RELATIONS BETWEEN DOMAINS OF HOLOMORPHY
AND MULTIPLE COUSIN’S PROBLEMS

By Joymt Kajwara

Introduction.

Oka [12] proved that a domain D of holomorphy in C* is a Cousin-1 domain,
that is, any additive Cousin’s distribution in D has a solution. On the other hand
from Cartan [5]-Behnke-Stein [2]’s theorem, a Cousin-I domain in C? is a domain
of holomorphy. In this way any domain of holomorphy in C? can be completely
characterized by additive Cousin’s problems. For =3, however, Cartan [6] showed
that a Cousin-I domain in C™ is not necessarily a domain of holomorphy. In the
previous paper [10] we tried to characterize a domain of holomorphy in a Stein mani-
fold by additive Cousin’s problems. An open set G in C” is called regular if GNP
is a Cousin-I open set for any relatively compact polycylinder P in C» We proved
that a domain in C™ is a domain of holomorphy if and only if it can be exhausted
by regular domains. Moreover, we proved that a regular open set is pseudoconvex
in the Cartan’s sense at its continuous boundary point. Making use of the results
of Oka [13] or Docquier-Grauert [7] respectively, we proved that a domain in C" or
more generally in a Stein manifold with a smooth boundary is a domain of holo-
morphy if and only if it is locally regular at its each boundary point.

Concerning multiple Cousin’s problems the situation is more or less different.
Thullen [16] gave an example of a domain in C? which is not a domain of
holomorphy but a Cowusin-Il domain, that is, a domain in which any multiple
Cousin’s distribution has a solution. Let £ and £* be, respectively, the sheaves of
all germs of holomorphic mappings in C and GL(1,C). As we remarked in [9],
Thullen’s example is a Cousin-II domain D with HYD, O*)x0. In the previous
paper [11] we proved that a domain (D, ¢) over C* with H(D, O*)=H(¢p"}( H), O*)=0
for any analytic plane H in C» is a domain of holomorphy. Especially a domain
(D, ¢) over C? satisfies H(D, O*)=0 if and only if (D, ¢) is a domain of holomorphy
with H%(D, Z)=0 where Z is the abelian group of all integers. These facts suggest
that we should obtain a sufficient condition that a domain D in C” is a domain of
holomorphy, if we put a similar discussion forward as in [10] substituting a domain
G with HY(G, ©*)=0 in stead of a Cousin-I domain.

As a polycylinder P does not necessarily satisfy H'(P, O*)=0, we shall consider
only simply connected polycylinders in the definition below. An open set G in C»
is called regular* if H(GN P, O*)=0 for any relatively compact and simply con-
nected polycylinder P in C» In the present paper we shall prove that a domain
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in C* which can be exhausted by regular* domains is a domain of holomorphy
and that a regular* domain in C™ is pseudoconvex in the Cartan’s sense at its
continuous boundary point. Making use of the affirmative solution of the Levi
problem loco citato, we can prove that a domain over a Stemn manifold with a
simultaneously continuous and locally regular* boundary is a domain of holomorphy.

§ 1. Limit of cohomology groups.

A sequence {(Dn, ¢n); #=1,2,3,---} of domains (D», ¢») over a Stein manifold S
is called a monotonously increasing sequence of domains over S if therc exists a
holomorphic mapping «J; of D, in Dn with ¢,=@notk for m and # with m=n. In the
previous paper [8] we proved the existence of a domain (D, ¢) over S with the
following properties:

(1) There exists a holomorphic mapping t, of D, in D with ¢,=g¢et, for any 7.

(2) Let (D', ¢") be adomain over S such that there exists a holomorphic map-
ping t, of D, in D’ with ¢,=¢’oc} for any n. Then there exists a holomorphic
mapping 7/ of D in D’ with ¢, =t’ot, for any .
(D, ¢) is called the limit of the sequence {(D., ¢x); n=1,2,3,---}. We consider the
universal covering manifold (D ¢*) of (D, ¢). Let 2 be the canonical mapping of
Dt in D. Then <2, v, and 1 induce canonically homomorphisms c*: H*(Dp, %)
—HYD,, O%), ¥ HY(D, O*)—HYD,, O%) and 2*: H(D, O¥)—H'(Dt O*). For the sake
of brevity we put fa=1*a) for acHY(D, O*) and *HY(D, O*)=%H'(D, O*)) and we
shall use these notations frequently. {HYD,, %), c2*} is an inverse system of
abelian groups over a directed set {#=1,2,3,---}. We consider its inverse limit
and denote it by lim H(D,, ©*). We denote the canonical homomorphism of H(D, %)
in lim HY(D,, O%) by z. Unfortunately we can not yet succeed to prove that = is
injective but we have the following lemma, which is sufficient for our purpose and
the proof of which is quite similar to that of Proposition 2 in the previous paper [8].

LemMma 1. acHY(D, O%) with n(a)=0 satisfies ta=0.

Proof. Let (ﬁn,gan) and (ﬁ, @) be, respectively, the envelopes of holomorphy of
(Du, 0n) and (D, ¢). Let (D%, ¢t), (Dt ¢b), (ﬁ’;,@’;) and (D, @ be, respectively, the
universal covering manifolds of (Dy, ¢.), (D, ¢), (ﬁn,gbn) and (D, @). Since (52,@‘;)
and (D, @% are pr-convex in the sense of Docquier-Grauert [7], they are domains of
holomorphy from [7]. We consider canonical mappings t3: Dy—Dmn, Tm: Dn—D,
o DE—sDb b Dh—DE #n Dt Dt 2 DD 2,0 Dh—D,, A2 DD, gy Du—Da,
i DD, 1 D2—D,, T DD, ry: Dt—D# and & D—D* for 1=n=m. Then the
commutativity holds in the following diagram:
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(D, @), (D} %, (ﬁ, @) and (ﬁ*, @ are, respectively, limits of monotonously increasing
sequences {(Dny §0n); n=1) 27 3’ "’}) {(va Sﬁiz); n=l, 2) 3! }) {(ﬁm ¢n); n:]u 2) 3; } and
{(ﬁi,,gbﬁl); n=1,2,3, .-} of domains over S. Let {P,; #n=1,2,3, -}, {Qu; n=1,2,3,---},
{Rn; n=1,2,3,---} and {Sy; n=1,2,3,---} be, respectively, sequences of relatively
compact subdomains of D, D, D* and D* such that

Pu€Pri1, Qun&Qni1, Ri€Rni1, Sn€Snii n=1),

D=0 Py D=UQs D=UR, D'=US,
n=1 n=1 n=1

Q)T P, A(S2) CQa, z(Rn)CPm £(Sn)C Ry

and P,, R, are, respectively, analytic polycylinders defined by holomorphic {functions
in D and D% If we take a suitable subsequence {v.;n=1,2,3, -} of {1,2,3,-},
the discussion below can be continued. For the sake of brevity we may assume that
v,=n without losing generality. There exists, respectively, subdomains ’P., 'Q., 'R,
and ’S, of D,, D,, D} and D% such that %,, c,, ¢, and <% map biholomorphically
' Py 'Qn, 'R, and ’S, onto P,, Q., R, and S, and that

%Z,H(,Pn)C,PnJrly Tﬁ El(,Qn)C,Qn 11y f’ﬁ | 1(/R11)C,Rn 11y

T’Z b1 /Sn)C/Sn'l 1y

p('Q)C Pay 2('Sa)C'Quy ('R Pry  #a(’Si)C' R,

and the commutativity holds in the following diagram:

@
%Q.. /P,,
Q. ,T y29 N Pn Ta ["
A >
i aS——t I e
/ #
,S" n

Under this preperation of the notations we shall preceed in the proof of our Lemma.
Let B={V,;iel} be any open covering of D and {f,;} be any element of Z!(B, O*)
such that {f,jor,}eB'(c;}(B), O%) for n=1 where z;'(B)={r;'(V:);iel} is an open
covering of D,. There exists {f7}eC%z,;}(B), O*) such that

f1j°7n=f:'/f}1
in T} (VoN;}(Vy)x¢ for n=1. If we put

Tr=fRf i et

in «;X(V,), then f is well-defined and belongs to HY(D,, O%). Since (D,, @) is the
envelope of holomorphy of (Dn, ¢.), there exists freH(D,, %) satisfying

fn:anO/'!n-

Then log (f7o1,)eH (D%, ) for any fixed branch of logarithmus (z=1). There
holds log (F™ed, (24|’ Ry))eH(R,, O) for #>1 where #%|’R, is the restriction of #, to
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'Rp. Since R, is an analytic polycylindfzr defined by holomorphic functions in D%,
there exists a holomorphic function Z"eD* such that
llog (Fmedne(Z,]/Ra) ) —in| <27
in R,_; for n=2 from Behnke [1]. We put
Hr=exp (hror)eH(DF, ).
There holds
(S 7o(eal’Qm) TR/ ITm—T1| <27
in Sn-y for n=2. We put
G'=1, Gr=H'IH?--JI""'eH(D* O%)
and
Fr=(fro(tal’Qn) e HG e’ (A" (V. N Qn), OF).
Then we have {F7}1eC'(A-(BNQ.), D) where - (BNQ)={Z1(V.NQ.;l} is an
open covering of 27Y(Q,). There holds
[FrlFy =1 <2

in S.-1NA"(V,). Hence each F7 converges uniformly in any compact subscl of
AUV to F;eH'(A-'(V,), O%). Since there holds

Jijed=Fi[IF,

in 27Y(V.N V)% ¢, we have proved our lemma.

CoRrOLLARY OF LEMMA 1. I HY (D, O%)=0 for n=1, then we have *1'(D, O*)=0.

§2. Domains D with *HY(D, O%)=0.

A collection &= {(m, U,, V);iel} is called a multiple Cousin’s distribution in a
complex space X with essential simgularities il the [ollowing conditions are satisfied:

1) U={U,iel} is an open covering of X.

(2) Each connected component of U,N U;N Uy contains that of V.N V;N Vi for
any U.NU;N Ukx¢.

(8) my is a single-valued meromorphic function in an open subset V, of U, for
any i. ms/m, can be analytically continued to a function belonging to H(U.N U,, O%)
for any U,N U,=¢.

{ms/m;} defines an element of Z'(U,O*) from the condition (2). Its canonical
image in H'(X, %) is denoted by @. A meromorphic function m in X’'=U,s V2
is called a solution of € if m/m; can be analytically continued to a function be-
longing to H(U,, ©*) for any i. Let X* be a universal covering space of X and 24
be the canonical mapping of X% onto X. A meromorphic function M in 2-YX’) is
called a multiform solution of € if M/m;-2 can be analytically continued to a func-
tion belonging to H°(A-Y(U,),O*) for any i. For the canonical homomorphism
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A% HI(X, OF)—-HY(XH, OF), we put fa=A*a) and *H(X, O%)=*HY(X, OF).

LEMMA 2. If a=0 in HY(X, O%), € has a solution. If *a=0 in *HY(X, O%), €
has a multiform solution.

Proof. We shall prove the last half of our Lemma. If fa=0 in *H!(X, %),
{mioA/m; o2} defines a coboundary of {F,}eC°(A-1(1), O%F) as H!(2-(U), O*)—H(X? O%)
is injective. If we put

M=m;A|F,

in 2Y(V,) for any iel, M is well-defined and a meromorphic function in A7*(X")
which is a multiform solution of @.

A complex space X is called a Cousin-1I-E space (or a multiform Cousin-11-E
space) if any multiple Cousin’s distribution in X with essential singularities has a
solution (or a multiform solution).

CoROLLARY OF LEMMA 2. If HY(X,O*)=0 (or *H'(X, O*)=0), X is @ Cousin-
II-E space (or a multiform Cousin-11-E space).

A function % in a set A is called a #ace of a function f in the superset B of
A if there holds 2=f in A.

LemMA 3. Let (D, ¢) be a multiform Cousin-11-E domain over C*, (D? ¢f) be
the universel covering manifold of (D, ¢) and 2 be the canonical mapping of D¥ onto
'D. Then for any (n—1)-dimensional analytic plane H in C™ and for any holomorphic
Sunction b in ¢~ (H), hod is a trace of a holomorphic function f in D*

Proof. Without loss of generality we may assume that
H= {(Zl, Ryt Zn); Zl=0}-
There exists an open neighbourhood V of ¢~'(H) such that % is a trace of a holo-

morphic function 2’ in V. We can take another open subset U of D such that
U={U, V'} is an open covering of D and Un¢-'(H)=¢. Then

E={(L, U, U), (exp (W' [z1°9), V, V—¢~(H))}

is a multiple Cousin’s distribution in D with essential singularities. Hence there
exists a multiform solution M of €. We have MeH(D¥—¢tY(H), O%). If we start
any function element defined by log M at a point of D¥—¢#'(H), it can be not only
analytically continued along any curve in Di—¢**(H) but also meromorphically
continued at any point of ¢*'(H). Since the fundamental group of D! vanishes, it
defines a meromorphic function in D! which we shall denote by the same symbol
log M. If we put

f=(21°§0#) lOg M,

J is a holomorphic function in D' whose trace in ¢*'(H) is /oA.

Lemma 4. Let (G, ¢) be a multiform Cousin-1I-E domain over C" such that
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o~ YH) is @ multiform Cousin-11-IV open set over II for any m-dimensional analylic
Plane H={z2=(z1, 23, -+, 2); 2,=C; (J=S1, S, ***, Sn_m)} wheve m, Si, Ss, -+ and Sp—m are
integers with 1=m<n, 1=5,<8;< ++<Sp-nw=n and c,'s ave complex numbers. Then
G is a domain of holomorphy.

Proof. We shall prove our Lemma by induction with respect to #. For n=1
there is nothing to prove from Behnke-Stein [3]. Suppose that our Lemma is valid
for all =k and consider the case n=~k+1. For any H ¢ '({{) is an open set of
holomorphy over F {rom the assumption of our induction. Let £ be the set of all
boundary point z° of GG such that z° is a boundary point of ¢~'(/7) for somec k-
dimensional analytic plane H={z;z,=2}} where (23,25, -, 25)=¢(@®. Then £ is
dence in 0G. Let z° be a point of £ and 77 be a k-dimensional analytic planc
satisfying the above condition for this z°. Let (G% ¢f) be the universal covering
manifold of (G, ¢) and 2 be the canonical mapping of D? onto D. Since ¢ '(#) is
an open set of holomorphy, there exists a holomorphic function % in ¢~*(#/) which
is unbounded at 2°. Since G is a multiform Cousin-I[-E domain, there exists a
holomorphic function f mn G* such that

f=he

in ¢*(f1) from Lemma 3. Hence any boundary point of (G*, ¢%) belonging to 2-'(/%)
has the frontier property in the sense of Bochner-Martin [4]. Since £ is dense in
0G, there exists a holomorphic function ¢ in G* which is unbounded at ecach
boundary point of (G* ¢*) from [4]. (G% ¢% is a covering manifold of the domain
of holomorphy of ¢g. Hence (G% ¢*) is a domain of holomorphy from Oka [13] or
Stein [15]. (G, ¢) is also a domain of holomorphy from Oka [13].

CorOLLARY OF LEMMA 4. Any multiform Cousin-1I-E domain over C?* is «
domain of holomorvphy.

§3. Domain exhausted by regular* domains.

A domain G in C» is called exhausted by regular* domains G, if G)’s are
regular* domains in C” such that

Gp€Gpir (p=1,2,3,-) and G= Glap.
D=

LEMMA 5. Let G be a domain in C* exhausted by regular* domains G,. Then
HYG, O =0. Moreover for any integers 1=m<n, 1=5:<s:< - <Sp-m=n and
Sfor any complex numbers ¢, (j=S$i, Sz -+, Sn-m) the intersection GNII of G and
H={2=(21, 25, -+, 2); 2,= C;(J=51, Sz, **, Su-m)} satisfies TGN H, O*)=0.

Proof. Since G, is a relatively compact regular* domain, we have H(G,, ©O%)=0
for any p. From Corollary of Lemma 1 we have *HYG, O%)=0.
Next we shall prove *HY(GN [, 0*)=0. We may assume that

H={(z, w)= (21, 22, ***; Zm, W1, Wa, ***, Wa-m); w;=0 (j=1,2,---, n—m)}.
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There exist ¢,>0 and @,>0 such that
Epy=Gpn{(z, w); |25 <ap, lwel <ep (7=1,2,--,m, k=1, 2, -+, n—m)}
Tz, w); |25l <ap, lwel <ep, (2, 0eGNH, (j=1,2, -, m, k=1,2,---, n—m)},
ap<api1 (p=1) and ay—oo (p—0co),
e>epnn (p=1)  and  ep—0 (p—oo).
Since G, is regular*, we have H'(F,, O%*)=0 for any p. We put
Hy=GyNHN{(2,0); |25l <ap (1=1,2, -+, m)}.

Then GNI is the limit of monotonously increasing sequence of open sets [, in
H. Let B={V; seS} be an open covering of GNII. We put V3= VN H, for seS.
Then Bp,={V% seS} is an open covering of f,. We put

Us=EpN {(z, w); (z,0)e Vs}

for seS. Then U,={U?% seS} is an open covering of 7, Let {fu(z)} be an element
of Z'(B, O*). We put

IRz, w)=Js:(2)

in UPNU%¢. Then {F5}eZ',, OF)=B',, O%) as H(U,, O¥)—-H(J),, O*)=0 is
injective. There exists I'2eH(U%, O%) for any seS such that

I=FyF;
in U2nU=¢. 1If we put
JU2)=I"%z,0)
in V2 for any seS, then we have
Js=T15II%

in V2N V?x¢. Therefore the restriction of {fy} in any I, is a coboundary of
{/51eC(Bp, OF) for any p. From Lemma 1 {f04} eBI(A71(B), O%), (G} ) heing the
universal covering manifold of G. Thus we have *HY(GN H, O*)=0.

From Corollary of Lemma 2 and Lemmas 4 and 5 we have

ProposiTiON 1. A domain in C* exhausted by vegular* domains is a domain
of holomorphy.

§4. Regular* domain with a continuous bhoundary.

A boundary point z° of an open set G in R* is called a continuous boundary point
of G if there exists a real-valued continuous function ¢ of variables i, zs, --+, &,, -+, Ta
in a neighbourhood V of x° such that

GNV={x=(x1, T, -+, Tn); X, =q(X1, L, -+, &}, ++, Tu), ¥EV'}
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for some j. A domain (G, ¢) over a complex manifold is called pseudoconvex at a
boundary point z° if there exists an open neighborhood ¥ of ¢(2°) such that
the connected component of ¢~(V) belonging to the filtre defining z° is holo-
morphically convex. A boundary point z° of a domain (G, ¢) over a complex mani-
fold is called a simultaneously continuous and locally regular* boundary point of
(G, ) if there exists a biholomorphic mapping = of an open neighbourhood ¥V of
o(z®) onto a subdomain of a complex Euclidean space such that zo¢ maps the
connected component W of ¢ (V) belonging to the filtre defining x° biholo-
morphically onto «(¢(W)) and =(¢(x%) is a continuous boundary point of z(e(W))
which is a regular* open set. If any boundary point of (G, ¢) is a simultaneously
continuous and locally regular* boundary point, (G, ¢) is called to have a simultane-
ously continuous and locally regular®* boundary.

ProposiTION 2. A rvegular* open set G in C" is pseudoconvex al a continuous
boundary point 2° of G.

Proof. We put 2°=(z, 25 -++,2%). There exists ¢>0 and a real-valued con-
tinuous function ¢ of variables zi,2s, -+, 2,1, ¥ 2511, ++, 2 in a neighbourhood
V={z2=(z21, 25, -+, 20); |26—2}| <e (k=1,2,---, )} such that

OGN V=Az, 2= 021, 22, ***, Zy=1, Y3 241, ***, Zn)y 2EV'}
for some j where z;=x;4++/—1y,. Then three cases (1), (2) and (3) may occur.
(1) GNV={z 2;<g(z1, 22, ***, Z)=1, Yy, &7 11, Zn), 2EV }.

For 0=¢<1 we put
Vi={z; |zs—22| <(1—1)¢/2 (k=1,2,---, m)}.
Then we have
{z; (21, 22, 7, 2y-1, 25— 1e[2, 2541, =+, 20)E V) CV

for 0<¢<1. We put

Eiv={z; 2;<g(21, 22y =+, 2)=1, U3y R 11y ***5 2n) — |2, 2€ V1.
Let P be a relatively compact and simply connected polycylinder in C» FE,N D is
mapped onto

{5 2, < g(w, Wa, +, W1, Vg, Wier,+, Wa)y (Wi, Way -+, Wi—1, Wj—1e[2, Wir1, -+, W)€ VN P}
=GN VN{z; (21, 22+, 2y=1, 2j— (2, 2511, =+, Z0)E Vi N P}
by a biholomorphic mapping w=(wi, ws, -, w.)=7(z) defined by wi=zr (kxj),
wj=2z;+te/2. Since p(E,NP) is the intersection of G and relatively compact and
simply connected polycylinders, we have
HYE:n P, O*)=H!((&£: N P), O*¥)=0.

Therefore E; is a regular* open set for 0=¢<1. Since E, is exhausted by regular*
domains {E;0<t<1}, Ev=GN7V, is a domain of holomorphy from Proposition 1.
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Hence G is pseudoconvex at z°.
(2) GNV=A{z2,>9(21, 23, ***, Zy=1, Yy Z41, ***» Zn), ZEV }.
In this case the situation is quite similar to the case (1).
(3) GNV={z 2,359(21, 23, ***, Zy=1, Y, Z111, == Zn), 2EV }.
Let
Gr={z; 2;<g(21, Zy ***s Zy=15 Yy Zy415 """y Zn), ZEV'}
and
Go={2; 2,> (21, 22, ***, Z;-1, Y15 Zy11, ***, Zn), REV .

From the cases (1) and (2) G; and G, are pscudoconvex at z°. Hence GN V=G,UG,
is pseudoconvex at z°.

§5. Domain with a simultaneously continuous and locally regular* boundary.

ProposiTION 3. A domain (G, ¢) over a Stein manifold wilth a simullancously
continuous and locally vegular® boundary is « Slein manifold.

Proof. Let z° be a boundary point of (G,¢). From the assumption of our
Proposition, there exists a biholomorphic mapping = of an open neighbourhood V'
of ¢(z°) onto a domain in a complex Euclidean space such that te¢ maps the con-
nected component Wof ¢~}(V) belonging to the filtre defining x° biholomorphically
onto z(p(W)) and =(¢(z®) is a continuous boundary point of <(¢(W)) which is a
regular* open set. From Proposition 2 «(¢(W)) is pseudoconvex at z(¢p(x°)). Hence
(G, ) is pseudoconvex at z°. Since any pseudoconvex domain over a Stein manifold
is a Stein manifold from Docquier-Grauert [7], (G, ¢) is a Stein manifold.

A boundary point z° of a domain (G, ¢) over a complex manifold is called a
locally vegular* boundary point of (G, ¢) if there exists a biholomorphic mapping <
of an open neighbourhood V of ¢(z°) in a complex Euclidean space such that the
image <(o(W)) of the connected component W of ¢~} V) belonging to the filtre
defining x° by the holomorphic mapping ze¢ is a regular* open set. A domain
over a complex manifold is called to have a locally regular* boundary if its
each boundary point is a locally regular* boundary point. A boundary point z° of
a domain (G, ¢) over an n-dimensional complex manifold is called a smooth boundary
point of (G, ¢) if there exists a real-valued continuously differentiable function ¢ in
an open neighbourhood V of ¢(x°) such that }1%2,(d¢/d¢;)*%0 at ¢(z°) for real local
coordinates #i, s, -+, f2n, ¢ maps the connected component W of ¢=(V) belonging
to the filtre defining z° biholomorphically onto ¢(W) and there holds

o(W)={=; 9(x)<0, zeV'}.

A boundary point of a domain (G, ¢) over a Stein manifold which is a smooth



270 JOJI KAJIWARA

boundary point of (G, ¢) and which is a locally regular* boundary point 1s a
simultaneously continuous and locally regular®* boundary point of (G,¢) in our
sense. But a boundary point of (G,¢) which is a continuous houndary point of
(G, ¢) and which is a locally regular* boundary point of (G, ¢) may not perhaps be
a simultaneously continuous and locally regular* boundary point of (G, ¢) in our
sense even if we define a continuous boundary point of (G, ¢) similarly. A domain
over a complex manifold is called to have a smooth boundary if its each boundary
point is a smooth boundary point. We have

CoROLLARY oF PropositioN 3. If a doman (G, ¢) over « Stein manifold wilh
a smooth boundary has a locally regular® boundary, then (G, ¢) is a Slein manifold.

Let G be a subdomain of a Stein manifold S with a smooth boundary. If &
is not a Stein manifold, there exists a boundary point z° of G which is not a
locally regular* boundary point of G from the above Corollary. Let V be any
local coordinate neighbourhood of z° and = be a biholomorphic mapping of V onto
a domain in a complex Euclidean space. Then «(GN V) is not a regular* open sct.
Hence there exists a relatively compact and simply connected polycylinder I° in
(V) such that H'(z(GN V)N P,O%)=x0. Since P is a Stein manifold analytically
contractible to its each point from Riemann’s mapping theorem, «='(£) is also a
Stein manifold analytically contractible to its each point. Wec have

THEOREM 1. Let G be a subdomain of a Stein manifold S with « smoolh
boundary such that H(GND,O%*)=0 for any subdomain D of S whicl is a Stein
manifold analytically contractible to its each point. Then G is a Stein manifold.

THEOREM 2. Let G be a subdomain of a Stem manifold S with « smooll
boundary. If G is not a Slein mawnifold, lthen lheve exists an arbilvarily small sub-
domain D of S which is analytically conlvaclible lo s each point such lhal
HY(GN D, O%)x0.

If we do not assume the smoothness of the boundary, we only have

TueoreM 3. If a subdomain G of a Stein manifold S can be exhausted by
subdomains G, which satisfy H(G,N D, O%*)=0 for any subdomain D of S which s
a Stein manifold analytically conlvaclible lo its each point, then G is a Stein mani-
fold.

Proof. Of course G,’s satisfy
GrEGyp:1 (pz=1), G= UIGP-
=

Let 2° be a boundary point of G. We consider a biholomorphic mapping = of an
open neighbourhood ¥ of 2° in a complex Euclidean space C*. There exists ¢>0
such that
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Z={z2=(21, 2», -, 2n); |2;—25|<e (j=1,2, -, m}&c(V).
We put
ZP:{Z; lZ]—Z§|<P5/(P+1) (]:]-) 2’ Tty ﬂ)}, E]):T(Gpﬂ V)an

for p=1. Let P be a relatively compact and simply connected polycylinder in C».
Then we have

T"I(Ep n 1)):(1‘1; n T_I(Zp n 1)).

Since each connected component of =*(Z,N /%) is a Stein manifold analytically con-
tractible to its each point, we have

HYE,N P, O*)=H'(c"!(L,N L), O*)=0.

Therefore Ep is a regular* open set for any p=1. Since F=t:(GNV)NZ is cx-
hausted by regular* open sets Ej, [ is a domain of holomorphy [rom Proposition
1. Hence G is pseudoconvex at its each boundary point and is a Stein manifold
from Docquier-Grauert [7].
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