] and Smyth [4] dealt with this case in detail.

We assume, from now on, that there is at least one point at which | |α|| is not
zero and therefore \\β\\ is not zero either. In such a case it would be interesting to study
the function P(C, D) appearing in (3. 5) and (3. 6). F(C, D) seems to depend upon the
choice of a pair of unit normal vector fields C and D, but it is not hard to show
that F(C, D) is independent of the choice of C and D.

A straightforward computation shows that

and

(3.8) (α,j8)=0,

where / is the unit tensor. For the rank of A which is a (2n—2)x(2n—2) matrix,
one proves

LEMMA 3. 2. The rank of A^

REMARK. Lemma 3. 2 implies that if the rank of A is not maximal, then it
is 2^—4, because it is even.

Proof of Lemma 3. 2. In this proof we put m=2n—2 for simplicity. Let us
denote by TP(S) the tangent space to S at p and define a subspace TP'(S) of TP(S)
by Γ1,

/(S)={y€Γp(S)|F(57)€Γ2,(S)}, then V must satisfy

(3.9) (F,α)=0 and (F,/3)=0.

Conversely, any vector VeTp(S) satisfying the equation (3. 9) belongs to TP'(S). On
the other hand (α, β)=0. Thus we have
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where dim means the real dimension. When (άΛβ)(X, F)=0 for any pair of vectors
X and Y belongs to TP(S), we have ||α||=||j8||=0 and thus TP'(S)=TP(S). This
shows that the rank of A equals to m, because A2 V= — V for any vector belonging
to TP'(S).

If we suppose that the rank of A is less than m, then there exists a point p
at which | |α| |^0. Then the orthogonal complement of TP(S) is the linear space
Tp"(S) spanned by a and β, since ||/3||^0 and (a, β)=0. There exists γeTp(S) such
that

(3.10) Aγ=0 and

by our assumption. For such γ we have, by putting f=Bγ,

Ff=(a,γ)C+(β,ΐ)D,

which means that γ has no part belonging to TP'(S), that is γeTp"(S). Thus γ is
a linear combination of a and /3. We put

(3.11) γ=aa+bβ,

where either a or b can not be zero.

On the other hand, straightforward computations give

(3.12) Aa=-F(C,D)β

and

(3.13) Aβ=F(C,D)a.

The equations (3.10)~(3.13) give

from which we have

(3.14) F(P,D)=0 at p.

Thus we have

(3.15) Aa=Aβ=0 at p.

Since Lemma 3.1 guarantees that ||/3||^F0 at p, the equation (3.15) shows that the
rank of A^m—2. On the other hand, the equations (3.10) and (3.11) imply that
an arbitrary vector γ which annihilates A is a linear combination of a and β. This
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concludes that the rank of A is exactly m—2.
When | |α|| vanishes at p, then the submanifold S is invariant under F at p.

Thus we call such a point an invariant point. The equation (3. 5) shows that F(C, D),
as a function on S, attains its maximum or minimum at an invariant point. We
note that an invariant point is a critical point of the function F(C, D). Therefore,
if we assume that a submanifold S to be compact, then the maximum and the
minimum of F(C, D) are attained on S. Furthermore, if there are only two invariant
points on a compact submanifold S, then S is homeomorphic to a sphere (Reeb).

On the other hand, the rank of A equals to m at an invariant point, but it is
not true that a point at which r(A)=m is an invariant point, where m=dim S and r(A)
denotes the rank of A. For one of the simplest examples, let us consider a 4-
dimensional sphere S4 in the β-dimensional Euclidean space E6 which is to be a
Kahlerian space in usual way. We assume that S4 lies in a hyperplane of E6.
We can easily verify that invariant points of S4 are only the southern and the
northern poles and the points at which r(A)=2 appear along the equatorial sphere.
The other points of S4 are non-invariant points of r(A)=4:.

REMARK. If the rank of A equals to m—2 at a point p, then A satisfies
AB-\~ A=0 at p. Furthermore, if the rank of A is constant on the whole submani-
fold, then S is either invariant surface of M or a so-called /-surface of rank m—2.
(For an /-structure, c.f. Nakagawa [1] and Yano-Ishihara [6].)

Before going further with an /-structure, we observe how the properties assigned
on S and on the enveloping manifold M behave for the rank of A. We assume,
in the rest of this section, that M i s a locally Fubinian manifold and S is totally
geodesic in M. Then the next lemma is the result of direct computations.

LEMMA 3. 3.. F(C, D) is constant on S.

We here consider the case in which there is at least one point p at which
for some X on S and c^O. We have

LEMMA 3. 4. a defined above annihilates A and thus so does β.

Proof. Since S is totally geodesic, equations of Codazzi, given in § 0 in the
most general form, are written as

(3.16) ά{V)(AW, Y)-(a, W)(AV, F)-2(α, Y)(AV, W)=0

and

(3.17) β(V)(AW, Y)-(β, WXAV, Γ)-2Q3, Y){AV, W)=0

for any vectors Yy V and W on S.
For a vector V which satisfies α(F)^=0, let us define a bilinear form on 5 as

Lv(W, Y)=ά(V)(AW, Y), where Y and W belong to TP(S). By virtue of (3.16),
we have
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Lv(W, Y)=(a, W)(AV, Γ)+2(α, Y)(AV, W).

We further define, with the aid of Lv, a tensor of type (1,1) by

(LVY, W)=LV(W, Y).

Taking trace of Lv, we have Aa=0, since A is skew-symmetric. The same method
gives Aβ=0, if we take account of (3.17).

We noted before that (α, β)=0 and the rank of A is at least m—2, so there is
no other γ which annihilates A and linearly independent of a and β.

By virtue of Lemmas 3. 3 and 3. 4 together with (3. 9) and (3.11), we have the
following

LEMMA 3. 5. F(C,D)=0 on S, if there is at least one point p at which ά(X)
does not vanish.

We further prove

LEMMA 3. 6. Let there be at least one point p on S at which ά(X)^0. Then
2n, the real dimension of M, is 4 and TV(S) and NP(S), the normal space to S at
p, are transformed under F into each other.

Proof. The composition of A with Lv gives a tensor Lv

r of type (1,1) such
that {Lv'W, Y)=((LvA)W, Y). This is also written as

(LF'TΓ, Y)=ά(V){(β, W)(β, Y)+(a, W)(a, Y)-{W, Y)},

if we take account of (3.16) and (3. 7). Let us compute the trace of Lv' taking
account of (3.16), (3. 7), (3. 6) and (3. 5). Then we have

ά(F)(w-2)=0.

Thus we have

m-2=0,

since m=2n—2 and α(F)#0. From this it follows that n=2, NIH|/3| |=1 at^and
FC, FDGTP(S). Consequently we see that Mand S are 4-dimensional and 2-dimensional
respectively and the rank of A is zero. Therefore we have

(3.18) F(BX)=ά(X)C+β(X)D. q.e.d.

Such a submanifolds, i.e. such that F(BTP(S))=NP(S), is said to be anti-
holomorphic (Yano-Ishihara [6]).

(3.18) is written as
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by virtue of (3. 8). The fact that | | α | | 2 = l on S shows

FC=-Ba.

The similar computation gives

FD=-Bβ.

Forming the inner product with itself in (3.18), we get

(3.19) g=ά®ά+β®β,

if we take account of (1. 3).

Summing up results of this section we have the following

THEOREM 3.1. Let M be locally Fubinian manifold of complex dimension n and
S a totally geodesic submanifold of M of real dimension 2n—2. Then the case in
which S is not complex analytic occurs only when n=2.

% 4. Totally umbilical submanifolds in a locally Fubinian manifold.

In this section we investigate a totally umbilical submanifold S in a locally
Fubinian manifold M. We assume, throughout this section, that dim M— dim S=2.
A submanifold S is said to be umbilical at a point py if there is a vector H
perpendicular to TP(S) for which the normal part of VψX (see (0. 5)) at p is ex-
pressed as (X, Y)H at p, where X and Y are arbitrary vector fields on S and
( , ) is the inner product with respect to the induced metric on S. A totally
umbilical submanifold is a manifold which is umbilical at any point of the mani-
fold. By the definition of a totally umbilical submanifold, there exist differentiable
functions p and σ on S for which we have

(4.1) (hX, Y)=(X, Y)p and (kX, Y)=(X, Y)σ,

where X and Y are arbitrary vector fields on S. It is well known that an invariant
submanifold of Kahlerian manifold is minimal and then there exists no invariant
submanifold which is totally umbilical except a totally geodesic submanifold. A
similar result is obtained for a totally umbilical submanifold in a locally Fubinian
manifold which is not invariant. We have

THEOREM 4.1. Let M be a locally Fubinian manifold of dimension 2n whose
curvature scalar is not zero. Then there exists no totally umbilical submanifold of
dimension 2n—2 such that the vector field H appeared above does not vanish on
the whole submanifold.

Proof. Let there be given a totally umbilical submanifold S of dimension 2^—2
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in M. We use here again (3.1)

F(BX)=T{X)+N(X\

where X is an arbitrary vector field on S. Since S is not invariant under F, N(X)
is not identically zero on S. Equations of Gauss, Codazzi and Ricci for a totally
umbilical submanifold in a locally Fubinian manifold are written as

j )-(W, Y)(V,X)+(AW,X)(AV, Y)

(4. 2) -{AW, Y) (AV, X)-2(AW, V) (AY,X)}

=K(W, F, Y,X)-(P*+σ>){(W,X)(V, Y)-(W, Y)(V,X)h

j{ά(W)Ά(V, Y)-ά(V)Ά(W, Y)-2A(W, V)ά(Y)}

(4. 3)
=(F, Y){ Wp-σl(W)} -(W, Y){Vp-σl(V)},

j {β(W)Ά(V, Y)-β(V)Ά(W, Y)-2A(W, V)β(Y)}

(4. 3)'
=(F, Y){Wσ+pl(W)}-(W, Y)[Vσ+pl(V)}

and

(4. 4) j{β(W)&(V)-a(W)β(V)-2φΆ(W, V)}=2(dl)(W, F),

respectively, where φ=F(C,D). By a similar method as used in Lemma 3.4 we
have respectively from (4. 3) and (4. 3/

(4. 5) Wp=σϊ(W)- 4 ( 2 ^ _ 3 ) φβ(W)

and

(4. 6) Wσ=-pI(W)+ ^

if we take account of (3. 9) and (3.11). On the other hand, (3. 3) and (3. 4) show

(4.7) Wφ=-pβ(W)+σά(W),

from which we have

(4.8) ^
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The integrability conditions of (4. 5) and (4. 6) are respectively

(4.9) 2(dp)(W, V)= 4 ( 2 ^ ! 3 ) i-2φA(W, V)+ά(V)β(W)-β(V)ά(W)}=0

and

(4.10) 2(dσ)(W, V) = Λίl
HCP

Q, {-2φΆ(W, V)+ά(V)β(W)-β(V)ά(W)}=0,

where dp and dσ are exterior differential forms constructed with p and σ respec-
tively. These are also written as

(4. 9)' (dp) (W,V)= 2^13 VI) (W,V)=0

and

(4. 10)' (dσ) (W,V)= 2 ^ 3 (dl) (W, V)=0

by means of (4. 4).
On the other hand p2-\-σ2 does not vanish by our assumption that H has no

zero point. The constant c being non-zero, we have, from (4.10) and (4.10)'

β(W)ά(V)-ά(W)β(V)-2φΆ(W, 7)=0.

We have, from the equation above together with (3. 5), (3. 8) and (3. 9),

from which we further have

(4.11) (l-φ2)(3φ2-l)=0.

There is no point at which both 1—φ2 and 3ψ2—1 vanish. On the other hand, it
can be shown that φ is not constant if we take account of (4. 7) and the assump-
tion that S is not invariant under F. Therefore, (4.11) is impossible. q.e.d.

REMARK. We see, from (4. 8), that p2Λ-o2 is not constant when c is not zero.
However, the equation of Gauss shows that a totally umbilical submanifold S of a
Fubinian manifold having zero curvature scalar is of constant curvature. The
curvature scalar of S is of course positive. Thus, if we assume that M is com-
plete, then S is compact (Bonnet). Since S is even dimensional, it is simply con-
nected (Synge). Therefore S is isometric to a sphere. If we further assume M to
be flat, then the vector field X defined by
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passes through some fixed point o, where ξ is the position vector of S from the
origin of M. In fact, differentiating (4.12) along S we have, for any vector
F o n S,

FYX=O,

by means of (0. 5), (4.1), (4. 5) and (4. 6). On the other hand, distance from o to
any point of S is (p2+σ2)~1/2 which is constant. Thus we have a proof of a well
known

THEOREM 4. 2. Let Mbe a flat Kάhleήan manifold^ of dimension 2n and S a
totally umbilical submanifold of M whose dimension is 2n—2. Then o is a sphere
of radius (p2+σ2)~1/2

The case in which p or σ has zero point but is not identically zero is rather

complicated and we leave the discussion of this case for the future.
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