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Introduction.

An odd-dimensional differentiate manifold M2n+1 is said to have an almost
contact structure or to be an almost contact manifold if the structural group of its
tangent bundle is reducible to the product of a unitary group with the 1-dimensional
identity group [3].1} Recently Sasaki and Hatakeyama [4, 5] proved that an almost
contact structure is equivalent to the existence of a set of tensor fields φ, ξ, -η of
the type (1, 1), (1, 0) and (0, 1) satisfying the following five conditions:

(0. 1) ξ^i = 1,

(0. 2) rank (0/) = 2n,

(0. 3) φfξ> = 0,

(0. 4) φf-iίi = 0,

(0. 5) φfφt? = -δ^-}-ηkξ\

This permits us to study almost contact structures by use of the tensor cal-
culus. They also proved that we can introduce an associated Riemannian metric
tensor which satisfies both of the relations

(0. 6) gjiξ* = η,,

(0. 7) grtψfφf = Qij - ηw

We call an almost contact metric structure an almost contact structure with this
associated Riemannian metric.

On the other hand, Tashiro [7] proved that any orientable differentiable hyper-
surface in an almost Hermitian manifold admits an almost contact structure and
that the Riemannian metric induced on the hypersurface is an associated metric of
the almost contact structure.

Thus, an even-dimensional Euclidean space EZn being regarded as a flat Kaeh-
lerian manifold, any differentiable hypersurface of E2n has an induced almost
contact metric structure. The purpose of this paper is to study certain almost
contact hypersurfaces and to show that, in a Euclidean space E2n, only E271'1, S2™"1

and ErxS2n~r~l can admit induced normal (see [6]) almost contact metric structure-
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1) The numbers in the brackets refer to the bibliography at the end of the paper.
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In § 1, we give first of all some formulas concerning hypersurfaces in an almost
Hermitian manifold. In §2, we consider Nijenhuis tensors of the induced almost
contact structure and give some lemmas for the later use. Hypersurfaces in
Euclidean spaces E2n are discussed in §3, and in this section we prove some fun-
damental identities. After these preliminaries we shall, in §4, prove that in a
normal almost contact hypersurface of E2n, the second fundamental tensor can have
only two characteristic roots and that they are both constant except for a certain
case. From this fact, we can deduce a classification of the normal contact hyper-
surfaces by the method similar to that used by Yano and Sumitomo [11] for hyper-
surfaces in a Cayley space. Finally in §5, we show that we can induce in SrxEs

a structure which has been recently introduced by Yano [10].

1. Induced almost contact structure of a hypersurface in an almost Hermitian
manifold.

Let us consider a real 2n -dimensional almost Hermitian manifold M2n with
local coordinate systems {Xκ} and let (Fμ\ Gμλ} be the almost Hermitian structure,
that is, Fμ

λ be the almost complex structure defined on M2n and Gμλ be the Riemann-
ian metric tensor satisfying Gκλ=GμvFκ^F^v. A differentiable hypersurface M2n~l of
M2n may be represented parametrically by the equation Xλ=X*(xί).z'> If we put

(1. 1) Bjκ=diXκ (dt

they span a tangent plane of M2n~l at each point, and induced Riemannian metric
Qjt in MZn~l is given by

(1.2) gjt = Gμ,B^Btλ.

Assuming that our hypersurface is orientable, we choose the unit normal vector
Cκ to the hypersurface and put

(1. 3) φf^BWB*.,

(1- 4) η^BfFSC^BfFnC1,

where we have put

(1.5) B'f = GκBW*,

Cλ=G*κC
κ and F,μ=Fλ

κGκμ.
Then it is known that the aggregate (φj\ gιryr, η3, gji) defines an almost contact

metric structure in the hypersurface. Denote by ψ} the covariant differentiation
with respect to the Christoffel symbol formed from the induced Riemannian metric
Qji and consider the covariant derivation of η} and φjί=gίrφjr for the later use. At
first, remember the following formulas:

(1. 6) pjBi =HjiC<,

2) In this paper Greek indices run on the range 1, 2, •••, 2n and small Latin indices
run on the range 1, 2, ••-, 2^—1.
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(1.7) t7jCκ = -HJkB
k

κ.

The left hand side of these equations are so-called Bortolotti-van der Waerden
co variant derivatives and Hji is the second fundamental tensor of the hypersurface
MZn~l. By means of these formulas and anti-symmetric property of Fιμ, we have

Substituting (1. 4) and (1. 5) into the above equations, we get

(1. 8)

(1. 9)

If the almost Hermitian manifold M2n is a Kaehlerian manifold, that is, it
satisfies yvFμι = Q, (1. 8) and (1. 9) change their forms as

(1.10) rtf^-ψSHjr,

(1. 11)

2. Nijenhuis tensors of the induced almost contact structure.

In an almost contact manifold, the following four tensors are fundamental:

(2. 1) Nkf = φkr

(2. 2) Nf = f}r(

(2. 3) Nji = φf

(2.4) N, = 'f(rrVj-pMr').

These tensors are introduced by Sasaki and Hatakeyama [5] and called the
Nijenhuis tensors of the almost contact structure. They studied the relations
between these four tensors and have obtained the

LEMMA 2. 1. If any one of TV/*, TV/ and Njih vanishes, then N3 vanishes. If
the tensor TV// vanishes, then other tensors NJy Nβ and TV/ vanish.

The almost contact structure with vanishing Njih is called a normal almost
contact structure and the manifold with such a structure is called to be normal
almost contact manifold. In this paper, we call a hypersurface with the induced
(normal) almost contact structure as an (a normal) almost contact hypersurface.
Now, in what follows, we assume that MZn be a Kaehlerian manifold and we only
consider an almost contact hypersurface in such a manifold. In particular, if an
almost contact hypersurface is a totally geodesic hypersurface, (1.10), (1.11) and
(2. 1) show us that the hypersurface has vanishing Nijenhuis tensors. Thus, we
have the
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THEOREM 2. 2. In a totally geodesic hypersurface of a Kaehlerian manifold, the
induced almost contact structure is normal.

Substituting (1. 10) and (1. 11) into (2. 1), (2. 2), (2. 3) and (2. 4), we get

(2. 5) N^

(2. 6) Nf

(2. 7) Nji

(2.8) Nj=-φfHrrf.

From these relations we can obtain some lemmas and we enumerate them here.

LEMMA 2. 3. In order that the tensor N3 vanish, it is necessary and sufficient
that the vector Ύf defines a principal direction of the second fundamental tensor Hji
of the hypersurface, i.e. it satisfies that

(2.9) HJtγ=a.V,9

for a suitable function a.

This lemma follows from (0. 2) and (2. 8) immediately and by virtue of Lemma
2. 1, 2. 3 and (2. 7), we have

LEMMA 2. 4. In the almost contact hypersurface Njt vanishes if and only if
Nj vanishes.

Next we prove the

THEOREM 2. 5. Let M2n be a Kaehlerian manifold. In order that the induced
almost contact structure of a hypersurface in M2n be normal it is necessary and
sufficient that the tensor Nj1 vanishes identically.

Proof. We have only to prove the sufficiency of the condition. Transvecting
(2. 5) with φf and making use of (2. 6), we have

(2. 10) Nkj
τφιk

On the other hand, after some calculations, we get

(2. 11) Nrfif = Nέφf.

Thus, from our assumption, we have Nkj
l(φιk+ηιγk)=Q. The matrix (φιk+yίηk)

being non-singular, we get A^/=0. " Q.E.D.

Suppose that the induced almost contact structure of the hypersurface is normal.
Then, Theorem 2. 5 and (2. 6) imply that

which, together with (2. 9), implies that
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(2. 12) Hji^a.-ηrTH+φfφi'Hr*.

Transvecting this with φtf and taking account of Lemma 2. 3, we have

(2.13) HjiφiJ^-φiiHfr

from which we have

because of (1. 10). Thus we have

LEMMA 2. 6. If the induced almost contact structure in M2n~l be normal, the
vector Ύ]τ is a Killing vector.

Differentiating (0. 1) covariantly, we have from this Lemma

(2. 14) jfψr~Qi = 0, ΎfViηr = 0.

3. Some properties of a hypersurface of a Euclidean space.

In this section, we assume that the manifold M2n be a Euclidean space E2n

with the natural Kaehlerian structure. Then the hypersurface satisfies the following
Gauss and Codazzi equations:

(3. 1) Rkjih = Hjίffkh — HkiHjhi

(3. 2) r*Hji-rjHM=o,
where R^ih is the curvature tensor of the hypersurface.

Suppose that the induced almost contact structure in M2n~l be normal. Then
we have

(3. 3) Rnjkηr=a(ηkHji—γjHkι),

by virtue of Lemma 2. 1, 2. 2 together with (3. 1).
On the other hand, by Lemma 2. 6, we have seen that the vector ητ is a Killing

vector, and consequently it is an infinitesimal aίfine transformation. Therefore, it
satisfies

(3. 4) *

where £ means the operator of Lie derivation3) with respect to the vector
•η

Comparing (3. 3) and (3. 4), we have

(3. 5) Vi\7iyh= —a(ηhHji —

from which by contraction with ηh

(3. 6) ffViVWr = — a(Hμ —

3) See Yano [9].
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because of (2. 9). Differentiating (0. 1) covariantly and taking account of Lemma
2. 5, we can see that the last equation can be rewritten as

(3. 7) Pjηrl7iyr — a(Hβ—aηj ηt).

Substituting (1. 10) into (3. 7) and making use of (2. 9), we have

(3. 8) HjrHir=aHji.

Now, we shall prove the

LEMMA 3. 1. Let M2n~l be a normal almost contact hypersurface in a Eucli-
dean space E2n. Then one of the following two conditions must be satisfied:

1) The scalar function a in (2. 9) is constant]
2) The hypersurface is locally developable to EZn~l.

Proof. Suppose that the scalar a is not constant. Then applying the operator
PJ to (2. 9), we have

(3. 9) YjHrtf}r+HrkYj'qr=prja*'r]k+oLpflic.

Making similar equation to (3. 9) under interchanging of the indices j and k
and taking account of Lemma 2. 6, we have

=l7ja ηk— ψk

where we have used the Codazzi equation (3. 2). Contracting the last equation with
ff and making use of (2. 14), we get

(3.10) Fyα=0 ?y (P=*lrV*a\

from which

(3. 11) Pipj<χ=piβ vj+βpiyj.

Since p^ α is a gradient vector and o?y is a unit Killing vector, we get by con-
traction with Ϋ rf

(3.12) j8 FWF*7'=0.

On the other hand our assumption and (3. 10) show us that β=£θ. Thus, the
Riemannian metric being positive definite, we have pίyj=Q or from (1. 10)

(3. 13) H3r

from which

(3.14) fl}i=

Substituting (3. 14) into (3. 1), we have Rkjίh=Q. This completes the proof.
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4. Normal almost contact hypersurfaces in Euclidean space.

In this section, we assume that the hypersurface of E2n satisfies the first case
of Lemma 3. 1 and that the hypersurface is an analytic hypersurface.4) Then, for
some constant c(^0), we have

(4. 1) HSHf=cHi>

by virtue of (3. 8).
Let λ be a characteristic root of the matrix Hf and υ l the corresponding eigen-

vector to the root, then we have

(4. 2)

from which contracting with Hf

or

because of (4. 1) and (4. 2). Thus we have λ(λ— c)=0, which means that the chara-
cteristic roots of the matrix Hf are c or 0. Therefore, we can see that they have
constant multiplicities. If neither of the roots has zero multiplicity, the hyper-
surface M271"1 admits two principal curvature c and 0.5)

Now, denote by L and M the distributions spanned by the vectors corresponding
to c and 0 respectively, and let u% and v% be two arbitrary vectors belonging to L.
Then we have

from which

and consequently

Hf(ukpkv.J - vkpku*) = c(ukpkv
τ - t

by virtue of the equation of Codazzi. The last equation tells us that the vector
u^Ϋ^—v^kUJ^u, v]3 belongs to L and this proves that the distribution L is inte-
grable. Similarly the distribution M is also integrable. From the definition of L
and My the integral manifolds of L are totally umbilical and those of M are totally
geodesic. Thus, if we denote the multiplicities of the characteristic roots c and 0
by r and s respectively, the hypersurface M271'1 must be everywhere locally isometric
with SrxEs, and r+s=2n—l.

4) A hypersurface is said to be an analytic hypersurface if X^x*) be analytic func-
tions of xl.

5) E. Cartan proved that in a Euclidean space, a hypersurface whose principal cur-
vatures are all constants is an isoparametric hypersurface, and such hypersurfaces were
studied by him [1, 2]. Making use of his results, we can also prove Theorem 4. 2.
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Now, we shall prove the following

LEMMA 4.1. The multiplicity of the root c must be an odd number.

Proof. Since characteristic roots of the matrix (///) are c and 0, with respect
to a suitable frame, it has components of the form at each point of M271"1

(4.3)

from which

(4.4)

/ r

c
\ o
o ••.

c

( 0

\
0

Ύ

X ,_

/I
. 0

o '••
^ 1

y-cφ} -cφm

l \

~^ιr -C

o o ... o

\ 0 0 0

because of (1.10).
Moreover in §2, we have already seen that '̂37*=0 and that -ητ belongs to L.

Hence, we have

(4. 7) rank (ptyi) ^ r— 1,

which holds for any frame, especially for natural frame.
Now, suppose that there exists in L a vector u* satisfying

(4.8) p î«»=0,

and that ul and ηl are linearly independent. Then, without loss of generality, we
can put

(4.9) 9i«*=0.

Transvecting (4. 8) with ^ η3 and making use of (3. 7) and (4. 9), we get

(4.10) //i*«»=0,

which means that the vector uτ belongs to M. Thus we know that, in L, there
exists no other vector than ητ which satisfies (4. 8) and so

Hence from this inequality and (4. 7), we have

(4.11) r
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On the other hand, the rank of the Riemannian metric being 2n— 1, the matrix
(/7;5?i) has the same rank of the matrix (pffli). Since the matrix (pv^;) is anti-
symmetric, it has an even rank. Thus we have

r— I— rank(p^ί)= even,

which implies that r is an odd number. This completes the proof of the lemma.

Summing up all the discussions in this section and regarding Lemma 3. 1, we
have

THEOREM 4. 2. A normal almost contact hyper surf ace M*n~l in Euclidean space
is locally isometric with one of the following:

S2"-1, E2n~\ SrxEs

where r is an odd number and r-\-s—2n— 1.

An almost contact manifold which satisfies, for some constant c',

(4. 12) Φji=cr(dMi—diηj) = cf(pfli—Viηj)

is said to be a contact metric manifold. If the structure is normal, this manifold
is called to be a normal contact metric manifold or a Sasakian manifold.

Now, suppose that our hypersurface admits the induced normal contact metric
structure. Then, rf being a Killing vector, we have

(4. 13) φjt^WpM,

from which

rank (pfli) = rank (<f>ji)—2n—2

because of (0. 2). On the other hand, from (4. 11) we get

Thus we have r=2n— 1, from which we see that the matrix (Hf) is non-singular
and consequently Hji=cQji by virtue of (4. 1).

COROLLARY 4. 3.6) A normal contact hypersurface MZn~l in Euclidean space
E2n is a totally umbilical hypersurface and consequently a portion of a sphere.

5. Another structure in SrxEs.

In this section, we shall introduce a certain structure in SrxEs and give some
properties of the structure. Let ft be a (1, 1) tensor defined by

(5. 1) //= -^ = -ΓΦfHSP

6) Tashiro and Tachibana [8].
7) See § 1, (1. 10).
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then, we have from (2. 13) and (4. 1)

frff= -^ΓφkΉr'φj'Hs^ -- - ft* + ?*•?*,
C C

from which

(5. 2) fffrff = - 4- φί'Hr'Ήύ = -- - φfHS = -ft'
C C

or by a matrix form

(5.3) /3+/=0.

Since the rank of /is r—1, our SrxEs admits an /-structure8) of rank r— 1.

THEOREM 5. 1. In normal almost contact hypersurface SrxEs the tensor f
defines an /-structure of rank r—1.

The Nijenhuis tensor N(f)J i

f l and the Haantjes tensor Hαh of the structure /are
given by

(5.4)

(5.5) /6

respectively, where we have put m=/2+l or

(5. 6) w/=///r*+δΛ

From (5. 5) and (5. 6) we have

(5. 7) Hji* =fffrWfι'N(f)t,\

Calculating these two tensors by use of (5. 1), we get

= -~rlplyjpιphyi-plwιph

from which

Making use of (2. 13) and (4. 1), we can deduce that

(5. 8)

which implies that fN(f)=0.
On the other hand, we have from (5. 1) and (5. 2)

8) Yano [10].
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from which

because of (3. 7).
If we substitute (5. 8) into the above equation, it follows that

Hμh=- ~ φsΉit^HjtHiS-cHj^ηi-cHi^ηj + C^ηjηi)

which implies that

(5. 9) Hfi

h=2φί

sHSj^

by virtue of (2. 9), (2. 13) and (4. 1). Thus we have

THEOREM 5. 2. In our Sr x Es the Haantjes tensor of the f-strucure is identical
with the Nijenhuis tensor of f and satisfies
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