A DISTORTION THEOREM OF UNIVALENT FUNCTIONS
RELATED TO SYMMETRIC THREE POINTS

By NoBUYUKI SuiTa

1. Let Y be a family of functions g(z) meromorphic and univalent for |z|
>1 with Laurent expansion for |z|>1 given by

0@ =2+ e+ 4o

The distortion inequality

A—r2? _ 19@y(=2) _ A+7r?°

m =19() —g(—2) |2 = ¥l —r22 (z = re'?)

for g(z) belonging to X is easily obtained by combining the classical results. It
can be also shown that the left and right equalities are attained by the func-
tions 2z + ¢z and z — 292! respectively.

We are concerned in the present paper with an analogous problem relating
to symmetric three points z, ze¢'*3 and ze***/®. Analogous bounds will be ob-
tained and the extremal functions will be closely connected with the above
two functions. We remark that a known coefficient inequality [¢:{=<2/3 can
be proved from our theorem with respect to X ([2], [5], [6]) and that a distor-
tion theorem of this type relating to four points cannot be obtained by using
elementary functions as extremal functions. We use Jenkins’ general coefficient
theorem ([3], [4]) to prove our theorem and make a slight discussion to verify
the extremal functions.

2. We now state the theorem.

THEOREM. For all functions g(z) belonging to X the inequalities
(A= 19'(2)9' (2w)g’ (200”) |
Y373+ 1r7% T | g(2) — 9(2w) | | 9(zw) — g(20?) | | g(200*) — 9(2) |
gy
33 73(1 — -3y
hold where z=1re", r >1 and o =¢e*"% The left equality occurs only for the

Junction g(z) =21+ 23+ k and the right only for the function g(z)
=2(1—€®027%)*3 + k with k as an arbitrary constant.

IA

Proof. We first prove the left inequality. We set R,=r1+ r3)*3w’,
7=0, 1, 2, and consider a quadratic differential
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w dw? o
(w —Ro)(w —R)X(w —R,)?

Qw) dw® =

on the w-plane. We denote by 4 the complementary domain of the union of
three segments [0, 22%w’], j=0, 1, 2, which is evidently an admissible domain
with respect to Q(w)dw? ([4]). The function go(z) =21+ 273)%>3 maps the ex-
terior of the unit circle onto 4. Let @(w) be the inverse of g,(2) and put

u(z) = g(@(w))
for any g(z) belonging to 2. We define v(w) by the equation

v—R, R ;—FRyi _ u—U U — Uy
v—Ry1 Ry —R, U— U1 U2 — Wy

(1) (mod 3)

where u, = w(®;). Then v(w) becomes an admissible function associated with «
([4]). The quadratic differential Q(w)dw? has only three double poles at the
points R, for =0, 1, 2 and its local expansion in a neighborhood of each R,
with a local parameter W= (w —R;)™* is of the form

Q(W) = a, W + decreasing powers of W

where a; =1/3R®. On the other hand v(w) has the expansion, with the same
parameter,

V(W) = a, W+ decreasing powers of W
where

_ (RJ+1 —RJ+2)(uJ — u]+1)(uj+2 — ’Uq) go’('rwf)

= - 3).
(B, — R, )(Byr2 — RBj) (U1 — Uy12) 9/ (re) (mod 3)

a,

Then the general coefficient thecrem ([4]) is available and we get
2 2

(2) ReXla,loga, <0, ie. Sllogla,|<0
=0 =0

which implies that

[ %o — we || Uy — U || Us—Uo | | 90/(7')90/(7'60)90'(”'(02)
[Ro—Ry||Ri—Bu||Ra—Ro| | g'(r)g'ro)g’ (ra)

|
=1
|

IIA

We have the desired inequality for real ». In fact, by inserting |R, —R,|
=4/3r(1+ 3" and g¢/(rw) =1+ 7r"3) 31 —r3), we get

1—r° g’ (re’)
(3 ) 3‘/§7"3(1 -+ 7‘_3)3 = H g(/rwj) — Q(T(U]H) 1

2

For general z, z=re", it is only necessary to insert G(z) =e'’g(e-%z) in (3) in-
stead of g(z).

We can only conclude that |a,=1, 7=0, 1, 2, from the equality assertion
of the general coefficient theorem ([4]). Hence we make a slight discussion to
show that equality occurs in (3) only for the function go(z)=2(1+2%*°+k
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which implies the equality assertion in our theorem. We consider a function
defined by

Cw) = jw@(w»w duw

in the complementary domain D of the union of the positive real axis and two
segments [0, R;] and [0, R;]. A suitable branch of &(w) maps the domain D
onto a covering surface © of a horizontal strip —2z(1/8Rp)">?<Im{¢<0. If
the equality holds in (2), it is easily shown, in the same way as in the equality
proof of the general coefficient theorem ([4]), that the induced mapping 7({) by
the function v(w) maps any horizontal line in ® onto a horizontal line in the
y-plane and »(¢) must be of the form =+ ¢+ b with the projection { of ® as a
local parameter. Since v(w) fixes each R, we deduce, by using its conformality
in a neighborhood of the point at infinity, that 5() must be the identity map-
ping, i.e. v(w)=w.

Thus we see from (1) that w(w) must be a linear function of w. Since
u(0) = o0 and u'(o0) =1, we have

w(w) =w+k,

k being a constant. This implies the equality assertion for real 7.

In order to prove the right inequality, we consider a function g,(2)
=2z(1—27%*% and put g:(ro’)=R,*, j=0,1, 2. Taking a quadratic differential

— wdw?

Q) = Ry — R — B

we can prove the inequality in the same way as above. For the argument on
the equality we consider

¥ (w) = jw(Q*(w»m dw

in the w-plane slit along positive real axis and two segments [0, R,;*] and
[0, R.*] which are portions of the closure of orthogonal trajectories of @*(w)dw?.
The proof proceeds then on the same lines as before.

3. Let Xy be a subfamily of Y consisting of functions h(z) which do not
take the value zero in |{z|>1. Then if A(z) belongs to Xy, f(z)=(h(z71))! is
regular, univalent for |z|<1 and normalized at the origin by f(0) =0 and f’(0)
=1. It belongs to the so-called family S. We obtain the following corollary.

COROLLARY 1. If a function f(z) belongs to S we have

A=rY  _ 1/@f ) )] A+ .
3\/373(1 + '7'3)3 = ﬁ |f(2(uj) —f(Z(u]H)l = 3x/3 1 —7‘3)3 (z=re )-
=0

The left equality occurs only for the function f(z)=z{(1+ 23>+ w'tz}*
and the right only for the function f(z) = z{(1 — e®*92%)%3 — w'tz}~* where j =0,
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1,2 and 08 <2%3,

Using our distortion theorem we can prove a known coefficient inequality
lee| £2/3 with respect to the family 3 ([2], [3], [4]).

COROLLARY 2. If g(z) belongs to ¥ and has Laurent expansion about the
point at infinity

g(z)—z+00+ +~—+

then it holds that |cy|<2/3.

Proof. We use the left inequality in the theorem for real r. It is easily

shown that
i ae(2)

7
(ra) o

and

ﬁig(rwi)—g(rwi“)lzs’ﬁr 1+§C—2+ ( )’
J=0 |

Hence we have
1
ﬁ(_ 3R602 +2+ 0(1)) =0.

By multiplying by 7% and then letting r tending to infinity, we have Rec, <2/8.
Since e~?g(e*’z) belongs to X for any real ¢ and we can choose ¢ such that
Recse 9= |cy|, and we have
el = *?2’—
Finally we remark that the extremal functions for the distortion problem
relating to symmetric four points are not given by the functions z(1 & ¢*4fz-4)1/2,
i. e. the functions obtained by symmetrizing the functions z 42+ e'2/2, con-
trary to the case of three points. Indeed, if it were valid, we would deduce
an inequality |c;|<1/2. However it contradicts the result of Garabedian and
Schiffer |¢;|<1/2+¢78 ([1], [5]).
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