INFINITESIMAL TRANSFORMATIONS OF A
MANIFOLD WITH /STRUCTURE

By SaTosur Kotd

Professor Yano [3] introduced the concept of f-structure on an n-dimensional
differentiable manifold and investigated it from the global viewpoint. The f-structure
may be regarded as a generalization of the almost complex structure and the almost
contact structure. The main purpose of this paper is to study such an infinitesimal
transformation v" of a differentiable manifold with f-structure as leaves the structure
tensor fi* invariant, that is, ng fi=0.

§1. Preliminaries.

We consider an #n-dimensional differentiable manifold of class C* covered by a
system of coordinate neighborhoods {z"}, and a tensor field fi* of type (1, 1) and
of class C* satisfying

(L1 St fi? fh =0,

where the Latin indices run over 1, 2, ---, #.
In a manifold with (1. 1), the operations

(1 2) lit= _ﬁzﬁh and m" =fibfgh+5ih

applied to the tangent space at a point of the manifold are complementary projection
operators. Thus there exist complementary distributions L and M corresponding
to the projection operators /,» and m;", respectively.

If the rank of fis #, then we call such a structure an f-structure of rank r
(r=n). If the rank of fis n, then [;»=—4d;* and m,*=0, so that we find that the
Jf-structure of rank # is an almost complex structure. And if the rank of fis n—1,
then the distribution L is (#—1)-dimensional and the distribution M is one dimen-
sional, consequently m;* should have the form m;*=p"q;, where p* and q; are
contravariant and covariant vector fields respectively. Therefore, we find that the
f-structure of rank (#—1) is an almost contact structure defined by Sasaki [1].
(Yano [3].)

Making use of (1.1) and (1. 2), we find
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1.3) It fir=fitlh=f", Lt =1t
1.4 mitm =m;",
1.5) Sitmr=1ltm=1"m=0.

In a manifold with f-structure of rank 7, we put
1.6) #Ofi= s+ 2m s+ £ ).
This operation is a formal generalization of purity of an almost complex manifold
to the manifold. For example, we have
amn ¥ORfr=0,  *Ok15=0,
1.8 *OLm S =m;*.

It is known [3] that a manifold with f-structure of rank » always admits a
positive definite Riemannian metric tensor g:» such that

1.9 fit [ Ges=qin—Min, where Man =Mi'Qin-

From which we see that the tensor e, is a symmetric one.

If an f-structure of rank » admits a positive definite Riemannian metric defined
by (1.9), then we shall call the structure an (f,, g)-structure.

In a manifold with (f, g)-structure, using (1.6) the equation (1.9) can be
written as

1. 10) *0%i91s=Gn.
Transvecting this equation with f7, it follows that
1. 11) *04 fis=fm,  where  fin=fi'gin.
From this equation and (1. 9), we have
Fi=fi' £ fs=F& (—@ystmi)=—fa.

Thus, in a manifold with (f;, g)-structure the tensor fj; is a skew-symmetric one [3].
Next, applying p, to (1. 1), we get

Sy B3 s, St et it fi =0,

where p, denotes the operator of covariant derivative with respect to the Riemannian
connection formed with g:». The last equation can be written as



118 SATOSHI KOTO
1.12) *04pifis=0, or  fIPp, fu=l Ry, fis.
If we proceed in similar manner with equation (1. 9), we get
v imin-+Ilp, fu+fitvs fn=0.
Operating *O% to this equation, we find by virtue of (1.12)
*Ofepnmii=*O, (fi'pnfu—Ffitpnfi)=0.
Hence we have
(1.13) *OWp umis=0.
Operating p» to (1. 4), we have
1. 14) ! MG R = MG — T S
from which by using (1. 4)
MG R =M s — M I 0 s,
and hence
(1. 15) mitmipames=0.

Now, we shall prove the following

Turorem 1.1. If, in a wmanifold with (f,, g)-structure, the skew-symmetric
tensor fj: is closed, that is,

(1. 16) fiin=0, fin+0s fr;+0n f7:=0,
then the distribution M is integrable, where 0,=0/dx’.
Proof. Transvecting (1. 16) with mms* f,», we get

moms* (7 fint-p o Sus 7 f:)=0,
or using (1. 5)

—m fon frp st — st i S ame? =0.
Substituting (1. 2) in the last equation
— MY M= M M j10sE s e — s Ml ! =0,

and transvecting this with me.!'mu?, we have in consequence of (1.15)
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(1' 17) mh]mkl (iji'r—Vim;r):O-

This equation shows that the distribution M is integrable. g.ed.

§2. Symmetric Killing tensors.

Now, in a Riemannian manifold V, if a symmetric tensor 7,.., of type (0, q)
satisfies

@1 7o Tg.ap=0,
and
2. 2) 9y, Tzq-uzzi: 0,

then we shall call it a symmetric Killing tensor. We owe this definition to Pro-
fessor S. Tachibana.

It is easily seen that when ¢=1 the symmetric Killing tensor coincides with
the notion of a Killing vector. For a symmetric Killing tensor, we shall prove the
following

THEOREM 2. 1. In a compact orientable Riemannian manifold, a necessary and
sufficient condition that a symmetric tensor field T.,.., be symmetric Killing is that
it satisfies

q a
(2. 3) gtsVLVstq‘..zl"*‘ ZleSTTa,q...r...il—'((l—l) z<: K]"'ﬂsthq"‘J"'h"‘ll=0’
= t<s

and
g]zV] Tzq...zzi =0,

where Kij" is the Riemannian curvature tensor and K*;i"=Ks;i*g%*, Kiji=Ksjib.

Proof. We first establish that the condition (2.3) is necessary. Operating p’
to (2. 1), we get

PV Tegay H 000 Togragstoo P20y Tisg_y4,=0.
On the other hand, using the Ricci identities and (2. 2), we get
VJV'LS qu...]...'Ll:KLst T"’q"'t"'ll—Kjls/"lc Tzq...]...zzt_ s —Kstzqt T”iq-r"«""’x'

Consequently, for a symmetric Killing tensor T,.., we have

q
ATy, =90 s Togeay 1+ Zl K 'Toyta,
s=

q .
—(g—1) E& K]zﬂsh TZ(I“'J"""“"'l =0.
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To prove the sufficiency of this theorem, we put
@+DUjiga, =7 o Togarys
then taking account of the Ricci identities and (2. 2), it follows that

@HDPAT o (P T4 g T )]

= U2+ Trau. (A Tqull) +quq--~ll 'V“Vj Tiq)
and
V“(THI""‘IV] qu “]): V2+ qu'-.’qV“V] Tip-““]’

where T =T, ;709" and V..., =;T.y.,’. Since the manifold is compact
orientable, applying the Green’s theorem we have

S [U4AT,, o, T e —qV*]do =0,
Vn

Hence, if 4T3,..,=0 and V.,..,=0, then we obtain U,,..,=0. g.e.d.

Now, in a Riemannian manifold, let us consider a point z" and a direction »*
at x* which is contained in a distribution M. Then the geodesic is uniquely
determined by the initial point " and the initial direction v".

If the tangent to the geodesic thus determined is always contained in M, then
we say that the distribution is geodesic. [2], [4, p. 243].

It is known [2] that the condition for M to be geodesic distribution is

2. 4) mytm(ems™+psm)=0.

Next, let us consider a vector field. If the vector is parallel when we displace
in any direction contained in a distribution A, we say that the vector is parallel
along M. We can use the same terminology also for the distribution M, that is,
if a distribution is parallel when we displace in any direction contained in M, we
say that the distribution is parallel along M. When we displace a vector contained
in a distribution M parallelly along A, if the displaced vector is always contained
in the distribution M, we say that the distribution M is flat. [2], [4, p. 242].

It is known [2] that the condition for A to be a flat distribution is

2.5) mtpemi"=0.

Now, we shall return to our manifold with (f;, g)-structure. In this manifold,
if the tensor miy;; defined by (1.9) satisfies

(2. 6) Myun Eijzh"“Vimhj"l“thji:‘O;
then transvecting this equation with g/, we find

2.7 psm®=0,
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by virtue of (1.13). Hence, the tensor my; is a symmetric Killing tensor. Trans-
vecting (2. 6) with my/ms and using (1. 15), we get (2.4). Therefore we have the
following

THEOREM 2.2. In a mawmfold with (f:, g)-Structuve, if mj. is a symmetvic
Killing tensor, then the distribution M 1s geodesic.

§3. Normal (£, g)-structures.

Now, we shall call an (f, g)-structure a normal (f;, 9)-structure if the following
conditions are satisfied:

(3 1) f;zhEijzlz+Vtﬁ1]+l7hfiz=0’
(3. 2) Myin = Min-+ i+ =0.

The condition (3.1) shows that the skew-symmetric tensor fj; is closed and
hence by virtue of Theorem 1.1, the distribution M is integrable. The condition
(3. 2) means that the distribution M is geodesic by virtue of Theorem 2. 2.

If the rank of fis (#—1), then since the distribution M is one-dimensional the
tensor m;* should have the form m;*=p'q,. Therefore, (3.2) reduces

3.3 pibitpip;=0,

that is, the vector p* is a Killing vector. Hence a manifold with normal (f,-1, g)-
structure is similar with a normal contact manifold defined by S. Sasaki.

In a manifold with normal (f, g)-structure, from (1.17) and (2.4) we get
mim,tpsmi»=0. Hence by virtue of (l.14), we get (2.5), that is, m,‘p,m*=0.
Thus we have the following

Turorem 3.1. In a manifold with normal (fr, 9)-structure, the distvibution M
is flat.

Next, we shall prove the following two theorems which are useful in later
sections.

THEOREM 3. 2. In a mamfold with normal (f;, 9)-structure, we have
(CR) *O% fi'pe 7 =0.
Proof. If we put T;=*0% fi"p: for, then by virtue of (1.12) and (3. 1), we find
Tiin=*05i fu" (= s frn—Pr fis)
=*0% fu'7s fr="Tun.

Consequently we have
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3.5 Tjin=Tjn.
On the other hand, taking account of (1.6), we find
2T jin=Ju" UL +-2mstmi 13t [ e for
=fu" UM+ e Sors by virtue of (2.5),
=S FE S ST P fors from (1. 12),
=—=2f*05p: frs=—2Tjn.
Hence we have

(3. 6) Tirv=—"Tjen.

From (3. 5) and (3.6), we get —7%nj=Tn, Using (3. 5) again, we have
2T 1.=0. g.ed.

Transvecting (3. 4) with g7, we find by virtue of (1.10)
3.7 J" fr=0, or  fu=frpsma,
where we put fo=p;fi’. From which we have

TueoreMm 3. 3. In a manifold with novmal (f;, g)-structure, if a vector field v*
admits Lfr=0, then we have f*Lf=0.

§4. Infinitesimal transformations.

In this section, we shall consider in a manifold with normal (f, g)-structure a
vector field »* satisfying

4.1 L f#=0 and msvs=0.
In this case, from (1. 2) we easily get

(4- 2) 61(; mﬂ: )

and consequently

4. 3) L£*0%=0.
Now, we shall prove the following

THEOREM 4. 1. In a manifold with normal (f;, 9)-structure, if a contravariant
vector v* which is orthogonal to the distribution M admits L f*=0, then we have

mit g {5} =0.



INFINITESIMAL TRANSFORMATIONS OF A MANIFOLD 123

Proof. Multiplying (2. 5) by 2" and contracting, we find
1 t
0=v"m;lp min=—m;' mpws=— > mitmis LG,
v

by virtue of Theorem 3.1 and msw*=0. Hence taking account of (1.4) and (4. 2),
we have

4. 4) {;m =0,
Next, from (1. 13) and (4. 3), we find
*Oﬁgmmts:O.
Taking account of (4. 4), this implies
FORLL Gy mret LAl mer] =0
Transvecting this equation with ¢!, we obtain
4. 5) ms‘ag{;fa}=0,

by virtue of (1. 10).
Lastly, by making use of the identity

dgyfmih:Vjogmih_og{;i}mS’L—:)C{ﬁL}miS;
and taking account of (3. 2) and (4. 4), we find
ag{j’z}msn+£{ji}msi+§{fh}msz‘=0~
Transvecting this equation with ¢ and using (4. 5), we have
g"f {7i}ms"=0. q.ed.
Now, operating %3 to (3. 4), we get by means of (4.3),
*Oﬁfr"ovclhfsr:a
Transvecting this equation with ¢/* and using (1. 10), we find
0=g" S Lrfir=g" S L1EY = L8V 171,

or
lr"g“ZC {#s}=0.

Hence from Theorem 4.1, we have the following
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THEOREM 4. 2. In a manifold with normal (f., g)-structure, if a contravariant
vector field v™ which is orthogonal to the distribution M admits L fi=0, then it is

a geodesic vector, that is,

From this theorem, we easily get the following

TurEOREM 4. 3. In a compact orientable manifold with normal (f,, g)-structure,
if an infinitesimal transformation v satisfying msv'=0 and L f=0 is volume
v

preserving, then it is an infinitesimal isomeiry.
THEOREM 4. 4. In a compact orientable manifold with normal (f, 9)-structure,

if a conformal (projective) Killing vector v" admits msv°=0 and L f;=0, then it is
v

a Killing vector.

§5. An integral formula.

In this section, we shall consider a compact orientable manifold with normal
(fr g)-structure and by using the Green’s theorem we shall obtain conditions that
a contravariant vector field v* which is orthogonal to the distribution M, leaves f;*
invariant.

If we put

%.1) Tr=L fir=v'p i —fi P+ filp v,

then in a manifold with normal (f, g)-structure, we have

1 1
5 T*= T[vsmﬁi—ﬁ‘mvi—ﬁ‘mvs]

X[ty fli—fltpw'—fitpo]
= % [0 vp. f1:(p s f11) —misp evi( sv®) — mbSp swe(*os)]

+P0i(pvt) — v s fuop 08 — 08 S s fie(Prva) — 17 S 0 (pvs).
On the other hand, we find that p/[ fi*v; 7] is sum of the following three terms:
7 fYwi T =vip? felv'ps it — 1577 0t + 15 %]
1 )
== 5 V0T S3uPs )F VPSS fis I fos),

o) Tyt =viproi fip o [) =13 oy v ws) —p oot +mstprvi(p iv°),
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and
Sevp? T = frog™(p s{;’ §i9)
=[—Fg L) =L FI—p (L fro:
=[—frfg”§ {&) —91JCff]fj’vi+v“va’(fi‘Vstz+fﬂ7zﬁt+l7/mzs+l7imjs).
Gathering above formulas, we obtain
1 2 j t
— T tplfenT]

=[frfg“.;C{Zs}—;}Cff']ffvﬂrﬁ‘vszvi[VsﬂHerﬁs+m}z]

1
= 5 [mp i s o)+ mP g (ol vp oy st pimgs).

In this case, if mv;=0, then in a manifold with normal (£, g)-structure we have

1

- T*+plfiedy]

1
=Lfg L) =L PUfoi— = U,
where Uj;;=m; g, Thus, we have the following

THEOREM b.1. In a compact orientable manifold with normal ( f,, g)-structure,
the integral formula

j [—;—— T34 % U2—Lwgts L{[s} +f}"11i£f]:|do‘=0.
Vn v v

is valid for a contravariant vecror field v* satisfying ms"v=0 where Ty=L f
and Uj=m; L.
v
From Theorems 3.1, 4. 2 and 5. 1, we have the following

THEOREM 5. 2. A necessary and sufficient condition that in a compact orientable
manifold with normal (f,, g)-structure a contravariant vector field v* which is
orthogonal to the distribution M, leave f;* invariant is that it satisfies

gipps+Ksv'=0  and  fi"Cfr=0.
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