ON A CHARACTERIZATION OF REGULARLY BRANCHED
THREE-SHEETED COVERING RIEMANN SURFACES

By GEnNkO Hiromi AND Kivosur NiiNo

§1. Let R be an open Riemann surface. Let M(R) be a family of non-constant
meromorphic functions on R. Let f be a member of M(R). Let P(f) be the num-
ber of Picard’s exceptional values of f, where we say a a Picard’s exceptional value
of f when a is not taken by f on R. Let P(R) be a quantity defined by

sup P(f).
JEMR)
When R is open, we have always P(R)=2, since there exists a non-constant regular
function on R by the existence theorem due to Behnke-Stein and then it suffices to
compose it to the exponential function.
Ozawa [2] gave the following criterion of non-existence of analytic mapping be-
tween two Riemann surfaces:
If P(R)<P(S), then there is no analytic mapping from R into S.

In general it is very difficult to calculate P(R) of a given open Riemann surface.

Let R be an ultrahyperelliptic surface, which is a proper existence domain of
a two-valued function v ¢(z) with an entire function ¢(z) of z whose zeros are all
simple and are infinite in number. Then by Selberg’s generalization [5] of Nevanlin-
na’s theory we have P(R)=4. Ozawa [2, 3] gave a characterization of R with P(R)
=4, an example of R with P(R)=3 and several other interesting results.

We shall confine ourselves to the following Riemann surfaces:

Let R be a regularly branched three-sheeted covering Riemann surface, which
is a proper existence domain of the three-valued algebroid function ¥ g¢(z) with an
entire function ¢(z) of z whose zeros are all simple or double and are infinite in
number. Then by Selberg’s theory [5] we have P(R)=6. The existence of the sur-
face with P(R)=6 is evident.

In the present paper we shall prove the following theorems:

THEOREM 1. If P(R)=6, then there exist entive functions f(z), H(z) of z such
that

(LD J@9(2)=("—p)(e" =0,  y#0d, r0#0,

where H(2) is a non-constant function with H(0)=0 and y and 6 ave constants. The
converse is also true.

THEOREM 2. There 1s no regularly branched three-sheeted covering Riemann
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surface with P(R)=5.
§2. In order to prove the theorems it is necessary to establish a representation
of regular functions on R. Let g(z) be an entire function of z whose zeros are all
simple or double and are infinite in number. Let R be a regularly branched three-

sheeted covering Riemann surface formed by elements p=(z, y) for each z, ¥ which
satisfy the equation

2.1) y3=0(2).

Let f be a three-valued entire algebroid function of z, which is one-valued and regular
on R, and let its defining equation be

@.2) F(z, /)=/—51(2) f*+5x2) f —Ss(2)=0,

where Si(z), Si(z) and Ss(z) are entire functions of z. Then there exist two entire
functions fi(z), fo(z) of z and an analytic function f3(z) being one-valued regular
with the exception of all the double zeros of g(z) at which fs(z) has simple poles
and satisfying the following relations:

S1(2)=311(2),
2.3) Sa(2)=3811(2)*—3/(2) f3(2)9(2),
Ss(2) =11(2)*+/2(2)°9(2) +1s(2)*9(2)* — 3/1(2) f(2) /s(2)9 (2).
Now we shall show the relation (2.3). Let w#1 be a cubic root of 1. We put
P1=(2, ), p:=(2, 0oy) and p;=(z, »*y), and define the functions fi(z), f2(z) and fi(z) by

g 1(2)5%0” (L) +S (D) +1 (82)),

@.4) fz(Z)Eélg(f(pl)+w2f(1>z)+wf(1>a)),

fa(z>s%(f(powf(pz)wv(pa».

In general fi, f> and f; above defined are eventually multi-valued functions of z and
their multi-valuedness might occur when z moves around a certain zero point of
g(z). We introduce a suitable local parameter around a branch point of R which
lies over a zero point of ¢g(z) and expand f in its neighborhood with respect to the
above local parameter. Then we can see that fi, f> and f; are one-valued functions
having the desired properties. Therefore putting p=(z, ¥) we have the following
representation of all the regular functions on R:

(2.5) F(D)=11(2)+S(2)y+fs(2)y*.
Conversely f(p) defined by (2.5) with f1, f: and f; having the described properties
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is clearly a regular function on R. From (2.5) we have
SHi—f+1 ey +1y°=0,
Sy +(fi—y+fP=0,
Ja9+Ss9y+(f1—f)y*=0.
Eliminating ¥ and y* we have
FP=3f1 @S —=3 o fs0) f—([i+Si9 410> —3 /112 /29)=0.

Comparing this with the equation (2.2) we obtain the desired relations (2. 3).
Let D(z) be the discriminant of the cubic equation (2.2). Then from (2.4) we
have

(2.6) D(2)=—279(2)*(f«(2)’—/+(2)’0(2))",
and from (2.2)
@.7 D(2)=—451(2)’S3(2)+S1(2)2S2(2)? -+ 1851(2)S2(2)Ss(2) — 27Ss(2)? — 4S,(2)".

Eliminating f; and f; or f1 and f; from (2.3) we see that f3¢% and f$g are two roots
of a quadratic equation
2 1 1/1 8
2__ _ —_— =
@.8) X (sa+ 2 S slsz>X+ 27( Lt sz> 0.
Let D,(z) be the discriminant of the quadratic equation (2.8). Then from (2.7) we
have

@.9) Di(2)= ——2—17D(z).

§3. Now we shall prove theorem 1 in §3 and §4. Let R be a three-sheeted
covering Riemann surface defined by the equation (2.1) and suppose that P(R)=6.
Then there exists a moromorphic function feMM(R) with P(f)=6. Further we may
assume that six Picard’s exceptional values of f are 0, ai, @2, @s, a4 and co. Then
f becomes a three-valued entire algebroid function of z which is regular on R and
satisfies (2.2) and (2.3). By Rémoundos’ method of proof of his celebrated gener-
alization of Picard’s theorem [4] pp. 25-27, it is sufficient to consider the following
two cases:

F(z,0) c1 Bre™
F(z, a) Ca 1

(i) | Fz,a@) |=| Bie™ |, (ii) c: |,
F(z, as) Bz Bz

F(z, al) Bse™ Bse™
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where c¢i1, ¢s, B1, B2 and B; are non-zero constants and H;, H, and H; are non-constant
entire functions of z satisfying H:(0)= H:(0)=H3(0)=0.
Case (i). We have

—Si=cy, @
a*—a:*Si+a1S:—Ss=c,, 2)
@2*— a:"S1+a:S.—Ss= 1™, 3)
@s®—as®S1+asS,—Ss=P.e™, 4)
a®—a’S1+a,S:—Ss=Pse™. 5)

Eliminating S;, S; and S; from (1), (3), (4) and (5) we have

a® @ a’+ci—Pie™
as? as as®+ci—Bee| =0,

ald ar alt-ci—Bse™

W@y —as)pre™ — asas(@s— as) o™+ aoas(aa— as) fre™
=(C1} Aeas4) (@2— a3) (@2— as) (@ — Q).
By the impossibility of Borel’s identity [1] we obtain
H =H,=H;=H, @304(@3— 1) Pr— a2a4(@s— a4) B2+ asas(@2— as)Bs =0,
c1t+axasas=0.
From (1), (2), (3) and (4) we have

2

a® a, a*tci—ce

a? a. 023‘!‘01—5161{ =0,

P oay as’ci—pae”

as
ie.
(—aas(a1—as) B+ arax(a— as)B)e”
=a203(@s—as)c2a—(C1F @1a23) (@1 — @) (@1 — @5) (@2 — ).
From this we have

—aas(a,—as)Br+aaai—as)B:=0,

@2a3(@s— as)c2—(C1-+a10203) (01— @2) (@1 — as) (@ — as) =0.
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Therefore we obtain

C1= —Q203Q4, ca=(a1—az) (a1 —as) (a1—aw),
as(@1—as) adar—as)
Bo=———-"R — 7Y
2 az([ll"‘(lz) 1y 33 (12(611—612) BJ»

and from (1), (2) and (3)

1
— Ty g -l
St =) Bie" +axtast-ay,
(3. ].) _ a, I
Sp= aa—a) Bie" +awast+asai+asae,
Ss=Q2030.

Case (ii). Similarly by the impossibility of Borel's identity we obtain
H=H,=H,=H, ci=a(a1—as) (a1 —ay), co=axas—as)(a2—ay),

(611—‘03) (az——as)A (al—a4) (dz—at)

Be= v B, Bs= _a:E;—___‘BI )
1
51: - ﬂle”'*‘aﬂ—l_(ldy
a\as
3.2
( ) Sy=— —ﬂ—*_—azﬁlen'{‘asfh,
ads

S:; = — ‘81811.

§4. Ozawa [3] proved the following lemma:

LeEMMA. Let H(z) be a non-constant entive function of z. Then the function
e'—y, v+0 has an infinite number of simple zeros in such a manner that

- NZ(”) 0? eH_r) -
i — ey b

where T(r,f) is the Nevanlinna characleristic function of f and Nur,0,f) is the
counting function of simple zeros of f.

From now on we shall proceed under the infiniteness of simple zeros of the
function e —7y (y#0) ensured by Ozawa’s lemma. We substitute (3.1) and (3.2)
into (2.7) respectively, then the coefficient of e*# in D(z) is

___‘ilf_ﬁ 4 9&0
(@1 —a»)* !
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if (3.1) is the case, or

(tr—ae)?
(ll"(lz4

Bit#0
if (3.2) is the case. Hence in both cases we have an equation
D(z)=A’(e" —711) (e —0,) (e —17]) (e —3]),
where A’, 71, 01, y/ and 6! are all non-zero constants. In fact, we have
A’71017{0] =(as— a3)*(@s— @) (as— a2)? +0
if (3.1) is the case, or
A'ri0:7(0! =asaX(as—as)?+0
if (3.2) is the case. From (2.6) we have
=279°(f2*—f+*9)*=A'(e" — 1) (e" —01) (e" —71{) (" —3)).

Since 710:7/6!#0, by considering simple zero points of the function eZ—y (y#0), we
have

4.1 D(z)=A'(e® —11)* (e —b1)?, A’#0, 710:#0, r1#0..

We substitute (3.1) and (3.2) into the quadratic equation (2. 8) respectively, then
remarking (2.9) and (4.1), in both cases we have the equations

4.2) 12lg=A(e” —7r) (e —0) (e —1), A0,
4.3) [t =A(eT—7") (ef —d") (e —7"), A+0.

From (4.2) we see that y, § and » are not zero simultaneously. Hence we may
assume that y+0.

First, we assume that y#d, y#7. Since a simple zero point z; of e¥—y is a
simple zero point of the right hand side term of (4.2), z, is a simple zero point of
g(z). Hence from (4.3) we have y=y’ or y=0’ or y=v/, say r=y’. If we put y+d’,
ry#7’, then z, is a simple zero point of the right hand side term of (4.3), however,
z11s not a simple zero point of the left hand side term of (4.3). This is a contra-
diction. Hence we have y=4’ or y=y’, say y=7’. Then (4.2) and (4.3) reduce to

ftg=A(e" —7) (e —0)(e" —1),
I3°g*=Ale" —1)*(e" =),
where of course y#d’. And we have ¢’+#0. In fact if ¢’=0, then we have
F2ro—f3*9*=A(e" — 1) ((r—d—n)e™ +7).

Since y+0, from (4.1) and (2.6) we have dy+0. By eliminating ¢(z) we arrive at
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an absurdity relation

Ss*Ae” —0) (e —n)*=f2te".
Hence we obtain the disired ¢’+0.

If =0 and =0, then we have an absurdity relation

f33A64H=f26(e”—5').

If 6#0 and »=0, we have

/s AeH(oH 2__ ’

A H (e —0)=eH—0'.

S
The right hand side term has simple zeros, but the left hand side term has no
simple zero. This is absured. If =0 and 7+#0, we similarly have a contradiction.
Therefore we obtain dy+0.

Considering the simple zeros of e#—y(y+0), we can see that d=» and §=d’.

Hence we attain

Jflg=A(e® —r)(e®—0),
522 =A(eE—y)X(e®—0),  A+0, y0+#0, r=d.

Next, we may assume that y=4, y#7, since we have not y=d=y» from (4.2).
In this case by considering the simple zeros of the function e” —y (y+0) similarly,
we can see that p=0"=#’#0 in (4.2) and (4.3). Therefore we also attain the form
(4.4). From the above discussion we can conclude the following result:

Let R be a regularly branched three-sheeted covering Riemann surface defined
by the equation (2.1). If P(R)=6, then there exist entire functions f(z), H(z) of z
such that

(4.5) flg=(e"—7)(e®—0)*,  y#0, 19+,

where H(z) is a non-constant function with H(0)=0 and y and 6 are constants. Con-
versely if ¢(z) in the equation (2.1) is defined by (4.5) with f(z) and H(z) having
the described properties, then P(R)=6.
In fact a function f,, which is regular on R with P(fo)=6, is given by
0] l—o

fo= =52 (= e =1+ =Y —0 + WETPET |

because that f, has the form (2.5) and its iix Picard’s excqﬁonal valule‘s are 0, 1,
—o®7)6 —0)|(¥7]6 — 1), —a?Fy/0 —DI(@¥7]0 —1), —w*(0¥r/o —1)/(@*¥7/6 — 1) and
[ooN

This is our desired characterization of R with P(R)=6. Thus we have com-
pletely proved our theorem 1.

§5. Now we shall prove theorem 2, that is, there is no three-sheeted covering
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Riemann surface defined by the equation (2.1) with P(R)=5.

We assume that there exists such a Riemann surface. Then there is a mero-
morphic function fef(R) with P(f)=5. Further we may assume that its five
Picard’s exceptional values are 0, @i, s, @s and oo, Then f becomes a three-valued
entire algebroid function of z which is regular on R and satisfies (2.2) and (2. 3).
By Rémoundos’ reasoning [4] it is sufficient to consider the following four cases:

F(Z, 0) C1 ‘B1eHl C1 ﬂleH'
. F(z,ay) Ca . C1 Bie® C1
(i) = , (i) , (D) ;o () ’
F(z, as) it s Bae™ o™
F(z, a) Bae®: Bae™* ,BaeH’ Bse™*

where c¢i, ¢z, B1, B2 and Bs are non-zero constants, and H,, H, and H; are non-constant
entire functions of z with H:(0)=H(0)=H,(0)=0.
Case (i). We have

—Ss=cy,
a’—a®S1+a1S:—Ss=c,
@2® — @251+ @2S: —Ss = Bie™,
6133—03351—*—0352'—53 = ‘BzeH’.

Calculating as similarly as in §3 and using the impossibility of Borel’s identity, we
obtain

H=H=H (o 0am) (@—a) (@ —a)—ciasar=0,  fy=-07%) g .
axa,—as)
Si=——t et A
1— az(al'—az) 1 1y
5.1) . a i
Sz————az(al_az) ,318 +Bly
Ss=—cy,
where
Ai=— = +az2+as, Bi=— @t as C11+@20s.
A3 a20s3

Then the discriminant D(z) is a polynomial of degree 4 of e”. If the constant term?
of D(z) is not zero, then the same reasoning in §4 holds and we can conclude the

1) Here we say “constant term” when we take D(z) for a polynomial of e#. From
now on we use the term “constant term” in this sense.
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existence of a function feMM(R) with P(f)=6. This is absurd. Hence the constant
term of D(z) is zero. Then if the constant term of

S(Z) =— <Ss(Z) +2—2781(Z)3 — %S1(Z)Sz(2)>

in (2.8) is not zero, then ydyp=+0, y'6’7’+#0 in (4.2) and (4. 3), and again we can say
that there exists a function feMM(R) with P(f)=6, which is absurd. Hence the con-
stant term of S(z) is also zero. Since the constant term of D(z) is zero, we have

—4A:3Ss+ A2 B2+ 18A41B:S; — 27S:2— 4 B,*=0.
Since the constant term of S(z) is zero, we have
Ss+©2/27)A*—(1/3)A.1B;=0.

From these we obtain B;=A,%/3 and S;=A,%/27.. Substituting these and (5.1) into
(2.2), we have

Fe, f)=f'— (—-’lﬂ— )

02(01—02)

alﬁleH A? A
ot )

= <f__%i>3 __ﬁ_lei_(fz_alf)'

T aai—as)
From this we have four exceptional values A./3, 0, @;, oo and these are all excep-
tional values of f. Thus we have P(f)=<4. This is a contradiction. Therefore the

case (i) does not occur.
Case (ii). Similarly we have

Hi=H,=H, @1a(@1— az) (a1 —as) (az—as) —c1@:(@2— as)+c2a1 (a1 —as) =0,

(dl —ds) (dz —‘ﬂs) -

Br=——"——"""F1

a1 as

1
Si=— ;313” + Ay,
as

a

n
5.2 ata.
©.2) W= '——;ﬂieﬂ’f‘l))z,

a1qz

Sy= —'1316”,
where
C1 asCq
Ay=————r—a1+as, By=—————rtaa,.
a(a—as) ar(a1—as)

Then the coefficient of ¢*# in D(z) is (a1—a2)*B:%/a'a:*+0. Hence we similarly have
a function feM(R) with P(f)=6, otherwise P(f)=4. This contradicts P(f)=5.
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Therefore the case (ii) does not occur.
Case (iii). We have

H,=H,=H;=H, 1 a1as=0,  @as(@s—as)pr—a1as(@— as)Be+aia(ar—az)Bs=0;

612,31"0152
a,1ax(a1—as)
022,31 '—611252

Sp=— _—‘——€H+d1dz+dzll3 +asa;,
@151 —as)

Si=— e +a1+ax+as,

(5.3)

Ss =a10203.

Comparing (5.3) with (3.1), we can see that the constant term of D(z) is not zero.
If @sfi—a:B#0 and a.?Bi—a:?B>+#0, then the coefficient of ¢*# in D(z) is not
zero. Hence the same reasoning in §4 holds from the above remark, and we can
conclude the existence of a function feM(R) with P(f)=6. This is absurd.
If @:pi—a:1f=0 or a,*fi—a:*f=0, then D(z) is a polynomial of degree 3 of e,
because that @,8:—a18: and a,*B:—a,*B; are not zero simultaneously. And from (2.6)
we have the equation

—219*(f*— [’ =A'(e" —r1) (e" —0) (e —n1),  A'#0, 110 #0.

From this and considering simple zero points of the function e —p (y#0), we have
a contradiction. Therefore the case (iii) does not occur.
Case (iv). We have

HIEHZEHSEH; 61=a1(a1—az)(al—aa),
(a1—as) (a1—as) (az—as)ﬁl+a1d3(d1 —ds),@z—aldz(al —az)ﬁ:«x:O N

(a: "az)ls1 —01,52
a1as(a1—a)

(5- 4) Sp=— (412—022).31—611252 ol
@10:(a1—as)

Si=— e +a,+as,

+asus,

Sy=—fet.

Comparing (5.4) with (3.2), we can sce that the constant term of D(z) is not zero.
The coefficient of e in D(z) is

(@1~ az)B1— a1 B2)* (@1 — a@2)?B1— @12 Be)?

a'ax' (a1 —as)*

If (a1—a2)Bi—a1B:#0 and (@1—a.)’Bfi—a:?B=#0, then similarly we have a con-
tradiction.

If ((11—612)‘31—dlﬁ2=0, then (012—022)‘61'—d12ﬁ2=02(01"'(lz)ﬁlftﬁo and hence the CcO-
efficient of ¢*¥ in D(z) is not zero, which is similarly a contradiction.
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If (e1—a2)*fi—a®B:=0, then (a1—a:)fi—aife=axa1—az)pila:#0, (a:®—a:*)b:
—a:*Be=2ax(a,—a;)B:+0 and hence from (2.6) and the similar discussion as in §4,
we can conclude the existence of a function feIM(R) with P(f)=6. This is absurd.
Therefore the case (iv) does not occur.

By the above discussion in (i), (ii), (iii) and (iv) we have completely proved our
theorem 2.

§6. From theorem 1, theorem 2 and Ozawa’s lemma every Riemann surface
defined by the equation (2.1) with ¢(z), which is an entire function of z having no
zero other than an infinite number of simple zeros or having no zero other than
an infinite number of double zeros, always satisfies P(R)<4. And an example R
with P(R)=4 is easily given. In fact let R be a Riemann surface defined by the
equation (2.1) with ¢g(z)=e?+1. From the above remark we have P(R)<4. The
function f= ¥e*41 belongs to M(R) and P(f)=4. Therefore P(R)=4.
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