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SOME TAUBERIAN THEOREMS FOR STOCHASTIC PROCESSES

BY HIROHISA HATORI AND TOSHIO MORI

1. In this paper some Tauberian theorems for a class of stochastic processes
will be proved. We shall give the theorems in the form including also an Abelian
result.

2. We state first the following

LEMMA. Let {ocx(t)) λ$Λ} be a class of complex-valued functions of bounded
variation in every finite interval, and assume for every XQA that

= \ e-stdax{f)
Jo

converges for s>0. If ax(t) are uniformly bounded in every finite interval of t and
if there exists a positive constant γ such that

(1) ]im t-raz(f)=

uniformly in λsΛ, where Ax is bounded on Λy then

( 2 ) Mm srfx(s)=Ax
s-»+0

uniformly in λ$Λ. Conversely if there exist constants K and f >0 such that for
every XGΛ the functions Reax(t)+Kf and lmax(t)-}-Ktr are non-decreasing in0^t<oo
and if (2) holds uniformly in λzΛ with Ax bounded on Λ, then (1) holds uniformly
in teΛ.

The proof of this Lemma will not be given here, since it is similar in the
main to the proof of well-known Tauberian theorem (see [1]).

3. We shall now prove the following

THEOREM 1. Let {X{t)\t^} be a stochastic process such that ^X(t)dt exists
for every finite T>0, and assume that there exist positive constants M and γ such
that \/E{\X(t)\2} ^Mf-1 for every t>0. Then a necessary and sufficient condition
that

(3) U^Tζχm =

is that
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(4) Li.m.
s->+0

where

L(s)=[
Jo

e-stX(t)dt

Proof, Note that for proving our theorem it is sufficient to consider the case
Y—0. Otherwise, indeed, we may consider the stochastic process {Xi(t);t^0}f

where X 1 (0=X(0-{Ar)}" 1 ^ r " 1 ^. We note further that by the assumption we
have

oof oo
(5) E{\srL(s)\2}=s2r\ \ e-ste-sτE{X(f)X(τ)}dtdτ^(MΓ(γ))\

Jo Jo

and

(6) E\\ T-7[TX(t)dt\\ = T-2ΐ[T[TE{X(t)W)}dtdτ^(Mr1)2.
I I Jo I j Jo Jo

Hence by Schwarz's inequality

(7) \EWL(s)W)}\^l

(8)

and

(9)

First we suppose that (3) holds with F = 0 and prove (4) with Y=0. It follows
from (5) and (9) that

(10) limE\srL(s)T-r['X(f)dt
T [ J

\srL(s)T-r[T'
[ Jo T-*oo Jo

=lim T~r[TE{srL(s)X(t)}dt=0
T J

uniformly in s>0. It can be seen from (7) that the class {a8(t);s>0} of functions
as(t)=Ϊ&E{srL(s)X(τ)} dτ satisfies the conditions of the first part of Lemma with
i4;=0. Hence we have that

(11) lim σr[°°e-σtE{srL(s)W)}dt=lim E{srL(s)-σrL(σj}=0

σ->+0 Jθ σ->+0

uniformly in s>0, and therefore we have

(12) UmE{\srL(s)\2}=0

which implies (4) with Y=0. Next we suppose that (4) holds with F = 0 and prove
(3) with Y=0. From (6) and (9) we have that

(13) lim E\srL(s) T-r[Tχ(τ)dτ
s^+o [ Jo

=lim s
*-»+o
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uniformly in Γ>0. From (8) we see that the conditions of the second part of
Lemma are satisfied with Ax=0 by the class {aτ(t); T>0} of functions

Hence

(14) lim T'-r[ E\x(t)'T-r[χ(τ)dτ\dt= lim E\ Γ'- rΓ X(t)dt- T-r[χίj)dτ\ =0
Γ'-oo Jθ I Jo J T'->oo I Jθ Jo J

uniformly in Γ>0, and therefore we have

(15) UmE\\T-Λ X{t)dt\ =0,
Γ-oβ I I Jo I J

which implies (3) with Y=0. Thus our theorem is proved.
It follows immediately the following

COROLLARY 1. Let {X(t);t>0} be a stochastic process such that ίξX(t)dt exists
for every finite T>0, and let E{\X(t)\2} be bounded for mθ. Then a necessary
and sufficient condition that

(16)

is that

(17) lim s 2 Γ f V s i*r s>0f, τ)dtdτ=0,
s->+0 J J

where

p(t,τ)=E{X(t)X(τ)}.

We state the discrete analogue of Theorem 1 in the following

THEOREM 2. Let {Xn)n^l} be a sequence of random variables and assume
that there exists a constant γ>0 such that n2~2rE{\Xn\

2} is bounded for n^l. Then
a necessary and sufficient condition that

(18) LLm. » - ' Σ •&=
n->co n = 1

is that

(19) UsrL.(l-s)riist

s-»l-0 Jc = i

Proof Define a stochastic process {X(t);t^0} by X(t)=Xn for n^
where X0=0, and apply Theorem 1.

COROLLARY 2. Let {Xn;n^l} be a sequence of random variables. Suppose
that E{\Xn\*) is bounded for n^l. Then a necessary and sufficient condition that

(20) l i jn .—Σ-Xi=0
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is that

(21) l i m d - s ) 2 Σ P*,ιsk+ι=θ,
s->l-0 k,l=l

where

REMARK 1. When γ>l, the assumption in Theorem 1 that
for every t may be weakened. In fact, we have the result of Theorem 1 under
the assumption that >jE{\X(t)\2} ^Mil+f-1) for every t.

REMARK 2. In the case p=0, we have also theorems analogous to Theorem 1
and Theorem 2.

REMARK 3. The weak law of large numbers for the class of weakly stationary
processes follows from our theorems. In fact, let {X(f);t^0} be a weakly stationary
process, and let p(t)=E{X(t+τ)X(τ)} be its covariance function with spectral repre-
sentation

p(t) = Γ e*"dF(λ),
J —oo

where F(λ) is the spectral distribution function of {X(t);t^0}. Then we have that

2 f O O f ° O -St _Sr f Γ°°
Jo Jo [ J -

dF(λ)

-dF(λ)

converges to zero as s-»+0 if and only if F(λ) is continuous at λ=0. Hence by
Corollary 1, (16) holds if and only if F(λ) is continuous at λ=0. The discrete
analogue is obtained in a similar way.
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