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It is known that the space of hyperelliptic Riemann surfaces of genus g(^2)
forms a (2g—1) -dimensional complex-analytic submanifold of the Teichmϋller space
Tg (cf. [2], [9]). In the paper [10], Rauch generalized this result as follows: the
space of closed Riemann surfaces of genus 0(^2) having Weierstrass points where
the first non-gap values is n(^g) forms an (n+2g—3)-dimensional complex-analytic
submanifold of Tg. For the proof he used the Garabedian deformation.

We want to discuss the same problem by making use of deformations by
Beltrami differentials introduced by Bers [6] (see also [3]). We have succeeded for
the case n—g.

We remark that a related problem has been discussed by Bers [7] by using
quasi-Fuchsian groups.

1. We begin with the statement of our result. In the present paper we
consider only closed Riemann surfaces of a given genus g(^2). Let S0 be such a
surface fixed once for all. We denote by σ a homotopy class of sense-preserving
homeomorphisms of S0 onto another S, and call the pair (S, σ) a marked Riemann
surface. Two marked Riemann surfaces (S, σ) and (S', σf) are said to be conformally
equivalent if the homotopy class σfσ~l contains a conformal mapping of S onto Sr.
We denote by <S, <τ> the conformal equivalence class of (S, σ), and call the set of
all <S, σ> the Teichmiiller space, which will be denoted by Tg. For given <Sι, σι>
and <S2, <r2>, there exists only one quasiconformal mapping / of Si onto S2 which
minimizes the maximal dilatation in the homotopy class σzσι~l (cf. [1], [5], [11]).
We define the distance between two elements by

d«Sι, (7ι>, <S2, <72>) = lOg #(/),

where K(f) is the maximal dilatation of the mapping /. A topology on Tg is
induced by this metric.

Let n be a positive integer and P0 be a point of S. If no meromorphic function
exists on S having as its only singularity a pole of order n at P0, we say that n is
a gap value at P0, or that the point P0 has a gap value n. It is known that there
exist exactly g gap values at each point P0. A point P0 is called a Weierstrass
point of S if it has a gap value n greater than g. There are only a finite number
of Weierstrass points on S. Consequently, except a finite number of points on S,
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each point has gap values 1, 2, ••-, g. A Weierstrass point with gap values 1, 2, •••,
g— 1, g+l will be called an ordinary Weierstrass point.

The purpose of this paper is to prove the following theorem.

THEOREM. The set of all the conformal equivalence classes of closed marked
Rίemann surfaces of genus g(^2) having ordinary Weierstrass points is an open
subset of the Teichmuller space Tg.

2. By a differential of type (p, q) on a Riemann surface S we mean an in-
variant form λ(z)dzpdzq on S. We call a differential of type (—1, 1) a Beltrami
differential, a differential of type (—1, 0) an inverse differential, and a differential
of type (2, 0) a quadratic differential. In this paper we consider only Beltrami
differentials β=μ(z)dz/dz with bounded \β\ = \μ(z)\. When such a Beltrami differential
β is given on S, we denote by Sβ the new Riemann surface which has the conformal
structure on S defined by the conformal metric ds=\dz-\-μdz\. More precisely, over
the topological space S, Sβ is defined by a local parameter ζ(z) which is a homeo-
morphic solution of the Beltrami equation ζj^ζ* for each local parameter z on S.

A Beltrami differential β=μ(z)dz/dz on S is called locally trivial or stationary
if there exists an inverse differential h(z)/dz such that h(z) is continuous and

dh

is satisfied for each local parameter z on S with respect to the generalized derivative^
The following lemma is important.

TEICHMULLER'S LEMMA. A Beltrami differential μdz/dz on a closed Riemann
surface S is locally trivial if and only if

JS

for all regular quadratic differentials fdz2 on S (cf. [3], [6], [11]).

The dimension of the complex factor space B of all Beltrami differentials on S
modulo the locally trivial ones is known to be 3g—3 (cf. [3], [6], [11]). We call a
basis of B a (complex) Beltrami basis on S. Bers introduced a complex-analytic
structure in Tg by the following method (cf. [6]). Let <S, <?> be an arbitrary
element of Tg and b=(βι, /32, •••, /53g-3) be a Beltrami basis on S. For complex
vectors e=(είt ε2, •••, ε3g_3)eC3g-3 sufficiently near the origin, we define the mapping

where

and each τ is the homotopy class of homeomorphisms of S onto Se'b containing the
identity mapping. It is shown that this mapping is a homeomorphism of a neigh-

1) As for the generalized derivative, see Bers [4].
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borhood of the origin of C3ί7_3 onto a neighborhood of <S, <?>, and that e=(εlt εz,
••-, £30-3) are complex-analytic co-ordinates on Tg (see also [3]).

3. Let θi=φi(z)dz (i=l, 2, ••-, g) be a basis of the space of all the abelian dif-
ferentials of the first kind on S. We denote by W(z) the Wronskian of functions
φι(z\ φz(z\ •••, ψg(z) for a local parameter z on S. It is well known that a point
of S is a Weierstrass point if and only if it is a zero of the differential
Ω=W(z)d#*g+v>/2' of type (g(g+l)/2, 0). Furthermore, a point P0€S is an ordinary
Weierstrass point if and only if Ω has a simple zero at P0 (cf. [8]). For Se'h we
define the Wronskian We(Q in the same way.

As a consequence, in order to prove our theorem, it suffices to show the fol-
lowing: if W(z) has a simple zero at z(P0), then We(ζ) also has a simple zero at
ζ(Po) whenever e=(ει, εz, ••-, ε3g_3) is sufficiently near the origin, for a suitable
Beltrami basis b=(βι, βz, •••, βsy-s) on S and a certain local parameter ζ on Se'b.

4. Let Po be an ordinary Weierstrass point of S and let U be a fixed para-
metric disk about P0. We shall show that there exists a Beltrami basis (μidzjdz,
μzdzjdz, •••, μig-idz/dz) on S satisfying

(1) μ,=0 in U(j=l,2, -,3</-3).

For this purpose we define an inner product in the space Q of regular quadratic
differentials on S by setting

(fdz\ )=(( --
JJS-U

where ρ\dz\ is a metric on S such that p>0. The dimension of Q is 3g—3 (cf. [11]).
An orthonormal basis of Q relative to this inner product will be denoted by fidz2,
f*dz\ - f^dz2. By setting

ί 0 in U,

in S- U,

we obtain Beltrami differentials βj=μjdzldz (j=l, 2, ••-, 3g—3) on S, which are
linearly independent as elements of the factor space B. In fact, if Cι/3ι+<?2/32+
+£8<7_sβ3g-s is locally trivial, then, by Teichrnΐiller's lemma,

3g-3 ff 3g-3

- Σ
j=ι JJS j=ι JJs—u P

-c?, (ί=l,2, •••, 30-3).

Therefore (/3ι, βz, •••, βw-s) is a Beltrami basis on S satisfying (1).
Now we fix a Beltrami basis b=(βι, βz, •••, βw-s) satisfying (1) and

\μj\^k<J\. (/=!, 2, •••, g),

where βj=μjdz/dz and k is a constant. Let Ai, Blt Az, Bz, ••-, Ag, Bg be a canonical
homology basis on S which does not meet U. We denote by Oi=φi(z)dz and 0;
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=φϊ(ζ)dζ (f=l, 2, •••, g) the normalized bases of abelian differentials of the first kind
belonging to this homology basis on S and.Se>δ, respectively. That is, they satisfy

(2) ( θi=δiJ9 ( θ t=δtj (ί,y=l,2,-,0).

Note that AJ9 E3 (y=l, 2, •••, 0) is a homology basis on both S and Se'b. We fix a
local parameter z=z(P) in £7, where 2(P0)=0 and z(U)=unit disk. By the assump-
tion, W(z), the Wronskian of ^ι(z), φz(z\ ••-, ^(z), has a simple zero at z=0. By
condition (1) the parameter z is also a local parameter on Se'b. We take this
parameter z as a local parameter ζ in £7(cSeΦδ) which we mentioned at the end of
Section 3.

Then the proof of our theorem is reduced to show that, if \e\—*0,

(3) We(z)-^W(z) uniformly in the wider sense in |z|<l,

where We(z) is the Wronskian of φl(z\ φl(z\ ••-, ψg(z). Indeed, by Hurwitz' theorem,
(3) implies that for an arbitrary neighborhood U0 of z=Q We(z) has only one simple
zero in £70 if \e\ is sufficiently small.

5. In order to prove (3) we shall represent W(z) and We(z) by periods of certain
abelian differentials of the second kind. Let P be an arbitrary point of U. We
denote by ύop,n=φp,n(z)dz the abelian differential of the second kind on S which
has, as its only singularity, a pole at P with the principal part

( 4 ) (z-z(P))~ndz (n: integer, n^2)

for the previously fixed parameter z in U, and which satisfies

(5)

Similarly, we denote by ω?,n=^|,n(ζ)dζ the abelian differential of the second kind
on Se'b which has, as its only singularity, a pole at P with the principal part (4)
for the same parameter z on Se'b and satisfies

ωίU-0 C/=l,2, -,0).
JAj

Furthermore we set

Then, by use of Riemann's period relation, we have

O'=l, 2, •••, 0; «=2, 3,

(«-D! _β
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where z=z(P). Hence we obtain

(6)
2! 3! σ !

" πp>g+ι>0

(7)
2! 31-f f !

e7 ΓP>2> 1

where 2=z(P).

6. The proof of (3) is derived from the variational formula

3<7-3 pr»
(8) πep,n,j— πp,n,j=2i 2 εr\\ μrψjψ?,n

r=ι JJS

which we shall prove in the sequel.
If we set briefly

e b=μ(z)dz/dz i.e. μ(z)=
3(7-3

we have

The identity mapping fe of S onto itself is a quasiconformal mapping of S onto
Se'ύ. For arbitrary local parameters z and ζ on S and Seφδ, respectively, the com-
posite function ζ=fe(z) satisfies the Beltrami equation ζ^=ζz. We denote by ap,n

the transplant of ωp,n by the mapping fe, that is,

Then clearly

( 9 )

(10) \ αp,n=\ ύ>p,n = 7Γp,n, j
JBj JBj

' = l, 2,

' = l, 2,

We notice that the differential ap,n—&p,n has no singularities on S since fe(z)=z
for the previously fixed parameter z on S and Se'b. By using (2), (5), (9), (10) and
Riemann's period relation, we obtain

πP>nιj πPιn>j—\ &p> n ωP> n
JBj

= \ αP,n—ωP,n+0,—\ ^
J5 7 Jβ?
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= Σ \ Oj\ af>n — <Op9n + 0J— \ ap,n — <Op,n + 0J\ θλ
r=lLJAr J Br J Ar J Br J

= 2A\

= 2A \

where
37=2ί\\ μψj(ψv,n

By Schwarz' inequality,

(11)

where ^=^^3^— 3. Hence it is sufficient to show

By using again (5), (9) and Riemann's period relation, we get

0= \ \ («PΪ n — fl>P, n)Λ(«p, n — ωp, n)

= — f | |αp, n — ω P , n | | 2 +4A\ \

and consequently,

Therefore we obtain

(12) \\

where c = k\/3g — 3. Thus (8) has been proved.

7. By the variational formula (8) it follows that
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(13) π},n,j >πP,n)J as \e\ >0.

Each integral ίίsμrφjφP)ndxdy in (8) is bounded when P varies on a closed set F

contained in U, for it is continuous with respect to P. Furthermore by (11) and

(12) there exists a constant K, independent of e and P, such that

Consequently, η is bounded when P moves on F, for \\ωP,n\\s-u is bounded on F

by the same reason as before. Hence we can conclude by (8) that the convergence

in (13) is uniform when P is restricted to a closed set in U. Therefore (3) follows

by (6) and (7). Thus our theorem has been proved.
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