
MINIMAL HARMONIC FUNCTIONS ON A RIEMANN SURFACE

BY YUKIMASA SUMITA

The aim of the present paper is to give another proof of the well known fact
that if there exists an fflλminimal or iiffi-minimal function on a Riemann surface
then there exists no non-constant analytic function with a finite Dirichlet integral
or no non-constant bounded analytic function respectively. This fact was proved
by several authors by using the universal covering surfaces or the compactification
of the original Riemann surfaces; [2], [3], [5], [7], [9], [10]. In the present paper we
prove this without using the universal covesing surface or the compactification.

We denote by S an arbitrary Riemann surface and by G an arbitrary open set
with the relative boundary dG consisting of at most enumerable number of piece-
wise analytic Jordan curves which does not cluster on S. It is sufficient for our
purpose to consider only such an open set G satisfying this condition.

Let us denote by HP0(G) the class of all non-negative harmonic functions de-
fined on G which vanish on dG. If UGHP0(G), we define u* on S by «*=« on G
and u*=0 on S—G. We denote by EGu for u£HP0{G) the extremisation of u over
G and by IGv the inextremisation of v for v € HP(S), where HP(S) is the class of
all non-negative harmonic functions on S. If there occurs no confusion, we write
merely Eu, Iv instead of EGU, IGV.

Eu and Iv are defined by

(1) Eu=inί ιv[w^u on G, w e HP(S)],

(2) Iv=snpw[w^v on G, WGHP0(G)].

If there exists no hamonic majorant of «*, then we put Eu=oo. We can also de-
fine Eu and Iv by using a normal exhaustion {Sn} of S. Let Enu be a harmonic
function on Sn which takes boundary value 0 on dSn Π Gc and u on dSn Π G. Let Inv
be a harmonic function on G Π Sn which takes boundary value 0 on dG Π Sn and v on
dSn Π G. Then Eu and Iv are the limits of Enu and Inv:

(3) Eu
7i->oo

(4) Iv=\imInV.

Eu and Iv have the following properties:
(1.1) Eu^u, v^Iv and Ecu=cEu, Icv=clv for ueHPQ(G) and vsFIP(S), and for a
constant c>0;
(1.2) If UrϊHPoίG) (i=l,2,'-,n) n^oo, ViZHP(S) (z = l,2,-,m) m^oo and
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then

(1.3) If Ui,u2€lIPo(G), VUV2QHP{S) and Ui^u2, v^v2 then Eui^kEu*, Iυ^
(1.4) If v$HP(S) and I ̂ K on G for a ucHP0(G), then £t t^0 holds on S;
if ueHP0(G) and p^« on G for a vεHP(S), then / t ^ # holds on G;
(1.5) If UQHP0(G) and Eu<oo, and if VQEP(S), then IEu=u holds on G;
if v£HP(S) then £ 7 ^ 0 holds on S;
(1.6) If there exists a ueHP0(G) for a VQHP(S) and satisfies p^Ew, then
holds on S;
(1.7) Eu1AEu2=E(u1Au2) holds for U1,U2QHPO{G) with EuuEu2<oo, where Λ
means the greatest harmonic minorant;
(1.8) Let Gί (ί=l,2) be arbitrary open sets such that G=GiUG2, GiΠG 2 =0 and
let Uz€HP0(G) (z=l, 2) be hamonic functions such that ut=0 on Gί, then Zŝ i
ΠEu2=0 holds.

We refer all these results to Heins's paper [4].

We assume that S is a Riemann surface and Ω is an arbitrary domain on S.
Let HD(S) and HD0(Ω) be classes of all non-negative harmonic functions with finite
Dirichlet integrals which belong to HP(S) and HP0(Ω) respectively. A harmonic
function ueHD(S) [or u£HD0(Ω)] which is not identically equal to zero is said to
be an iίD-minimal if it satisfies the condition: for all veHD(S) [or v<=HD0(Ω)]
such that v^u, there exists a constant c for which υ—cu holds. We denote by
HB(S) and HB0(Ω) the classes of all non-negative bounded harmonic functions which
belong to HP(S) and HP0(Ω) respectively. A harmonic function UGHB(S) [or u
€ HB0(Ω)] is said to be an iffi-minimal if it satisfies the condition: for all v € HB(S)
[or VQHBQ(Ω)] such that v^u, u^O there exists a constant c for which v=cu holds.

We remark that all iZD-minimal founctions must necessarily be bounded.
In fact, to show this, it is sufficient to show that there exists a bounded posi-

tive harmonic minorant of u with a finite Dirichlet integral. Let us take a point
p0 on S [or on Ω] and consider the set Gi={p\u(p)>u(pQ)}. Take also a point pi
from the set Gi and consider the set G2^{p\u(p)>u{p^}. The function [u—u(p0)]
Λ[u(pi)—u(po)] on Gi is clearly a non-constant bounded harmonic function with
finite Dirichlet integral by the Dirichlet principle and by the fact that it is a major-
ant of [u(pi)—u(po)]ω on G2 where ω is the harmonic measure of the ideal boundary
of G2; o)^0 by Mori's lemma [8]. The extremisation of the above function to S
[or to Ω] is a desired function. Thus all HD-minimal functions must be bounded.

We can see immediately by the Dirichlet principle and (3), that if UQHD0(Ω)
and £^<oo then Eu also belongs to the class HD(S). Under these preparations we
prove the following lemma.

LEMMA 1. If a non-negative harmonic function u on S or on a domain on S
is HD-minimal [or HB-minimal] then for an arbitrary constant c such that c < sup u,
the set {p\u(p)>c} is connected.
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Proof. It is sufficient to prove the lemma when u is ϋ/Zλminimal. In the case
when u is /ffi-minimal, we can prove it by a quite similar method. If the set
{p\u(p)>c} is not connected, then there exist two open disjoint sets d and G2 such
that Gx\/G2={p\u{p)>c}. We define two functions u% (f=l, 2) on G so that ut=u—c
on Gi and uτ=0 on G—Gu where G = {p\u(p)>c}. By the property (1.8) we obtain
Euλ/\Eu2=Q. But on the other hand Euτ=au for suitable constants ct>0 (£=1,2)
by ffl)-minimality of ^. This is sbsurd and thus the set G must be connected.

We denote by U\ί\u2 and uλ\Ju2 for harmonic functions ux and u2 on S, the
greatest harmonic minorant and the least harmonic majorant of uu u2 respectively.
Let {Sn} be a normal exhaustion of S, we can see easily the following relations:

(5)

( 6 )
7i->oo

(5) or (6) is valid if t h e r e exis ts a l imit

x(M1>M2) or

for an arbitrary exhaustion {Sn} or it is known that there exists a harmonic major-
ant or minorant of ui, u2 respectively. For a boundary function /, defined on the
relative boundary of G, we denote by Hf

G the solution of the Dirichlet problem which
takes zero on the ideal boundary of G provided it does exist.

LEMMA 2. Let R be a proper subsurface of a Riemann surface S with the re-
lative boundary which consists of at most enumerable number of piecewise analytic
Jordan curves. If u% (f=l, 2) are harmonic functions with finite Dirichlet integrals
which vanish on the relative boundary of R, then Uι\/u2 and Uι/\u2 have also finite
Dirichlet integrals.

Proof. We obtain from (5) and (6) the following relations:

(7)

(8)

Therefore it is sufficient to prove that if u belongs to the class HD0(R), then
also has a finite Dirichlet integral. We put G = {p\u(p)^0} and define / by f—u on
G and / = 0 on R-G. Then we obtain by (6)

uAθ=\imHf

SnAR

where {Sn} is a normal exhaustion of S provided that Yιmn^Hf

SnAR exists for a suit-
able exhaustion {Sn}. Denoting by DG(u) the Dirichlet integral of u over G, we get
by the Dirichlet principle DSn(H{.nAR)^DGASn(u)<oo. By our assumption, we can
take a fixed point p0 on an analytic part of the relative boundary of R. Then there
is a one-to-one conformal mapping g(p) from a suitably chosen neighborhood V(p0)
of po to the unit circle such that g(po)=O and V(po)f]R corresponds to the upper
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half of the unit circle while the analytic part of the relative boundary of R corres-
ponds to the part of real axis in the circle. The composed function of g(p) and
HsnnR can be extended to the unit circle and the extended function has a finite
Dirichlet integral on the unit circle which is uniformly bounded from above by
2DR(u) and takes the value zero at the origin. Therefore {Hf

SnAR} is a normal
family and we can select {Sn} so that lim^oo/7£nni2 exists. Thus we see that Hf

SnnR

coverges monotonely and the limit function has a finite Dirichlet integral on R.
Therefore uAO has a finite Dirichlet integral.

We generalize the lemma 2 as follows.

LEMMA 3 (Constantinescu—Cornea [2]). If u% (£=1,2) on a Riemann surface
S have finite Dirichlet integrals, then uλVu2 and uλ/\u2 have also finite Dirichlet
integrals.

Proof. As above it is sufficient to prove only that if u has a finite Dirichlet
integral on a Riemann surface S, then uVO also has a finite Dirichlet integral. Let
Ro be a parametric disc. Then Ds_Ro(Hs-R)<c& and therefore Ds_Ro(u—Hg_Ra)<oo,
and by above lemma 2, u-Hg.^VΊ+V^ with Vi = (u-Hg-R)V0,9 V2=(u-H^Ro)
ΛO. Let us put A=supHs-Rt) and I?=sup(Fi—F2), where the supremum is taken
on the relative boundary of Ro, then we have u^Vi—V2-\-A on S—Ro. Because
the relative boundary of Ro is compact, there is a harmonic majorant of Vi—V2+A
defined on S. In fact, the function / defined by f=A-{~BV(VΊ-V2)+N-Nω on
S— Ro and f=A-\-B-{-N on Ro is a positive superharmonic function for a sufficiently
large N, where ω is the harmonic measure of the ideal boundary of S—Ro defined
on S—RQ. We assume that W is a harmonic majorant of V1—V2Λ-A defined on S,
then uVQ=\imn^Hf

s\^W, where/* is a boundary function on the relative boundary
of Sn which is equal to zero on dSΛΓ) {p\u(p)<0} and equal to u otherwise. Thus
uVQ really exists and by the Dirichlet principle it has a finite Dirichlet integral.

We have the following lemma 4.

LEMMA 4. If u belongs to HP(Ω) for a domain Ω on S and is bounded by a
certain v, v=H£, v$HP(Ω) i.e., 0^u^v=H£ on Ω, then u=H^ holds.

Proof. By the property of the solution of the Dirichlet problem we have clearly
u^HS and v-u^H£-u=H£-Hίf=v-Hg^O, and therefore u=Hg holds. Let R be
an arbitrary subsurface of a Riemann surface with the relative boundary, if it does
exist, which consists of at most enumerable number of piecewise analytic Jordan
curves. We assume that R has an HD-minimal [or an HB'-minimal] function v.
Note that when we consider a minimal function on a subsurface, we always assume
that it vanishes on the relative boundary.

By lemma 1 the set {p\v(p)>c} is a domain for any positive constant c with
c<M=supv. We put Vm= {p\v(p)>M— 1/m) for an arbitrary positive integer m,
then Vm has the following properties:
(2.1) Vm is a non-void domain on R;
(2.2) VmSVn for m^n;
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(2.3) The intersection of Vm for all positive integers m is void;
(2.4) The family (Fm) makes a basis of a filter.

We call an arbitrary open set U to be a neighborhood of an /ZD-minimal [or
//^minimal] point v, if there exists a Vm such that Vmc:U.

For an arbitrary single-valued complex function / defined on a neighborhood of
a minimal point v, we define a cluster set Cυ(f) at the minimal point v by

where we take the closure on the Riemann sphere. Clearly Cυ(f) is a continuum
or a point when / is continuous, by above properties (2.1) and (2.4).

If the cluster set Cv(f) is a single point, we say that / coverges at the HD-
minimal [or HB-m\mmdX] point v.

We now define the harmonic measure of sets in R at the minimal point v. Sup-
pose that a set A with relative boundary which consists of at most enumerable
number of piecewise analytic Jordan curves meets all Vm, then we first define
Hn(A,v) by Hanvϊf, where we note that Hl^Wn)c *s the- solution of the Dirichlet
problem which is defined on R—Af)Vn and takes the boundary value 1 on the re-
lative boundary of Af]Vn and 0 on the relative boundary of R and the ideal bound-
ary of R—AnVn. Thus we have by definition

(9) Hn{Av)=Hιa-Wn{'.

We can see easily that {Hn(A,v)} coverges and it limit is a non-negative har-
monic function on R. We denote this limit by H(A,v), i.e.

(10) lim Hn(A,v)=H(A,v).
n->oo

We call H(A, υ) the harmonic measure of the set A at the minimal point v.
The notion of the harmonic measure of the set A was first introduced by Kura-
mochi [6]. We shall show that Hn(A,v) and H(A,v) have the following properties:
(3.1) 0£H(A,v)^l on R;
(3.2) For any open set G such that Gd(AnVn)c for a Vn, it holds H(A,v)=H^(A'v)

on G;
(3.3) H(A,v) is the greatest non-negative harmonic function among the harmonic
functions w which satisfy O^w^l and w=Hcf for any G in (3.2);
(3.4) For any matually disjoint open sets A% (£=1,2) such that A% meets all Vm,
it holds H(A1,v)+H(A2,v)^H(A1\jA2,v) on R;
(3.5) For two open sets A, B such that AaB, it holds, H(A,v)^H(B,v) on R;
(3.6) Hn(A,v)^Hm(A,v) holds on (Af)Vm)c for n^m;
(3.7) If H(A,v)m, then supH(A,v)=l.

Proof. All these properties can be proved by the similar ones valid for Hn(A, v)
instead of H(A, v), though we must change the scope of the variable domain G and
make other slight modifications. The properties for Hn(A, v) can be proved by the
properties of the solution of the Dirichlet problem.

Proof of (3.2) can be made by using the lemma 4.
Proof of (3.3). This is immediate by the property (3.3) for Hn(A% v) and (10).
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Proof of (3.7). If we assume H(A,v)^0, then supH(A,v)=c>0. (l/c)H(A,v)
satisfies the condition of (3.3) for w, therefore (l/c)H(A,v)^H(Afv) holds, and this
implies that supH(A,v) = l. The remaining properties are clear.

If sup#=l we shall show that H(v)=v holds on R where we put briefly

(11) H(R,v)=H(v) on R.

Let us denote by Eγmu for u € HP0(Vm) the extremisation of u over Vm to R. Clearly
v—(l—l[m)€HD0(Vm) [or QHB0(Vm)] and by the Dirichlet principle [or by the bounded-
ness of the function], we obtain the relation DR{Evm(v—{l — llm)))<i^>, [or the
boundedness of Evm(v—(l—l/m))]. Therefore we obtain the relation EvJv—(1—l/rri))
=cv for a constant c with 0 < c ^ l by the property (1.4) and the /ZD-minimality [or
ϋffi-minimality] of v.

Now we determine the constant c. By the property (1.3) of the extremisation,
we get c^l/m and by (1.1) and the assumption that sup#=l, we obtain c^l/m.
Hence c=l/m. Thus we obtained the relation

EvJv-(l——))=— v on R.
m\ \ m}) m

(12)

By_(l), (3) and v-(l-l/m)<l, it holds the relation EvJv-(l-llm))<Hf

R_ym on R
—Vm, where the function / is the boundary function on the relative boundary of
R—Vm such that / = 0 on dR if it does exist and / = 1 on dVm. Thus we obtain,
by lemma 4,

(13) v=H^Vm on R-Vm.

Here we note that when we consider an i/.D-minimal [or ffi?-minimal] function v
on a domain with the relative boundary, we always assume that v vanishes on the
relative boundary of the domain. By (13) and the definition (9) of Hn(A, v), it fol-
lows

(14) v=(l——W(2?,fl) on R-Vm.
\ ml

Taking the limit of (14), we obtain the desired result H(v)=H(R,v)=υ.
If a Riemann surface has an HD-mmϊmsl [or HB-minima\] function v with

supremum 1, then v—(l—l/m)€HD0(Vm) [or v—(l — l/m)eHB0(Vm)], is also an HD-
minima] [or ffl?-minimal] function on Fm . By {p\m(v(p)—(l—l/m))>l—l/n} = {p\v(p)
>l—l/nm} we obtain the following relation for an arbitrary function / defined on
a neighorhood of an fflλminimal [or iffi-minimal] point v:

(15) Cυ(f)=Cmiv~a-i/m)Λf) for sufficiently large m.

The above fact (15) will be often used. We prove the following theorem.

THEOREM 1. If a Riemann surface S or its subsurface R has an HD-minimal
[or HB-minimal] function v with supremum 1, then there exists no non-constant mero-
morphic function defined on a open set containing a set {p\v(p)>l — l/m*} for m*>0,
such that its cluster set consists of only a single point.
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Proof. If we suppose that the given non-constant meromorphic function f(p)
coverges at the minimal point v, then, by considering the composed function of the
given function f(p) and a suitably chosen linear transformation if necessary, we can
suppose that the limit of the function f(p) itself at the minimal point υ is infinite.
By this assumption and the relation (15), we can assume without any loss of gener-
ality that f(p) is defined on R itself and satisfies the condition \f(ρ)\^l on R. As
/ coverges to the point at infinity at the minimal point v, there exists a positive
integer n(N) for a large positive integer N for which \f(p)\^N holds on FTKΛ>
Now the function log \f(p)\/logN is a positive super harmonic function on R
which is not smaller than 1 on the relative boundary of VncN^ Hence we have
log\f(p)\fl.ogN^Hn<iN)(R,v)^H(v) on R—Vnw and therefore

Since we can take N arbitrarily large, (16) means that the harmonic measure H(v)
must vanish identically. This is a contradiction. Thus there exists no non-constant
meromorophic function having a limit at the minimal point v.

The method of the proof also shows that there exists no non-negative super-
harmonic function which has the limit oo at the minimal point v.

Next in order to prove the well known fact that if there exists an ilD-minimal
[or ϋ/S-minimal] function on a Riemann surface, then there exists no non-constant
analytic function with a finite Dirichlet integral [or no non-constant bounded analytic
function], we prove the following theorem.

THEOREM 2. If a Riemann surface or its subsurface R has an HD-minimal
[or HB-minimal] function v, then any bounded harmonic function u with a finite
Dirichlet integral [or any bounded harmonic function u] on a neighborhood of a
minimal point v with supremum 1 has a limit at the minimal point v.

Proof. We shall show a contradiction if we assume that u does not coverge
at the minimal point v. By (15) we can assume without any loss of generality that
u is defined on R itself and bounded and has a finite Dirichlet integral there. By con-
sidering CiUJrC2VJrCz instead of v for suitably chosen constants c% (z'=l, 2,3) with
CI±ΪO, we can assume that U=CiU+c2v+Cz satisfies 0 ^ ί / ^ 2 and has a cluster set
which contains both values smaller and larger than 1. By the assumption made
above, the sets A={p\U(p)^l} and B={p\U(p)^l] meet the set Vm for any posi-
tive integer m. Then by the fact H(v)=v, (11) and (3.4) at least one of H(A,v) and
H{B,v) cannot vanish identically. By considering 2— U instead of U, if necessary,
we suppose that H(A, v)^0. We obtain the following relation for a certain con-
stant c by fflλminimality [or ̂ ffi-minimality] of v and lemma 3: UΛv=cv.

Since v coverges to 1 at the minimal point v, there exist Vn for an arbitrary
positive number e for which the following holds:

(17) -rl—v^Hn(A,v)^H(A,v)>0 on R-Vn,
JL — $
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(18) U^Hn(A,v)^H(A,v)>0 on R-Vn.

It follows immediately from (10), (17), (18)

(19) cv=UΛv^H(A,v) on R.

By the property (3.7) and by the assumption sup 0=1, the constant c in (19)
must be equal to 1. This shows the following relation:

(20) £7=0 on R.

(20) contradicts our assumption that CV(U) contains a number smaller than 1. Thus
the theorem 2 has been proved.

Theorem 2 corresponds to the fact that any harmonic function with a finite
Dirichlet integral has the same radial limit almost everywhere on the iZD-indivisi-
ble set and the Riemann surface with an fflλminimal function has an HD-mάivisi-
ble set. As an immediate consequence of theorem 1 and theorem 2, we obtain the
following corollary.

COROLLARY 1. If a Riemann surface has an HD-minimal [or HB-minimal]
function, then there exists no non-constant analytic function with a finite Dirthlet
integral [or no non-constant bounded analytic function].

We next study the behavior of non-constant meromorphic functions in a neigh-
borhood of an iZD-minimal point.

THEOREM 3. If a Riemann surface or its subsurface has an HD-minimal func-
tion, then any non-constant meromorphic function f satisfies at least one of the fol-
lowing conditions: (1) the cluster set cυ(f) of f is total and the set of the points
taken infinitly often times by f is dense on the Riemann sphere) (2) the spherical
area of the image of f is infinite.

Proof. We distinguish two cases: (i) the closure of the image of Vm by / is
total for any positive integer m\ (ii) otherwise. In the case (i), if we put Wn=f(Vn),
then Wn is open and Wn is total. In this case Γ\™=Wn is everywhere dense on the
Riemann sphere. In fact, let p be a point on the Riemann sphere and U an arbit-
rary neighborhood of p. Since WΊ is everywhere dense and open, we can take an
open set A in U such that A c WΊ and A contains a closed set including an open
set EL Since W2 is everywhere dense on the Riemann sphere, we can take an open
set A c K ί l f i which contains a closed set including an open set E2, and so on.
Thus we obtain a sequence satisfying (1) A D A D and (2) A c T F i n f i - i , Eτ^φ,
EidDi (i=l, 2, ) where A are open and E% are closed. By Cantor's theorem Π?=iEι
±?φ. This implies that n*°=iWi has a point in U, and therefore ΠT=ιWz is dense on
the Riemann sphere. Next in the case (ii), there is a Vn such that the closure of
the image is not total and therefore C(f(Vn)) has an interior point q. We compose
/ with a suitably chosen linear transformation which corresponds to the rotation
of the Riemann sphere and carries q to the point at infinity. Then the composed
function is bounded and must have an infinite Dirichlet integral. Therefore it must
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have an infinite spherical area, by corollary 1. Thus / must have an infinite spheri-
cal area.

We next study the behavior of non-constant meromorphic functions defined on
a neighborhood of an iffi-minimal point. From above theorems we have the follow-
ing theorem.

THEOREM 4. If a Riemann surface has an HB-minimal function v with supre-
mum 1. Then any non-constant meromorphic function defined on a set including
{p\v(p)>l — l/n} for a certain positive integer n, takes all the values on the Riemann
sphere infinitely many times except at most a Fσ set of capacity zero.

Proof. It is sufficient to prove that any non-constant meromorphic function /
takes all the values except at most a closed set of capacity zero on each neighbor-
hood of the minimal point v. Clearly the cluster set Cυ(f) must be total, by corol-
lary 1. If we assume the existence of a neighborhood of minimal point v on which
/ excepts a closed set F of positive capacity, then there exists a non-constant bounded
harmonic function h(p) on Fc. The composed non-constant bounded harmonic function
Kf(p)) must coverge at the minimal point v, by theorem 2. But this is clearly a
contradiction because Cv(f) is total. Thus we have proved the theorem.

As an immediate consequence of the proof of theorem 3 and theorem 4, we ob-
tain the following corollary.

COROLLARY 2. If a Riemann surface has an HB-minimal [or HD-minimal]
function, then there exists no non-constant meromorphic function f such that Vf{w)
<oo for all w [or vj(w) is uniformly bounded with respect to w]. In particular, a
Riemann surface with finite genus or a Riemann surface of an algebroid function
has neither HB-minimal nor HD-minimal function where v/(w) is the number of w-
points taken by f.

We can also prove the known fact that if there exists an iffi-minimal function
on a Riemann surface S, then there exists no non-constant Lindelofian meromorphic
function on S by using the universal covering surface of S, theorem 1 and the fact
H(v)=v, where v is an HB-minimal function on S with supremum 1. Theorem 4
can also be proved by using this fact.
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