ON GENERALIZED UNISERIAL ALGEBRAS OVER A PERFECT FIELD

BY SHIGEMOTO ASANO

Let A be a ring with a unit element satisfying the minimum condition; let N be the radical of A. We call A a generalized uniserial ring if every indecomposable left [right] ideal of A possesses only one composition series. A generalized uniserial algebra over a field F is defined similarly. Recently H. Kupisch [3] discussed such rings and proved that a (two-sided) indecomposable generalized uniserial algebra over an algebraically closed field is completely determined up to isomorphism by a certain system of invariants. In the present note we shall generalize his method to the case of algebras over a perfect field, starting from the fact that the residue class algebra $\overline{A} = A/N$ of a (two-sided) indecomposable generalized uniserial algebra A over a field F (modulo the radical N) has the structure $B \times_F D$, where B is a split semisimple algebra over F and D is a division algebra over F.

NOTATIONS. Let

$$A = \sum_{\kappa=1}^{k} \sum_{\imath=1}^{f(\kappa)} A e_{\kappa,\imath} = \sum_{\kappa=1}^{k} \sum_{\imath=1}^{f(\kappa)} e_{\kappa,\imath} A$$

be a decomposition of A into direct sum of indecomposable left [resp. right] ideals; $e_{\kappa,\iota} (1 \le \kappa \le k, 1 \le i \le f(\kappa))$ are mutually orthogonal primitive idempotents; $Ae_{\kappa,\iota} \cong Ae_{\lambda,j}$ if and only if $\kappa = \lambda$; $e_{\kappa} = e_{\kappa,1}$, $E_{\kappa} = \sum_{\iota} e_{\kappa,\iota}$, and $E = \sum_{\kappa} E_{\kappa}$ is the unit element of A. $c_{\kappa,\iota j} (1 \le \kappa \le k, 1 \le i, j \le f(\kappa))$ be a system of elements of A such that $c_{\kappa,\iota i} = e_{\kappa,\iota}, c_{\kappa,\iota j}c_{\kappa,\kappa l} = \delta_{j\kappa}c_{\kappa,\iota l}; g(A) = k$ be the number of simple constituents of $\overline{A} = A/N$. $V = V^{(0)} \supset V^{(1)} \supset \cdots \supset V^{(d)} = 0$ be the upper Loewy series of an A-left module V; here $V^{(m)} = N^m V$. $V = V_{(d)} \supset \cdots \supset V_{(1)} \supset V_{(0)} = 0$ be the lower Loewy series of V; here $V_{(m)} = \{v \mid v \in V, N^m v = 0\}$. d(V) = d be the length of the upper and lower Loewy series of V; $d(A) = \rho$ is the index of N, i.e. $N^{\rho-1} \neq 0$, $N^{\rho} = 0$.

1. A certain system of generators of composition factor modules of a twosided composition series of a generalized uniserial ring.

Let A be a generalized uniserial ring and let N be its radical. We first consider an (A, A) composition series of A, which is a refinement of the series $A \supset N \supset N^2 \supset \cdots \supset N^{\rho} = 0$:

(1)
$$A = \mathfrak{z}_0^0 \supset \mathfrak{z}_1^0 \supset \cdots \supset \mathfrak{z}_r^0 = N = \mathfrak{z}_0^1 \supset \cdots \supset \mathfrak{z}_r^1 = N^2 = \mathfrak{z}_0^2 \supset \cdots \supset \mathfrak{z}_{r_{\rho-1}}^{\rho-1} = N^{\rho} = 0.$$

Received June 8, 1961.

In the above composition series every factor module $\mathfrak{M}_{j}^{i} = \mathfrak{g}_{j-1}^{i}/\mathfrak{g}_{j}^{i}$ $(0 \leq i \leq \rho - 1, 1 \leq j \leq r_{i})$ is a simple (A, A) double module and there exists a unique pair of positive integers (κ, λ) $(\kappa, \lambda \leq k)$ such that $E_{\kappa}\mathfrak{M}_{j}^{i}E_{\lambda} = \mathfrak{M}_{j}^{i}$, i. e. \mathfrak{M}_{j}^{i} is of type (κ, λ) . When that is so, we see that $\mathfrak{M}_{j}^{i}e_{\lambda}$ is a simple left submodule of \mathfrak{M}_{j}^{i} . In fact, by the definition of generalized uniserial rings we have $\mathfrak{M}_{j}^{i}e_{\lambda} \cong \mathfrak{g}_{j-1}^{i}e_{\lambda}/\mathfrak{g}_{j}^{i}e_{\lambda} = N^{i}e_{\lambda}/N^{i+1}e_{\lambda}$ and $N^{i}e_{\lambda}/N^{i+1}e_{\lambda}$ is a simple left A-module. Similarly, $e_{\kappa}\mathfrak{M}_{j}^{i}$ is a simple right submodule of \mathfrak{M}_{j}^{i} . Therefore $e_{\kappa}\mathfrak{M}_{j}^{i}e_{\lambda}$ is simple as left $e_{\kappa}Ae_{\kappa}$ -module and, at the same time, as right $e_{\lambda}Ae_{\lambda}$ -module. Let m be an arbitrary element of $e_{\kappa}\mathfrak{M}_{j}^{i}e_{\lambda}$. Then for any element x of $e_{\kappa}Ae_{\kappa}$ there exists an element y of $e_{\lambda}Ae_{\lambda}$ such that xm = my; the correspondence $\overline{x} \to \overline{y}$ gives an isomorphism between $\overline{e}_{\kappa}\overline{A}\overline{e}_{\kappa}$ and $\overline{e}_{\lambda}\overline{A}\overline{e}_{\lambda}$ (bars indicate the residue classes modulo N), which is determined uniquely up to inner automorphism of $\overline{e}_{\lambda}\overline{A}\overline{e}_{\lambda}$. From these arguments and from the Jordan-Hölder theorem we have the following

PROPOSITION 1. Let A be a generalized uniserial ring. Let $\mathfrak{z}_1 \supset \mathfrak{z}_2$ be two-sided ideals of A such that the factor module $\mathfrak{M} = \mathfrak{z}_1/\mathfrak{z}_2$ is a simple (A, A)module of type (κ, λ) . Then $\mathfrak{M}e_{\lambda}$ and $e_{\kappa}\mathfrak{M}$ are simple left and right submodules of \mathfrak{M} , respectively. Moreover, by relation $\mathfrak{x}\mathfrak{m} = \mathfrak{m}\mathfrak{g}(\mathfrak{x} \in \mathfrak{e}_{\kappa}Ae_{\kappa}, \mathfrak{g} \in \mathfrak{e}_{\lambda}Ae_{\lambda};$ $\mathfrak{m}(\neq 0) \in \mathfrak{M}$) we have an isomorphism between $\overline{e}_{\kappa}\overline{A}\overline{e}_{\kappa}$ and $\overline{e}_{\lambda}\overline{A}\overline{e}_{\lambda}$: $\overline{\mathfrak{x}} \to \overline{\mathfrak{g}}$. The isomorphism is uniquely determined up to inner automorphism of $\overline{e}_{\lambda}\overline{A}\overline{e}_{\lambda}$.

PROPOSITION 2. Let A be a generalized uniserial ring; let N be the radical of A. Then for every i $(1 \le i \le \rho)$ the factor module N^{i-1}/N^i is (two-sided) completely reducible (we set $N^0 = A$). Moreover, the (two-sided) decomposition of N^{i-1}/N^i into direct sum of simple (A, A) modules is unique and is given by $N^{i-1}/N^i = \sum_{\kappa} E_{\kappa}(N^{i-1}/N^i)$ (κ runs through integers $1 \le \kappa \le k$, for which $E_{\kappa}(N^{i-1}/N^i) \ne 0$).

In fact, as $e_{\kappa}(N^{i-1}/N^i) \cong e_{\kappa}N^{i-1}/e_{\kappa}N^i$ is either 0 or a simple right module, $E_{\kappa}(N^{i-1}/N^i)$ is either 0 or a simple two-sided module $(1 \le \kappa \le k)$; $N^{i-1}/N^i = \sum_{\kappa} E_{\kappa}(N^{i-1}/N^i)$ is therefore (two-sided) completely reducible. Our last assertion is now trivial.

In the followings we assume that A is generalized uniserial and (two-sided) indecomposable. (The latter restriction is not essential.) We know then, owing to Kupisch [3], that for a suitable reordering of κ 's (a) $d(Ae_{\kappa}) \geq 2$ for $\kappa < k$; (b) $Ne_{\kappa}/N^2e_{\kappa} \cong Ae_{\kappa+1}/Ne_{\kappa+1}$ for $\kappa < k$ and $Ne_{k}/N^2e_{k} \cong Ae_{1}/Ne_{1}$ if $Ne_{k} \neq 0$, (c) $d(Ae_{\kappa+1}) \geq d(Ae_{\kappa}) - 1$, where the κ 's are to be taken mod k. By (b) we take for every κ (< k) an element $_{\kappa+1}b_{\kappa}^{1}$ of $e_{\kappa+1}Ne_{\kappa}$ which does not lie in N^{2} ; and, if $Ne_{k} \neq 0$, we take an element $_{1}b_{\kappa}^{1}$ of $e_{1}Ne_{k}$ which does not lie in N^{2} . Put $_{\kappa+p}b_{\kappa+p-1}^{1}b_{\kappa+p-2}^{1}\cdots_{\kappa+1}b_{\kappa}^{1} = _{\kappa+p}b_{\kappa}^{p}$, if the product of the left-hand side is not zero; here the subscripts are to be taken mod k, if necessary. Further, we put $e_{\kappa} = _{\kappa}b_{\kappa}^{0}$ ($1 \leq \kappa \leq k$).

1) Cf. Asano [2], §1.

LEMMA. Every $_{\kappa+p}b_{\kappa}^{p}$ belongs to N^{p} .²⁾

Proof. We have only to consider the case when p > 1. Suppose that $_{\kappa+p}b_{\kappa}^{p}$ is an element of N^{p+1} . $_{\kappa+p}b_{\kappa}^{p}$ is then expressible as $_{\kappa+p}b_{\kappa}^{p} = x_{1}x_{2}\cdots x_{q} + y$ ($y \in N^{p+1}$), where $q \ge p+1$ and every x_{ι} ($1 \le i \le q$) belongs to N^{1} and satisfies $e_{\mu(\iota)}x_{\iota}e_{\nu(\iota)} = x_{\iota}$ for some $\mu(i)$ ($\mu(1) = \kappa + p$) and $\nu(i)$; moreover, we may assume that $x_{1}x_{2}\cdots x_{j}$ belongs to N^{j} for every j ($\le q$). But, prop. 1 and prop. 2 show that for a suitable regular element c_{1} of $e_{\kappa+p-1}Ae_{\kappa+p-1}$ we have $x_{1} \equiv {}_{\kappa+p}b_{\kappa+p-1}^{1}c_{1} \pmod{N^{2}}$, hence that $x_{1}x_{2}\cdots x_{p} \equiv {}_{\kappa+p}b_{\kappa+p-1}^{1}c_{1}x_{2}\cdots x_{p} \pmod{N^{p+1}}$; similarly proceeding, we get finally $x_{1}x_{2}\cdots x_{p} \equiv {}_{\kappa+p}b_{\kappa}^{1}c_{p} \equiv 0 \pmod{N^{p+1}}$, where c_{p} is an regular element of $e_{\kappa}Ae_{\kappa}$. This contradicts our assumption that $x_{1}x_{2}\cdots x_{p}$ belongs to N^{p} .

THEOREM 1. Every $_{s+p}b_{r}^{*}$ is a (two-sided) generator of one and only one composition factor module $_{\delta_{l-1}^{p}/\delta_{l}^{p}}(1 \leq j \leq r_{p})$ of the (two-sided) composition series (1) of A. Conversely, every composition factor module $_{\delta_{l-1}^{l}/\delta_{l}^{q}}(0 \leq q$ $\leq \rho - 1, 1 \leq l \leq r_{q})$ is generated by one and only one element $_{\lambda+q}b_{q}^{q}$.

Our first assertion follows immediately from prop. 2 and from lemma; our second assertion can be seen straightforwardly by a similar method as in the proof of lemma.

From the above theorem it follows that there exists in A a system $S = \{ {}_{\kappa} {}_{\lambda}^{p} \}$ of generators of (two-sided) factor modules of (1) with the properties: (i) $\kappa \equiv p + \lambda \pmod{k}$; (ii) ${}_{\kappa} {}_{\lambda}^{p}$ belongs to N^{p} , ${}_{\kappa} {}_{\kappa}^{0} = e_{\kappa}$ and $e_{\kappa\kappa} {}_{\lambda}^{p} e_{\lambda} = {}_{\kappa} {}_{\lambda}^{p}$; (iii) S is closed under multiplication. We shall call such S a (*)-generator system of A.

REMARK 1. For an arbitrarily fixed pair (κ, λ) the number of elements in a (*)-generator system of type (κ, λ) is denoted by $c_{\kappa\lambda}$; the numbers $c_{\kappa\lambda}$ are the left (and at the same time the right) Cartan invariants of A. We shall write in the followings the elements of type (κ, λ) in a (*)-generator system as $_{\kappa}b_{\lambda}^{(1)}$, $_{\kappa}b_{\lambda}^{(2)}$, \cdots , $_{\kappa}b_{\lambda}^{(c_{\kappa\lambda})}$, if necessary.

REMARK 2. It is easy to see that a (*)-generator system consitutes a system of (two-sided) generators of composition factor modules of an arbitrary (two-sided) composition series of A.

2. (Two-sided) indecomposable generalized uniserial algebras over a perfect field.

Let A be a (two-sided) indecomposable generalized uniserial algebra over a field F. We now take, after a suitable reordering of $\kappa = 1, 2, \dots, k$ as above, a (*)-generator system $S = \{{}_{\kappa}{}_{\lambda}{}_{\lambda}^{p}\}$. Since S is closed under multiplication, the subset $A^{0}_{(*)} = \sum_{\kappa, \nu} F_{\kappa+\nu} b^{\nu}_{\kappa}$ of A is a subalgebra of A (over F); similarly, the subset $A = \sum_{\kappa, \nu} \sum_{\lambda, j} c_{\kappa, i1} A^{0}_{(*)} c_{\lambda, j1}$ of A is also a subalgebra of A. $A^{0}_{(*)}$ and $A_{(*)}$ are themselves both split generalized uniserial algebras and $A^{0}_{(*)}$ is a basic algebra of $A_{(*)}$. These subalgebras $A^{0}_{(*)}$ and $A_{(*)}$ will be called a (*)-basic

²⁾ An element of A is said to belong to N^p if $a \in N^p$ and $a \notin N^{p+1}$.

algebra and a (*)-algebra of A (related to the (*)-generator system S), respectively. The next proposition follows immediately from Satz 6 of Kupisch [3] and from the definitions.

PROPOSITION 3. The (*)-algebra [the(*)-basic algebra] of a (two-sided) indecomposable generalized uniserial algebra A is uniquely determined by A up to isomorphism.

It is obvious that the radical of $A_{(*)}$ is $N \frown A_{(*)}$ and that the radical of $A_{(*)}^0$ is $N \frown A_{(*)}^0$. We denote these by $N_{(*)}$ and by $N_{(*)}^0$, respectively. Furthermore we have

THEOREM 2. Let A be a (two-sided) indecomposable generalized uniserial algebra over a field F with a radical N; let $A_{(*)}$ be a (*)-algebra of A. Then: 1) between two-sided ideals of A and those of $A_{(*)}$ there exists a 1-1 latticeisomorphic correspondence, which is given by $\mathfrak{z} \to \mathfrak{z} - A_{(*)}$ ($\mathfrak{z}_{(*)} \to A\mathfrak{z}_{(*)}A$) where \mathfrak{z} [$\mathfrak{z}_{(*)}$] is a two-sided ideal of A [$A_{(*)}$]; 2) each indecomposable left ideal $A_{(*)}e_{\kappa}$ of $A_{(*)}$ has the corresponding composition series to that of the indecomposable left ideal Ae_{κ} of A, i.e., $N_{(*)}^{p}e_{\kappa}/N_{(*)}^{p+1}e_{\kappa} \cong A_{(*)}/N_{(*)}e_{z}$ if and only if $N^{p}e_{\kappa}/N^{p+1}e_{\kappa} \cong Ae_{z}/Ne_{z}$, and the same for right ideals. (The notations be the same as before.) Similar assertions are also true for a (*)-basic algebra $A_{(*)}^{0}$ of A.

Proof. 1) Let $A_{(*)}$ be the (*)-algebra of A related to a (*)-generator system of $A, S = \{_{\kappa+p}b_{\kappa}^{p}\}$, and let \mathfrak{z} be a two-sided ideal of A. By what we have remarked (remark 2), \mathfrak{z} is generated by a subset S' of S; so that $\mathfrak{z} \cap A_{(*)}$ contains S' and hence $A(\mathfrak{z} \cap A_{(*)})A = \mathfrak{z}$. Conversely, let $\mathfrak{z}_{(*)}$ be a two-sided ideal of $A_{(*)}$. Then $\mathfrak{z}_{(*)}$ is generated by a subset $S_{(*)}$ of S which satisfies $SS_{(*)}S$ $= S_{(*)}$. However, the two-sided ideal \mathfrak{z}' (of A) generated by $S_{(*)}$ can not contain the elements of S other than those of $S_{(*)}$. (This fact can be verified straightforwardly by a similar method as in the proof of lemma.) We must therefore have $\mathfrak{z}' \cap A_{(*)} = A\mathfrak{z}_{(*)}A \cap A_{(*)} = \mathfrak{z}_{(*)}$. 2) Since the element $_{\kappa+p}b_{\kappa}^{p}$ is a generator of the $A_{(*)}$ -left module $N^{p}e_{\kappa}/N^{p+1}e_{\kappa}$ and since at the same time it is a generator of the A-left module $N^{p}e_{\kappa}/N^{p+1}e_{\kappa}$, $A_{(*)}e_{\kappa}$ and Ae_{κ} must have the corresponding composition series.

Hereafter we shall assume that the underlying field F is a perfect field. A is then expressible as a direct sum of the radical N and a semisimple subalgebra $A^* (\cong \overline{A} = A/N)$, and we may assume that the elements $c_{\kappa, ij} (1 \le \kappa \le k, 1 \le i, j \le f(\kappa))$ are in A^* . Prop. 1 shows that the division algebras $e_{\kappa}A^*e_{\kappa}$ $(1 \le \kappa \le k)$ are all isomorphic over F. By the well-known structure theorems of semisimple algebras we have the following

PROPOSITION 4. A^* is expressible as $A^*_{(*)} \times {}_FD$, where $A^*_{(*)}$ is a split semisimple algebra over F and D is a division algebra over F.

The division subalgebra D of A in this proposition may be taken such that

SHIGEMOTO ASANO

every element x of D satisfies $x_{\kappa+1}b_{\kappa}^{1} \equiv_{\kappa+1}b_{\kappa}^{1}x \pmod{N^{2}}$ for $\kappa < k$. If $Ne_{\kappa} = 0$, then clearly $x_{\kappa+p}b_{\kappa}^{p} =_{\kappa+p}b_{\kappa}^{p}x$ ($x \in D$). If, on the other hand, $Ne_{\kappa} \neq 0$, then $_{1}b_{\kappa}^{1}x \pmod{N^{2}}$; by prop. 1 it follows that σ is uniquely determined up to inner automorphism. And, in this case, we have for every $_{\kappa}b_{\lambda}^{(i)} = _{\kappa}b_{\lambda}^{p}$ ($1 \leq i \leq c_{\kappa\lambda}$) and for every x in D that $x^{\sigma^{i-1}}\kappa b_{\lambda}^{(i)} \equiv _{\kappa}b_{\lambda}^{(i)}x \pmod{N^{p+1}}$ when $\kappa \geq \lambda$ and that $x^{\sigma^{i}}\kappa b_{\lambda}^{(i)} \equiv _{\kappa}b_{\lambda}^{(i)}x$ (mod N^{p+1}) when $\kappa < \lambda$

Let (u_1, u_2, \dots, u_n) be a basis of D over F. From $u_{\iota_{\kappa+1}}b_{\iota}^{(1)} \equiv {}_{\kappa+1}b_{\iota}^{(1)}u_{\iota}$ $(\text{mod } N^2)$ $(\kappa < k)$ it follows

(2)
$${}_{\kappa+1}b_{\kappa}^{(1)}u_{\iota} = u_{\iota\kappa+1}b_{\kappa}^{(1)} + \sum_{j=1}^{n}\sum_{l=2}^{c_{\kappa+1,\kappa}}t_{ijl}^{\kappa}u_{j\kappa+1}b_{\kappa}^{(l)},$$

where t_{ijl}^{κ} $(1 \leq i, j \leq n, 1 \leq \kappa \leq k-1, 2 \leq l \leq c_{\kappa+1,\kappa})$ are elements of F; similarly, from $u_{i1}^{\kappa} b_{k}^{(1)} \equiv b_{k}^{(1)} u_{i} \pmod{N^2}$ it follows

(3)
$${}_{1}b_{k}^{(1)}u_{i} = u_{i\,1}^{\sigma}b_{k}^{(1)} + \sum_{j=1}^{n}\sum_{l=2}^{c_{1k}}t_{i\,jl}^{k}u_{j\,1}b_{k}^{(l)},$$

where t_{ijl}^{k} $(1 \leq i, j \leq n, 2 \leq l \leq c_{1k})$ are elements of F. On the other hand, we have the following proposition, which is a direct consequence of the definitions and of prop. 1.

PROPOSITION 5. Notations and assumptions being as above, we have $A = DA_{(*)} = A_{(*)}D$.

It is now easy to see that the multiplication table of the basis elements of A over F is completely determined by the coefficients of (2) and (3). We have thus proved the following

THEOREM 3. Let A be a (two-sided) indecomposable generalized uniserial algebra over a perfect field F; let the notations be as before. If $Ne_k \neq 0$, then A is expressible as $A_{(*)} \times_F D$. If, on the other hand, $Ne_k \neq 0$, then the structure of A is completely determined by $A_{(*)}$ and D, by the automorphism σ of D and by the coefficients of (2) and (3).

References

- [1] ARTIN, E., C. J. NESBITT, AND R. M. THRALL, Rings with Minimum Condition. Univ. Michigan Publ. Math. No. 1 (1944).
- [2] ASANO, S., On the radical of quasi-Frobenius algebras. Kodai Math. Sem. Rep. 13 (1961), 135-151.
- [3] KUPISCH, H., Beiträge zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung. J. reine angew. Math. 201 (1959), 100-112.
- [4] NAKAYAMA, T., Note on uni-serial and generalized uni-serial rings. Proc. Imp. Acad. Tokyo 16 (1941), 285-289.
- [5] NAKAYAMA T., On Frobeniusean algebras II. Ann. Math. 42 (1941), 1-21.

- [6] NESBITT, C., AND W. M. SCOTT, Some remarks on algebras over an algebraically closed field. Ann. Math 44 (1943), 534-553.
- [7] OSIMA, M., Notes on basic rings. Math. J. Okayama Univ. 2 (1953), 103-110.
- [8] OSIMA, M., Notes on basic rings II. Math. J. Okayama Univ. 3 (1954), 121-127.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.