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THREE-SHEETED COVERING RIEMANN SURFACES

BY GENKO HIROMI AND KIYOSHI NΠNO

§ 1. Let R be an open Riemann surface. Let 9Jί(i?) be a family of non-constant
meromorphic functions on R. Let / be a member of W(R). Let P(f) be the num-
ber of Picard's exceptional values of /, where we say a a Picard's exceptional value
of / when a is not taken by / on R. Let P(R) be a quantity defined by

sup P(/).
/SKCff)

When R is open, we have always P(R)^2, since there exists a non-constant regular
function on R by the existence theorem due to Behnke-Stein and then it suffices to
compose it to the exponential function.

Ozawa [2] gave the following criterion of non-existence of analytic mapping be-
tween two Riemann surfaces:

If P(R)<P(S), then there is no analytic mapping from R into S.

In general it is very difficult to calculate P(R) of a given open Riemann surface.
Let R be an ultrahyperelliptic surface, which is a proper existence domain of

a two-valued function V g(z) with an entire function g{z) of z whose zeros are all
simple and are infinite in number. Then by Selberg's generalization [5] of Nevanlin-
na's theory we have P(R)^4. Ozawa [2, 3] gave a characterization of R with P(R)
=4, an example of R with P(R)=3 and several other interesting results.

We shall confine ourselves to the following Riemann surfaces:
Let R be a regularly branched three-sheeted covering Riemann surface, which

is a proper existence domain of the three-valued algebroid function V g{z) with an
entire function g(z) of z whose zeros are all simple or double and are infinite in
number. Then by Selberg's theory [5] we have P(R)^6. The existence of the sur-
face with P(R)=6 is evident.

In the present paper we shall prove the following theorems:

THEOREM 1. If P(R)=6, then there exist entire functions f(z)} H{z) of z such
that

(1.1) f(zyg(z) = (eH^-γ)(eH^-δ)2, γφδ,

where H(z) is a non-constant function with H(0)—0 and γ and δ are constants. The
converse is also true.

THEOREM 2. There is no regularly branched three-sheeted covering Riemann
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surface with P(R)=5.

% 2. In order to prove the theorems it is necessary to establish a representation
of regular functions on R. Let g{z) be an entire function of z whose zeros are all
simple or double and are infinite in number. Let R be a regularly branched three-
sheeted covering Riemann surface formed by elements p~(z,y) for each z, y which
satisfy the equation

(2.1) y*=g(z).

Let / be a three-valued entire algebroid function of z, which is one-valued and regular
on R, and let its defining equation be

(2.2) F(z9f)=fΛ-S1(z)fi+S2(z)f-SΛ(z)=0t

where S^z), S2(z) and S3(^) are entire functions of z. Then there exist two entire
functions fi(z), f2(z) of z and an analytic function fΆ(z) being one-valued regular
with the exception of all the double zeros of g(z) at which fs(z) has simple poles
and satisfying the following relations:

(2. 3) I S2(z) = 3Uzy-3f2(z)Mz)g(z)}

+Mz)*g(z) +Mz)3g(z)2 - 3fi(z)f2(z)Mz)g(z).

Now we shall show the relation (2. 3). Let ω ^ l be a cubic root of 1. We put
pi=(z, v), p2=(z, ωy) and ps = (z, ω2y), and define the functions fi(z)y f2(z) and fs(z) by

fx{z)=-|-(/( A) +f(p2) +/(A)),

f2(z)=-~(f(Pi)+ωV(p2)+ωf(p ό))f(2. 4)

In general /i, / 2 and / 3 above defined are eventually multi-valued functions of z and
their multi-valuedness might occur when z moves around a certain zero point of
g(z). We introduce a suitable local parameter around a branch point of R which
lies over a zero point of g(z) and expand / in its neighborhood with respect to the
above local parameter. Then we can see that flt f2 and f$ are one-valued functions
having the desired properties. Therefore putting p=(z, y) we have the following
representation of all the regular functions on R:

(2.5) f(P)=fi(z)+/2(z)v+f3(z)v2.

Conversely f(p) defined by (2.5) with fu f2 and / 3 having the described properties
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is clearly a regular function on R. From (2. 5) we have

Eliminating y and y2 we have

/ 3 -3/ 1 / 2 +(3/ 1

2 -3/ 2 / 3 g)/-(/ 1

3 +/ 2

3 g+/3 3 g 2 -3/ 1 / 2 / 3 g)=0.

Comparing this with the equation (2. 2) we obtain the desired relations (2. 3).
Let D(z) be the discriminant of the cubic equation (2.2). Then from (2.4) we

have

(2.6)

and from (2.2)

(2.7)

D(z)=

Eliminating /i and /2 or /i and / 3 from (2. 3) we see that fig2 and /2

3g are two roots
of a quadratic equation

(2.8)

Let L
have

(2.9)

be the discriminant of the quadratic equation (2. 8). Then from (2. 7) we

§ 3. Now we shall prove theorem 1 in § 3 and § 4. Let R be a three-sheeted
covering Riemann surface defined by the equation (2.1) and suppose that P(R)=6.
Then there exists a moromorphic function f€<^ft(R) with P(f)=6. Further we may
assume that six Picard's exceptional values of / are 0, #i, a2, a%, a± and oo. Then
/ becomes a three-valued entire algebroid function of z which is regular on R and
satisfies (2.2) and (2. 3). By Remoundos' method of proof of his celebrated gener-
alization of Picard's theorem [4] pp. 25-27, it is sufficient to consider the following
two cases:

/F(*,0) \ / a \

(i)

F(Z} <2i)

F(z, a2)

F(z, a3)

Cϊ

(ϋ)

ι \

CΊ

C I
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where cι, c2, βi, β2 and βz are non-zero constants and Hu H2 and Hz are non-constant
entire functions of z satisfying H1(0)=FI2(0)=H^0)=0.

Case (i). We have

(1)

(2)

(3)

(4)

(5)

5 - # 3

2 S i + t f 3S2 - S 3 = β 2 e π \

Eliminating Si, S2 and S3 from (1), (3), (4) and (5) we have

2

% a2 a2*
JrCi—β1e

aB

2

a?

=0,

i.e.

%a^) (a2—a%) {a2—a±) ( « 3 — a A).

By the impossibility of BoreΓs identity [1] we obtain

z—at)βi—a2a±(a2—a±)β2

From (1), (2), (3) and (4) we have

aιZJrCχ-c2

a2

2 a2

a2

=0,

i.e.

i—as)βi+axa2{ai - a2)β2)eH

=a 2 a%(a 2 —a s )c 2 —(A+a^cts) (β\—a*) (β\—as) (a2—as).

From this we have

iff 2(tf 1 — a 2 ) β 2 = 0 ,

2—ai)=0.
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Therefore we obtain

4, c2=(ai—a2)(a1—c

and from (1), (2) and (3)

(3.1)

a2(a1-a2)

1

Pl, P3 —
a2(ax-a2)

a2{aλ — a2)

a2(a1~a2)

Case (ii). Similarly by the impossibility of BoreΓs identity we obtain

aλa2

(3.2)

aλa2

% 4. Ozawa [3] proved the following lemma:

LEMMA. Let H(z) be a non-constant entire function of z. Then the function
has an infinite number of simple zeros in such a manner that

—
lim

N2(r,0,eH-γ)
7̂ 7 JΓ:

T(r, eH)

where T(r, f) is the Nevanlinna characteristic function of f and N2(r, 0, / ) is the
counting function of simple zeros of f.

From now on we shall proceed under the infiniteness of simple zeros of the
function eH—γ (γφO) ensured by Ozawa's lemma. We substitute (3.1) and (3.2)
into (2.7) respectively, then the coefficient of e4H in D{z) is

a2\ax—a2y
Pl
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if (3.1) is the case, or

if (3. 2) is the case. Hence in both cases we have an equation

D{z)=A'{eH-γ1)(eH-δι){eH-~γ[){eII-δ[l

where A', γu δlt γ[ and δ[ are all non-zero constants. In fact, we have

A'γiδtflδl = (a2 - a,)2(as - a,)\a, - a2)
2 Φ 0

if (3.1) is the case, or

A'γAγίδί=ajaftai - a,)2 Φ 0

if (3.2) is the case. From (2.6) we have

-27g\U-Ugγ==A\eH~γ1){eπ-δι){eH~γt

1){eII~δ[).

Since γiδtflδlΦO, by considering simple zero points of the function eπ—γ (γφQ), we
have

(4.1) D{z)=A\eH-γ1)\eH-δι)\ A'ΦO, γAΦQ, γiΦδ,.

We substitute (3.1) and (3.2) into the quadratic equation (2. 8) respectively, then
remarking (2. 9) and (4.1), in both cases we have the equations

(4.2) f2*Q=A(eH-γ)(βH-$)(eH-η), AΦO,

(4.3) f3*g2=A(eH-r')(eH-δ')(eH-y'), AΦO.

From (4.2) we see that γ, δ and η are not zero simultaneously. Hence we may
assume that f^O.

First, we assume that γφδ, γφη. Since a simple zero point zx of eH — γ is a
simple zero point of the right hand side term of (4.2), z\ is a simple zero point of
g{z). Hence from (4.3) we have γ=γf or γ=δ' or γ=η', say γ=γ'. If we put γφδ',
γφη', then z\ is a simple zero point of the right hand side term of (4.3), however,
Zι is not a simple zero point of the left hand side term of (4. 3). This is a contra-
diction. Hence we have γ=δ' or γ—ηr, say γ=γ'. Then (4.2) and (4.3) reduce to

f**g = A(eH-r)(eH-δ)(eH-η),

fSg2=A{e"-rΆeH-δ'),

where of course γφδ'. And we have d'^O. In fact if <5'=0, then we have

f2Sg~fsΨ=A(eH~γ)((γ-δ-v)eH+δv).

Since γφO, from (4.1) and (2.6) we have δηΦQ, By eliminating g{z) we arrive at
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an absurdity relation

U*A{fiH - δ)\eH - η)2 =f2

6eH.

Hence we obtain the disired δ'ΦO.

If δ=0 and τj>=0, then we have an absurdity relation

f>szAe4H=f2%eH-δ').

If r ̂ O and η=0, we have

The right hand side term has simple zeros, but the left hand side term has no
simple zero. This is absured. If ^=0 and ηφO, we similarly have a contradiction.
Therefore we obtain δηΦO.

Considering the simple zeros of eH—γ(γΦθ), we can see that δ=η and δ=δ\
Hence we attain

f^g2=A(es-γ)\eH-δ\ AφO, γδΦΰ, γΦδ.

Next, we may assume that γ=δ, γφη> since we have not γ=d—η from (4.2).
In this case by considering the simple zeros of the function eH—γ (γφO) similarly,
we can see that η=δ'—η'Φθ in (4.2) and (4.3). Therefore we also attain the form
(4.4). From the above discussion we can conclude the following result:

Let R be a regularly branched three-sheeted covering Riemann surface denned
by the equation (2.1). If P(R)=6y then there exist entire functions f(z), H(z) of z
such that

(4.5) f3g = (eH-r)(eH-δ)\ γφδ, γδφO,

where H(z) is a non-constant function with F(0)=0 and γ and δ are constants. Con-
versely if g(z) in the equation (2.1) is defined by (4. 5) with f{z) and H(z) having
the described properties, then P(R)=6.

In fact a function /0, which is regular on R with P(/ 0 )=6, is given by

Me*^

because that / 0 has the form (2. 5) and its six Picard's exceptional valules are 0, 1,
- 1), -ω\ψfjδ -l)/(α>#r/?-l), -ω2(ω^/7W-l)l(ω2^/rJδ'- 1) and

oo.

This is our desired characterization of R with P(R)=6. Thus we have com-

pletely proved our theorem 1.

§ 5. Now we shall prove theorem 2, that is, there is no three-sheeted covering
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Riemann surface defined by the equation (2.1) with P(R)=5.
We assume that there exists such a Riemann surface. Then there is a mero-

morphic function feTl(R) with P(f)=5. Further we may assume that its five
Picard's exceptional values are 0, au a2, a% and oo. Then / becomes a three-valued
entire algebroid function of z which is regular on R and satisfies (2. 2) and (2. 3).
By Remoundos' reasoning [4] it is sufficient to consider the following four cases :

( i )

(F{z,

F(z,

F(z,

\F(z,

0) \

β θ

ai)

a\)

( Cl

βiem

KB**' /

(ϋ)
Ci

C2

(iϋ)

where c1} c2, βi, β2 and /33 are non-zero constants, and Hίf H2 and
entire functions of z with H1(0)=H2(Q)=H>6(0)=0.

Case (i). We have

d \ (βιeHl\

c
(iv)

are non-constant

Calculating as similarly as in
obtain

3 and using the impossibility of BoreΓs identity, we

ax(5.1) _ =

—a2)

—a2)
•βieH+Au

βieH+Bu

where

β1== 1 L
a2a%

Then the discriminant D(z) is a polynomial of degree 4 of eu. If the constant term υ

of D(z) is not zero, then the same reasoning in § 4 holds and we can conclude the

1) Here we say "constant term" when we take D(z) for a polynomial of e11. From
now on we use the term "constant term" in this sense.
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existence of a function fςyR(R) with P(/)=6. This is absurd. Hence the constant
term of D(z) is zero. Then if the constant term of

S(z) =

in (2.8) is not zero, then γδyΦO, γ'δ'r/ΦO in (4.2) and (4.3), and again we can say
that there exists a function f€%fl(R) with P( / )=6 , which is absurd. Hence the con-
stant term of S(z) is also zero. Since the constant term of D(z) is zero, we have

Since the constant term of S(z) is zero, we have

From these we obtain B1=A1
2/3 and S8=i4i727. > Substituting these and (5.1) into

(2.2), we have

From this we have four exceptional values AJ3, 0, alf oo and these are all excep-
tional values of / . Thus we have P ( / ) ^ 4 . This is a contradiction. Therefore the
case (i) does not occur.

Case (ii). Similarly we have

(5.2)

where

& =

(1x0,2

1

Then the coefficient of e4H in D{z) is (aι—a2)
2βi4lai4a2iΦθ. Hence we similarly have

a function /€3R(2?) with P( / )=6 , otherwise P ( / ) ^ 4 . This contradicts P ( / ) = 5 .
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Therefore the case (ii) does not occur.
Case (iii). We have

=0, —a 6)βι—< -02) j8 8 =O;

(5.3)

Comparing (5.3) with (3.1), we can see that the constant term of D(z) is not zero.
If atβi—a&φO and a2

2βι-aι2β2φΰ, then the coefficient of eAH in D(z) is not
zero. Hence the same reasoning in §4 holds from the above remark, and we can
conclude the existence of a function /€3K(i?) with P( / )=6 . This is absurd.

If a2βι—a!β2=0 or a2

2βi—ai2β2=0f then D(z) is a polynomial of degree 3 of e11,
because that a2βι—aιβ2 and a2

2βi—a1

2β2 are not zero simultaneously. And from (2.6)
we have the equation

-27g2(f2*-fssg)2=A'(eH-ri)(eH-δ1)(eH-Vl), A'ΦO,

From this and considering simple zero points of the function eH—γ
a contradiction. Therefore the case (iii) does not occur.

Case (iv). We have

, we have

i—α 2 ) (fli—α3) (a2— — a 2 ) β z = 0

(ai~a2)βi—a1β2

(5.4)

Comparing (5.4) with (3.2), we can see that the constant term of D(z) is not zero,
The coefficient of eUI in D(z) is

If (a1—a2)β1—a1β2φ0 and (a1—a2)
2β1—a1

2β2Φθy then similarly we have a con-
tradiction.

If (tfi-tf2)/3i-tfi/32=0, then {a^-a^βx-a^β^a^-a^βxΦO and hence the co-
efficient of eZH in D(z) is not zero, which is similarly a contradiction.
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If (a1-a2)
2βi-a1

2β2=0, then (a1-a2)β1-a1β2.=a2.(aι-a2)βilaιφ<d, (a1

2-a2

2)βi
—a1

2β2—2a2{a1~a2)βiΦ^ and hence from (2.6) and the similar discussion as in §4,
we can conclude the existence of a function f£W(R) with P(f)=6. This is absurd.
Therefore the case (iv) does not occur.

By the above discussion in (i), (ii), (iii) and (iv) we have completely proved our
theorem 2.

§ 6. From theorem 1, theorem 2 and Ozawa's lemma every Riemann surface
defined by the equation (2.1) with g(z), which is an entire function of z having no
zero other than an infinite number of simple zeros or having no zero other than
an infinite number of double zeros, always satisfies P(R)^A. And an example R
with P(R)=4 is easily given. In fact let R be a Riemann surface defined by the
equation (2.1) with g(z)=ez+l. From the above remark we have P(R)f^L The
function / = V~e^\Λ belongs to 9Jί(2?) and P(f)=4. Therefore P(R)=i.
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