ON FRAMED f-MANIFOLDS

By Hisao NAKAGAWA

Introduction.

We have studied, in a previous paper [10]°, properties of submanifolds in a
space, almost complex, complex, almost Hermitian or Kaehlerian, and introduced the
concept of framed f-structure in a differentiable manifold. A framed f-structure is
defined as an f-structure satisfying a particular condition. The purpose of the
present paper is to study the almost complex structure determined canonically in
the product manifold of two given framed f-manifolds.

We shall recall in §1 the definitions of an f-structure and a framed f-structure,
and their fundamental properties for the latter use.

In §2, we shall show that, in the product manifold of two framed f-manifolds,
ie., of two differentiable manifolds V and V admitting framed f-structures, there
exists canonically an almost complex structure determined by the framed f-structures
on the given two framed f-manifolds. We prove that the almost complex structure
on the product manifold V'xV is complex analytic if and only if the framed f-
structures on the given two framed f-manifolds V and V are normal. In the last
part of §2, several properties of a framed f-manifold will be studied in metric
cases.

§3 is devoted to the study of groups of automorphisms of framed f-manifolds
and to the proof of a theorem that, in a compact differentiable manifold admitting
a framed f-structure, the group of all automorphisms is a Lie transformation group,
if the framed f-structure is normal.

§1. f-structures.

Let V be an n-dimensional connected differentiable manifold of class C~ and
let there be given, in the manifold V, a non-null tensor field f of type (1, 1) and
of class C> satisfying the equation

(AR Fi+f=0.

We call such a structure an f-structure of rank r when the rank of f is constant
everywhere and is equal to 7, where 7 is necessarily even [14]. A manifold is
called an f-manifold when it admits an f-structure.

If we put
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I==f*  m=f*+1,
where 1 denotes the unit tensor, then we have
I4+m=1, =], mi=m, Im=ml=0.

These equations mean that the operators / and m applied to the tangent space at
each point of the manifold are complementary projection operators and there exist
in the manifold complementary distributions L and M corresponding to the operators
I and m respectively. Then the distribution L is »-dimensional and M is (n—7)-
dimensional.

Concerning the relations between the structure f and the projection operators
! and m, we have [14]

{ fl=if=f, Sm=mf=0,
(1.2

A=~ Pm=0.

We denote by fu, I;7 and m/® components of an f-structure and the projection
operators / and m, respectively. Let V be an #n-dimensional manifold admitting an
f-structure of rank . Then, in the manifold V, there exists a positive definite
Riemannian metric tensor ¢ satisfying

Ors [ +myi= g,

where ¢;; are components of the Riemannian metric tensor ¢ and we have put
mji=m; 9. We call a structure defined by such a pair (f, g) an (f, g)-structure of
rank v. A Riemannian manifold admitting an (f,g)-structure is called an (f, g)-
manifold (Yano [14]).

In an f-manifold V, the Nijenhuis tensor N;” of an f-structure of rank # is
by definition

(1.3) Nit=fi Ve fir—fVo f =W fir =V "

where ¥ denotes covariant derivation with respect to a symmetric linear connection.
The Nijenhuis tensor Nj;* does not depend on the symmetric connection involved.

We suppose that there exists in each neighbourhood a coordinate system in
which an f-structure f on an f-manifold has numerical components

0 -1 0
FH=(1 0 0},
0 0 0

where 1; denotes the #X¢ unit matrix, r=2¢ being the rank of f. In this case, the
f-structure is said to be integrable. Ishihara and Yano [6] have proved the following

2) The indices i, 7, --- run over the range 1,2, -+, %,
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THEOREM A. A necessary and sufficient condition for an f-structure lo be
integrable is that

Nji"=0.

In a differentiable manifold V admitting an f-structure f of rank 7 the sel of
all tangent vectors belonging to the distribution M corresponding to the projection
operator » has a bundle structure, which will be denoted by M(V), where M(V) is
a vector bundle of (z—#)-dimension over the manifold V. We assume now that
in the vector subbundle M(V) of the tangent bundle there exist #—# contravariant
vector fields f,® spanning the distribution M at each point in the manifold V¥ and
n—r covariant vector fields f* such that f2(fy)=dy and f*41=£,&Qf?, where ®
denotes the tensor product. In such a case, the ordered set {f,} of contravariant
vector fields fy is called an (#—r7)-frame. The set (f, {fy}, {/*}) of the structure f,
an (n—r)-frame {f,} and an ordered set {f*} of covariant vector fields f* is called
an f-structure with complementary frame or briefly a framed f-structure. We
denote it by (f,fy, /). When a manifold V' admits an f-structure with comple-
mentary frame, it is called an f-manifold with complementary frame or briefly a
framed f-manifold.

In a framed f-structure of rank 7, the projection operator = is expressed as
m=f,Qf¢. We have easily the following equations

(L9 [i==14+1QS", =0, [:UX)=0,  [f<(f))=0y,

X being an arbitrary vector field in V.

Let V be an wn-dimensional differentiable manifold admitting a framed f-
structure of rank 7. We have proved in [10] that the product manifold of V and
an (n—r)-dimensional Euclidean space E» " admits an almost complex structure.
The components of the Nijenhuis tensor of the induced almost complex structure
defined on VX E"»" are denoted by Sy", Si% S, Sp° and S, Then S’s are the
tensors defined on V and are given as follows:

St =Fi Ve[ —fiVef =W f =V SV AW o f =V S 0) "
Sjit=fiVrf 2= [V f 25— 1 fi7 =V i) f

(L.5) A Spt=—f Ve SV

Sp=fyVef etV oy [,

S =LV 1 —Fy V",

7 denoting the convariant differentiation with respect to a symmetric linear con-
nection, where f,* and f, are components of the contravariant vector field f, and
the covariant vector field %, respectively. Concerning the tensor S’s, we have

3) The indices x, ¥, --- run over the range 1,2, -+, n—7.
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THEOREM B. If the tensor S;i* wvanishes idenlically, then so do the olher S's.
(Nakawaga [10])

§2. Product of two framed f-manifolds.

Let V be an n-dimensional differentiable manifold admitting a framed f-structure
2=(f,fy, f*) of rank » and V an #-dimensional diffrentiable manifold admitting a
framed f-structure 2=(f, fu, f?) of rank 7, where we assume #—7r=7%—7 in this
section.

We take sufficiently small open coverings W of ¥ and & of V by coordinate
neighbourhoods. If we denote by {7} and {°} systems of local coordinates of U,
inWon Vandof U,in i on V respectively, then {»" 7%} may be considered as
a system of local coordinates of open sets U, x U, of the product manifold VxV
and moreover the collection {U, ><U1} of all such open sets U, x U, is an open
covering of ¥VxV. We denote this open covering of V'xV by Uxil.

We take two intersecting coordinate neighbourhoods (Us, ") and (U, 7*) in V
and two intersecting coordinate neighbourhoods (U, 79 and (U, 7*) in V. We
assume that the coordinate transformations are given by

7/11.’: vh’(?j),n
and
7 =77

in U.N Vs, and_[7 N0, respectively. Then the coordinate transformation in
(U xU)N(UxxUs) is given by

=" (1),
@ 1) o
7%'=7"@").
For the framed f-structures T=(f, fy, f*) and E=(F, fu,f?), we put
2.2) Fo=f, Fo= _.fylf_yc, Fib:f-ybfyu Fcb:]?cb

in every coordinate neighbourhood of Uxi{l. Taking account of the coordinate
transformation (2. 1), we see easily that

Fy FY
i
I )
4) In this section, the indices run over the range as follows:
i e 1,2 e m,
z,y, - L, 2, n—r,

@, b, ntl, e ntn,
A B, 1,2, 0,041, oo, ndn.
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defines a tensor field on the product manifold VxV. Making use of all equations
in (1. 4) and the definition (2.2) of F¢8, we have

FpPF = —08,

that is, the tensor field F¢” is an almost complex structure on VX V. We call
such a structure F the almost complex structure induced on VXV by framed f-
structures 2 and 2. Thus we have

ProrosiTiON 2. 1. Let V be an n-dimensional differentiable manifold admitting
a framed f-structure of vamk v and V an #-dimensional differentiable manifold
admitting a framed f-structure of vank 7. Then the product manifold VXV admits
an almost complex structure induced by the framed f-structuves of V and V, if
n—r=n—r.

Let V be an n-dimensional differentiable manifold admitting a framed f-structure
of rank . We know that the product manifold VX E» " admits an almost complex
structure induced by the framed f-structure. If the induced almost complex struc-
ture is complex analytic, then we say that the given framed f-structure is normal.
(Cf. Ishihara [5], Ishihara-Yano [6] and Nakagawa [10].) In order to obtain the
relation between the normal framed f-manifolds V, V and the induced almost
complex manifold V'xV, we shall prove the following

ProrosiTiON 2.2. A mecessary and sufficient condition for an framed f-
Structure to be movmal is that the tensor S;" vanishes identically.

Proof. We suppose that a framed f-structure is normal. From the definition
of normality, the induced almost complex structure on VX E*" is complex analytic.
The property is equivalent to the fact that the Nijenhuis tensor of the almost
complex structure vanishes identically. Consequently all the tensor S’s vanish
identically. By making use of Theorem B, we get

jih: 0.

Conversely, if we suppose that S;*=0, then it follows from Theorem B that
the Nijenhuis tensor vanishes identically. This implies that a given framed f-

structure is normal.
We now calculate the Nijenhuis tensor of the almost complex structure F defined

on VxV induced by framed f-structures 3 on ¥ and 3 on V. Then the Nijenhuis
tensor MNept is given by

Nopd=Fo?V g Fpt— Fp®V g FoA—(V ¢ Fg%—V pFcP)F 4.

Making use of the definition (2. 2) of the tensor F, we calculate components of the
Nijenhuis tensor by grouping the indices in two groups (j,--) and (&0, ).
Taking account of the definition (1. 9) of the tensor S’s on V and S’s on V induced
by the framed f-structures ¥ and Z respectively, we get
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N, =S;",

M= FroSy +Fof ViSer,
Rer = —Fo"Ser™+ Foe f 1S
Rjit= F 22857+, f 1S,
Re®= — 11 Sey+ Foef 278",
Rep?=Ser"

2.3) 4

We suppose that given framed f-structures on V' and V are both normal.
Since the tensor S's on V and S’s on V vanish identically by virtue of the defini-
tion of normality, we get

Nept=0.

Conversely, we suppose that the induced almost complex structure on VXV is
complex analytic. From the first and the last equations of (2. 3), we get

Sj*=0, §cb“=0,

from which by Proposition 2. 2 the given framed f-structures are normal. Thus
we have

THEOREM 2.3. Let X and £ be framed f-structures on differentiable manifolds
V and V, respectively. Then a mnecessary and sufficient condition for 3 and I to
be mormal is that the almost complex structure on VXV induced by 3 and Z 1s
complex analytic.

We suppose that V=V and ¥=2Z. It follows that 3 is normal if and only if
the almost complex structure on VXV induced by 2 is complex analytic. Com-
bining this result with the property of normality stated previously, we get

COROLLARY. In a differentiable manifold V admitting a framed structure
of rank v, the following three conditions ave equivalent to each other:

(1) the tensor Sy"™ vanishes identically,

(2) the almost complex structure on VX E™ " induced by X is complex analylic,

3) the almost complex structure on VXV induced by X is complex analytic.

Next, let 7 and_I7 be differentiable manifolds of dimension # and 7%, respective-
ly. _Let (2, 9) and (2, 9) be framed (f, g)-structures of rank » on V and of rank 7
on V, respectively. We put

2. 4) 1= i, Goo=0cs, Gj=0, Ge=0

in every coordinate neighbourhood of U x 1. Then
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Gji Gjb
Gep=
Gcz Gcb

defines a Riemannian metric tensor on the product manifold 7' V. For the tensors
F in Proposition 2.1 and G induced on VXV by the given framed (f, g)-structures
(X,9) on V and (2,9 on V, we get from (2.2) and (2. 4)

GeplePFpP=Gos.

Since F is an almost comglex structure, this shows that (F,G) is an almost
Hermitialn structure on V'xV. Vze call such a pair the almost Hermitian structure
on VXV induced by (2,¢) and (2,7). Thus we get

ProrosiTiON 2. 4. Let V be an n-dimensional differentiable manifold admilting
a framed (f, g)-structure of rank v and V an #@-dimensional differentiable manifold
admitting a framed (f,g)-structure of rank 7. Then the product manifold VXV
admits an almost Hermitian structuve induced by the given framed (f,g)-structures
on Vand V, if n—r=n—r.

In the rest of this section, let ¥V and V be differentiable manifolds admitting
framed f-structures (%, ¢) and (Z,§), respectively. Differentiating covariantly the
both sides of (2.2) with respect to the Riemannian connection {44} determined by
G defined by (2. 4), we get easily

V,Fr=V,f.",
V=0,

Vil =—Ful, f,
VoFyt=—f/ "V ft,
ViF=fy"V ,f "
VeFso=fvil e fy,
ViFye=0,

VeFpr= _cf-b“,

@.5)

where 7 in the left hand sides of (2. 5) denotes the covariant derivation with respect
to {&)} on VXV, ¥V and ¥ in the right hand sides denote the covariant derivations
on V and V respectively. Making use of the first, the third, the sixth and the
last equations of (2.5), we get

{VCFjC':V]fiJ‘I‘fyi?cf-yc,

(2. 6) .
V()[’wa:chbc“‘fbeny]'

These equations imply that an induced almost Hermitian structure is almost semi-
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Kaehlerian, ie., VeFs®=0 ([1], see for example Yano [15],) if and only if
Vi fo+fule frr=0,

2.7 _ -

Ve for=f1l,f7=0.

Thus we get

ProposITION 2.5. Let (2, ¢) and (Z,§) be framed ( 1, 0)-structures on 'V and V,
respectively. The;_i a necessary and sufficient condition for the almost Hevmitian
structure on VXV induced by (2, q9) and (£,§) to be almost semi-Kaehlevian is that

the equations (2.7) are valid.

In the framed (f, g)-manifold we put
7. 1 r].s 7.8 *()rs 1 r].s 7S 73S
Oji= 5 (Ul =151+, Oii= 5 Urle+fifi),  *FO5=050i—1712,

where / is the projection operator. Making use of the properties of framed f-
structure, we see that the operators O, *O and #O satisfy the following relations:

O+*0+%0=1,

0-0=0, *Q *Q=%*(), $0-40=10,

0*0=*00=0, 0¥0=%00=0, *O¥0=*4%0*0=0.

The equations show that the operators O, *O and #O are complementary projection
operators. We denote by O, *O and #O the similar complementary projection
operators in the framed f-manifold V. On the contrary, the operator *O with
respect to the induced almost complex structure on VXV is given by

*08g= — OB+ FotFi),
(See for example Yano [15].) Thus, we use the same letter *O in a framed f-manifold
as in an almost complex manifold. ~
Calculating *OZ3FV g Fp# in the almost complex manifold VXV and making use

of (2.6), we get the following components:

1 o - o= o
*ORPY £ o= 5 @O0V o [T e fih =L VoS *i S Tt FoT o),

1 - - U
*OE,DVEFth ‘2" [—fyrfycfisyrfsh+fjrfycfzi7rfzh"‘fyzfzhfccfydycf‘zd],

1. . R
*ORPY nF "= - [— Fou(@0-HOYAT o ff —f 1, f o Fot¥ o),

1 — JE - =
(2. 8) *OCEDDVEFDh: —2_[_‘th(2*0+#0)2g76fxd ‘f‘fyﬂfzbfyrfzsprfsh]»
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. 1 .- o=
*ORPT Pt [ @ROHRONT [ o5t Vo [ TV e f ],
1 T - -
*OZDVEFD(’L: ’2—[fyi(zo‘]'#o)ggVefyd—‘fycfzafyrfisVrfxs],

1. - - 2 = = = [
YOV £F 0= 5 [ FUof s i Fy Vo fos—f0, Fo Fool ootV Fof FotV e o),

1 e~ = - o= o
*OfbDVEFDa: *5[(2*0+#O)ggVefdu'"‘fccfbecfya‘l‘fycfzbfxufyrfzsyrfxs]-

We suppose that the almost Hermitian structure on VXV induced by (2, ¢)
and (Z,§) is an almost *O-structure i.e., it satisfies *OZBVzFp4=0. (Kotd [7]. Seec
for example Yano [15].) Then, by definition, all the left hand sides of (2. 8) vanish
identically. Transvecting the second equation of (2.8) with f*f,¢ and f*fnfs°
respectively, we have

2.9 fyV- =0, J?ydﬁbl?xd: _zbfzefydﬁefzd'

Next, transvecting the seventh equation of (2.8) with f,/f.% and fi/f®.f." re-
spectively, we have

(2.10) FoVefo=0,  fV o=l f ST oS s

It follows from (2. 9) and (2. 10) that

2.11) Fo P f7s=0, 74,275 f2a=0.

Substituting (2. 9), (2. 10) and (2. 11) into (2. 8), we get

2.12) {(2*0+*‘0)§§ Vefst=fifviv.ry", (2*(?+*(?)3§li efi 0= Foe 1oV o f o,
@*O+HO7 =0, @*O+0)%7 o f1a=0

for any z and y.

Conversely we assume that framed (f, g)-structures (2, ¢) on V and (Z,§) on V
satisfy (2.12). Transvecting the third and the last equations of (2. 12) with £’ and
Fu® respectively, we get

fzjij‘”z:-O; ]?wcﬁc]?yb=0-

Similarly, transvecting the first and the second equations of (2.12) with /7 and
Fu® respectively, we have

fzjVinhIO; f-wcﬁcf_ba':o.

Substituting four equations above and the assumption (2. 12) into the second mem-
bers of (2.8), we see that all second members of (2.8) vanish. Consequently we
get
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*OFW g Fpt=0.
Summing up, we have proved the following

ProposITION 2. 6. Let (3, 9) and (Z,7) be framed (f, g)-structures on V and V,
vespectively. The;z a necessary and sufficient condition for the almost Hermitian
structure on VXV induced by (3,q) and (Z,§) to be an almost *O-structure is that
the expressions (2.12) are valid.

We suppose that a framed f-structure satisfies
2.13) Q*OHROVEP o f =7V 1", QFO+RO)HV [ =0
for any x. Then we get
(2.14) *O3l o f=0,  *O5V.f7s=0

for any x. In fact, transvecting the first equation of (2.13) with /7 and taking
account of properties of the projection operator /, we get

*OUV s =0.
The second equation of (2.13) can be explicitely rewritten as follows:
VifostfifsVef=s=0.

From this equation the second of (2. 14) is easily obtained.
However (2. 14) is not a sufficient condition.
Given attention to (2.5), we can prove the following results:

ProroSITION 2.7. Under the assumptions in Proposition 2.6, a necessary and
sufficient condition for the induced almost Hermitian structurve to be almost Tachi-

bana is that the equations
Vinh‘i‘szJh:O: ﬁCJ?baL"“l?bJ?ca:0,
V,f"=0, V.f:2=0  for any y and z
are satisfied.

Proof. For an almost Tachibnana structure F, which satisfies V¢Fpt+V plici=0
(Tachibana [13], see for example Yano [15]), it follows from the first and the last

equations of (2. 5) that
ViV, =0, 7cfb"+7b]?c“=0.

Making use of the second and the third equations, we get
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0=V F+VFl=0—FVl, £,
from which we have
V,f"=0 for any y.

By a similar method, the result required is obtained. By virtue of (2.5), the
converse is evident.

ProposiTION 2. 8. Under the assumptions in Proposition 2.6, a necessary and
sufficient condition for the induced almost Hermitian structure to be almost
Kaehlerian is that we have

Ve fig=0,  Prefsar=0,
Ve, f73=0, Vief =0
Sfor any x and y.
Proof. If we put
VeFg®-Gra=VcFpa,
then we heve, from (2. 4) and (2. 5)
ViFn+ViFn+VaF =V fin+Vfri+Vnfi,
VeFinAT FretVuFei= Fyoll o f =P nf ),
Ve For+V s FnetVnFoy=~fyu(T e f Vo~V f Vo),
VeFoatTsFuctV aFer=PcfratTofactVafer,

where fyn=fy'gin and fye=fy*Ge. These equations show that the fundamental 2-
form on the almost Hermitian manifold VXV is closed if and only if we have

V[inh]:()y V[c]?ba]ZO,
V[foi]:()’ E[c]?yb]:o.
This completes the proof.

Taking account of (2.5), we easily get the following result about a Kaehlerian
manifold (Yano and Mogi [16]).

ProprosiTION 2.9. Under the assumptions in Proposition 2.6, a necessary and
sufficient condition for the induced almost Hermitian structure to be Kaehlerian is
that given framed f-structures & and 2 are both covariant constant.
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§3. Automorphisms of framed f-structures.

Let V and V be n-dimensional differentiable manifolds admitting framed f-
structures X=(f, fy, %) and S=(F, fu, 7?) of rank 7, respectively. A diffeomorphism
of V onto V is called an isomorphism of V onto V if the following conditions are
satisfied:

3.1 hof=foh
and for arbitrary index y
(3.2) W)= Fu

where we denote the differential of 4 by the same letter 4.

If, moreover, V=V and ¥=2Z, then % is called an automorphism of V. It is
easily seen that the set of all automorphisms of V forms a group of transfor-
mations on V. We denote the group by A(V,2), or briefly by A(2).

It is easily known that a framed f-structure can be regarded as a generalization
of an almost contact structure. (Concerning the almost contact structure, see for
example Sasaki [12].) Accordingly A(Y) may be considered as a generalization of
an automorphism group of an almost contact structure, which is studied by Mori-
moto [8]. (Cf. Morimoto and Tanno [9].) Furthermore the properties of A(2Y) stated
here can be proved by the same method as that for the proof of the theorem on
the automorphism group of an almost contact structure obtained by Morimoto [8].
On that account, we state the properties without proof.

First, concerning the covariant vector fields in a given framed f-structure, we
get easily the following

LEMMA. An automorphism h in A(Y) leaves any vector field [+ invariant.

Let V., be n-dimensional differentiable manifolds admitting framed f-structures
Y, of rank 7 for i=1,2 and ¥, be #-dimensional differentiable manifolds admitting
framed f-structures &, of rank 7 such that n—r=7%—7. Let # be an isomorphism
of V; onto V, and % an isomorphism of V; onto V.. For the isomorphisms % and
h, we can define a transformation Ax7% of Vix Vi onto VX V. such that

(hxh) (b, )= (h(p), h(q))

for any point p in V; and any point ¢ in V;. Then the transformation /4x/# is a
diffeomorphism.

Tureorem 3. 1. A diffeomorphism Axh is an isomorphism of an almost com-
plex manifold Vix Vi onto an almost complex manifold Vi X V.

In fact, let Fy and F. be induced almost Comple_>_( structures on Vix Vi anc_i
V2. X Vs, respectively. Denoting the differential of ZXh by the same letter ZXh
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and making use of the lemma above, we get
on(hxﬁ)G(—{:):(hx ﬁ)@(%")
for any tangent vector X, in Tx(V:) and for any tangent vector X, in T V),
from which we have
Fro(hX R)=(hx h)oFy.
This shows that Zx/ is an isomorphism of Vix Vi onto ViX V.

111 Theorem 3.1, we assume that V=V=V,, V=V1=V,, ¥=3,=3, and Z=
2,=%, If heA() and heA(Z), then a transformation #x 7 is an automorphism of

VxV onto itself. Consequently, we can define a mapping x of A(Z)xA() into
A(F) by

p(hy, RY=hXh,

where F is an induced almost complex structure on VXV by X and Z. Thus we
find

CorOLLARY 1. A mapping 1 of AZ)XAE) into AF) defined by
b, y=hxh
is a homomorphism.
The following corollaries will be easily proved.

COROLLARY 2. If A(Z) and AS) operate transitively on V and V respectively,
then A(F) operates transitively on VXV.

If ¥ and ¥ are normal, then Theorem 2.4 shows that VXV is a complex
manifold. As is well known [4], if the group of all holomorphic diffeomorphism of
a complex manifold onto itself operates transitively, then the manifold is said to be
homogeneous. Combining these matters and Corollary 2, we get

CoroLLARY 3. If 3 and 2 are normal and moreover A(X) and A(E) operate
transitively on V. and on V rvespectively, then VXV is a homogeneous complex
manifold.

Finally, we state

THEOREM 3.2. In a compact diffeventiable manifold V admitting a normal
framed f-structure 3, the automorphism group A(Y) is a Lie transformation group
with rvespect 1o the compact open topology.

We sketch only the proof. Since ¥ is compact, VX V is compact and because
Y is normal, Theorem 2. 4 shows that VX V" admits a complex structure ¥ induced
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by 3. From properties of holomorphic functions, it is seen that the automorphism
group A(F) is locally compact and acts effectively on Vx V. (See for example
Bochner and Montgomery [2].) Thus we can deduce that the automorphism group
A(Z) on V is locally compact with respect to the compact open topology and acts
effectively on V. Hence a theorem of Bochner and Montgomery [2] proves
Theorem 3. 2.

Taking account of the result obtained by Boothby-Kobayashi-Wang [3], we can
prove Theorem 3.2 without the assumption of normality, but in this case the
topology of the Lie group is stronger than the compact open topology. However,
the author proves the more generalized result than Theorem 3. 2 with respect to
the stronger compact open topology, which is stated in the forthcoming paper [11].
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