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Introduction.

Oka [12] proved that a domain D of holomorphy in Cn is a Cousin-l domain,
that is, any additive Cousin's distribution in D has a solution. On the other hand
from Cartan [5]-Behnke-Stein [2]'s theorem, a Cousin-I domain in C2 is a domain
of holomorphy. In this way any domain of holomorphy in C2 can be completely
characterized by additive Cousin's problems. For n^3, however, Cartan [6] showed
that a Cousin-I domain in Cn is not necessarily a domain of holomorphy. In the
previous paper [10] we tried to characterize a domain of holomorphy in a Stein mani-
fold by additive Cousin's problems. An open set G in C71 is called regular if GΓ\P
is a Cousin-I open set for any relatively compact poly cylinder P in Cn. We proved
that a domain in Cn is a domain of holomorphy if and only if it can be exhausted
by regular domains. Moreover, we proved that a regular open set is pseudoconvex
in the Cartan's sense at its continuous boundary point. Making use of the results
of Oka [13] or Docquier-Grauert [7] respectively, we proved that a domain in Cn or
more generally in a Stein manifold with a smooth boundary is a domain of holo-
morphy if and only if it is locally regular at its each boundary point.

Concerning multiple Cousin's problems the situation is more or less different.
Thullen [16] gave an example of a domain in C2 which is not a domain of
holomorphy but a Cousin-ll domain, that is, a domain in which any multiple
Cousin's distribution has a solution. Let D and O* be, respectively, the sheaves of
all germs of holomorphic mappings in C and GL(1, C). As we remarked in [9],
Thullen's example is a Cousin-II domain D with W(D, O*)^0. In the previous
paper [11] we proved that a domain (D, ψ) over Cn with W(D, £)*)=Ή.l(φ~l(H), O*)=0
for any analytic plane H in Cn is a domain of holomorphy. Especially a domain
(D, φ) over C2 satisfies Ή.l(Dy O*)=0 if and only if (D, φ) is a domain of holomorphy
with W(D,Z)=Q where Z is the abelian group of all integers. These facts suggest
that we should obtain a sufficient condition that a domain D in Cn is a domain of
holomorphy, if we put a similar discussion forward as in [10] substituting a domain
G with Ha(G, D*)==0 in stead of a Cousin-I domain.

As a polycylinder P does not necessarily satisfy W(P, D*)=0, we shall consider
only simply connected polycylinders in the definition below. An open set G in Cn

is called regular* if H^GnP, O*)=0 for any relatively compact and simply con-
nected polycylinder P in Cn. In the present paper we shall prove that a domain
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in Cn which can be exhausted by regular* domains is a domain of holomorphy
and that a regular* domain in Cn is pseudoconvex in the Cartan's sense at its
continuous boundary point. Making use of the affirmative solution of the Levi
problem loco citato, we can prove that a domain over a Stem manifold with a
simultaneously continuous and locally regular* boundary is a domain of holomorphy.

§ 1. Limit of cohomology groups.

A sequence {(Dn,φn)', n~l,2,3, } of domains (Dn,φn) over a Stein manifold S
is called a monotonously increasing sequence of domains over S if there exists a
holomorphic mapping τi of Dn in Dm with φn=φm°τ%t for m and n with m>n. In the
previous paper [8] we proved the existence of a domain (D, φ) over S with the
following properties:

(1) There exists a holomorphic mapping τn of Dn in D with φn=
2φ°τn for any n.

(2) Let (D', φ') be a domain over S such that there exists a holomorphic map-
ping τ'n of Dn in Df with φn=φ'°τ'n for any n. Then there exists a holomorphic
mapping τ' of D in D' with τ'n=τ'°τn for any n.
(D,φ) is called the limit of the sequence {(Dn,φn)', n=I, 2, 3, •••}. We consider the
universal covering manifold (£>*, p*) of CD, ^). Let λ be the canonical mapping of
Z)* in Zλ Then r£, τn and Λ induce canonically homomorphisms τ^*: H^Λn, D*)
-+H1(Λ>,D*), τ*: IFCAO*)-* IPCD^O*) and λ*: IΓ(A D*)— H'CD*, D*). For the sake
of brevity we put *α=Λ*(α) for αeffφ, D*) and *H1(AD*) = ̂ *(H1(AD*)) and we
shall use these notations frequently. {W(Dn, D*), τ£*} is an inverse system of
abelian groups over a directed set {«=!, 2, 3, •••}. We consider its inverse limit
and denote it by lim W(Dn, D*). We denote the canonical homomorphism of H^Z), O*)
in lim "Άl(Dn, D*) by π. Unfortunately we can not yet succeed to prove that π is
injective but we have the following lemma, which is sufficient for our purpose and
the proof of which is quite similar to that of Proposition 2 in the previous paper [8].

LEMMA 1. αcHX/ΛD*) with τr(α)=0 satisfies *α=0.

Proof. Let φn, φn) and (D, φ) be, respectively, the envelopes of holomorphy of
(Dn,φn) and (D,φ). Let (&„<&), (D*,φ*), Φ*n,φ*n) and (D*, '̂) be, respectively, the
universal covering manifolds of (Dn,φn), (D,φ\ φn,φn) and Φ,φ). Since φ*n,φ*n)
and φ*, 9*) are p7-convex in the sense of Docquier-Grauert [7], they are domains of
holomorphy from [7]. We consider canonical mappings τ£: Dn—*Dm, τm: Dm—*D,
r»- D^DL A: Dί-+&, &i: D*n-*D*m, τ*m: &m^&, λn: D^Dn, λ: D*-+D, μn: Dn-+Dn,
μ: D-*D, λn: D*n-^Dn, ί: D*-+D, κn: D*n-^D*n and κ\ D*-^D* for l^n^m. Then the
commutativity holds in the following diagram:
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(D, φ), (D*, ψ*)9 (D, φ) and (Z)*, φ*) are, respectively, limits of monotonously increasing
sequences {(Dn, φn}\ n=l,2, 3, •••}, {(£>*„, </%); n=l, 2, 3, ••-}, {(Dn, φn); n=l, 2, 3, •••} and
{(β*n,φ*n)',n=l,2,3, } of domains over S. Let {Pw; w=l,2, 3, •••}, {Q«; w=l,2, 3, •••},
{Λ; «=1, 2, 3, •••} and {Sn', n=l, 2, 3, •••} be, respectively, sequences of relatively
compact subdomains of D, D, & and D* such that

/5= u pn, £>= u On, ^s= u RΏ, n*= u .sw,rz = l n=l n=l n = l

and Pn, Rn are, respectively, analytic polycylinders defined by holomorphic functions
in D and D*. If we take a suitable subsequence (vn\ n=l, 2, 3, •••} of {1, 2, 3, •••},
the discussion below can be continued. For the sake of brevity we may assume that
yw=n without losing generality. There exists, respectively, subdomains 'Pn, 'Qn, 'Rn

and fSn of Dn, Dn, D*n and D*n such that •?„, τn> τ*n and τ*n map biholomorphically
'Pn, On, 'Rn and fSn onto Pn, Qn, ^n and Sn and that

^n (tΈ>\(—tT> -n (t(Λ \r—rCl r$n (fT? \r~fT?
Vn-\-i\ Γu)^- *Ln+l) L-n f l \ vVny ̂  ^τι I 1, ^ w I 1\ f\-n)(— -tvw I 1>

/^n( Q«)CI Pwj ΛW( wSnjCI ^/Tt, Λ7i( J\n)d In, /Cn\ ^n)Cl l\.n

and the commutativity holds in the following diagram:

α £ tft

Under this preperation of the notations we shall preceed in the proof of our Lemma.
Let S={Fl;/€/} be any open covering of D and {flj} be any element of ZT($, D*)
such that {f^J°τn}eB1(τ-1(<>$),£)*) for n^l where r;1(SS)={r;1(Fί);z'€/} is an open
covering of Dn. There exists {/Iz}eC°(r-1(55), O*) such that

m τ-1(Fΐ)Πr-1(F, )^^ for w^l. If we put

in τ~1(Fϊ), then /π is well-defined and belongs to H0CDn,O*). Since (Dn,φn} is the
envelope of holomorphy of (Dn, ψn}, there exists /W€H°(/5W, D*) satisfying

Then log(/noίn)€H°(5*w,D) for any fixed branch of logarithmus (n^V). There
holds log (?n ln<>(τ*nyRn)-l)sΆ\Rn, D) for ^^1 where f*,!7^ is the restriction of τ*t to
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fRn. Since Rn is an analytic polycy under defined by holomorphic functions in £)*,
there exists a holomorphic function hnεD* such that

in Rn-ι for n^2 from Behnke [1]. We put

Hn=exp (/^°/r)eH°(Z)*, D*).

There holds

l(/n°(rn |'Q») l λ)/πn-} <2-
in Sn-i for ^>2. We put

and

Then we have {FrKC^OBnQnXO) where ^-1(5JnQ«) = {A- 1 (F ί .nQ/ l );z€/} is an
open covering of ^(Qn). There holds

in S^-iΠ^XFi). Hence each F? converges uniformly in any compact subset of
to F?;eH0(^-1(Fϊ),O*). Since there holds

in Λ-^FtΠ F/)%0, we have proved our lemma.

COROLLARY OF LEMMA 1. // W(Dn, D*)=0/0r n^l, then we have *IF(A D*) = 0.

§2. Domains D with *H1(AD*)=0.

A collection S^{(mi, tΛ, F?;);f€/} is called a multiple Cousin's distribution in a
complex space X with essential singularities if the following conditions are satisfied:

(1) U={Ul',i^I} is an open covering of X.
(2) Each connected component of U% Π Uj Γ) t4 contains that of F, n F/ Π F, for

any ttn£//Π £4^=^.
(3) mi is a single-valued meromorphic function in an open subset F of Ul for

any z'. milnij can be analytically continued to a function belonging to H°(CΛ Π UJt O*)
for any ίΛn ί/^^.
{mi/mj} defines an element of Z^U, O*) from the condition (2). Its canonical
image in IFCSΓ, O*) is denoted by a. A meromorphic function m in X/=(Ji£ιVι,
is called a solution of K if w/Wi can be analytically continued to a function be-
longing to H°( Uij D*) for any i. Let J^* be a universal covering space of X and Λ
be the canonical mapping of X* onto X. A meromorphic function M in λ~\Xf) is
called a multiform solution of K if Mjm^λ can be analytically continued to a func-
tion belonging to H0^-1^), O*) for any i. For the canonical homomorphism
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1^1, O*), we put *a=λ*(a) and *H1(XD*)=λ*(H1(Z,O*)).

LEMMA 2. // α=0 in U^X, O*), ® te 0 solution. If *α=0 m ΉX^D*), S
<z multiform solution.

Proof. We shall prove the last half of our Lemma. If *α=0 in Ή1 ,̂ £)*),
{mί'λlmjoλ} defines a coboundary of {Ft}€C°y-1(lI),D*) as H1 !̂!), D*)-*H1(-X'1, D*)
is injective. If we put

in λ~l(Vτ) for any /€/, M is well-defined and a meromorphic function in λ~1(Xf)
which is a multiform solution of (£.

A complex space X is called a Cousin-ll-E space (or a multiform Cousin-ll-E
space) if any multiple Cousin's distribution in X with essential singularities has a
solution (or a multiform solution).

COROLLARY OF LEMMA 2. // H1(X,D*)=0 (or *H1(^,D*)=0), X is a Cousin-
ll-E space (or a multiform Cousin-ll-E space).

A function h in a set A is called a trace of a function / in the superset R of
A if there holds Λ=/ in A.

LEMMA 3. Let (D,φ) be a multiform Cousin-ll-E domain over Cn, (D*,ψ*) be
the universal covering manifold of (D, φ) and λ be the canonical mapping of D* onto
D. Then for any (n—T)- dimensional analytic plane H in Cn and for any holomorphlc
function h in φ~1(H)) h°λ is a trace of a holomorphlc function f in D*.

Proof. Without loss of generality we may assume that

There exists an open neighbourhood V of φ~l(H) such that h is a trace of a holo-
morphic function h' in V. We can take another open subset U of D such that
tt={U, V] is an open covering of D and UΠφ~1(H)=φ. Then

<£={(!, U, tf),(exp(A'/*ιop), 7, V-φ-

is a multiple Cousin's distribution in D with essential singularities. Hence there
exists a multiform solution M of g. We have MsR\D*—(f-l(H), O*). If we start
any function element defined by logM at a point of D*—φ*~\H), it can be not only
analytically continued along any curve in D^—φ^~1(H) but also meromorphically
continued at any point of φ*~l(H). Since the fundamental group of D* vanishes, it
defines a meromorphic function in /)* which we shall denote by the same symbol
logM If we put

/ is a holomorphic function in D* whose trace in <fP~l(H) is h°λ.

LEMMA 4. Let (G, φ) be a multiform Cousin-ll-E domain over Cn such that
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Ψ~l(H) is a multiform Cousin-II-E open set over Π for any m- dimensional analytic
plane H={z=(zι, z2, •••, zn); Zj=c3 (j=slf s2, •••, sn-m)} where m, Si, s2, ••• and sn-m arc
integers with I^m<.n, l^ϋSι<S2< <Sn-mίi^ and cjs are complex numbers. Then
G is a domain of holomorphy.

Proof. We shall prove our Lemma by induction with respect to n. For n=l
there is nothing to prove from Behnke-Stein [3]. Suppose that our Lemma is valid
for all n^k and consider the case n=k-{-1. For any H ψ~l(H} is an open set of
holomorphy over 77 from the assumption of our induction. Let E be the set of all
boundary point x° of G such that x° is a boundary point of φ~l(Π) for some k-
dimensional analytic plane fI={z]Zj = z°j} where (z°lfz°2)" tz

0

1l) = φ(x0). Then E is
dence in dG. Let x° be a point of E and 77 be a ^-dimensional analytic plane
satisfying the above condition for this x°. Let (G*, φ*) be the universal covering
manifold of (G, φ) and λ be the canonical mapping of 7)* onto D. Since φ~l(H) is
an open set of holomorphy, there exists a holomorphic function h in φ~l(H) which
is unbounded at x°. Since G is a multiform Cousin-Iί-E domain, there exists a
holomorphic function / in G* such that

in ψ*~l(H) from Lemma 3. Hence any boundary point of (G1, φ*) belonging to λ~l(E)
has the frontier property in the sense of Bochner-Martin [4]. Since E is dense in
dG, there exists a holomorphic function g in G* which is unbounded at each
boundary point of (G*,φ*) from [4]. (G*, φ*) is a covering manifold of the domain
of holomorphy of g. Hence (Gf, φ*) is a domain of holomorphy from Oka [13] or
Stein [15]. (G,φ) is also a domain of holomorphy from Oka [13].

COROLLARY OF LEMMA 4. Any multiform Cousin-ll-E domain over C2 is a
domain of holomorphy.

§ 3. Domain exhausted by regular* domains.

A domain G in Cn is called exhausted by regular* domains GP if G?/s are
regular* domains in Cn such that

Gp&Gp+i (£=1,2,3, ) and G= U GP.
p=l

LEMMA 5. Let G be a domain in Cn exhausted by regular* domains Gp. Then
*Ά\G, O*)=0. Moreover for any integers l^m<n, l^Sι<s2< <sn-m^n and
for any complex numbers c3 (j=Sι, sz, •••, sw_TO) the intersection GΠ77 of G and
H={z=(zι,z2, •• ,zn);zJ=Cj(j=Sι, s2, ~,sn-m)} satisfies Ή^G Π 77, O*)=0.

Proof. Since Gp is a relatively compact regular* domain, we have H^G/,, D*)=0
for any p. From Corollary of Lemma 1 we have Ή^G, D*)=0.

Next we shall prove Ή^GnTΓ, D*)=0. We may assume that
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There exist εp>0 and #p>0 vSuch that

Ep=Gpn {(z, w)\ \Zj\ <ap, \wk\ <εp (j=l, 2, ••-, m, k=l, 2, -, n—m)}

c (0, «;); N <ap, \wk\ <%, (z, 0)€Gn#, O'=l, 2, • • • , w, fc=l, 2, • • • , w-w)},

tfp<tfpfi 0^1) and ap-*oo (/>->oo),

£p>Spfi (/>^1) and εp-^0 (/>— >oo).

Since Gp is regular*, we have HXE1^, O*)=0 for any />. We put

267

Then Gπ// is the limit of monotonously increasing sequence of open sets //^ in
77. Let S3={F,;5eS} be an open covering of GΠ//. We put F?=F.sn//P for s€S.
Then 93p={F?; seS} is an open covering of //p. We put

be an elementfor seS. Then Up= { ί/?; 5€vS} is an open covering of Ep. Let
of Z^SS, D*) We put

in Up

snUp

t*ψ. Then {F? ί}€Z1(UP,O*)=B1(U^,D*) as H1(UP,
injective. There exists F?€H°( C7?, D*) for any 5€.S such that

) = 0 s

in i7?n ^7?^^. If we put

in F? for any 5€.S, then we have

in F?n F?^<^. Therefore the restriction of {fst} in any //p is a coboundary of
{/f}€C°(55p,D*) for any p. From Lemma 1 {fst VeB1^-1®*),®*),^*,*) being the
universal covering manifold of G. Thus we have s

From Corollary of Lemma 2 and Lemmas 4 and 5 we have

PROPOSITION 1. A domain in Cn exhausted by regular* domains is a domain
of holomorphy.

§ 4. Regular* domain with a continuous boundary.

A boundary point XQ of an open set G in Rn is called a continuous boundary point
of G if there exists a real-valued continuous function r/ of variables xlt %2, • •• ,#; , • • • , xn

in a neighbourhood F of x° such that

Gn V={x=(xι,xz, '• ,χn)',χj=o(χι,χ*, ~,£j, •• ,Λ?w),^
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for some j. A domain (G, φ) over a complex manifold is called pseudoconvex at a
boundary point XQ if there exists an open neighborhood V of φ(x°) such that
the connected component of φ~l(V) belonging to the filtre denning x° is holo-
morphically convex. A boundary point XQ of a domain (G, φ) over a complex mani-
fold is called a simultaneously continuous and locally regular* boundary point of
(G, φ) if there exists a biholomorphic mapping τ of an open neighbourhood V of
φ(xύ) onto a subdomain of a complex Euclidean space such that τ°φ maps the
connected component W of φ~l(V) belonging to the filtre defining XQ biholo-
morphically onto τ(ψ(W)) and τ(φ(xQ)) is a continuous boundary point of τ(φ(W))
which is a regular* open set. If any boundary point of (G, φ) is a simultaneously
continuous and locally regular* boundary point, (G, φ) is called to have a simultane-
ously continuous and locally regular* boundary.

PROPOSITION 2. A regular* open set G in Cn is pseudoconvex at a continuous
boundary point z° of G.

Proof. We put z°=(z0

1,z*2,~-,z°n). There exists ε>0 and a real-valued con-
tinuous function g of variables zίf z2, •••, Zj-i, yjt z3\\, ~ ,zn in a neighbourhood
V={z=(zι,z2, ',Zn);\zk-zl\<ε (k=l,2, ,ή)} such that

V= [z\ xj=g(zι, Zz, •••, Zj-i, yj, Zj+ι, •••, zn), zzV}

for some j where Zj—Xj+*J~—\y3. Then three cases (1), (2) and (3) may occur.

( 1 ) Gn F= [z] Xj

For 0^/<1 we put

Then we have

{2; Oi, ^2, , Z j - i , Zj — tε/2, ZJλ i, , 2n)€ Ft } C V

for 0<ί<l. We put

Et={z; xj<g(zι, z2,- , Zj-i, yJ9 zj}1, •••, zn)—tε/2, zeVt}.

Let P be a relatively compact and simply connected polycylinder in Cn. EtΓiP is
mapped onto

{w,Uj<g(wι, W2,-~, Wj-ι, Vj, Wj+ι, ~, wn\ (MI, wz,~ , Wj-i, Wj—tε/2,

=G n Fn {z; fei, ̂ 2, , ̂ -i, Zj—u/2, z3 f i, , *n)

by a biholomorphic mapping w=(wι,W2, ,wn)=γ(z) defined by wk=zk

Wj=Zj+tε/2. Since γ(EtΓ\P) is the intersection of G and relatively compact and
simply connected polycylinders, we have

E\Et Π P, D*)=ΈL1(r(Et n P), D*)=0.

Therefore Et is a regular* open set for Q^t<l. Since EQ is exhausted by regular*
domains {JSi;0</<l}, £Ό=Gn F0 is a domain of holomorphy from Proposition 1.
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Hence G is pseudoconvex at z°.

(2) Gn V={z;xj>g(zι,z2, •• , z J - 1 , y J , Z j + ι , •• ,z»),zeF}.

In this case the situation is quite similar to the case (1).

(3) Gn V={z',xJ*?g(zlίZ2, •• ,zj-1,yj)zj+1, ~ ,zn),zsV}.

Let

Gι= {z; Xj<g(zι, zz, ••-, Zj-i, yj, zj+1, •••, zn), ̂  V}

and

Gz= [Z] Xj>(j(Zί, Zz,~ , Zj-i, ΊJj, Zj + ί, ••', Zn), Z$V } .

From the cases (1) and (2) Gi and G2 are pseudoconvex at z°. Hence G Π K= Gi U G2

is pseudoconvex at 2°.

§ 5. Domain with a simultaneously continuous and locally regular* boundary.

PROPOSITION 3. A domain (G, φ) over a Stein manifold with a simultaneously
continuous and locally regular* boundary is a Stein manifold.

Proof. Let x° be a boundary point of (G, φ). From the assumption of our
Proposition, there exists a biholomorphic mapping τ of an open neighbourhood V
of φ(xQ) onto a domain in a complex Euclidean space such that τ°φ maps the con-
nected component Woί φ~l(V) belonging to the filtre defining x* biholomorphically
onto τ(φ(W)) and τ(φ(xQ)) is a continuous boundary point of τ(φ(W)) which is a
regular* open set. From Proposition 2 τ(φ(WJ) is pseudoconvex at τ(φ(x°)). Hence
(G, φ) is pseudoconvex at x°. Since any pseudoconvex domain over a Stein manifold
is a Stein manifold from Docquier-Grauert [7], (G, φ) is a Stein manifold.

A boundary point x° of a domain (G, φ) over a complex manifold is called a
locally regular* boundary point of (G, φ) if there exists a biholomorphic mapping r
of an open neighbourhood V of φ(xϋ) in a complex Euclidean space such that the
image τ(φ(W}) of the connected component W of φ~l(V) belonging to the filtre
denning x° by the holomorphic mapping τ°φ is a regular* open set. A domain
over a complex manifold is called to have a locally regular* boundary if its
each boundary point is a locally regular* boundary point. A boundary point XQ of
a domain (G, φ) over an ^-dimensional complex manifold is called a smooth boundary
point of (G, φ) if there exists a real-valued continuously differentiable function g in
an open neighbourhood V of φ(x°) such that Σ2Aι(dg/dtj)2^Q at φ(x°) for real local
coordinates tlt t2, ~ ,t2n, φ maps the connected component W of φ~\V) belonging
to the filtre defining XQ biholomorphically onto φ(W) and there holds

A boundary point of a domain (G, ψ) over a Stein manifold which is a smooth
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boundary point of (G, ψ) and which is a locally regular* boundary point is a
simultaneously continuous and locally regular* boundary point of (G, φ) in our
sense. But a boundary point of (G, φ) which is a continuous boundary point of
(G, φ) and which is a locally regular* boundary point of (G, φ) may not perhaps be
a simultaneously continuous and locally regular* boundary point of (G, ψ) in our
sense even if we define a continuous boundary point of (G, φ) similarly. A domain
over a complex manifold is called to have a smooth boundary if its each boundary
point is a smooth boundary point. We have

COROLLARY OF PROPOSITION 3. If a domain (G, ψ) over a Stein manifold with
a smooth boundary has a locally regular* boundary, then (G, ψ) is a Stein manifold.

Let G be a subdomain of a Stein manifold S with a smooth boundary. If G
is not a Stein manifold, there exists a boundary point ,τ° of G which is not a
locally regular* boundary point of G from the above Corollary. Let V be any
local coordinate neighbourhood of x° and τ be a biholomorphic mapping of V onto
a domain in a complex Euclidean space. Then τ(G n V) is not a regular* open set.
Hence there exists a relatively compact and simply connected polycylinder P in
τ(V) such that HJ(r(Gn F)ΠP,O*)^0. Since P is a Stein manifold analytically
contractible to its each point from Riemann's mapping theorem, τ~l(P) is also a
Stein manifold analytically contractible to its each point. We have

THEOREM 1. Let G be a subdomain of a Stein manifold S with a smooth
boundary such that H1(GπAD*)=0 for any subdomain D of 8 which is a Stein
manifold analytically contractible to its each point. Then G is a Stein manifold.

THEOREM 2. Let G be a subdomain of a Stem manifold S with a smooth
boundary. If G is not a Stein manifold, then there exists an arbitrarily small sub-
domain D of S which is analytically contractible to its each point such that

£)*)=*=().

If we do not assume the smoothness of the boundary, we only have

THEOREM 3. // a subdomain G of a Stein manifold S can be exhausted by
subdomains Gp which satisfy H^GpΠA O*)=0 for any subdomain D of S which is
a Stein manifold analytically conlractible to its each point, then G is a Stein mani-
fold.

Proof. Of course G/s satisfy

0= U Gp.
p=l

Let XQ be a boundary point of G. We consider a biholomorphic mapping τ of an
open neighbourhood V of XQ in a complex Euclidean space Cn. There exists ε>0
such that
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Z={z=(z1,z*,-,zn);\zj-z*j\<e (j=l,2,'. ,n)}mτ(V).

We put

/=1,2, -,«)}, Ep=τ(Gpn V)ΠZP

for p^l. Let P be a relatively compact and simply connected poly cylinder in Cn.

Then we have

Since each connected component of r-^Z^nP) is a Stein manifold analytically con-
tractible to its each point, we have

R\EP Π P, D*)=H1(r-1(ΔΊ

p Π P), 0*)=0.

Therefore Ep is a regular* open set for any p^l. Since E=τ(Gr\ V ) f } Z is ex-

hausted by regular* open sets Ep, E is a domain of holomorphy from Proposition

1. Hence G is pseudoconvex at its each boundary point and is a Stein manifold

from Docquier-Grauert [7].
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