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ON AN ADAPTIVE PROCESS FOR LEARNING
FINITE PATTERNS

BY YASUICHI HORIBE

1. Introduction.

It may be possible to state that pattern recognition belongs to a broad concept
of classification. When an abstract organ or system is exposed to a sequence of
elements from a specified set of stimuli or patterns, one of the important features
for the organ's recognition problem is the mechanism of adaptive learning of stimulus
classification.

Specifically a certain trainer teaches the organ if it has correctly responded to
the current stimulus. Therefore the trainer may be considered in a simple case as
a function of input stimulus and its corresponding output response.

It is desirable to find a class of functions of this type which leads the organ
to a successful classification of stimuli, whatever the initial state of the organ.
Trained step by step under a stimulus sequence by a successfully leading trainer,
the organ becomes ultimately to classify the set of stimuli correctly at least to a
satisfactory degree. Hence the convergence of organ's state will be an interesting
problem.

We shall consider, in this paper, for a class of linear trainers some aspects of
the convergence problem, which assure the potentialities of the model formulated
here.

2. Formulation and definitions.

Suppose that an organ is given a finite set of stimuli: S={1,2, ••-,&+/}, which
is pre-dichotomized into positive class S+ and negative class S~ such that

After the perception of each stimulus, it is encoded possibly by a random method
into a binary ^-sequence, i.e. a vector with n components of 0 or 1. In other words
the set S is mapped into the set of all 0 or 1 component vertices of the unit hyper-
cube in the ^-dimensional Euclidean space. Therefore we have for stimulus j its
code fj=(σij, ~',<rnj), where σZJ=0 or 1, for f=l, •••, n and j=l, ~,k+l, and /j is
the transpose of column vector f3.

Although elements in the code set F={fi, •• ,Λ,Λ+i, •• ,/*+ί} are not necessarily

Received June 6, 1966.

43



44 YASUICHI HORIBE

distinct, it is not inconvenient to assume to regard them as formally different from
one another, hence we may call f3 itself stimulus fJt and also sets F+={flf •••,/&}
and F~={fk+i, ••-,/*+*} may be called positive and negative classes respectively.

DEFINITION 1. Classification function ξ is a mapping: F—>{1, —1} defined as
follows: £ ( / ) = - 1 if / e F + and - 1 if fsF~.

DEFINITION 2. Random stimuli xt at times t—0,1, ••• are random vectors which
are mutually independent, each taking values in F independently with pre-assigned
probability distribution for every t=0,1, •••.

DEFINITION 3. The initial state w0 of the organ is an arbitrarily fixed column
vector with n components.

DEFINITION 4. The state wt at time t of the organ with initial state w0 is a
random column vector defined by the following recurrence relation:

where we put ζt=ζ(xt) and dt=wίxt—0, τ(u,v) is a real valued function of two
variables u and v which is called trainer of the organ, and Θ is a fixed real number
called threshold value.

Since we assume that the organ which is in state wt at time interval [t—l,t)
receives stimulus xt at time t, we have:

ASSUMPTION 1. wt and xt are independent for any t=0,1, •••. By this as-
sumption it is not confusing to wright (1) as:

(1)* Wt+i=Wt+τ(ξ,w'tx—θ)x,

t being omitted for ξt and xt.

DEFINITION 5. The response of the organ consists of 1, —1, and * which are
determined by the current stimulus xt, the current state wt, and θ as follows: 1 if
J t >0, —1 if 4 < 0 , and * if 4 = 0 , where * means don't care.

DEFINITION 6. The solution space S(θ) for θ is the set of all column vectors
w with n components such that w'f>θ if feF+, and w'f<θ if feF~. Therefore
the solution space forms an open convex set determined by k+l hyperplanes in n-
dimensional Euclidean space.

3. A class of linear trainers.

The class of trainers {τa;a>0} considered in this paper is essentially owed to
B. Widrow introduced in [2], having the following linear form: τa(u,v)=u—av.
Hence we have from (1)* that

(2)
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The behavior of the organ in the case that α=0, i.e. the trainer disregards the
organ's responses is called forced learning [1].

Now let us see how the organ is trained by τa.
(a) The case XQF+.

Then ? = 1 . If the organ incorrectly responds, i.e.

—d=w'tx—θ<0, then Wt+i=wt(l+ad)x.

If, however, the organ correctly responds, i.e.

d=w'tx—θ>0, then wt+i=wt+0-—<χΔ)x.

(b) The case xeF~.

Then ξ=— 1. If the organ incorrectly responds, i.e.

d=w'tx—0>O, then wt+i=ιvt—(l+ad)x.

If, however, the organ correctly responds, i.e.

—Δ=-wf

tx—#<0, then wt-i=wt—(1—aΔ)x.

In either case a stronger reinforcement is performed in incorrect response rather
than in correct response.

4. Martinez's necessary and sufficient condition for the convergence of the
expection of wt.

The first step for considering the validity of the trainer τa is to investigate
the convergence of the expectation of wt, when £-*oo.

A proof of the theorem stated at the end of the section, which is due to
Martinez [2], will be given here but with more succinctness.

If we define the n X n random matrix X such that its (£, ;>th element is the
product of z-th and /-th components of x, we can easily rewright (2) as:

(3) wt+i = (ξ+aθ)x+(I-aX)wt9

where / is the identity matrix.
By assumption 1, X and wt are obviously independent for any t~0,1, •••, so

taking expectation E on both sides of (3) results in the following simple vectorial
recurrence equation for mt\

(4) mt+i=a-\-AaMt, t=0,1, •••,

where we put mt=E(wt\ a=E(ξx+aθx), Aa=I—aA, and A=E(X).
Note that expectation of random matrix (including random vector) is understood

as elementwise expectation. Note further than m0 is equal to initial state w0.
The solution of the differance equation (4) is

( 5 ) tnt

We are interested in the convergence of mt, when £—»oo, regardless of what initial
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state is a starting point of the training.
Now we know that the necessary and sufficient condition for Ai to converge

to zero-matrix 0 when t—>oo is that every eigenvalue of A« is less than unity in
absolute value. Hence we impose that maxi^<^ \γi\<l, where γlf i=l, - ,n, are
eigenvalues of Aa. Since Aa=I—aA, the set of equalities: det (A«—γiI)=0, i=l, ~',n,
may be rewritten as det (A—((l—γt)/a)I)=0, ί = l , -- ,n. Therefore (l—γO/ce, ί = l , •••,«,
are eigenvalues of A. If (l—γτ)/a^0 for some i, then fti^l, since α>0. Hence we
necessitate the condition that all eigenvalues of A are positive, i.e. A is positive
definite. In addition if we choose a such that a<2/λ(A) where λ(A) is the largest
eigenvalue of the positive definite matrix A, then we have that

max |1—aλi\ = max \γt\ <1,

λly i=l, - ,n, being eigenvalues of A.
Therefore the necessary and sufficient condition for ^4«^0, when t—>oo, is that

A is positive definite and 0<a<.2/2(A).

Note that A is non-negative definite, i.e. either positive definite or positive semi-
definite, since for any vector v'=(vu •••,#«), we have that vfAv=E(Σι=iViXi)2^:0.
A simple example shows that positive definiteness of A can not always be valid.

In conclusion we have the following theorem, since maxi^i^n | f ΐ |<l ascertains
the convergence of the series:

THEOREM 1. When t-^oo, mt converges independently of the initial state w0 if
and only if A is positive definite and the constant a satisfies that 0<α<2/Λ(^4).

Henceforth we shall always be under the following assumption:

ASSUMPTION 2. The matrix A defined above is positive definite.

5. A note on an upper bound for λ(A).

The largest eigenvalue of a non-negative matrix, i.e. the matrix whose elements
are all non-negative, is the so called Frobenius root of the matrix. By the well
known theorem of Frobenius [3], for non-negative matrices Aι and A2, it follows
that λ(Ai)^λ(Aώ if A{^,A^ where λ(Ai) and λ(A2) are Frobenius roots for Λi and
A2 respectively, and the order relation for matrices is defined if the same order is
preserved componentwise.

Since every element a^ of A is obviously seen to satisfies that O ^ α ^ ^ l , if we
denote by E the nxn matrix whose elements are all unity, then we have A^E,
therefore we have that λ(A)^kλ(E)=n1 since it is readily seen that

Note here that A*?E, which will be remarked in section 7.
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6. Possibility for the limiting value of mt to be a solution, for the case of
uniform probability distribution.

If we denote by nioo the limiting value of mt when ί—>oo, then by (5) we have:

(6) moo={I-Aa)-λa=—A~1a.
a

Consider now whether πioo itself is a solution, i.e. whether πio^Siβ) for some Θ
and α, where β is any real number and a satisfies that 0<<*<2/Λ(A).

Only for simplicity we consider the special, yet interesting case of uniform
distribution, i.e. yrob{x=fj) = ll{k+t)=p for every j=l, •••,&+/.

Since we easily have that E{ξx)=pf1-\ {-pfk—pfk+i Pfk+i and E(x)
=Pfi+'-+Pfk+Pfjc+i + -JrPfw, it follows that

(7) a=p((l + aθ)f1 + ' + a+aθ)fk + (-l+aθ)fte+1+'''+(-l+aθ)fk+ι^

If we denote by Q the nx(k+Γ) matrix whose j-th column is fJf and by Qi the z'-th
row of Q, therefore

then it follows that the matrix A may be of the form of

where (i,j)~th component of G is the inner product of vectors g* and q3. Hence
the transpose of (6) results in, since A is symmetric,

( 8 )

Now consider the homogeneous linear equations with n-\-2 unknowns Wi,~ ,wn

= 0 ,

(9)

where we put 0i = — θ—I/a and v2=— θ+l/a. The system (9) may be rewritten as:

σlkWi + Λ-OnkWn +V\ = 0 ,
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If both sides of this equation are multiplied by Q[, i=l, '~,n, we have that

W'G=^(fί+ :+f'Jc-fί+1 fί+ι) + θ(f>+...+fί+fί+1+...+fί + l)

hence

(10) i

where wf=(wu ~',wn).

a

LEMMA 1. If the system (9) has a solution: {w*, 0*, I/a*} such that l/α*>0,
then we have that w*£S(θ*).

Proof. Obvious.

LEMMA 2. / / the system (9) has a solution: {w;*,0*,l/α*} such that l/α*>0,
then for the θ* and α* of this solution, m

Proof. The conclusion is immediate from the comparison of (10) with (8).

Denote by Q the (k+l)x(n+2) matrix formed by coefficients of (9), hence

Q= 0

0

0

0

1

Note that
We now examine sufficient conditions for m^ to be a solution for the following
possible cases.

( I ) The case rank Q=n+2.
Then the system (9) has at most zero-solution, w1 = ' '=wn=v1=v2=0, therefore it
is impossible to have that l/α>0.

(II) The case rankQ=n+1.
If we know the system (9) has a solution such that #i=Si^s 2=#2, then we can
choose a arbitrarily such that 0<a<2/λ(A), and we have that m^Sifl), where
#=((si-f s2)/(si—52))(l/α). Otherwise it is impossible to have that l/α>0.

(III) The case r a n k ζ W ^ .
Then components vλ and v2 of the general solution of the system (9) may be
written as:

(ID
V\ — S\λ\ -\ 4" Sn-r+2^n-r
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where λt, i=l, •••, n—r+2y are arbitrary, and sz and s£, i=l, , n—r+2, are fixed.
We call the matrix formed by the coefficients of (11) s-mαtrix, L. Then if rankL=2,
it is easily seen that we can choose two numbers λ and μ arbitrarily such that
λ—μ>λ(A), so than we have α=2/(λ~μ) and Θ=(λ+μ)l2, for which m^Sφ). But
if r a n k L = l , and if v1=s1^S2=v2, then the situation is the same as the case of (II).

In conclusion we have the following theorem:

THEOREM 2. / / the rank of s-matrix is 2 in the case that rankQ^n, then for
arbitrarily chosen numbers λ and μ such that λ—μ>λ(A) we have mO0^S{θ)i where
a=2l(λ-μ) and θ=(λ+μ)β.

If the rank of s-matrix is 1 in the case that r a n k ζ ^ z, or if r a n k Q = ^ + l ,
then the existence of the solution of the system (9) such that v1=Si^s2^=v2 assures
that mco€S(0), where a is arbitrary such that 0<a<2/λ(A) and 0=((si+s2)/(s1 — s2))(l/a).

7. Standard deviation of wt.

Let us focus our attention on an investigation of the magnitude of the expected
deviation of wt from its mean mtf since it is necessary to examine the possibility
for wt to become a solution.

First we assume that:

ASSUMPTION 3. prob {#=/,}>0 for any j=l, •••, k+l.
The relation (3) may be written as: wt=XaWt-i+z, where Xa=I— aX, z=(ξ+aθ)x.

Hence by Minkowskii's inequality we have that

(12)

By (12) we shall estimate £Ί|^ί | | 2, where | |^ί| | means the usual norm of wt in the
n-dimensional Euclidean space.

Now the question is whether it is possible to choose a constant p such tnat
0<p<l, so that the relation E\\X«wt\\2^pE\\wt\\2 holds independently of t. For this
purpose we need the following set of lemmas 3,4,5,6,7,8.

LEMMA 3. Let the n-dimensional random vector w take finite vector values
with an assigned probability distribution, and let the nXn random matrix Z which
is independent of w take finite matrix values also with certain probability distribution.
If E(Z) is non-negative definite, then we have that E(w'Zw)^0.

Proof. Let us put prob {w=hi}=pi^0 for ί = l , •• ,iV, pλ-\ hpN=l, and also
w/=(wlf ',Wn)» Denote by zi3 the (i,j)-the element of Z. Then we readily have
that

E(w'Zw)=E(Σ
\hJ

=Pi Σ hilhj1E(zij)+-+pir Σ hiNhjNE(Zij)

=p1h'1E(Z)h1+' - +pNh'NE(Z)hN^0 q.e.d.
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Denote by U the set of all ^-dimensional vectors of unit length, i.e.
U={e;\\e\\=l}.

LEMMA 4. We have M^2(A)^m, where M=maxetue'Άe1 m=mineςu e'Ae, and
Ά=E(X2).

Proof. We first note that for symmetric matrix B the maximum and the
minimum of e'Be under eeU, whose existences are due to the compactness of U
and to the continuity of e'Be on U, correspond to the maximum and the minimum
eigenvalues of B respectively. Indeed, for example, from l=mmesue'Be it follows
that l=e'Be for some e~€ U and I^kefBe for all eeU, hence e'(B—H)e=0 and
e'(B—lI)e^0 for all esU. Therefore B—II is positive semi-definite. Hence B—ll
has at least an eigenvalue equal to 0 and non-zero eigenvalues are all positive.
Since for any eigenvalue λ of B—Π we have det (#—(/+Λ)/)=0, / is the minimum
eigenvalue of B.
Therefore it is obvious that λ(A)^m. To prove that M^λ(A) it is only to show
that Ά^A, since M is the Frobenius root of A (see section 5).

The O',i)-th element άi3 of Ά may be written as: άZJ=E(Σk=i XiXkXkXj)=E{xiXjr)J

where we put r=Σk=ixl=Σk=iXk whose possible values are 0, 1, •••, n, and
x'=(xlf --,Xn). Hence it is readily seen that άij^E{xiX3)=ai3, atJ being the O',i)-th
element of A. Therefore we have Ά^A. q.e.d.

LEMMA 5. We have 0 < w < l .

Proof. First remark that O ^ α ^ l , ι,y=l, ••-,«.
For some i we have au<l. (By a similar discussion it may be proved that

0<au for all i = l , •••,«.) Indeed, suppose that au~\ for all i = l , •••, n, then
ff«=/>iff*iH \-Pk+ισ2ik+ι=l, h e n c e b y a s s u m p t i o n 3, σil=~-=σik+ι=l, i = l , •••,»,
therefore # ^ = 1 , z,/=l, •••,?*. We know from section 5 that 4̂ is positive semi-
definite, contradicting the assumption 2. We have, therefore, for some i, au<l. If

ω
we choose (e*)/=(0, •••,0,1,0, « ,0)€ί7, we have (e i ) / ^*=««<l» hence m < l . Since
A is positive definite it is clear that 0<m. q.e.d.

LEMMA 6. Any element in the set of pairs (a, p) satisfying 0<α<2/Λ(̂ 4) and
p^Ma2—2ma-\-l makes E(pl—X2

a) non-negative definite.

Proof. WehΆvεE(pI-Xl)=E(pI-(I-aXf)=-(l-p)I+2aA-άίA. Let denote
by v an eigenvalue of this matrix. Then we have that for non-zero vector b,
(—(l—ρ)I+2aA—a2Ά)b=vb. Multiplying bf on both sides from the left, we have

-a-ρ)\\l>\\2+2a(b'Ab)-a2(b'Άb) = v\\b\\2.

If we put b/\\b\\=e€U, then the above equality reads as:

- (1 - p)+2a{erAe) - a\ef Ae)=v.

By lemma 4, we obtain v^— (1—p)+2ma—Ma2 which holds for any eigenvalue v
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of the matrix cited above. Hence every pair (a, p) satisfying the following ine-
qualities:

0 < α < ^

makes the matrix E(ρl—X2

a) non-negative definite, q.e.d.

The above statement in lemma 6 can be made a little precise by the following
lemma.

The discriminant of the quadratic equation: Ma2—2ma-\-l—0, is m2—M which,
by lemmas 4 and 5 is negative, and in addition it follows that mjM<ljλ{A). Hence
be lemma 6 we have:

LEMMA 7. // we denote by R the set of all pairs (α, p) satisfying l>p
^Ma2—2maJrli then any pair (α, p)ςR makes E(pl-Xl) non-negative definite.

Note that every pair (a, p)eR satisfies that 0<a<2/λ(A) and 0<p<l.

LEMMA 8. We have that E\\XaWt\\2^pE\\wt\\2 for any pair (a, p) in the set R.

Proof. By lemma 3 and 7 we obtain E(w't(Ip—X2a)wt)^:0, hence the con-
clusion, q.e.d.

From lemma 8, for every pair (α, P)GR, (12) may be put into the form of

*AE\\wt\\2^*/~p~Λ/E\\wt-i\\2+π where π=»/E\\z\\2. Therefore we have

When t^oo, we obtain

If we put Dt=VE\\wt—mt\\2, then we have

D\=E{{w[-m[){wt-mt))=E\\wt\\2-\\mt\\2.

In conclusion we have the following theorem:

THEOREM 3. / / the mean mt of wt converges independently of the initial state
iVo, then for any pair (a, p) satisfying 1>p^Ma2—2ma-\-l (M and m being defined
in lemma 4), the standard deviation Dt of wt has the following bound'.

hence



52 YASUICHI HORIBE

The author is much indebted to Professor K. Kunisawa for his help and
encouragement.

REFERENCES

[ 1 ] BLOCK, H. D., The perceptron, a model for brain functioning. Reviews of Modern
Physics 34 (1962), 123-135.

[ 2 ] MARTINEZ, H. M., A convergence theorem for linear threshold elements. Bulletin
of Mathematical Biophysics 27 (1965), 153-159.

[ 3 ] NIKAIDO, H., Mathematical methods of modern economics. Iwanami Shoten,
Tokyo, (in Japanese)

DEPARTMENT OF MATHEMATICS,

TOKYO INSTITUTE OF TECHNOLOGY.




