ON A CHARACTERIZATION OF REGULARLY BRANCHED THREE-SHEETED COVERING RIEMANN SURFACES

By Genkō Hiromi and Kiyoshi Niino

§ 1. Let R be an open Riemann surface. Let $\mathfrak{M}(R)$ be a family of non-constant meromorphic functions on R. Let f be a member of $\mathfrak{M}(R)$. Let $P(f)$ be the number of Picard's exceptional values of f, where we say α a Picard's exceptional value of f when α is not taken by f on R. Let $P(R)$ be a quantity defined by

$$
\sup _{f \in \mathbb{N}(R)} P(f) .
$$

When R is open, we have always $P(R) \geqq 2$, since there exists a non-constant regular function on R by the existence theorem due to Behnke-Stein and then it suffices to compose it to the exponential function.

Ozawa [2] gave the following criterıon of non-existence of analytic mapping between two Riemann surfaces:

If $P(R)<P(S)$, then there is no analytic mapping from R into S.
In general it is very difficult to calculate $P(R)$ of a given open Riemann surface.
Let R be an ultrahyperelliptic surface, which is a proper existence domain of a two-valued function $\sqrt{g(z)}$ with an entire function $g(z)$ of z whose zeros are all simple and are infinite in number. Then by Selberg's generalization [5] of Nevanlinna's theory we have $P(R) \leqq 4$. Ozawa [2, 3] gave a characterization of R with $P(R)$ $=4$, an example of R with $P(R)=3$ and several other interesting results.

We shall confine ourselves to the following Riemann surfaces:
Let R be a regularly branched three-sheeted covering Riemann surface, which is a proper existence domain of the three-valued algebroid function $\sqrt[3]{g(z)}$ with an entire function $g(z)$ of z whose zeros are all simple or double and are infinite in number. Then by Selberg's theory [5] we have $P(R) \leqq 6$. The existence of the surface with $P(R)=6$ is evident.

In the present paper we shall prove the following theorems:
Theorem 1. If $P(R)=6$, then there exist entire functions $f(z), H(z)$ of z such that

$$
\begin{equation*}
f(z)^{3} g(z)=\left(e^{H(z)}-\gamma\right)\left(e^{H(z)}-\delta\right)^{2}, \quad \gamma \neq \delta, \quad \gamma \delta \neq 0, \tag{1.1}
\end{equation*}
$$

where $H(z)$ is a non-constant function with $H(0)=0$ and γ and δ are constants. The converse is also true.

Theorem 2. There is no regularly branched three-sheeted covering Riemann
Received April 19, 1965.
surface with $P(R)=5$.
§ 2. In order to prove the theorems it is necessary to establish a representation of regular functions on R. Let $g(z)$ be an entire function of z whose zeros are all simple or double and are infinite in number. Let R be a regularly branched threesheeted covering Riemann surface formed by elements $p=(z, y)$ for each z, y which satisfy the equation

$$
\begin{equation*}
y^{3}=g(z) . \tag{2.1}
\end{equation*}
$$

Let f be a three-valued entire algebroid function of z, which is one-valued and regular on R, and let its defining equation be

$$
\begin{equation*}
F(z, f) \equiv f^{3}-S_{1}(z) f^{2}+S_{2}(z) f-S_{3}(z)=0, \tag{2.2}
\end{equation*}
$$

where $S_{1}(z), S_{2}(z)$ and $S_{3}(z)$ are entire functions of z. Then there exist two entıre functions $f_{1}(z), f_{2}(z)$ of z and an analytic function $f_{3}(z)$ being one-valued regular with the exception of all the double zeros of $g(z)$ at which $f_{3}(z)$ has simple poles and satisfying the following relations:

$$
\left\{\begin{array}{l}
S_{1}(z)=3 f_{1}(z) \tag{2.3}\\
S_{2}(z)=3 f_{1}(z)^{2}-3 f_{2}(z) f_{3}(z) g(z) \\
S_{3}(z)=f_{1}(z)^{3}+f_{2}(z)^{3} g(z)+f_{3}(z)^{3} g(z)^{2}-3 f_{1}(z) f_{2}(z) f_{3}(z) g(z)
\end{array}\right.
$$

Now we shall show the relation (2.3). Let $\omega \neq 1$ be a cubic root of 1 . We put $p_{1}=(z, y), p_{2}=(z, \omega y)$ and $p_{3}=\left(z, \omega^{2} y\right)$, and define the functions $f_{1}(z), f_{2}(z)$ and $f_{3}(z)$ by

$$
\left\{\begin{array}{l}
f_{1}(z) \equiv \frac{1}{3}\left(f\left(p_{1}\right)+f\left(p_{2}\right)+f\left(p_{3}\right)\right) \tag{2.4}\\
f_{2}(z) \equiv \frac{1}{3 y}\left(f\left(p_{1}\right)+\omega^{2} f\left(p_{2}\right)+\omega f\left(p_{3}\right)\right) \\
f_{3}(z) \equiv \frac{1}{3 y^{2}}\left(f\left(p_{1}\right)+\omega f\left(p_{2}\right)+\omega^{2} f\left(p_{3}\right)\right)
\end{array}\right.
$$

In general f_{1}, f_{2} and f_{3} above defined are eventually multi-valued functions of z and their multi-valuedness might occur when z moves around a certain zero point of $g(z)$. We introduce a suitable local parameter around a branch point of R which lies over a zero point of $g(z)$ and expand f in its neighborhood with respect to the above local parameter. Then we can see that f_{1}, f_{2} and f_{3} are one-valued functions having the desired properties. Therefore putting $p=(z, y)$ we have the following representation of all the regular functions on R :

$$
\begin{equation*}
f(p)=f_{1}(z)+f_{2}(z) y+f_{3}(z) y^{2} \tag{2.5}
\end{equation*}
$$

Conversely $f(p)$ defined by (2.5) with f_{1}, f_{2} and f_{3} having the described properties
is clearly a regular function on R. From (2.5) we have

$$
\begin{aligned}
& f_{1}-f+f_{2} y+f_{3} y^{2}=0 \\
& f_{3} g+\left(f_{1}-f\right) y+f_{2} y^{2}=0 \\
& f_{2} g+f_{3} g y+\left(f_{1}-f\right) y^{2}=0
\end{aligned}
$$

Eliminating y and y^{2} we have

$$
f^{3}-3 f_{1} f^{2}+\left(3 f_{1}^{2}-3 f_{2} f_{3} g\right) f-\left(f_{1}^{3}+f_{2}^{3} g+f_{3}^{3} g^{2}-3 f_{1} f_{2} f_{3} g\right)=0 .
$$

Comparing this with the equation (2.2) we obtain the desired relations (2.3).
Let $D(z)$ be the discriminant of the cubic equation (2.2). Then from (2.4) we have

$$
\begin{equation*}
D(z)=-27 g(z)^{2}\left(f_{2}(z)^{3}-f_{3}(z)^{3} g(z)\right)^{2}, \tag{2.6}
\end{equation*}
$$

and from (2.2)
(2.7) $\quad D(z)=-4 S_{1}(z)^{3} S_{3}(z)+S_{1}(z)^{2} S_{2}(z)^{2}+18 S_{1}(z) S_{2}(z) S_{3}(z)-27 S_{3}(z)^{2}-4 S_{2}(z)^{3}$.

Eliminating f_{1} and f_{2} or f_{1} and f_{3} from (2.3) we see that $f_{2}^{3} g^{2}$ and $f_{2}^{3} g$ are two roots of a quadratic equation

$$
\begin{equation*}
X^{2}-\left(S_{3}+\frac{2}{27} S_{1}^{3}-\frac{1}{3} S_{1} S_{2}\right) X+\frac{1}{27}\left(\frac{1}{3} S_{1}^{2}-S_{2}\right)^{3}=0 \tag{2.8}
\end{equation*}
$$

Let $D_{1}(z)$ be the discriminant of the quadratic equation (2.8). Then from (2.7) we have

$$
\begin{equation*}
D_{1}(z)=-\frac{1}{27} D(z) \tag{2.9}
\end{equation*}
$$

§ 3. Now we shall prove theorem 1 in $\S 3$ and $\S 4$. Let R be a three-sheeted covering Riemann surface defined by the equation (2.1) and suppose that $P(R)=6$. Then there exists a moromorphic function $f \in \mathbb{M}(R)$ with $P(f)=6$. Further we may assume that six Picard's exceptional values of f are $0, a_{1}, a_{2}, a_{3}, a_{4}$ and ∞. Then f becomes a three-valued entire algebroid function of z which is regular on R and satisfies (2.2) and (2.3). By Rémoundos' method of proof of his celebrated generalization of Picard's theorem [4] pp. 25-27, it is sufficient to consider the following two cases:

$$
\text { (i) }\left(\begin{array}{l}
F(z, 0) \\
F\left(z, a_{1}\right) \\
F\left(z, a_{2}\right) \\
F\left(z, a_{3}\right) \\
F\left(z, a_{4}\right)
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H_{2}} \\
\beta_{3} e^{H_{\mathbf{a}}}
\end{array}\right), \quad \text { (ii) }\left(\begin{array}{c}
\beta_{1} e^{H_{1}} \\
c_{1} \\
c_{2} \\
\beta_{2} e^{H_{2}} \\
\beta_{3} e^{H_{5}}
\end{array}\right) \text {, }
$$

where $c_{1}, c_{2}, \beta_{1}, \beta_{2}$ and β_{3} are non-zero constants and H_{1}, H_{2} and H_{3} are non-constant entire functions of z satisfying $H_{1}(0)=H_{2}(0)=H_{3}(0)=0$.

Case (i). We have

$$
\left\{\begin{array}{c}
-S_{3}=c_{1} \tag{1}\\
a_{1}{ }^{3}-a_{1}{ }^{2} S_{1}+a_{1} S_{2}-S_{3}=c_{2} \\
a_{2}{ }^{3}-a_{2}{ }^{2} S_{1}+a_{2} S_{2}-S_{3}=\beta_{1} e^{H_{1}} \\
a_{3}{ }^{3}-a_{3}{ }^{2} S_{1}+a_{3} S_{2}-S_{3}=\beta_{2} e^{I I_{3}} \\
a_{4}{ }^{3}-a_{4}{ }^{2} S_{1}+a_{4} S_{2}-S_{3}=\beta_{3} e^{H 3}
\end{array}\right.
$$

Eliminating S_{1}, S_{2} and S_{3} from (1), (3), (4) and (5) we have

$$
\left|\begin{array}{lll}
a_{2}{ }^{2} & a_{2} & a_{2}{ }^{3}+c_{1}-\beta_{1} e^{H_{5}} \\
a_{3}{ }^{2} & a_{3} & a_{3}{ }^{3}+c_{1}-\beta_{2} e^{H_{2}} \\
a_{4}{ }^{2} & a_{4} & a_{4}{ }^{3}+c_{1}-\beta_{3} e^{H_{5}}
\end{array}\right|=0,
$$

i.e.

$$
\begin{aligned}
& a_{3} a_{4}\left(a_{3}-a_{4}\right) \beta_{1} e^{H_{1}}-a_{2} a_{4}\left(a_{2}-a_{4}\right) \beta_{2} e^{H_{2}}+a_{2} a_{3}\left(a_{2}-a_{3}\right) \beta_{3} e^{H_{1}} \\
= & \left(c_{1}+a_{2} a_{3} a_{4}\right)\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right)\left(a_{3}-a_{4}\right) .
\end{aligned}
$$

By the impossibility of Borel's identity [1] we obtain

$$
\begin{gathered}
H_{1} \equiv H_{2} \equiv H_{3} \equiv H, \quad a_{3} a_{4}\left(a_{3}-a_{4}\right) \beta_{1}-a_{2} a_{4}\left(a_{2}-a_{4}\right) \beta_{2}+a_{2} a_{3}\left(a_{2}-a_{3}\right) \beta_{3}=0, \\
c_{1}+a_{2} a_{3} a_{4}=0 .
\end{gathered}
$$

From (1), (2), (3) and (4) we have

$$
\left|\begin{array}{lll}
a_{1}{ }^{2} & a_{1} & a_{1}{ }^{3}+c_{1}-c_{2} \\
a_{2}{ }^{2} & a_{2} & a_{2}{ }^{3}+c_{1}-\beta_{1} e^{H} \\
a_{3}{ }^{2} & a_{3} & a_{3}{ }^{3}+c_{1}-\beta_{2} e^{H}
\end{array}\right|=0,
$$

i.e.

$$
\begin{aligned}
& \left(-a_{1} a_{3}\left(a_{1}-a_{3}\right) \beta_{1}+a_{1} a_{2}\left(a_{1}-a_{2}\right) \beta_{2}\right) e^{H} \\
= & a_{2} a_{3}\left(a_{2}-a_{3}\right) c_{2}-\left(c_{1}+a_{1} a_{2} a_{3}\right)\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right) .
\end{aligned}
$$

From this we have

$$
\begin{gathered}
-a_{1} a_{3}\left(a_{1}-a_{3}\right) \beta_{1}+a_{1} a_{2}\left(a_{1}-a_{2}\right) \boldsymbol{\beta}_{2}=0 \\
a_{2} a_{3}\left(a_{2}-a_{3}\right) c_{2}-\left(c_{1}+a_{1} a_{2} a_{3}\right)\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right)=0
\end{gathered}
$$

Therefore we obtain

$$
\begin{gathered}
c_{1}=-a_{2} a_{3} a_{4}, \quad c_{2}=\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right), \\
\beta_{2}=\frac{a_{3}\left(a_{1}-a_{3}\right)}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{1}, \quad \beta_{3}=\frac{a_{4}\left(a_{1}-a_{4}\right)}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{1},
\end{gathered}
$$

and from (1), (2) and (3)

$$
\left\{\begin{array}{l}
S_{1}=\frac{1}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{1} e^{I I}+a_{2}+a_{3}+a_{4} \tag{3.1}\\
S_{2}=\frac{a_{1}}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{1} e^{I I}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{2} \\
S_{3}=a_{2} a_{3} a_{4}
\end{array}\right.
$$

Case (ii). Similarly by the impossibility of Borel's identity we obtain

$$
\begin{align*}
& H_{1} \equiv H_{2} \equiv H_{3} \equiv H, \quad c_{1}=a_{1}\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right), \quad c_{2}=a_{2}\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right), \\
& \beta_{2}=\frac{\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right)}{a_{1} a_{2}} \beta_{1}, \quad \beta_{3}=\frac{\left(a_{1}-a_{4}\right)\left(a_{2}-a_{4}\right)}{a_{1} a_{2}} \beta_{1} ; \\
& \left\{\begin{array}{l}
S_{1}=-\frac{1}{a_{1} a_{2}} \beta_{1} e^{I I}+a_{3}+a_{4}, \\
S_{2}=-\frac{a_{1}+a_{2}}{a_{1} a_{2}} \beta_{1} e^{I I}+a_{3} a_{4}, \\
S_{3}=-\beta_{1} e^{H} .
\end{array}\right. \tag{3.2}
\end{align*}
$$

§4. Ozawa [3] proved the following lemma:
Lemma. Let $H(z)$ be a non-constant entire function of z. Then the function $e^{H}-\gamma, \gamma \neq 0$ has an infinite number of simple zeros in such a manner that

$$
\varlimsup_{r \rightarrow \infty} \frac{N_{2}\left(r, 0, e^{H}-\gamma\right)}{T\left(r, e^{H}\right)}=1
$$

where $T(r, f)$ is the Nevanlinna characteristic function of f and $N_{2}(r, 0, f)$ is the counting function of simple zeros of f.

From now on we shall proceed under the infiniteness of simple zeros of the function $e^{H}-\gamma(\gamma \neq 0)$ ensured by Ozawa's lemma. We substitute (3.1) and (3.2) into (2.7) respectively, then the coefficient of $e^{4 H}$ in $D(z)$ is

$$
\frac{a_{1}{ }^{4}}{a_{2}{ }^{4}\left(a_{1}-a_{2}\right)^{4}} \beta_{1}{ }^{4} \neq 0
$$

if (3.1) is the case, or

$$
\frac{\left(a_{1}-a_{2}\right)^{2}}{a_{1}{ }^{4} a_{2}{ }^{4}} \beta_{1}{ }^{4} \neq 0
$$

if (3.2) is the case. Hence in both cases we have an equation

$$
D(z)=A^{\prime}\left(e^{H}-\gamma_{1}\right)\left(e^{H}-\delta_{1}\right)\left(e^{H}-\gamma_{1}^{\prime}\right)\left(e^{I I}-\delta_{1}^{\prime}\right),
$$

where $A^{\prime}, \gamma_{1}, \delta_{1}, \gamma_{1}^{\prime}$ and δ_{1}^{\prime} are all non-zero constants. In fact, we have

$$
A^{\prime} \gamma_{1} \delta_{1} \gamma_{1}^{\prime} \delta_{1}^{\prime}=\left(a_{2}-a_{3}\right)^{2}\left(a_{3}-a_{4}\right)^{2}\left(a_{4}-a_{2}\right)^{2} \neq 0
$$

if (3.1) is the case, or

$$
A^{\prime} \gamma_{1} \delta_{1 \gamma_{1}} \delta_{1}^{\prime}=a_{3}{ }^{2} a_{4}{ }^{2}\left(a_{3}-a_{4}\right)^{2} \neq 0
$$

if (3.2) is the case. From (2.6) we have

$$
-27 g^{2}\left(f_{2}^{3}-f_{3}^{3} g\right)^{2}=A^{\prime}\left(e^{H}-\gamma_{1}\right)\left(e^{I I}-\delta_{1}\right)\left(e^{H}-\gamma_{1}^{\prime}\right)\left(e^{I I}-\delta_{1}^{\prime}\right) .
$$

Since $\gamma_{1} \delta_{1} \gamma_{1}^{\prime} \delta_{1}^{\prime} \neq 0$, by considering simple zero points of the function $e^{I I}-\gamma(\gamma \neq 0)$, we have

$$
\begin{equation*}
D(z)=A^{\prime}\left(e^{H}-\gamma_{1}\right)^{2}\left(e^{H}-\delta_{1}\right)^{2}, \quad A^{\prime} \neq 0, \gamma_{1} \delta_{1} \neq 0, \gamma_{1} \neq \delta_{1} . \tag{4.1}
\end{equation*}
$$

We substitute (3.1) and (3.2) into the quadratic equation (2.8) respectively, then remarking (2.9) and (4.1), in both cases we have the equations

$$
\begin{align*}
f_{2}{ }^{3} g & =A\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)\left(e^{H}-\eta\right), & & A \neq 0, \tag{4.2}\\
f_{3}^{3} g^{2} & =A\left(e^{H}-\gamma^{\prime}\right)\left(e^{H}-\delta^{\prime}\right)\left(e^{H}-\eta^{\prime}\right), & & A \neq 0 . \tag{4.3}
\end{align*}
$$

From (4.2) we see that γ, δ and η are not zero simultaneously. Hence we may assume that $\gamma \neq 0$.

First, we assume that $\gamma \neq \delta, \gamma \neq \eta$. Since a simple zero point z_{1} of $e^{H}-\gamma$ is a simple zero point of the right hand side term of (4.2), z_{1} is a simple zero point of $g(z)$. Hence from (4.3) we have $\gamma=\gamma^{\prime}$ or $\gamma=\delta^{\prime}$ or $\gamma=\eta^{\prime}$, say $\gamma=\gamma^{\prime}$. If we put $\gamma \neq \delta^{\prime}$, $\gamma \neq \eta^{\prime}$, then z_{1} is a simple zero point of the right hand side term of (4.3), however, z_{1} is not a simple zero point of the left hand side term of (4.3). This is a contradiction. Hence we have $\gamma=\delta^{\prime}$ or $\gamma=\eta^{\prime}$, say $\gamma=\eta^{\prime}$. Then (4.2) and (4.3) reduce to

$$
\begin{aligned}
f_{2}{ }^{3} g & =A\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)\left(e^{H}-\eta\right), \\
f_{3}{ }^{3} g^{2} & =A\left(e^{H}-\gamma\right)^{2}\left(e^{H}-\delta^{\prime}\right),
\end{aligned}
$$

where of course $\gamma \neq \delta^{\prime}$. And we have $\delta^{\prime} \neq 0$. In fact if $\delta^{\prime}=0$, then we have

$$
f_{2}{ }^{3} g-f_{3}{ }^{3} g^{2}=A\left(e^{H}-\gamma\right)\left((\gamma-\delta-\eta) e^{H}+\delta \eta\right) .
$$

Since $\gamma \neq 0$, from (4.1) and (2.6) we have $\delta \eta \neq 0$. By eliminating $g(z)$ we arrive at
an absurdity relation

$$
f_{3}{ }^{3} A\left(e^{H}-\check{)^{2}}\left(e^{H}-\eta\right)^{2}=f_{2}{ }^{6} e^{H} .\right.
$$

Hence we obtain the disired $\delta^{\prime} \neq 0$.
If $\delta=0$ and $\eta=0$, then we have an absurdity relation

$$
f_{3}{ }^{3} A e^{4 H}=f_{2}{ }^{6}\left(e^{I I}-\delta^{\prime}\right) .
$$

If $\delta \neq 0$ and $\eta=0$, we have

$$
\frac{f_{3}{ }^{3}}{f_{2}{ }^{6}} A e^{2 H}\left(e^{H}-\delta\right)^{2}=e^{H}-\delta^{\prime} .
$$

The right hand side term has simple zeros, but the left hand side term has no simple zero. This is absured. If $\delta=0$ and $\eta \neq 0$, we similarly have a contradiction. Therefore we obtain $\delta \eta \neq 0$.

Considering the simple zeros of $e^{H}-\gamma(\gamma \neq 0)$, we can see that $\delta=\eta$ and $\delta=\delta^{\prime}$. Hence we attain

$$
\begin{aligned}
f_{2}{ }^{3} g & =A\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)^{2}, \\
f_{3}{ }^{3} g^{2} & =A\left(e^{H}-\gamma\right)^{2}\left(e^{H}-\delta\right), \quad A \neq 0, \gamma \delta \neq 0, \gamma \neq \delta .
\end{aligned}
$$

Next, we may assume that $\gamma=\delta, \gamma \neq \eta$, since we have not $\gamma=\delta=\eta$ from (4.2). In this case by considering the simple zeros of the function $e^{H}-\gamma \quad(\gamma \neq 0)$ similarly, we can see that $\eta=\delta^{\prime}=\eta^{\prime} \neq 0$ in (4.2) and (4.3). Therefore we also attain the form (4.4). From the above discussion we can conclude the following result:

Let R be a regularly branched three-sheeted covering Riemann surface defined by the equation (2.1). If $P(R)=6$, then there exist entire functions $f(z), H(z)$ of z such that

$$
\begin{equation*}
f^{3} g=\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)^{2}, \quad \gamma \neq \delta, \gamma \delta \neq 0, \tag{4.5}
\end{equation*}
$$

where $H(z)$ is a non-constant function with $H(0)=0$ and γ and δ are constants. Conversely if $g(z)$ in the equation (2.1) is defined by (4.5) with $f(z)$ and $H(z)$ having the described properties, then $P(R)=6$.

In fact a function f_{0}, which is regular on R with $P\left(f_{0}\right)=6$, is given by

$$
f_{0}=-\frac{\omega}{\delta-\gamma}\left[(1-\omega) e^{H}+\omega \delta-\gamma+(1-\omega) \sqrt[3]{\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)^{2}}+\frac{1-\omega}{e^{H}-\delta}\left(\sqrt[3]{\left(e^{H}-\gamma\right)\left(e^{H}-\delta\right)^{2}}\right)^{2}\right],
$$

because that f_{0} has the form (2.5) and its six Picard's exceptional valules are 0,1 , $-\omega(\sqrt[3]{\gamma / \delta}-\omega) /(\sqrt[3]{\gamma / \delta}-1),-\omega^{2}(\sqrt[3]{\gamma} / \delta-1) /(\omega \sqrt[3]{\gamma / \delta}-1),-\omega^{2}(\omega \sqrt[3]{\gamma / \delta}-1) /\left(\omega^{2} \sqrt[3]{\gamma / \delta}-1\right)$ and ∞.

This is our desired characterization of R with $P(R)=6$. Thus we have completely proved our theorem 1.
§5. Now we shall prove theorem 2, that is, there is no three-sheeted coverıng

Riemann surface defined by the equation (2.1) with $P(R)=5$.
We assume that there exists such a Riemann surface. Then there is a meromorphic function $f \in \mathfrak{M}(R)$ with $P(f)=5$. Further we may assume that its five Picard's exceptional values are $0, a_{1}, a_{2}, a_{3}$ and ∞. Then f becomes a three-valued entire algebroid function of z which is regular on R and satisfies (2.2) and (2.3). By Rémoundos' reasoning [4] it is sufficient to consider the following four cases:
(i) $\left(\begin{array}{l}F(z, 0) \\ F\left(z, a_{1}\right) \\ F\left(z, a_{2}\right) \\ F\left(z, a_{3}\right)\end{array}\right)=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \beta_{1} e^{H_{1}} \\ \beta_{2} e^{H_{3}}\end{array}\right)$,
(ii) $\left(\begin{array}{c}\beta_{1} e^{H_{1}} \\ c_{1} \\ c_{2} \\ \beta_{2} e^{H_{2}}\end{array}\right)$,
(iii) $\left(\begin{array}{c}c_{1} \\ \beta_{1} e^{H_{1}} \\ \beta_{2} e^{H_{3}} \\ \beta_{3} e^{H_{3}}\end{array}\right)$,
(iv) $\left(\begin{array}{c}\beta_{1} e^{H_{1}} \\ c_{1} \\ \beta_{2} e^{H_{3}} \\ \beta_{3} e^{H_{\mathbf{2}}}\end{array}\right)$,
where $c_{1}, c_{2}, \beta_{1}, \beta_{2}$ and β_{3} are non-zero constants, and H_{1}, H_{2} and H_{3} are non-constant entire functions of z with $H_{1}(0)=H_{2}(0)=H_{3}(0)=0$.

Case (i). We have

$$
\left\{\begin{aligned}
&-S_{3}=c_{1}, \\
& a_{1}{ }^{3}-a_{1}{ }^{2} S_{1}+a_{1} S_{2}-S_{3}=c_{2}, \\
& a_{2}{ }^{3}-a_{2}{ }_{2}{ }^{2} S_{1}+a_{2} S_{2}-S_{3}=\beta_{1} e^{H_{1}}, \\
& a_{3}{ }^{3}-a_{3}{ }^{3} S_{1}+a_{3} S_{2}-S_{3}=\beta_{2} e^{H^{2}} .
\end{aligned}\right.
$$

Calculating as similarly as in $\S 3$ and using the impossibility of Borel's identity, we obtain

$$
H_{1} \equiv H_{2} \equiv H, \quad\left(c_{1}+a_{1} a_{2} a_{3}\right)\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)-c_{2} a_{2} a_{3}=0, \quad \beta_{2}=\frac{a_{3}\left(a_{1}-a_{3}\right)}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{1} ;
$$

$$
\left\{\begin{array}{l}
S_{1}=\frac{1}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{1} e^{H}+A_{1} \tag{5.1}\\
S_{2}=\frac{a_{1}}{a_{2}\left(a_{1}-a_{2}\right)} \beta_{1} e^{H}+B_{1}, \\
S_{\mathrm{i}}=-c_{1},
\end{array}\right.
$$

where

$$
A_{1}=-\frac{c_{1}}{a_{2} a_{3}}+a_{2}+a_{3}, \quad B_{1}=-\frac{a_{2}+a_{3}}{a_{2} a_{3}} c_{1}+a_{2} a_{3}
$$

Then the discriminant $D(z)$ is a polynomial of degree 4 of $e^{I I}$. If the constant term ${ }^{1)}$ of $D(z)$ is not zero, then the same reasoning in $\S 4$ holds and we can conclude the

[^0]existence of a function $f \in \mathfrak{M}(R)$ with $P(f)=6$. This is absurd. Hence the constant term of $D(z)$ is zero. Then if the constant term of
$$
S(z) \equiv-\left(S_{3}(z)+\frac{2}{27} S_{1}(z)^{3}-\frac{1}{3} S_{1}(z) S_{2}(z)\right)
$$
in (2.8) is not zero, then $\gamma \delta \eta \neq 0, \gamma^{\prime} \delta^{\prime} \eta^{\prime} \neq 0$ in (4.2) and (4.3), and again we can say that there exists a function $f \in \mathfrak{M}(R)$ with $P(f)=6$, which is absurd. Hence the constant term of $S(z)$ is also zero. Since the constant term of $D(z)$ is zero, we have
$$
-4 A_{1}{ }^{3} S_{3}+A_{1}{ }^{2} B_{1}{ }^{2}+18 A_{1} B_{1} S_{3}-27 S_{3}{ }^{2}-4 B_{1}^{3}=0
$$

Since the constant term of $S(z)$ is zero, we have

$$
S_{3}+(2 / 27) A_{1}{ }^{3}-(1 / 3) A_{1} B_{1}=0 .
$$

From these we obtain $B_{1}=A_{1}{ }^{2} / 3$ and $S_{3}=A_{1}{ }^{3} / 27$. Substituting these and (5.1) into (2.2), we have

$$
\begin{aligned}
F(z, f) & =f^{3}-\left(\frac{\beta_{1} e^{H}}{a_{2}\left(a_{1}-a_{2}\right)}+A_{1}\right) f^{2}+\left(\frac{a_{1} \beta_{1} e^{H}}{a_{2}\left(a_{1}-a_{2}\right)}+\frac{A_{1}{ }^{2}}{3}\right) f-\frac{A_{1}{ }^{3}}{27} \\
& =\left(f-\frac{A_{1}}{3}\right)^{3}-\frac{\beta_{1} e^{H}}{a_{2}\left(a_{1}-a_{2}\right)}\left(f^{2}-a_{1} f\right) .
\end{aligned}
$$

From this we have four exceptional values $A_{1} / 3,0, a_{1}, \infty$ and these are all exceptional values of f. Thus we have $P(f) \leqq 4$. This is a contradiction. Therefore the case (i) does not occur.

Case (ii). Similarly we have

$$
\begin{gather*}
H_{1} \equiv H_{2} \equiv H, \quad a_{1} a_{2}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right)-c_{1} a_{2}\left(a_{2}-a_{3}\right)+c_{2} a_{1}\left(a_{1}-a_{3}\right)=0, \\
\beta_{2}=\frac{\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right)}{a_{1} a_{2}} \beta_{1} ; \\
\left\{\begin{array}{l}
S_{1}=-\frac{1}{a_{1} a_{3}} \beta_{1} e^{I I}+A_{2} \\
S_{2}=-\frac{a_{1}+a_{2}}{a_{1} a_{2}} \beta_{1} e^{H}+B_{2} \\
S_{3}=-\beta_{1} e^{I I}
\end{array}\right. \tag{5.2}
\end{gather*}
$$

where

$$
A_{2}=-\frac{c_{1}}{a_{1}\left(a_{1}-a_{3}\right)}+a_{1}+a_{3}, \quad B_{2}=-\frac{a_{3} c_{1}}{a_{1}\left(a_{1}-a_{3}\right)}+a_{1} a_{3} .
$$

Then the coefficient of $e^{4 H}$ in $D(z)$ is $\left(a_{1}-a_{2}\right)^{2} \beta_{1}{ }^{4} / a_{1}{ }^{4} a_{2}{ }^{4} \neq 0$. Hence we similarly have a function $f \in \mathfrak{M}(R)$ with $P(f)=6$, otherwise $P(f) \leqq 4$. This contradicts $P(f)=5$.

Therefore the case (ii) does not occur.
Case (iii). We have
$H_{1} \equiv H_{2} \equiv H_{3} \equiv H, \quad c_{1}+a_{1} a_{2} a_{3}=0, \quad a_{2} a_{3}\left(a_{2}-a_{3}\right) \beta_{1}-a_{1} a_{3}\left(a_{1}-a_{3}\right) \beta_{2}+a_{1} a_{2}\left(a_{1}-a_{2}\right) \beta_{3}=0 ;$

$$
\left\{\begin{array}{l}
S_{1}=-\frac{a_{2} \beta_{1}-a_{1} \beta_{2}}{a_{1} a_{2}\left(a_{1}-a_{2}\right)} e^{H}+a_{1}+a_{2}+a_{3} \tag{5.3}\\
S_{2}=-\frac{a_{2}^{2} \beta_{1}-a_{1}^{2} \beta_{2}}{a_{1} a_{2}\left(a_{1}-a_{2}\right)} e^{H}+a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1} \\
S_{3}=a_{1} a_{2} a_{3}
\end{array}\right.
$$

Comparing (5.3) with (3.1), we can see that the constant term of $D(z)$ is not zero.
If $a_{2} \beta_{1}-a_{1} \beta_{2} \neq 0$ and $a_{2}^{2} \beta_{1}-a_{1}^{2} \beta_{2} \neq 0$, then the coefficient of $e^{4 H}$ in $D(z)$ is not zero. Hence the same reasoning in $\S 4$ holds from the above remark, and we can conclude the existence of a function $f \in \mathfrak{M}(R)$ with $P(f)=6$. This is absurd.

If $a_{2} \beta_{1}-a_{1} \beta_{2}=0$ or $a_{2}^{2} \beta_{1}-a_{1}^{2} \beta_{2}=0$, then $D(z)$ is a polynomial of degree 3 of e^{H}, because that $a_{2} \beta_{1}-a_{1} \beta_{2}$ and $a_{2}^{2} \beta_{1}-a_{1}^{2} \beta_{2}$ are not zero simultaneously. And from (2.6) we have the equation

$$
-27 g^{2}\left(f_{2}^{3}-f_{3}^{3} g\right)^{2}=A^{\prime}\left(e^{H}-\gamma_{1}\right)\left(e^{H}-\delta_{1}\right)\left(e^{H}-\eta_{1}\right), \quad A^{\prime} \neq 0, \gamma_{1} \delta_{1} \eta_{1} \neq 0
$$

From this and considering simple zero points of the function $e^{H}-\gamma(\gamma \neq 0)$, we have a contradiction. Therefore the case (iii) does not occur.

Case (iv). We have

$$
\begin{align*}
& H_{1} \equiv H_{2} \equiv H_{3} \equiv H, \quad c_{1}=a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \\
& \left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right) \beta_{1}+a_{1} a_{3}\left(a_{1}-a_{3}\right) \beta_{2}-a_{1} a_{2}\left(a_{1}-a_{2}\right) \beta_{3}=0 ; \\
& \qquad \begin{array}{l}
S_{1}=-\frac{\left(a_{1}-a_{2}\right) \beta_{1}-a_{1} \beta_{2}}{a_{1} a_{2}\left(a_{1}-a_{2}\right)} e^{H}+a_{2}+a_{3}, \\
S_{2}=-\frac{\left(a_{1}^{2}-a_{2}{ }^{2}\right) \beta_{1}-a_{1}^{2} \beta_{2}}{a_{1} a_{2}\left(a_{1}-a_{2}\right)} e^{I I}+a_{2} a_{3}, \\
S_{3}=-\beta_{1} e^{H} .
\end{array} \tag{5.4}
\end{align*}
$$

Comparing (5.4) with (3.2), we can see that the constant term of $D(z)$ is not zero. The coefficient of $e^{4 H}$ in $D(z)$ is

$$
\frac{\left(\left(a_{1}-a_{2}\right) \beta_{1}-a_{1} \beta_{2}\right)^{2}\left(\left(a_{1}-a_{2}\right)^{2} \beta_{1}-a_{1}{ }^{2} \beta_{2}\right)^{2}}{a_{1}^{4} a_{2}^{4}\left(a_{1}-a_{2}\right)^{4}} .
$$

If $\left(a_{1}-a_{2}\right) \beta_{1}-a_{1} \beta_{2} \neq 0$ and $\left(a_{1}-a_{2}\right)^{2} \beta_{1}-a_{1}^{2} \beta_{2} \neq 0$, then similarly we have a contradiction.

If $\left(a_{1}-a_{2}\right) \beta_{1}-a_{1} \beta_{2}=0$, then $\left(a_{1}{ }^{2}-a_{2}{ }^{2}\right) \beta_{1}-a_{1}{ }^{2} \beta_{2}=a_{2}\left(a_{1}-a_{2}\right) \beta_{1} \neq 0$ and hence the coefficient of $e^{3 H}$ in $D(z)$ is not zero, which is similarly a contradiction.

If $\left(a_{1}-a_{2}\right)^{2} \beta_{1}-a_{1}{ }^{2} \beta_{2}=0$, then $\left(a_{1}-a_{2}\right) \beta_{1}-a_{1} \beta_{2}=a_{2}\left(a_{1}-a_{2}\right) \beta_{1} / a_{1} \neq 0, \quad\left(a_{1}{ }^{2}-a_{2}{ }^{2}\right) \beta_{1}$ $-a_{1}{ }^{2} \beta_{2}=2 a_{2}\left(a_{1}-a_{2}\right) \beta_{1} \neq 0$ and hence from (2.6) and the similar discussion as in $\S 4$, we can conclude the existence of a function $f \in \mathfrak{M}(R)$ with $P(f)=6$. This is absurd. Therefore the case (iv) does not occur.

By the above discussion in (i), (ii), (iii) and (iv) we have completely proved our theorem 2.
§ 6. From theorem 1, theorem 2 and Ozawa's lemma every Riemann surface defined by the equation (2.1) with $g(z)$, which is an entire function of z having no zero other than an infinite number of simple zeros or having no zero other than an infinite number of double zeros, always satisfies $P(R) \leqq 4$. And an example R with $P(R)=4$ is easily given. In fact let R be a Riemann surface defined by the equation (2.1) with $g(z)=e^{z}+1$. From the above remark we have $P(R) \leqq 4$. The function $f=\sqrt[3]{e^{z}+1}$ belongs to $\mathfrak{M}(R)$ and $P(f)=4$. Therefore $P(R)=4$.

References

[1] Borel, E., Sur les zéros des functions entières. Acta Math. 20 (1897), 357-396.
[2] Ozawa, M., On complex analytic mappings. Kōdai Math. Sem. Rep. 17 (1965), 93-102.
[3] - On ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 103-108.
[4] Rémoundos, G., Extension aux functions algébroides multiformes du théorème de M. Picard et de ses généralisations. Mém. Sci. Math. Paris (1927), pp. 66.
[5] Selberg, H. L., Algebroide Funktionen und Umkehrfunktionen Abelsher Integrale. Avh. Norske Vid. Akad. Oslo 8 (1934), 1-72.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: 1) Here we say "constant term" when we take $D(z)$ for a polynomial of e^{H}. From now on we use the term "constant term" in this sense.
