RELATIONS BETWEEN DOMAINS OF HOLOMORPHY AND MULTIPLE COUSIN'S PROBLEMS

By Joji Kajiwara

Introduction.

Oka [12] proved that a domain D of holomorphy in C^n is a *Cousin-I domain*, that is, any additive Cousin's distribution in D has a solution. On the other hand from Cartan [5]-Behnke-Stein [2]'s theorem, a Cousin-I domain in C^2 is a domain of holomorphy. In this way any domain of holomorphy in C^2 can be completely characterized by additive Cousin's problems. For $n \ge 3$, however, Cartan [6] showed that a Cousin-I domain in C^n is not necessarily a domain of holomorphy. In the previous paper [10] we tried to characterize a domain of holomorphy in a Stein manifold by additive Cousin's problems. An open set G in C^n is called *regular* if $G \cap P$ is a Cousin-I open set for any relatively compact polycylinder P in C^n . We proved that a domain in C^n is a domain of holomorphy if and only if it can be exhausted by regular domains. Moreover, we proved that a regular open set is pseudoconvex in the Cartan's sense at its continuous boundary point. Making use of the results of Oka [13] or Docquier-Grauert [7] respectively, we proved that a domain in C^n or more generally in a Stein manifold with a smooth boundary is a domain of holomorphy if and only if it is locally regular at its each boundary point.

Concerning multiple Cousin's problems the situation is more or less different. Thullen [16] gave an example of a domain in C^2 which is not a domain of holomorphy but a *Cousin*-II *domain*, that is, a domain in which any multiple Cousin's distribution has a solution. Let $\mathbb O$ and $\mathbb O^*$ be, respectively, the sheaves of all germs of holomorphic mappings in C and GL(1,C). As we remarked in [9], Thullen's example is a Cousin-II domain D with $H^1(D,\mathbb O^*) \neq 0$. In the previous paper [11] we proved that a domain (D,φ) over C^n with $H^1(D,\mathbb O^*) = H^1(\varphi^{-1}(H),\mathbb O^*) = 0$ for any analytic plane H in C^n is a domain of holomorphy. Especially a domain (D,φ) over C^2 satisfies $H^1(D,\mathbb O^*) = 0$ if and only if (D,φ) is a domain of holomorphy with $H^2(D,Z) = 0$ where Z is the abelian group of all integers. These facts suggest that we should obtain a sufficient condition that a domain D in C^n is a domain of holomorphy, if we put a similar discussion forward as in [10] substituting a domain G with $H^1(G,\mathbb O^*) = 0$ in stead of a Cousin-I domain.

As a polycylinder P does not necessarily satisfy $H^1(P, \mathbb{Q}^*)=0$, we shall consider only simply connected polycylinders in the definition below. An open set G in C^n is called $regular^*$ if $H^1(G \cap P, \mathbb{Q}^*)=0$ for any relatively compact and simply connected polycylinder P in C^n . In the present paper we shall prove that a domain

in C^n which can be exhausted by regular* domains is a domain of holomorphy and that a regular* domain in C^n is pseudoconvex in the Cartan's sense at its continuous boundary point. Making use of the affirmative solution of the Levi problem loco citato, we can prove that a domain over a Stein manifold with a simultaneously continuous and locally regular* boundary is a domain of holomorphy.

§ 1. Limit of cohomology groups.

A sequence $\{(D_n, \varphi_n); n=1, 2, 3, \cdots\}$ of domains (D_n, φ_n) over a Stein manifold S is called a *monotonously increasing sequence* of domains over S if there exists a holomorphic mapping τ_m^n of D_n in D_m with $\varphi_n = \varphi_m \circ \tau_m^n$ for m and n with $m \ge n$. In the previous paper [8] we proved the existence of a domain (D, φ) over S with the following properties:

- (1) There exists a holomorphic mapping τ_n of D_n in D with $\varphi_n = \varphi \circ \tau_n$ for any n.
- (2) Let (D', φ') be a domain over S such that there exists a holomorphic mapping τ'_n of D_n in D' with $\varphi_n = \varphi' \circ \tau'_n$ for any n. Then there exists a holomorphic mapping τ' of D in D' with $\tau'_n = \tau' \circ \tau_n$ for any n.

 (D, φ) is called the *limit of the sequence* $\{(D_n, \varphi_n); n=1, 2, 3, \cdots\}$. We consider the universal covering manifold (D^*, φ^*) of (D, φ) . Let λ be the canonical mapping of D^* in D. Then τ_m^n , τ_n and λ induce canonically homomorphisms τ_m^{n*} : $H^1(D_m, \mathbb{O}^*) \to H^1(D_n, \mathbb{O}^*)$, τ_n^* : $H^1(D, \mathbb{O}^*) \to H^1(D_n, \mathbb{O}^*)$ and λ^* : $H^1(D, \mathbb{O}^*) \to H^1(D^*, \mathbb{O}^*)$. For the sake of brevity we put ${}^*\alpha = \lambda^*(\alpha)$ for $\alpha \in H^1(D, \mathbb{O}^*)$ and ${}^*H^1(D, \mathbb{O}^*) = \lambda^*(H^1(D, \mathbb{O}^*))$ and we shall use these notations frequently. $\{H^1(D_n, \mathbb{O}^*), \tau_n^{n*}\}$ is an inverse system of abelian groups over a directed set $\{n=1, 2, 3, \cdots\}$. We consider its inverse limit and denote it by $\lim_{n \to \infty} H^1(D_n, \mathbb{O}^*)$. We denote the canonical homomorphism of $H^1(D, \mathbb{O}^*)$ in $\lim_{n \to \infty} H^1(D_n, \mathbb{O}^*)$ by π . Unfortunately we can not yet succeed to prove that π is injective but we have the following lemma, which is sufficient for our purpose and the proof of which is quite similar to that of Proposition 2 in the previous paper [8].

LEMMA 1. $\alpha \in H^1(D, \mathbb{Q}^*)$ with $\pi(\alpha) = 0$ satisfies $\alpha = 0$.

Proof. Let $(\tilde{D}_n, \tilde{\varphi}_n)$ and $(\tilde{D}, \tilde{\varphi})$ be, respectively, the envelopes of holomorphy of (D_n, φ_n) and (D, φ) . Let (D_n^*, φ_n^*) , (D_n^*, φ_n^*) , $(\tilde{D}_n^*, \tilde{\varphi}_n^*)$ and $(\tilde{D}^*, \tilde{\varphi}^*)$ be, respectively, the universal covering manifolds of (D_n, φ_n) , (D, φ) , $(\tilde{D}_n, \tilde{\varphi}_n)$ and $(\tilde{D}, \tilde{\varphi})$. Since $(\tilde{D}_n^*, \tilde{\varphi}_n^*)$ and $(\tilde{D}^*, \tilde{\varphi}^*)$ are p_7 -convex in the sense of Docquier-Grauert [7], they are domain holomorphy from [7]. We consider canonical mappings τ_n^n : $D_n \to D_m$, τ_m : $D_m \to D$, τ_n^* : $D_n^* \to D_n^*$.

 $(D, \varphi), (D^{\sharp}, \varphi^{\sharp}), (\widetilde{D}, \widetilde{\varphi})$ and $(\widetilde{D}^{\sharp}, \widetilde{\varphi}^{\sharp})$ are, respectively, limits of monotonously increasing sequences $\{(D_n, \varphi_n); n=1, 2, 3, \cdots\}, \{(D_n^{\sharp}, \varphi_n^{\sharp}); n=1, 2, 3, \cdots\}, \{(\widetilde{D}_n, \widetilde{\varphi}_n); n=1, 2, 3, \cdots\} \text{ and } \{(\widetilde{D}_n^{\sharp}, \widetilde{\varphi}_n^{\sharp}); n=1, 2, 3, \cdots\} \text{ of domains over } S.$ Let $\{P_n; n=1, 2, 3, \cdots\}, \{Q_n; n=1, 2, 3, \cdots\}, \{R_n; n=1, 2, 3, \cdots\} \text{ and } \{S_n; n=1, 2, 3, \cdots\} \text{ be, respectively, sequences of relatively compact subdomains of } \widetilde{D}, D, \widetilde{D}^{\sharp} \text{ and } D^{\sharp} \text{ such that}$

$$P_{n} \Subset P_{n+1}, \quad Q_{n} \Subset Q_{n+1}, \quad R_{n} \Subset R_{n+1}, \quad S_{n} \Subset S_{n+1} \quad (n \ge 1),$$

$$\widetilde{D} = \bigcup_{n=1}^{\infty} P_{n}, \quad D = \bigcup_{n=1}^{\infty} Q_{n}, \quad \widetilde{D}^{\sharp} = \bigcup_{n=1}^{\infty} R_{n}, \quad D^{\sharp} = \bigcup_{n=1}^{\infty} S_{n},$$

$$\mu(Q_{n}) \subset P_{n}, \quad \lambda(S_{n}) \subset Q_{n}, \quad \widetilde{\lambda}(R_{n}) \subset P_{n}, \quad \kappa(S_{n}) \subset R_{n}$$

and P_n , R_n are, respectively, analytic polycylinders defined by holomorphic functions in \widetilde{D} and \widetilde{D}^{\sharp} . If we take a suitable subsequence $\{\nu_n; n=1,2,3,\cdots\}$ of $\{1,2,3,\cdots\}$, the discussion below can be continued. For the sake of brevity we may assume that $\nu_n=n$ without losing generality. There exists, respectively, subdomains P_n , P_n , P_n , and P_n and P_n such that P_n , P_n , and P_n and $P_$

$$\tilde{\tau}_{n+1}^{*}('P_n) \subset 'P_{n+1}, \quad \tau_{n+1}^{*}('Q_n) \subset 'Q_{n+1}, \quad \tilde{\tau}_{n+1}^{*}('R_n) \subset 'R_{n+1}, \\
\tau_{n+1}^{*}('S_n) \subset 'S_{n+1}, \\
\mu_n('Q_n) \subset 'P_n, \quad \lambda_n('S_n) \subset 'Q_n, \quad \tilde{\lambda}_n('R_n) \subset 'P_n, \quad \kappa_n('S_n) \subset 'R_n$$

and the commutativity holds in the following diagram:

Under this preparation of the notations we shall preced in the proof of our Lemma. Let $\mathfrak{B}=\{V_i;i\in I\}$ be any open covering of D and $\{f_{ij}\}$ be any element of $Z^1(\mathfrak{B}, \mathfrak{D}^*)$ such that $\{f_{ij}\circ\tau_n\}\in B^1(\tau_n^{-1}(\mathfrak{B}),\mathfrak{D}^*)$ for $n\geq 1$ where $\tau_n^{-1}(\mathfrak{B})=\{\tau_n^{-1}(V_i);i\in I\}$ is an open covering of D_n . There exists $\{f_i^n\}\in C^0(\tau_n^{-1}(\mathfrak{B}),\mathfrak{D}^*)$ such that

$$f_{ij} \circ \tau_n = f_i^n / f_i^n$$

in $\tau_n^{-1}(V_i) \cap \tau_n^{-1}(V_j) \neq \phi$ for $n \geq 1$. If we put

$$f^n = f_n^n / f_n^{n+1} \circ \tau_{n+1}^n$$

in $\tau_n^{-1}(V_i)$, then f^n is well-defined and belongs to $H^0(D_n, \mathbb{O}^*)$. Since $(\widetilde{D}_n, \widetilde{\varphi}_n)$ is the envelope of holomorphy of (D_n, φ_n) , there exists $\widetilde{f}^n \in H^0(\widetilde{D}_n, \mathbb{O}^*)$ satisfying

$$f^n = \tilde{f}^n \circ \mu_n$$
.

Then $\log(\tilde{f}^n \circ \tilde{\lambda}_n) \in H^0(\tilde{D}_n^*, \mathbb{O})$ for any fixed branch of logarithmus $(n \ge 1)$. There holds $\log(\tilde{f}^n \circ \tilde{\lambda}_n \circ (\tilde{\tau}_n^*|'R_n)^{-1}) \in H^0(R_n, \mathbb{O})$ for $n \ge 1$ where $\tilde{\tau}_n^*|'R_n$ is the restriction of $\tilde{\tau}_n^*$ to

 ${}'R_n$. Since R_n is an analytic polycylinder defined by holomorphic functions in \widetilde{D}^{\sharp} , there exists a holomorphic function $\widetilde{h}^n \in \widetilde{D}^{\sharp}$ such that

$$|\log(\tilde{f}^n \circ \tilde{\lambda}_n \circ (\tilde{\tau}_n^*|'R_n)^{-1}) - \tilde{h}^n| < 2^{-n-2}$$

in R_{n-1} for $n \ge 2$ from Behnke [1]. We put

$$H^n = \exp(\tilde{h}^n \circ \kappa) \in H^0(D^*, \mathfrak{O}^*).$$

There holds

$$|(f^n \circ (\tau_n|'Q^n)^{-1} \circ \lambda)/II^n - 1| < 2^{-n}$$

in S_{n-1} for $n \ge 2$. We put

$$G^1=1$$
, $G^n=H^1H^2\cdots H^{n-1}\in H^0(D^{\sharp},\mathbb{O}^*)$

and

$$F_n^n = (f_n^n \circ (\tau_n | Q_n)^{-1} \circ \lambda) G^n \in H^0(\lambda^{-1}(V_n \cap Q_n), \mathfrak{Q}^*).$$

Then we have $\{F_i^n\}\in C^0(\lambda^{-1}(\mathfrak{V}\cap Q_n),\mathfrak{O})$ where $\lambda^{-1}(\mathfrak{V}\cap Q_n)=\{\lambda^{-1}(V_i\cap Q_n); i\in I\}$ is an open covering of $\lambda^{-1}(Q_n)$. There holds

$$|F_i^n/F_i^{n+1}-1| < 2^{-n}$$

in $S_{n-1} \cap \lambda^{-1}(V_i)$. Hence each F_i^n converges uniformly in any compact subset of $\lambda^{-1}(V_i)$ to $F_i \in H^0(\lambda^{-1}(V_i), \mathbb{O}^*)$. Since there holds

$$f_{i,i} \circ \lambda = F_i/F_i$$

in $\lambda^{-1}(V_i \cap V_j) \neq \phi$, we have proved our lemma.

COROLLARY OF LEMMA 1. If $H^1(D_n, \mathbb{Q}^*)=0$ for $n\geq 1$, then we have $H^1(D, \mathbb{Q}^*)=0$.

§ 2. Domains **D** with $^{*}H^{1}(D, \mathbb{O}^{*})=0$.

A collection $\mathfrak{C} = \{(m_i, U_i, V_i); i \in I\}$ is called a *multiple Cousin's distribution in a complex space X with essential singularities* if the following conditions are satisfied:

- (1) $\mathfrak{U} = \{U_i; i \in I\}$ is an open covering of X.
- (2) Each connected component of $U_i \cap U_j \cap U_k$ contains that of $V_i \cap V_j \cap V_k$ for any $U_i \cap U_j \cap U_k \neq \phi$.
- (3) m_i is a single-valued meromorphic function in an open subset V_i of U_i for any i. m_i/m_j can be analytically continued to a function belonging to $H^0(U_i \cap U_j, \mathbb{O}^*)$ for any $U_i \cap U_j \neq \phi$.

 $\{m_i/m_j\}$ defines an element of $Z^1(\mathfrak{U}, \mathfrak{D}^*)$ from the condition (2). Its canonical image in $H^1(X, \mathfrak{D}^*)$ is denoted by α . A meromorphic function m in $X' = \bigcup_{i \in I} V_i$ is called a *solution of* \mathfrak{C} if m/m_i can be analytically continued to a function belonging to $H^0(U_i, \mathfrak{D}^*)$ for any i. Let X^* be a universal covering space of X and λ be the canonical mapping of X^* onto X. A meromorphic function M in $\lambda^{-1}(X')$ is called a *multiform solution of* \mathfrak{C} if $M/m_i \circ \lambda$ can be analytically continued to a function belonging to $H^0(\lambda^{-1}(U_i), \mathfrak{D}^*)$ for any i. For the canonical homomorphism

 λ^* : $H^1(X, \mathbb{Q}^*) \to H^1(X^*, \mathbb{Q}^*)$, we put $\alpha = \lambda^*(\alpha)$ and $H^1(X, \mathbb{Q}^*) = \lambda^*(H^1(X, \mathbb{Q}^*))$.

LEMMA 2. If $\alpha=0$ in $H^1(X, \mathbb{Q}^*)$, \mathfrak{C} has a solution. If $\alpha=0$ in $H^1(X, \mathbb{Q}^*)$, \mathfrak{C} has a multiform solution.

Proof. We shall prove the last half of our Lemma. If ${}^{\sharp}\alpha=0$ in ${}^{\sharp}H^{1}(X, \mathbb{O}^{*})$, $\{m_{i}\circ\lambda/m_{j}\circ\lambda\}$ defines a coboundary of $\{F_{i}\}\in C^{0}(\lambda^{-1}(\mathfrak{U}), \mathbb{O}^{*})$ as $H^{1}(\lambda^{-1}(\mathfrak{U}), \mathbb{O}^{*})\to H^{1}(X^{\sharp}, \mathbb{O}^{*})$ is injective. If we put

$$M=m_i\circ\lambda/F_i$$

in $\lambda^{-1}(V_i)$ for any $i \in I$, M is well-defined and a meromorphic function in $\lambda^{-1}(X')$ which is a multiform solution of \mathfrak{C} .

A complex space X is called a *Cousin-II-E space* (or a *multiform Cousin-II-E space*) if any multiple Cousin's distribution in X with essential singularities has a solution (or a multiform solution).

COROLLARY OF LEMMA 2. If $H^1(X, \mathbb{O}^*)=0$ (or ${}^*H^1(X, \mathbb{O}^*)=0$), X is a Cousin-II-E space (or a multiform Cousin-II-E space).

A function h in a set A is called a *trace* of a function f in the superset B of A if there holds h=f in A.

LEMMA 3. Let (D, φ) be a multiform Cousin-II-E domain over C^n , (D^*, φ^*) be the universal covering manifold of (D, φ) and λ be the canonical mapping of D^* onto D. Then for any (n-1)-dimensional analytic plane H in C^n and for any holomorphic function h in $\varphi^{-1}(H)$, $h \circ \lambda$ is a trace of a holomorphic function f in D^* .

Proof. Without loss of generality we may assume that

$$H=\{(z_1,z_2,\cdots,z_n);z_1=0\}.$$

There exists an open neighbourhood V of $\varphi^{-1}(H)$ such that h is a trace of a holomorphic function h' in V. We can take another open subset U of D such that $\mathfrak{U}=\{U,V\}$ is an open covering of D and $U\cap \varphi^{-1}(H)=\phi$. Then

$$\mathbb{C} = \{(1, U, U), (\exp(h'/z_1 \circ \varphi), V, V - \varphi^{-1}(H))\}$$

is a multiple Cousin's distribution in D with essential singularities. Hence there exists a multiform solution M of \mathfrak{C} . We have $M \in H^0(D^{\sharp} - \varphi^{\sharp - 1}(H), \mathfrak{D}^{\sharp})$. If we start any function element defined by $\log M$ at a point of $D^{\sharp} - \varphi^{\sharp - 1}(H)$, it can be not only analytically continued along any curve in $D^{\sharp} - \varphi^{\sharp - 1}(H)$ but also meromorphically continued at any point of $\varphi^{\sharp - 1}(H)$. Since the fundamental group of D^{\sharp} vanishes, it defines a meromorphic function in D^{\sharp} which we shall denote by the same symbol $\log M$. If we put

$$f = (z_1 \circ \varphi^{\sharp}) \log M$$

f is a holomorphic function in D^* whose trace in $\varphi^{*-1}(H)$ is $h \circ \lambda$.

Lemma 4. Let (G, φ) be a multiform Cousin-II-E domain over C^n such that

 $\varphi^{-1}(H)$ is a multiform Cousin-II-E open set over II for any m-dimensional analytic plane $H=\{z=(z_1,z_2,\cdots,z_n); z_j=c_j\ (j=s_1,s_2,\cdots,s_{n-m})\}$ where m,s_1,s_2,\cdots and s_{n-m} are integers with $1\leq m < n,\ 1\leq s_1 < s_2 < \cdots < s_{n-m} \leq n$ and c_j 's are complex numbers. Then G is a domain of holomorphy.

Proof. We shall prove our Lemma by induction with respect to n. For n=1 there is nothing to prove from Behnke-Stein [3]. Suppose that our Lemma is valid for all $n \le k$ and consider the case n=k+1. For any $H \varphi^{-1}(H)$ is an open set of holomorphy over H from the assumption of our induction. Let E be the set of all boundary point x^0 of G such that x^0 is a boundary point of $\varphi^{-1}(H)$ for some k-dimensional analytic plane $H=\{z;z_j=z_j^0\}$ where $(z_1^0,z_2^0,\cdots,z_n^0)=\varphi(x^0)$. Then E is dence in ∂G . Let x^0 be a point of E and H be a k-dimensional analytic plane satisfying the above condition for this x^0 . Let $(G^{\sharp},\varphi^{\sharp})$ be the universal covering manifold of (G,φ) and λ be the canonical mapping of D^{\sharp} onto D. Since $\varphi^{-1}(H)$ is an open set of holomorphy, there exists a holomorphic function h in $\varphi^{-1}(H)$ which is unbounded at x^0 . Since G is a multiform Cousin-II-E domain, there exists a holomorphic function f in G^{\sharp} such that

$$f=h\circ\lambda$$

in $\varphi^{\sharp-1}(H)$ from Lemma 3. Hence any boundary point of $(G^{\sharp}, \varphi^{\sharp})$ belonging to $\lambda^{-1}(E)$ has the frontier property in the sense of Bochner-Martin [4]. Since E is dense in ∂G , there exists a holomorphic function g in G^{\sharp} which is unbounded at each boundary point of $(G^{\sharp}, \varphi^{\sharp})$ from [4]. $(G^{\sharp}, \varphi^{\sharp})$ is a covering manifold of the domain of holomorphy of g. Hence $(G^{\sharp}, \varphi^{\sharp})$ is a domain of holomorphy from Oka [13] or Stein [15]. (G, φ) is also a domain of holomorphy from Oka [13].

Corollary of Lemma 4. Any multiform Cousin-II-E domain over C^2 is a domain of holomorphy.

§ 3. Domain exhausted by regular* domains.

A domain G in C^n is called *exhausted by regular* domains* G_p if G_p 's are regular* domains in C^n such that

$$G_p \in G_{p+1} \ (p=1,2,3,\cdots) \ \text{and} \ G = \bigcup_{n=1}^{\infty} G_p.$$

Lemma 5. Let G be a domain in C^n exhausted by regular* domains G_p . Then ${}^{*}H^1(G, \mathbb{Q}^*)=0$. Moreover for any integers $1 \leq m < n$, $1 \leq s_1 < s_2 < \cdots < s_{n-m} \leq n$ and for any complex numbers c_j $(j=s_1, s_2, \cdots, s_{n-m})$ the intersection $G \cap H$ of G and $H=\{z=(z_1, z_2, \cdots, z_n); z_j=c_j(j=s_1, s_2, \cdots, s_{n-m})\}$ satisfies ${}^{*}H^1(G \cap H, \mathbb{Q}^*)=0$.

Proof. Since G_p is a relatively compact regular* domain, we have $H^1(G_p, \mathbb{Q}^*)=0$ for any p. From Corollary of Lemma 1 we have ${}^{\mathfrak{p}}H^1(G, \mathbb{Q}^*)=0$.

Next we shall prove ${}^{*}H^{1}(G \cap H, \mathbb{Q}^{*})=0$. We may assume that

$$H = \{(z, w) = (z_1, z_2, \dots, z_m, w_1, w_2, \dots, w_{n-m}); w_j = 0 \ (j=1, 2, \dots, n-m)\}.$$

There exist $\varepsilon_p > 0$ and $\alpha_p > 0$ such that

$$E_{p}=G_{p}\cap\{(z,w); |z_{j}|<\alpha_{p}, |w_{k}|<\varepsilon_{p} \ (j=1,2,\cdots,m,k=1,2,\cdots,n-m)\}$$

$$\subset\{(z,w); |z_{j}|<\alpha_{p}, |w_{k}|<\varepsilon_{p}, (z,0)\in G\cap H, \ (j=1,2,\cdots,m,k=1,2,\cdots,n-m)\},$$

$$\alpha_{p}<\alpha_{p+1} \ (p\geq 1) \quad \text{and} \quad \alpha_{p}\to\infty \ (p\to\infty),$$

$$\varepsilon_{p}>\varepsilon_{p+1} \ (p\geq 1) \quad \text{and} \quad \varepsilon_{p}\to0 \ (p\to\infty).$$

Since G_p is regular*, we have $H^1(E_p, \mathfrak{O}^*)=0$ for any p. We put

$$H_p = G_p \cap H \cap \{(z, 0); |z_j| < a_p \ (j=1, 2, \dots, m)\}.$$

Then $G \cap H$ is the limit of monotonously increasing sequence of open sets H_p in H. Let $\mathfrak{B} = \{V_s; s \in S\}$ be an open covering of $G \cap H$. We put $V_s^p = V_s \cap H_p$ for $s \in S$. Then $\mathfrak{B}_p = \{V_s^p; s \in S\}$ is an open covering of H_p . We put

$$U_s^p = E_p \cap \{(z, w); (z, 0) \in V_s\}$$

for $s \in S$. Then $\mathfrak{U}_p = \{U_s^p, s \in S\}$ is an open covering of E_p . Let $\{f_{st}(z)\}$ be an element of $Z^1(\mathfrak{P}, \mathfrak{D}^*)$. We put

$$F_{st}^p(z,w)=f_{st}(z)$$

in $U_s^p \cap U_t^p \neq \phi$. Then $\{F_{st}^p\} \in \mathbb{Z}^1(\mathfrak{U}_p, \mathbb{O}^*) = \mathbb{B}^1(\mathfrak{U}_p, \mathbb{O}^*)$ as $\mathbb{H}^1(\mathfrak{U}_p, \mathbb{O}^*) \to \mathbb{H}^1(E_p, \mathbb{O}^*) = 0$ is injective. There exists $F_s^p \in \mathbb{H}^0(U_s^p, \mathbb{O}^*)$ for any $s \in S$ such that

$$F_{st}^p = F_s^p/F_t^p$$

in $U_s^p \cap U_t^p \neq \phi$. If we put

$$f_{s}^{p}(z) = F_{s}^{p}(z, 0)$$

in V_s^p for any $s \in S$, then we have

$$f_{st} = f_s^p / f_t^p$$

in $V_s^p \cap V_t^p \neq \phi$. Therefore the restriction of $\{f_{st}\}$ in any II_p is a coboundary of $\{f_s^p\} \in C^0(\mathfrak{B}_p, \mathfrak{D}^*)$ for any p. From Lemma 1 $\{f_{st} \circ \lambda\} \in B^1(\lambda^{-1}(\mathfrak{B}), \mathfrak{D}^*), (G^{\sharp}, \lambda)$ being the universal covering manifold of G. Thus we have ${}^{\sharp}H^1(G \cap H, \mathfrak{D}^*) = 0$.

From Corollary of Lemma 2 and Lemmas 4 and 5 we have

Proposition 1. A domain in C^n exhausted by regular* domains is a domain of holomorphy.

§ 4. Regular* domain with a continuous boundary.

A boundary point x^0 of an open set G in R^n is called a *continuous boundary point* of G if there exists a real-valued continuous function g of variables $x_1, x_2, \dots, \hat{x}_j, \dots, x_n$ in a neighbourhood V of x^0 such that

$$G \cap V = \{x = (x_1, x_2, \dots, x_n); x_j = g(x_1, x_2, \dots, \hat{x}_j, \dots, x_n), x \in V\}$$

for some j. A domain (G, φ) over a complex manifold is called *pseudoconvex* at a boundary point x^0 if there exists an open neighborhood V of $\varphi(x^0)$ such that the connected component of $\varphi^{-1}(V)$ belonging to the filtre defining x^0 is holomorphically convex. A boundary point x^0 of a domain (G, φ) over a complex manifold is called a *simultaneously continuous and locally regular* boundary point* of (G, φ) if there exists a biholomorphic mapping τ of an open neighbourhood V of $\varphi(x^0)$ onto a subdomain of a complex Euclidean space such that $\tau \circ \varphi$ maps the connected component W of $\varphi^{-1}(V)$ belonging to the filtre defining x^0 biholomorphically onto $\tau(\varphi(W))$ and $\tau(\varphi(x^0))$ is a continuous boundary point of $\tau(\varphi(W))$ which is a regular* open set. If any boundary point of $\tau(\varphi(W))$ is a simultaneously continuous and locally regular* boundary.

Proposition 2. A regular* open set G in C^n is pseudoconvex at a continuous boundary point z^0 of G.

Proof. We put $z^0 = (z_1^0, z_2^0, \dots, z_n^0)$. There exists $\varepsilon > 0$ and a real-valued continuous function g of variables $z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n$ in a neighbourhood $V = \{z = (z_1, z_2, \dots, z_n); |z_k - z_k^0| < \varepsilon \ (k = 1, 2, \dots, n)\}$ such that

$$\partial G \cap V = \{z; x_j = g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}$$

for some j where $z_j = x_j + \sqrt{-1}y_j$. Then three cases (1), (2) and (3) may occur.

(1)
$$G \cap V = \{z; x_j < g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, z_n), z \in V\}.$$

For $0 \le t < 1$ we put

$$V_t = \{z; |z_k - z_k^0| < (1-t)\varepsilon/2 \ (k=1, 2, \dots, m)\}.$$

Then we have

$$\{z; (z_1, z_2, \dots, z_{j-1}, z_j - t\varepsilon/2, z_{j+1}, \dots, z_n) \in V_t\} \subset V$$

for 0 < t < 1. We put

$$E_t = \{z; x_i < g(z_1, z_2, \dots, z_{i-1}, y_i, z_{i+1}, \dots, z_n) - t\varepsilon/2, z \in V_t\}.$$

Let P be a relatively compact and simply connected polycylinder in C^n . $E_t \cap P$ is mapped onto

$$\{w; u_j < g(w_1, w_2, \dots, w_{j-1}, v_j, w_{j+1}, \dots, w_n), (w_1, w_2, \dots, w_{j-1}, w_j - t\varepsilon/2, w_{j+1}, \dots, w_n) \in V_t \cap P \}$$

$$= G \cap V \cap \{z; (z_1, z_2, \dots, z_{j-1}, z_j - t\varepsilon/2, z_{j+1}, \dots, z_n) \in V_t \cap P \}$$

by a biholomorphic mapping $w=(w_1,w_2,\cdots,w_n)=\gamma(z)$ defined by $w_k=z_k$ $(k \neq j),$ $w_j=z_j+t\varepsilon/2$. Since $\gamma(E_t\cap P)$ is the intersection of G and relatively compact and simply connected polycylinders, we have

$$H^1(E_t \cap P, \mathfrak{O}^*) = H^1(\gamma(E_t \cap P), \mathfrak{O}^*) = 0.$$

Therefore E_t is a regular* open set for $0 \le t < 1$. Since E_0 is exhausted by regular* domains $\{E_t; 0 < t < 1\}$, $E_0 = G \cap V_0$ is a domain of holomorphy from Proposition 1.

Hence G is pseudoconvex at z^0 .

(2)
$$G \cap V = \{z; x_j > g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}.$$

In this case the situation is quite similar to the case (1).

(3)
$$G \cap V = \{z; x_j \neq g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}.$$

Let

$$G_1 = \{z; x_j < g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}$$

and

$$G_2 = \{z; x_j > g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}.$$

From the cases (1) and (2) G_1 and G_2 are pseudoconvex at z^0 . Hence $G \cap V = G_1 \cup G_2$ is pseudoconvex at z^0 .

§ 5. Domain with a simultaneously continuous and locally regular* boundary.

Proposition 3. A domain (G, φ) over a Stein manifold with a simultaneously continuous and locally regular* boundary is a Stein manifold.

Proof. Let x^0 be a boundary point of (G, φ) . From the assumption of our Proposition, there exists a biholomorphic mapping τ of an open neighbourhood V of $\varphi(x^0)$ onto a domain in a complex Euclidean space such that $\tau \circ \varphi$ maps the connected component W of $\varphi^{-1}(V)$ belonging to the filtre defining x^0 biholomorphically onto $\tau(\varphi(W))$ and $\tau(\varphi(x^0))$ is a continuous boundary point of $\tau(\varphi(W))$ which is a regular* open set. From Proposition 2 $\tau(\varphi(W))$ is pseudoconvex at $\tau(\varphi(x^0))$. Hence (G, φ) is pseudoconvex at x^0 . Since any pseudoconvex domain over a Stein manifold is a Stein manifold from Docquier-Grauert [7], (G, φ) is a Stein manifold.

A boundary point x^0 of a domain (G,φ) over a complex manifold is called a locally regular* boundary point of (G,φ) if there exists a biholomorphic mapping τ of an open neighbourhood V of $\varphi(x^0)$ in a complex Euclidean space such that the image $\tau(\varphi(W))$ of the connected component W of $\varphi^{-1}(V)$ belonging to the filtre defining x^0 by the holomorphic mapping $\tau \circ \varphi$ is a regular* open set. A domain over a complex manifold is called to have a locally regular* boundary if its each boundary point is a locally regular* boundary point. A boundary point x^0 of a domain (G,φ) over an n-dimensional complex manifold is called a smooth boundary point of (G,φ) if there exists a real-valued continuously differentiable function g in an open neighbourhood V of $\varphi(x^0)$ such that $\sum_{j=1}^{2n} (\partial g/\partial t_j)^2 \neq 0$ at $\varphi(x^0)$ for real local coordinates $t_1, t_2, \dots, t_{2n}, \varphi$ maps the connected component W of $\varphi^{-1}(V)$ belonging to the filtre defining x^0 biholomorphically onto $\varphi(W)$ and there holds

$$\varphi(W) = \{x; g(x) < 0, x \in V\}.$$

A boundary point of a domain (G, φ) over a Stein manifold which is a smooth

boundary point of (G, φ) and which is a locally regular* boundary point is a simultaneously continuous and locally regular* boundary point of (G, φ) in our sense. But a boundary point of (G, φ) which is a continuous boundary point of (G, φ) and which is a locally regular* boundary point of (G, φ) may not perhaps be a simultaneously continuous and locally regular* boundary point of (G, φ) in our sense even if we define a continuous boundary point of (G, φ) similarly. A domain over a complex manifold is called to *have a smooth boundary* if its each boundary point is a smooth boundary point. We have

Corollary of Proposition 3. If a domain (G, φ) over a Stein manifold with a smooth boundary has a locally regular* boundary, then (G, φ) is a Stein manifold.

Let G be a subdomain of a Stein manifold S with a smooth boundary. If G is not a Stein manifold, there exists a boundary point x^0 of G which is not a locally regular* boundary point of G from the above Corollary. Let V be any local coordinate neighbourhood of x^0 and τ be a biholomorphic mapping of V onto a domain in a complex Euclidean space. Then $\tau(G \cap V)$ is not a regular* open set. Hence there exists a relatively compact and simply connected polycylinder P in $\tau(V)$ such that $H^1(\tau(G \cap V) \cap P, \mathfrak{D}^*) \neq 0$. Since P is a Stein manifold analytically contractible to its each point from Riemann's mapping theorem, $\tau^{-1}(P)$ is also a Stein manifold analytically contractible to its each point. We have

Theorem 1. Let G be a subdomain of a Stein manifold S with a smooth boundary such that $H^1(G \cap D, \mathfrak{D}^*)=0$ for any subdomain D of S which is a Stein manifold analytically contractible to its each point. Then G is a Stein manifold.

Theorem 2. Let G be a subdomain of a Stein manifold S with a smooth boundary. If G is not a Stein manifold, then there exists an arbitrarily small subdomain D of S which is analytically contractible to its each point such that $H^1(G \cap D, \mathfrak{D}^*) \neq 0$.

If we do not assume the smoothness of the boundary, we only have

Theorem 3. If a subdomain G of a Stein manifold S can be exhausted by subdomains G_p which satisfy $H^1(G_p \cap D, \mathbb{Q}^*)=0$ for any subdomain D of S which is a Stein manifold analytically contractible to its each point, then G is a Stein manifold.

Proof. Of course G_p 's satisfy

$$G_p \in G_{p+1}$$
 $(p \ge 1)$, $G = \bigcup_{p=1}^{\infty} G_p$.

Let x^0 be a boundary point of G. We consider a biholomorphic mapping τ of an open neighbourhood V of x^0 in a complex Euclidean space C^n . There exists $\varepsilon > 0$ such that

$$Z = \{z = (z_1, z_2, \dots, z_n); |z_j - z_j^0| < \varepsilon \ (j = 1, 2, \dots, n)\} \subseteq \tau(V).$$

We put

$$Z_p = \{z; |z_j - z_j^0| < p\varepsilon/(p+1) \ (j=1,2,\cdots,n)\}, \qquad E_p = \tau(G_p \cap V) \cap Z_p$$

for $p \ge 1$. Let P be a relatively compact and simply connected polycylinder in C^n . Then we have

$$\tau^{-1}(E_p \cap P) = G_p \cap \tau^{-1}(Z_p \cap P).$$

Since each connected component of $\tau^{-1}(Z_p \cap P)$ is a Stein manifold analytically contractible to its each point, we have

$$H^{1}(E_{p} \cap P, \mathfrak{O}^{*}) = H^{1}(\tau^{-1}(E_{p} \cap P), \mathfrak{O}^{*}) = 0.$$

Therefore E_p is a regular* open set for any $p \ge 1$. Since $E = \tau(G \cap V) \cap Z$ is exhausted by regular* open sets E_p , E is a domain of holomorphy from Proposition 1. Hence G is pseudoconvex at its each boundary point and is a Stein manifold from Docquier-Grauert [7].

REFERENCES

- [1] Behnke, H., Généralisation du théorème de Runge pour les fonctions multiformes des variables complexes. Coll. sur les fonct. des plus. var. Bruxelles (1953).
- [2] Behnke, H., Und K. Stein, Analytische Funktionen mehrerer Veränderlichen zur vorgegebenen Null- und Pollstellenslächen. Jber. Deut. Math. Verein. 47 (1937), 177-192.
- [3] Behnke, H., Und K. Stein, Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann. 120 (1948), 430-461.
- [4] BOCHNER, S., AND W. T. MARTIN, Several complex variables. Princeton Univ. Press (1948).
- [5] CARTAN, H., Les problèmes de Poincaré et de Cousin pour les fonctions de plusieurs variables complexes. C. R. Paris 199 (1934), 1284-1287.
- [6] Cartan, H., Sur les premières problèmes des Cousin. C. R. Paris 207 (1938), 558-560.
- [7] DOCQUIER, F., UND H. GRAUERT, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeit. Math. Ann. 140 (1960), 94-123.
- [8] KAJIWARA, J., On the limit of a monotonous sequence of Cousin's domains. J. Math. Soc. Japan 17 (1965), 36-46.
- [9] Kajiwara, J., On Thullen's example of a Cousin-II domain. Sci. Rep. Kanazawa Univ. 9 (1964), 1–8.
- [10] KAJIWARA, J., Some characterizations of Stein manifold through the notion of locally regular boundary points. Kōdai Math. Sem. Rep. 16 (1964), 191–198.
- [11] KAJIWARA, J., Note on a Cousin-II domain over C^2 . Kōdai Math. Sem. Rep. 17 (1965), 44-47.
- [12] OKA, K., Sur les fonctions analytiques de plusieurs variables: II Domaines d'holomorphie. J. Sci. Hiroshima Univ. 7 (1937), 115-130.
- [13] OKA, K., Ibid.: IX Domaines finis sans point critique intérieur. Jap. J. Math. 23 (1953), 97-155.

- [14] Serre, J. P., Quelques problèmes globaux relatifs aux variété de Stein. Coll. fonct. plus. var. Bruxelles (1953), 57-68.
- [15] Stein, K., Überlagerungen holomorph-vollständiger komplexer Räume. Arch. Math. 7 (1956), 354–361.
- [16] THULLEN, P., Sur les deuxième problème de Cousin. C. R. Paris 200 (1935). 720-721.

COLLEGE OF GENERAL EDUCATION, NAGOYA UNIVERSITY.