
INFINITESIMAL TRANSFORMATIONS OF A
MANIFOLD WITH /"-STRUCTURE

BY SATOSHI KOTO

Professor Yano [3] introduced the concept of /-structure on an ^-dimensional
differentiable manifold and investigated it from the global viewpoint. The /-structure
may be regarded as a generalization of the almost complex structure and the almost
contact structure. The main purpose of this paper is to study such an infinitesimal
transformation vh of a differentiable manifold with /structure as leaves the structure
tensor f ί h invariant, that is, £fϊh=Q.

§ 1. Preliminaries.

We consider an ^-dimensional differentiable manifold of class C°° covered by a
system of coordinate neighborhoods {xh}, and a tensor field fιh of type (1, 1) and
of class C°° satisfying

(1. 1) /<t/ί /.Λ+/iΛ=0,

where the Latin indices run over 1, 2, •••, n.
In a manifold with (1.1), the operations

(1.2) kh = - f f f t h and mί

h=fί

tft

h-}-δί

h

applied to the tangent space at a point of the manifold are complementary projection
operators. Thus there exist complementary distributions L and M corresponding
to the projection operators lτ

h and wΛ respectively.
If the rank of / is r, then we call such a structure an /-structure of rank r

(r^n). If the rank of /is n, then hh=—dih and mτ

h=Q, so that we find that the
/-structure of rank n is an almost complex structure. And if the rank of / is n—l,
then the distribution L is (n—T)-dimensional and the distribution M is one dimen-
sional, consequently wiih should have the form mίh=pflqif where ph and qt are
contravariant and covariant vector fields respectively. Therefore, we find that the
/"-structure of rank (n—l) is an almost contact structure defined by Sasaki [1].
(Yano [3].)

Making use of (1.1) and (1. 2), we find
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(1. 3) /it/t

Λ=/*ί/t

Λ=/iΛ, ttlth=lih,

(1. 4) mi

ίmth=mi

h,

(1. 5) fί

tmth=htmt

h=lt

hmί

t=0.

In a manifold with /-structure of rank r, we put

(1. 6) *0}{= -i-(///i'+2w/w, +///i ).

This operation is a formal generalization of purity of an almost complex manifold
to the manifold. For example, we have

(1.7) *0j}/ί'=0, *0«} /,'=<),

(1. 8) *θysmts=mj\

It is known [3] that a manifold with /-structure of rank r always admits a
positive definite Riemannian metric tensor gth such that

(1.9) fιtfhsQts=Qίh~niih, where mih^mSgth

From which we see that the tensor mih is a symmetric one.
If an /structure of rank r admits a positive definite Riemannian metric defined

by (1. 9), then we shall call the structure an (/-, g)-structure.
In a manifold with (/r, g) -structure, using (1. 6) the equation (1. 9) can be

written as

(1.10) *0&0ie=flta.

Transvecting this equation with //, it follows that

(1.11) *O%ft*=fjH, where fjκ=ffgt*.

From this equation and (1. 9), we have

Thus, in a manifold with (/-, g) -structure the tensor fa is a skew-symmetric one [3].
Next, applying ψ3 to (1. 1), we get

where ψ3 denotes the operator of covariant derivative with respect to the Riemannian
connection formed with gih. The last equation can be written as
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(1. 12) *0iir,f* =0, or fttev,f*=ltfcv,f«.

If we proceed in similar manner with equation (1. 9), we get

ψiWliK + ftp j fu +ftγjfth = 0.

Operating *Oiί to this equation, we find by virtue of (1. 12)

*0βp*w,< = *0& (//pA/« -fMώ = 0.

Hence we have

(1. 13) *O#pΛwίβ=0.

Operating p/z, to (1. 4), we have
4

(1. 14)

from which by using (1. 4)

and hence

(1. 15) m/

Now, we shall prove the following

THEOREM 1.1. //, in a manifold with (fr, g)-structure, the skew- symmetric
tensor fμ is closed, that is,

(1. 16) f j i h ^ d j f i h +

then the distribution M is integrable, where dj=

Proof. Transvecting (1. 16) with m^m^f^, we get

or using (1. 5)

Substituting (1. 2) in the last equation

iWitr — m^ntrtfi mt

3 = 0,

and transvecting this with m^m^^ we have in consequence of (1. 15)
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This equation shows that the distribution M is integrable. q.e.d.

§2. Symmetric Killing tensors.

Now, in a Riemannian manifold Vn if a symmetric tensor Tlq...τι of type (0, q)
satisfies

(2.1) FoTV^-O,

and

(2.2) gjίpjTτq.^i=^

then we shall call it a symmetric Killing tensor. We owe this definition to Pro-
fessor S. Tachibana.

It is easily seen that when q=l the symmetric Killing tensor coincides with
the notion of a Killing vector. For a symmetric Killing tensor, we shall prove the
following

THEOREM 2.1. In a compact orientable Riemannian manifold, a necessary and
sufficient condition that a symmetric tensor field Tτq...ι1 be symmetric Killing is that
it satisfies

(2. 3) gtsrti7sTlq...ll+ Σ K^;T^q...r...ίl-((^-l) Σ #V/?V ̂  H=0>
s=l t<s

and

where Kkjίh is the Riemannian curvature tensor and Kkjih=KSjί
hgsk, Kji=KSji

s.

Proof. We first establish that the condition (2. 3) is necessary. Operating ψ 3

to (2. 1), we get

On the other hand, using the Ricci identities and (2. 2), we get

V3V%8L ιq...j...ι1 = Kιs 1 iq...t...ιl K\sιl 1 ιq...j...ι2t *• JΛ.Jιsιq 1 tίq^i j .i^

Consequently, for a symmetric Killing tensor Tlq...lv we have

q
ΛT^q...^1ΞΞgts[7tf7sT^q...^1-}-

s=l

Q

t<s
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To prove the sufficiency of this theorem, we put

then taking account of the Ricci identities and (2. 2), it follows that

and

where T*«'"ll==TJg...JlgJM"gJi1'1 ana Vίq..+z=pjTlq..+2J. Since the manifold is compact
orientable, applying the Green's theorem we have

Hence, if JTi^.^ — O and Vlq...l2 — 0, then we obtain [/lg...l:L=0. q.e.d.
Now, in a Riemannian manifold, let us consider a point xh and a direction ̂

at xh which is contained in a distribution M. Then the geodesic is uniquely
determined by the initial point xh and the initial direction vh.

If the tangent to the geodesic thus determined is always contained in M, then
we say that the distribution is geodesic. [2], [4, p. 243].

It is known [2] that the condition for M to be geodesic distribution is

(2. 4) w/Wί«(p t;wβ

Λ+/7βWίΛ)=0.

Next, let us consider a vector field. If the vector is parallel when we displace
in any direction contained in a distribution M, we say that the vector is parallel
along M. We can use the same terminology also for the distribution M, that is,
if a distribution is parallel when we displace in any direction contained in M, we
say that the distribution is parallel along M. When we displace a vector contained
in a distribution M parallelly along M, if the displaced vector is always contained
in the distribution M", we say that the distribution M is flat. [2], [4, p. 242].

It is known [2] that the condition for M to be a flat distribution is

(2. 5) ra/ί7tWίΛ=0.

Now, we shall return to our manifold with (fr, g) -structure. In this manifold,
if the tensor wiji defined by (1. 9) satisfies

(2. 6) m^

then transvecting this equation with qji, we find

(2. 7) /7sm/,s=0,
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by virtue of (1.13). Hence, the tensor m^ is a symmetric Killing tensor. Trans-
vecting (2. 6) with mjm^ and using (1.15), we get (2. 4). Therefore we have the
following

THEOREM 2. 2. In a manifold with (/?-, g)-structure, if mβ is a symmetric
Killing tensor, then the distribution M is geodesic.

§3. Normal (/*? , ̂ restructures,

Now, we shall call an (fr, g) -structure a normal (fr, g)-structure if the following
conditions are satisfied:

(3. 1) f j i n = γjfih+Vιfhj+Vhfj*=Qj

(3. 2) mjih=yjmίh+pίmhj+phinjί=Q

The condition (3. 1) shows that the skew-symmetric tensor fn is closed and
hence by virtue of Theorem 1.1, the distribution M is integrable. The condition
(3, 2) means that the distribution M is geodesic by virtue of Theorem 2. 2.

If the rank of /is O— 1), then since the distribution M is one-dimensional the
tensor m? should have the form m?=p%q3. Therefore, (3. 2) reduces

(3. 3) pjpi+rΦj=0,

that is, the vector p1 is a Killing vector. Hence a manifold with normal (fn-\, g)-
structure is similar with a normal contact manifold defined by S. Sasaki.

In a manifold with normal (/r, g)-structure, from (1. 17) and (2. 4) we get
mj

sml

ti7smth=Q. Hence by virtue of (1. 14), we get (2. 5), that is, w/pίWί ft=0.
Thus we have the following

THEOREM 3. 1. In a manifold with normal (fr, g)-structure, the distribution M
is flat.

Next, we shall prove the following two theorems which are useful in later
sections.

THEOREM 3. 2. In a manifold with normal (fr, g)-structure, we have

(3. 4) *0#/rW,r=0.

Proof. If we put TyίΞ*OjI////7ί/sr, then by virtue of (1. 12) and (3. 1), we find

Consequently we have



122 SATOSHI KOTO

(3. 5) Tjih= Tijh

On the other hand, taking account of (1. 6), we find

27V =Λr (ljtlt'+2mjtmi'+fj<fi')ptf,r

i'tytfsr, by virtue of (2. 5),

fis)frfsr, from (1. 12),

Hence we have

(3.6) Tjrιι— — Tβh.

From (3. 5) and (3.6), we get —Tihj=T]llJ. Using (3. 5) again, we have
27*t,=0. q.e.d.

Transvecting (3. 4) with gj*. we find by virtue of (1. 10)

(3.7) Λr/r=0, or fh,=fr'r*mhr,

where we put fh = γsfhs. From which we have

THEOREM 3. 3. In a manifold with normal (fr, g) structure, if a vector field vh

admits £//=0, then we have Λcj2/ί=0.
V V

§4. Infinitesimal transformations.

In this section, we shall consider in a manifold with normal (fr, gO-structure a
vector field vh satisfying

(4.1) £//=0 and ms

lvs=0.
V

In this case, from (1. 2) we easily get

(4. 2) £w/=0,
•y

and consequently

(4.3) £*Ojf=0.
υ

Now, we shall prove the following

THEOREM 4. 1. In a manifold with normal (fr, g)-structure, if a contravariant
vector vh which is orthogonal to the distribution M admits £// l=0, then we have
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Proof. Multiplying (2. 5) by vh and contracting, we find

0 = vhπijt^tniih = — mfwii^tVs = — TT mfwii^gts,
Δ v

by virtue of Theorem 3. 1 and ms

lvs=Q. Hence taking account of (1. 4) and (4. 2),
we have

(4. 4) £mji=Q.
V

Next, from (1. 13) and (4. 3), we find

Taking account of (4. 4), this implies

V V

Transvecting this equation with g*1, we obtain

(4.5) *».'£{£}=<),
V

by virtue of (1. 10).
Lastly, by making use of the identity

V V

and taking account of (3. 2) and (4. 4), we find

Transvecting this equation with gjί and using (4. 5), we have

}wβ

Λ=0. q.e.d.

Now, operating £ to (3. 4), we get by means of (4. 3),
V

*C$/rftjCfe//=0.
V

Transvecting this equation with g# and using (1. 10), we find

0=j7"/rΛ£Γί/.r=ff"/rft[/. £{,1i}-£{Λ}/<1,
V V V

or
W£{ί.}=0.

V

Hence from Theorem 4. 1, we have the following
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THEOREM 4. 2. In a manifold with normal (fr, g)-structure, if a contravanant
vector field vh which is orthogonal to the distribution M admits £//=0, then it is

V

a geodesic vector, that is,

From this theorem, we easily get the following

THEOREM 4. 3. In a compact orientable manifold with normal (fr, g)-structure,
if an infinitesimal transformation vh satisfying ms

lvs=Q and <£//=0 is volume
V

preserving, then it is an infinitesimal isometry.

THEOREM 4. 4. In a compact orientable manifold with normal (fr, g) structure,

if a conformal (protective) Killing vector vh admits ms

τvs=Q and £ f j τ = 0 , then it is
V

a Killing vector.

§5. An integral formula.

In this section, we shall consider a compact orientable manifold with normal
(fr, Q) -structure and by using the Green's theorem we shall obtain conditions that
a contravariant vector field vh which is orthogonal to the distribution M, leaves //
invariant.

If we put

(5. 1) Tf = £ft=υtVtft-ffVtΌ*+ft*VjΌ',
V

then in a manifold with normal (/r, 0) -structure, we have

Ύ T2=~γ\-vSv*f^-f"v^-f^iVs\

X [v^tf^—f

On the other hand, we find that ψj{ft%ViTjl\ is sum of the following three terms:



INFINITESIMAL TRANSFORMATIONS OF A MANIFOLD 125

and

V V

V V

Gathering above formulas, we obtain

In this case, if mt

svs=Q, then in a manifold with normal (/,., gr)-structure we have

where Uji^m^gti. Thus, we have the following
V

THEOREM 5. 1. In a compact onentable manifold with normal (fr, g)- structure,
the integral formula

- i2 v

is valid for a contraυanant vecror field vh satisfying ms

hvs=Q where Tjl = £fjl

and Uji = mj

t£gti.
V

From Theorems 3. 1, 4. 2 and 5. 1, we have the following

THEOREM 5. 2. A necessary and sufficient condition that in a compact orientable
manifold with normal (/r, g)-structure a contravariant vector field vh which is
orthogonal to the distribution M, leave fjl invariant is that it satisfies

s=Q and Λr£/r=0.
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