ON THE BIAS OF A SIMPLIFIED ESTIMATE
OF CORRELOGRAM

By Mrruak! Huzi

§1. Introduction.

Let X(#n) be a real-valued weakly stationary process with discrete time para-
meter #. For simplicity, we assume EX(7)=0.
We shall denote

EX(n)?*=ot and EX(m)X(n+h)=00n
and consider to estimate the correlogram p, when ¢? is known. We assume X()

to be observed at n=1, 2, 3, -+, N, ---, N+A. Usually, we use the estimate

= P

1] X
F & L, X0)X(u+1)

for the estimation of ps. 7. is an unbiased estimate of pn.
We have shown that when X{(x) is a Gaussian process,

- N
- x/%% 1 2 X0r) sgn (X(u--5)

2|

is also an unbiased estimate of pn, where sgn(y) means 1, 0, —1 correspondingly as
y>0, y=0, ¥<0, and we have evaluated the variance of y» ({31, [4]).

In this paper, we discuss the bias of the estimate y, when the assumption
that X(») is a Gaussian process is not satisfied. For a class of stationary processes,
which are not Gaussian, we shall show the bias of y» and its properties.

§2. Stationary processes which deviate from a Gaussian process.

In this paper, we shall assume a stationary process X(#) which deviates from
a Gaussian process to be as follows.

Let X(n) be, furthermore, a strictly stationary process and f(x, y) denote the
probability density of the joint distribution of the variables X(#) and X(n-+4).
Clearly, f(x, v) does not depend on #. We have
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EX(n)y=EX(n+h)=0, EX(n)3?=EX(n+h)>?=a?
and
EX(n) X(n+h)=a%ps.

Let @y(x, y; 0% o%pn) denote the probability density function of the two-dimensional
Gaussian distribution function with the mean vector

(. )
o*on e )
Now, we shall assume that f(x, y) satisfies

= (" Fiz, v)
) S S_wmdxdy<+oo.

—o0

Let us use the notations

L2<R>={ o@; |7 @rta< oo

and

Lo(RY)= { Iz, y);glgw 7z, y)dxdy<+00}.

—co

Then the condition (1) can be written as

flz, ) 2
N/¢2($, Y, 0'2’ O-ZPh) GLZ(R ),

Now we shall make two random variables
Un)=X(n)—pn X(n+h),
Vin+-h)=Xn-+h)

and treat these random variables U#) and V(n-+4) instead of X(#) and X(n+h).
Clearly we have

EUn)V(n+h)=0.
Corresponding to the above transformation, we change the variables as follows:

u=x—0o1Y, v=y.
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By this transformation, we assume f(z, ¥) is transformed into f(«, ).
Let us denote

Dy(x, 0%)= %w e e,

Then we find
Dy(z, y; o7 Uzph)=¢l(u: *(1—pu2):(v, o%)

and the condition (1) can be written as

= (7 F2(u, v)
(2) S_mg_w D, (u, 02(1—‘;0};2))@1(1), o) dudy <+ o0,
that is
w0 LR,

N Oi(u, a*(L—pr))n/D:(v, 0%

§3. A complete orthonormal system of L.(R?).

Here we shall prepare for an orthogonal development of the function which

belongs to L.(R?).
We assume that H,(z) represents the Hermite polynomial defined by the relation

._4_. ®—xY2—(_1)n —-z3/2 —
<dx ) e =(—1)"Hy(x)e n=0,1, 2, --).

H,(xz) is a polynomial of degree #, and we have
Hy(z)=1, Hi(z)=z, H(x)=2*—1,
H;(x)=x*—3z, H(zx)=2'—62243,
Then, as is generally known, the system
11

is a complete orthonormal system on (—oo, 00):

Hy(x)e=="/4 ]

1 L e _{ 1 for m=n,
NZINA J%S_mﬂ”(”)Hm(x)e dz = 0 for m=n

(m; n:O) 1, 2; "')~

We write

oul, 1)= 7%%(@ Vo@D (1=0,1,2, .
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Some properties of the Hermite polynomials are as follows:

(@) Ha(x) is an even function of = for £=0, 1, 2, ---.

(b) Hyi(x) is an odd function of z for £=0, 1, 2, ---.

©) Hiii(®)—zH(x)+EkHi-1(z)=0.
Now let us define ¢m,n(x, 1; ¥, 1) by

dm. (@ 1 ¥, D=¢u(x, Dealy; 1) (m, n=0, 1, 2, ---).
Then the system
{¢m, o(z, 15 v, 1)}

is a complete orthonormal system of L.(R?).

§4. An orthogonal expansion of f(u, v) derived from the two-dimensional
Gaussian distribution.

In this section, we shall discuss an expansion of f(#,v) by orthogonal func-
tions which are induced in §3. The two-dimensional Gaussian distribution plays a
leading part in this expansion. We consider f(#,v) to be slightly different from
the two-dimensional Gaussian distribution function, that is, @:(#, ¢*(1— 0,%))®:(v, d2).

In accordance with the section 3, we define ¢y, ¢ (%, o8/1—p1% v, 0) by

S 1 1 S
G, ot an/1—p1% v, 0)= me< o N/i%f)r/q\'i’ ffa(%)«/ D(u, 6*(1—p1*))P:(v, 6°).

Then {¢p. (%, o8/1—pn2%; v, 0)} is a complete orthonormal system of L.(R?).
Now, by the condition (2), we have

S(u, v) o
N Os(u, a*(1—pn"))P:(v, 0°)

so we can find the expansion such that

S, 0) —=1.im 58 ap. v, q(tt, o8/ 1—p% 0, 0)
'\/Ql(u! 02(1_‘017,2))@1(1), 02) P‘,(é—)oo’p,q:ﬂ poar? alh On’ 0, 0),

€ L:(R?),

where

_ S(u, v) 3,
ap.q*SS N ozzf_ﬁz)’)’@;@;;z)‘sf’p.q(% an/1—pr% v, o)dudv

=t W () () e et

In the above expression, we find
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ay, 0= ng(u, v)dudv=1,

e LR L

5 v BV

= ot i (85 1)

o[ 5 - ERD
e A

N (C73) ——
N O, (L= )Ps(0, 0*)

lim. [,\/@1(11 o*(1— ,0h2))‘D1(U, o)+ 2 ap, P, (W, 0'\/1 on’; v, U)]
£ s
§5. An orthogonal expansion of (14 p.v)sgn (v).

At the beginning, let us arrange our discussion. The essential point of our
discussion is to evaluate the value of EX(n)sgn(X(n+7%)). Now, the value of
EX(n)sgn(X(n-+#)) is as follows:

EX(n) sgn (X(n-+ 1)) — SSx sen (9)f (@, v)dady

= S S(u+pnv) sgn (0)f(u, v)dudv.

The function (#4 pxv)sgn (v) does not belong to L:(R?. But by the condition (2),

, Sw,0)
VO, 7 1L—pi%) &/ Pi(0, 0*)

belongs to Lx(R?%). So, let us express the above value as follows:
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EX(n)sgn (X(n+h)= S S(u +on0) sgn (v) f(u, v)dudv

= S S(%‘i‘th) sgn (v) o/ D:(ut, 6*(1—pu?)P:(v, %) - NZAT U'Zé(—iy :325@1(1;02) dudv.

Then both

(o) SEn O it Ao, o and 7 Dy

belong to L.(R?).
Here we shall discuss an orthogonal expansion of the function

(u+pn) sgn )/ G1(u,0*(L— p12)) D1 (v, %).

As this function belongs to L.(R?%), we can expand this function by the orthogonal
system

{¢r, 1, on/T= 1% 0, 0)}.

We consider that this expansion is

K L
(utpuv) sgn @/ Ciw, o (1= p*)P(w, 0%) == Lim. 22 2 Ck, e, (1, o8/ 1— 1% 0, 0).

k=01=0

Now we have

Cr, 1= S S(u+pnv) sgn ()N Di(w, 0*(L— 0n2)D1(v, 6°) i, W, o/ 1T— 1% v, o)dudv

_ 71;,'171__‘8 S(”+ puv) sgn (y)Hk<—(;:/ff—;);—2>Hz <%)(I)l(u, o*(1— 0P, (v, o¥)dudv

= :/_k_%/TS Su sgn (U)Hk<ﬁ>m (—i—) Dy(ut, *(L—022)P1(v, o®)dudv

u

e fosem (v)Hk(W—ijp?)H(%)@mu, (1= p?) 010, *)dudo.

The first term of the above expression is

Tt e OB ()0 oH0=00200.0 oty
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et o [ 2o

1 v . .
on/1=py '\/(?"—rﬁ"'SSgn (v)HZL,1< - )Q%(v, o®)dv, k=1, [=2{+1 (=0, 1, 2, --.),

0, otherwise.

The second term is as follows. As stated in §3, it holds

o) {2 (2).

Using this relation, we have

Sl —-TSSvsgn(v)Hk< A= )m( )., 1= 9200, o)

L/kAS (aJl >Q§1(u, o*(1— p;ﬂ))du} ;—/17——!Svsgn(v)f./}<—(z:—>¢1(v, Jz)dl)}

| Gimg) e =

=4 X{JT Ssgn(v)H'm( ) 10, a®)dv+ «/ = Ssgn (v)Hl_1<—i—)<I)1(v, uz)dv’, =1,

p"{ s S <a~/1 —pn

)dmu, oHl—po?) )duHSle@l(v a)dv} /=0,

ohglvla%(v, o9, k=0, =0,
0no «—/T;T{ Ssgn(v)Hz ,+1(—(vj—>¢>1(v, a®)dv
:'ﬁ N
+@sen i, (L)o, o] k=0, 1= 2D,
0, otherwise.

Therefore we find
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onglvl@l(v, o®)dv, k=0, I=0,
1

’MWW[ sgn(v)Hzm(%)@l(v, o®)dv

k1= +<21)Ssgn<v>Hz]_l(%)@(v, 02>dv}, E=0, =2  (j=1),

S 1 . .
o/ T=pr Wgsgn@)mm(%)@l(v, A, k=1, [=2i+1 (i=0),

0, ortherwise.

Consequently we have

(u+ prv) sgn )N/ Oi(%, o*(1— pn)Da(v, 0%)

= Lim. {«/% A UN/f:DZi§ v, 9)

K,L—
K S L -
+ Z Co, 2iP0, 2:(%, 0’«/1_0%2; v, 0)+ 206'1.21+1§/11, 2041(%, 0'/\/1—0h2§ v, 0)f-
1=1 1=
§6. Evaluation of the bias of the estimate y,.

Using the results in §4 and §5, we shall, in the first place, evaluate the value
of EX(n)sgn (X(n+h)).

EX(n)sgn (X(n+/) = SSx sen ) (@, v)dady

= SS(%-HW) sgn (0)f (%, v)dudy

= S S(u+phv) sgn (0)n/ Du(u, 0*(1—p1")D:(v, 0°) LD azﬁu_ Ziz)ﬁl(v’ o) dudv

= lim SS{\/—% Upngl'}o,o(u, O'/\/l—pnz; 0, 0‘)

Bg
K o z o
+ 23 co, 26500, 25(4, on1=pi% v, 0) + 2061, 214191, 2i+1(%, U'\/l_th; v, 0)]
1=1 1=

e P,e S
X {¢0. o(2t, UN/l"'PhZ; v, o)+ Zoap,qS/’p.q(“’ U\/l—th; v, 0)}d”dv
D,q=

g3
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. '2_ S oo
= “n_—O'Ph‘l‘ Z:Co.ziao.zz'l‘ 201'21-:71611,2“1-
=2 =1

So we have

7z 1
\/% v EX(n) sgn (X(n+h)=pon+ \/— {Z Co, 210, 2+ Z C1, 214101, 2L+1}

This means

B = 2 y/-5- - BX) sgn (Kn-+)

w1 2
=pon+ \/ {Z Co, 2ilo, 2+ D3 €1, 20101, 21.-(~1}-

=1

Therefore the estimate y, has the bias

1
«/-ZZT— T{ZCO 210, 21,+Z(11 214141, ZHI}

=2

THEOREM 1. When a strictly stationary process X(m) satisfies the condition
(1), the estimate yn of on has the property:

E(‘fh) =Pn +blu

where by, is the bias and

_7? 1 o oo
b= 5 —{Z(Jo,ziao,zi-l- 2(31.2L+101.2H~1}-
g |(,=2 =1

§7. Some properties of a, , and the relations between a,,, and moments.

In this section, we shall consider the relation between @,,, and moments, and
also the relation between a,,, and Gaussian properties.
Now,

If f(u, v) is the probability density of two-dimensional Gaussian distribution func-
tion, U(»n) is independent of V(h-+4). So we have clearly the following facts:

LemMa 1. When the joint distribution of Un) and V(n-+h) is two-dimensional
Gaussian distribution, we have
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{1 for p=q=0,
ap,q=
0 for px0 or q=0.

LemMMA 2. If the joint distvibution of Un) and V(n+h) is Gaussian, the joint
distribution of X(n) and X(h—+h) is also Gaussian. And the converse is also true.

LemmA 3. When X(n) is a Gaussian process, we have
{ 1 for p=0 and q=0,
Ap, ¢=
0 for px0 or g0,
and 1, is an unbiased estimate of pn.

LemMmA 4. When X(n) is a strictly stationary process, ap,q depends only on .

Now let us put

M. 1= EURYVn-+hy— SSukvlf(u, )dudy
and

my, 1= EX(n) X(n-+h) = S Sx"ylf (x, y)dzdy.

Clearly we have
My, 1=my, 1.
Let
Biws, @s, -, )

denote a linear combination of w;, ws, -+, ws—; and ®; with constant coefficients.
Then we have the following result.

LemmA 5. It holds
A2k, 2z=a§’f(Mo,o, My, oy ooy Mo, 21, Mz, o, Mz, 2, oy Mz, 21, +++, Mok, 0, Mok, 2, +++, Mak,21),
dzk,2L+1=d§’f+1(Mo, 1 Mo,s, ttty Mo,2l+1, M.l; Mz, 3 """ M2,21+1, ttty Mzk, 1 Mzk,s, ttty Mzk,zl+1),
Aok+1, a=a My, 0, My, 2, -+, My o1, My 0, My 2, -y My, 01, -+, Maki1,0, Magi1,2, -+, Moki1,20),
and
dzk+1,zu1=d§'fﬂ(M. 1 My, s, ey My, s, Ms, 1, Ms, s, -+, M, 2141,
) M2k+1, 1, M2k+1. 3 "' M2k+1. 2l+1) (k; l=0, 1, 2: )
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As we have seen in the above, the bias of the estimate pj; is

w12 =
bh=«/~h —{Z Co, 2io, 20 Z C1, 204101, 2111
2 0 [,=2 1=1

and this shows that the bias is affected only by {ao, 2} and {@i, 2.1}.
Now we have

Mo, 21 ="M, 21="M21, 0

and
M, s1.1=EUG) Vi i+ = ECX00) — on XOr4- ) X(n-- 3
=EX(n) X(n+h)* ' — pn EX(n+h)* 2 =my, 5141— 0rMo, 21+2.

So we have

@o, 22=0a3;(Mo, o, My, s, -, My, 2)
3

=a3 (Mo, o, Mo, 2, **+, Mo, 22)

and

a, 2i+1=a§i+1(M1. 1, Muys, <oy My, 2041)
@

=0 (M1, 1, M1, 5y *++y M1, 2541, Mo, 2, Mo, 4, ***, M, 2142)s

Examples.

Qo, 6= ,\/‘T P M, s—‘—4Mo,4+ ;Z‘Mo 2—15
1 1 15 45
=7—"—!‘(‘F Mo Ly Mo, s+ —5 Mo 2—‘15>
1 1
= :/:'<_o? Mo, 6— —7 Mo 4—|-30>,
1 1 3
G ~/*!<o4~/1—ph2 T T 1)
1 1
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1 1
= —-:!: m(—,ﬂhmo, 4 +m1' 3),

1 1 10
:7ﬁ<06~/1~pn2M1’5— M)

. I 100, + 1 10 "
= —UGN/-ltrhzmo’G 0_4/\/1?‘0]127}’20,4 UGN/TT,OILémLs 04,\/'1‘-:—‘6;2 1.3).

When X(#) is a Gaussian process, it holds

My, 0=Q2k—1) 1! M¥,=QE—1) mk,

and
K+1

M;, 2141=0, that is, m1,2k+1:|0hm0,2k+2:(2k+1) 1 OnMMoyp .

Then, we have
%1, Mo, 2, -+, Qi=1) 1! Mi)=ad1, mo, o, -, (2—=1)1 mé)=0

and
aéi+1(0; 0’ ) 0)

= (0o, 2, 3 ot g, <o, Qi1 o3t mig o, 3W M, -, (2i4-1) W mi}Y)

=0

By the above results, we can say as follows:

THEOREM 2. If X(n) is a strictly stationary process satisfying the condition
Q) and if ay,2=0 jor i=2 and ai 2:1=0 for i=1, yn is an unbiased estimate
of pn. @o,50 and @1,241 can be expressed in the form of (3) and (4) vespectively.

If 0,02, and 2 2,42, are sufficiently small in comparison with |pxl, Eys is ap-
proximately equal to pn. As we have stated in the above, a,,4 is related to the
coefficient of excess. Let us consider the situation in (%, v, z)-space. The value of
@, s gives a measure of flattening of the frequency curve on a section paprallel to
the (v, z)-plane. a,,.. will have a meaning similar to o, + On the other hand,
a1, 241 gives a measure of the two-dimensional asymmetry.

The other features of the frequency surface, e.g. the one-sided asymmetry, etc.,
do not influence the bias of the estimate 7x.

Like the bias, will be a problem the effect on the variance of 7z, when X{(x)
deviates from the Gaussian process. This problem will be treated by the method
similar to the above. We shall treat this subject in the future.
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