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DECOMPOSITION OF MODULE LINEAR MAPPING
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By MAsSAMICHI TAKESAKI

Introduction.

In [6], Nachbin has shown the real Hahn-Banach extension property of
Cr(Q), the space of all real valued continuous functions over a compact stonean
space Q, and recently Hasumi has proved the generalization of this result to
complex case in [4]. While C(Q) is considered, not only as a Banach space,
but as a commutative algebra, then the extension problem of a module linear
mapping over C(Q) comes into our consideration. The same problem has been
treated by Nakai in [7] which was independently presented from ours.

On the other hand, Takeda and Grothendieck have shown the Jordan de-
composition of self-adjoint linear functional on an operator algebra correspond-
ing to the Jordan decomposition of real Radon measure on a locally compact
space in [3] and [9], respectively.

In the present note we shall show the extension property of C(Q) for
module linear mappings over C() and the generalization of Takeda-Grothen-
dieck’s result for self-adjoint module linear mappings over C(Q).

1. Let M be a C*-algebra, M* the conjugate space of M and M** the
second conjugate space of M. If = is a *-representation of M on a Hilbert
space H, then 7 is uniquely extended to the metric homomorphism 7 from M**
onto the weak closure of n(M) which is continuous for o(M**, M*)-topology
and o-weak topology of the weak closure of #n(M). Since M* is linearly
spanned by the positive part of M* by Takeda-Grothendieck Theorem (cf. [3]
and [9]), there exists the unique W*-algebra such that it is isometric to M**
and its o-weak topology coincides with o(M**, M*)-topology. Therefore this W*-
algebra is called the universal enveloping algebra of M and denoted by M in
the following (cf. [107).

Let E be a normed linear space, it is called a mormed left (resp. right)
M-module if the following conditions are satisfied:

(i) E is an algebraic left (resp. right) M-module,

(ii) For every acM and € F

lezl<lalllzl  (resp. lzal <|allxl).

If E is a two-sided normed M-module, we call E a normed M-module simply.
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In the following we assume that F is a normed M-module.
For any a € M we define an operator L, (resp. B,) on M* as follows:

(b, Lo¢) =<ab, ¢>  (resp.<b, R.¢)> =<ba, ¢3)

for all be M and ¢ = M*, where the inner product {z, ¢) is the value of ¢
at . Similarly an operator £, (resp. R,) is defined on the conjugate space E*
of a normed M-module E for every a € M as

{2, &) ={ax, p>  (resp.{®, R.¢0) = {za, ¢))
for all x= E and ¢ = E*. Then the following properties are easily verified:

2(2a+lxb) =28, + ug, (resp. Reagruwy = ARy + 1),
Leary =8, (resp. Rap, = RaMy),
Loy = Rl

for all a, b= M and complex numbers 4, u.

Next we define an element w,(x, ¢) (resp. w.(, ¢)) of M* for every xe E**
and ¢ € E* as follows:

{a, oz, 9))> =<z, L)  (resp. {a, oz, ¢))> =<z, Rap))

for all e = M. Then one can easily verify that the mapping (¥, ¢)— wi(x, ¢)
(resp. w,(x, ¢)) is bilinear on E**X E'* and satisfies the condition

lon(z, @I =lzlllell  (resp. o (2, )=zl l¢l)-
For any a=M and z< E** a functional <a, vz, ¢)> of E* determines
the unique element of E** which is denoted by a-x.

LEMMA 1. E** is a normed left M-module with respect to the above
product.

Proof. For every a= M and z € E** we have easily
la-z|=lallzl].
Since wy(x, ¢) is binear, we get

(Aa + ub) -2 = A+ + ub-x,
a-(Ar+ py) =Aa-x + pub-y

for all a,be M, x, y = E** and complex numbers 4, #. If a and b belong to
M, then we have

(ab)-x2=a-(b-x)

for all x = E**. In fact, we have
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(ab)-x, ¢ =< ab, w(®, @) > = &, Larp) = (&, Lifag) = (b, wi(z, Lup) >
={b-x, Rap) =< a, ob-x, ¢)) =<a-(b-2), ¢
for all ¢= E*. The mapping a—a-x from M into E** is continuous for
o(M, M*) and o(E**, E*)-topologies because if {a.} is a directed sequence of
M converging to a € M for o(M, M*)-topology we have

lima { Qu-x, @) =lima {ae, 0 (%, ¢)> =< a, w(x, ¢))> ={a-x, ¢>

for all ¢ = E*. Hence we have (ab)-x =a-(b-x) for all a,b= M and x< E**,
This concludes the proof.

For any a & M a functional (z, ¢)—<a, oz, ¢)) is a bounded bilinear one
of E x E*, which determines the bounded operator R, on E* such as
{a, oz, ¢)> =<z, 2Ra‘fo>

for allx € E and ¢ &« E*. Putting ‘R.x = xoa for all v € E** and a = M, where
"R, is the transpose of R,, we have

LEMMA 2. E** is a normed right M-module with respect to the above
product.’

Proof. It suffices only to prove
2o(ab) = (xoa)ob
for all a, b= M and x = E**. Clearly xo(ab)= (xoa)ob for a,b=M and x < E.
If z belongs to E, then the mapping a—zoa is continuous for o(M, M*)- and
o(E**, E*)-topologies. For, if {a.} is a directed sequence of M converging to
a s M for o(M, M*)-topology, then we have

lime { 2o, ¢ = lima {2, Ro, @) = lima { da, 0, (, ) >
=<a, 0, 9)) =@, Rag) ={Zca, ¢)

for all o= E*. Hence we get xo(ab) = (xca)ob for x = E and a, be M. More-

over, the mapping x—xeca is o(E**, E*)-continuous for a € M because, if {x.}
is a directed sequence of E** converging to z € E** for o(&**, E*)-topology,
we have

limg {Xaoa, @) = lima (e, Ra@ ) =x, R ) = (@0, ¢

for all g E*. Therefore we get zo(ab) = (x-a)ob for all a,be M and x € E**.
This concludes the proof.

1) In Lemma 1 and Lemma 2, the left and right products are defined non-
symmetrically, but this is not avoidable in order that we shall show below (a-x)eb=a-(x°b).
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By these lemmas we see that the second conjugate space E** of a normed
M-module E is a normed left and right M-module. Moreover, we have

THEOREM 1. If E is a normed M-module, then the second conjugate

space E** of E is a normed M-module with respect to the products in Lemma
1 and Lemma 2.

Proof. 1t suffices only to prove
(a-x)ob = a-(xob)
for a,be M and x = E**. Suppose a belonging to M, then the mapping 2 —a-x

is o(E**, E*)-continuous for, if {#.} is a directed sequence of E** converging
to « for o(E**, E*)-topology, we have

Iima <a‘xa, SD> = [im. <a, Q)L(xa, Sp)> = Iima <xa, 2a</’>
=<, Lup) =<a, v, ¢))=<a-x, ¢)

for all g E*. Therefore we get (a-x)ob=a-(xob) for all a, b= M and x= E**.

On the other hand, the mapping a—a-2 is continuous for o(M, M*)- and
o(E**, E*)-topologies and the mapping x— xob is o(E**, E*)-continuous by the
arguments in Lemma 1 and Lemma 2. Hence we have

(a-x)ob = a-(xb)
for all a,be M and x = E**. This concludes the proof.

In the following, we denote the second conjugate space E** of a normed

M-module by E as a normed M-module.
If we consider M, itself, as a normed M-module, then we have

XY =x-Y =LY

for all z,y= M. In fact, the mappings y—axy and x—zy are oM, M*)-
continuous and coincide with the mappings y—z-y and z—»zoy for z,yeM
respectively.

Furthermore, if we consider a Banach algebra B instead of a normed
M-module, then the slight modification of the above arguments points out that
the second conjugate space B** of B becomes a Banach algebra in two different
manners. But we shall omit the detail.

Next, we consider a certain linear mapping from a M-module E into M.
A linear mapping 6 from E into a normed M-module F' called a left (resp.
right) M-linear mapping if

O(ax) = ab(x) (resp. O(za) = 6(x)a)

for every a€ M and 2 E. If 0 is two-sided M-linear, it is called M-linear
simply. Combining this definition and Theorem 1, we have
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LEMMA 3. If 0 is a bounded M-linear mapping from E into F, then the
bitranspose “6 =8 of 0 is M-linear.

Proof. From the proof of Lemma 2, the mapping b— xob is o(M, M*)- and
o(E, E*)-continuous for < E. Hence we have 0(wob)=0(x)ob for = E and
be M. Using the o(E, E*)-continuity of the mapping «— xob, we get

0(xob) = 6(x)ob

for all ze £ and be M. Moreover, the continuity of the mapping a—a-2
implies

0a-2)=a-0(x)
for all e M and x= E. This concludes the proof.

Now we can state one of our main results in the following

THEOREM 2. (Generalized Hahn-Banach Theorem) Let A be a commuta-
tive AW*-algebra, E a normed A-module and V an invariant subspace of E,
t.e. aVbCV for a and b A. If 6 is a bounded A-linear A-valued map-
ping on V, then 0 can be extended to an A-linear A-valued mapping 6y on
E preserving its norm.?

Proof. At first, we recall that the second conjugate space E of F is a
normed A-module by Theorem 1. Since the o(E, E*)-closure V of V is the
second conjugate space of V, @ is uniquely extended to an A-linear A-valued

mapping # on V by Lemma 3 as the bitranspose of 8. Let Q be the spectrum
space of A and A, the space of all bounded complex valued functions on Q,
that is, Ao =1=(Q), then A, becomes a subalgebra of A. Hence E is considered
as a normed Ay-module. For any fixed point ¢ € Q, put ¢, =‘0(s.) where o; is
the pure state of A corresponding to ¢, then we have that ¢, V* and

{a-wob, ¢y = a-xob, ‘0(a) > = Hla-wob), 0. ) = ab(@)b, 7.
= a(tb(t)<H(x), a.) = at)b(t) <z, ¢,

for all a,be A, and x<V. Next, let e, be the carrier projection of o, in A4,
then e, belongs to 4, and we have

<6;'$,¢z>:<w,ﬂp¢>y <x°e£7€0t>:<x7¢t>
2) We call a commutative C*-algebra A AW*-algebra if the self-adjoint part of 4
becomes a conditionally complete vector lattice with respect to the usual ordering of
operators. Then the characterization of a commutative C*-algebra A to be AW*-algebra
is given as follows: the closure of any open set in the spectrum space Q of A becomes
open again. And such a compact space is called stonean space (cf. [2] and [5]).
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for all z=V and e,a = a(t)e, for ac A,. Put V. =e,- Voe, and E, = ¢, Eoe,, then
V. is an Ay invariant subspace of £, and one can consider ¢, as an element of
V.*. Let @, be an extension of ¢, to K, by the usual Hahn-Banach Theorem
and ¢, the element of E* which is defined by the equation

{x, *—f_‘c>=<€t'x°€n%>
for € &, we have

{a-mob, ;) = e, a-xoboe,, T ) = {a(t)b(t)e,  voe,, §i) = a(t)b(t){x, &,>
for all a,be A, and 2= E. Consider the mapping ¢ from E to A, such as
0(z)(t) =z, §,> for all x< K and t € 2, then we have
O(a-xob) = at/(x)b

for all a, b= A, and z < E, for

0(a-2ob)(t) = Ca-xob, 5. ) = at)b(t) <, §: )
= a()b(t)0(x)(t) = [ab(x)b](¢).

For x =V, we have

O(@)(t) = (@, @) = e, xoe,, » = (e, woe, 1) =&, @) = Ol(x)(t),
s0 that ¢ coincides with # on V. Moreover, we have

161l =sup [|6)]: lle]| < 1]=sup [[#)D)]: [z]<1,te Q]
=sup [[K&, o> lz[|£1,t € Q]=sup [|gll: t€ Q]
=sup [llg:l: t€ Q]=sup [z, ¢): z€V]|2]=1, 1€ Q]
=sup [|0x)®)]: 2V |z|=1,te Q]
=sup [[|0@)]: € VIz|<1]=]0| .
Hence we get [|6]=]6]l.

Now, there exists a projection = of norm one from A4, to A by Nachbin-
Hasumi Theorem [4] and [6]. Put fo(x) = z[0(x)] for x € E, then 6, is required
one. In fact, we have

Oo(axd) = n[Bo(axdb)]= n[ab(x)b]= ax[O(x)]b  (cf. [11])
= afy(x)b for all a, b= 4 and ¢z E,
Oo(z) = 7[0(x)]= z[0(x)]=60(x) for x €V

and |0 <|6oll=]7-0]=<]6]|=110]l. This concludes the proof.

Connecting with this theorem, we consider a W*-algebra M with its com-
mutative W*-subalgebra A4 as a normed A-module, then the o-weak continuities
of 0 and 6, come into our consideration. However, it can be shown that there
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exists no o-weakly continuous projection of norm one from the full operator
algebra M on an infinite dimensional Hilbert space to its commutative W*-
subalgebra which contains no non-zero minimal projection (cf. [12]).

2. Let M be a C*-algebra and N its C*-subalgebra, then M becomes a
normed N-module. If # is a bounded positive N-linear N-valued mapping on
M such that 0(a) =a for every a € N, then 8 is called an expectation from M
to N. If M and N contain units respectively, then the characterization of a
mapping from M to N to be an expectation is given as 6(Im)= I, |0]|<1 and
6(a)=a for all ae N in [11], where In and I~ are units of M and N, re-
spectively. In other words, the expectation is a generalized state, i.e. it is
an operator valued state (cf. [8]). In this section, we shall prove the generaliza-
tion of Takeda-Grothendieck’s Theorem.

LEMMA 4. Let M be a W+-algebra, N a finite W*-subalgebra of M and
0 a bounded *-preserving o-weakly continuous N-linear N-valued mapping
on M, then there exist two positive o-weakly continuous N-linear N-valued
mappings 0° and 6~ on M such as 0=6"—0".

Proof. At first, we recall that we have

o1 — @l =ll¢dll -+l g2l

for o-weakly continuous positive linear functionals ¢, and ¢, on M if and only
if the carrier projections of ¢; and ¢, are orthogonal each other by [3]. Hence
putting

utou, ¢ =<, ¢u)
for self-adjoint ¢ € M* and unitary u = M, we have
u=(¢u)" = (@u)” = (¢ )u = (¢ )
and
leul=llel= () [+ ()~ 1= I(¢")ull +1(¢7)ull.

That is, (¢u)* = (¢*)u and (¢u)” = (¢ )u.
(1) Case of N to be countably decomposable: From our assumption for
N it has a faithful trace r. Putting ¢='0(r), we have

{2y puy =<Cutzu, ¢) =<0 zu), ) = u0@u, t)={0(x), t)={x,

for all # € M and unitary w € N, so that ¢, =¢. Hence (¢*), = ¢* and (¢ )y, = ¢~
for unitary w €N from our above remark. Let e¢ and f be the carrier pro-
jections of ¢* and ¢~ respectively, we have

[xreM: {z*z, ¢*>=0]=MI —e¢),

[xeM: {x*x, ¢ >=0]=MI - f)
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and
Ly=¢*,  Lip=—¢".
The invariancy of ¢* and ¢~ with respect to unitary of N implies that
wM{I—eu=M({I—e¢) and w MU - flu=MI—- f)
for unitary % of N. Hence we have
wleu=e and ulfu=rf,

so that e and f belong to N’ which is the commutator of V.
Now if we put 6*(x) = f(ex) and 6 (x) =— 0(fx), this is a desired decomposi-
tion. In fact, we have clearly

0=0"—0".
For any a,b= N and = M, we have
0*(axd) = O(eaxd) = O(aexd) = af(ex)b = al*(x)b
and
0 (axb) = — O0(faxb) =— 0 (afxb) = — abf(fx)b = al™(x)b.
For any fixed positive element x of M and every positive a of N, we have
{al*(x), > = {abex), > =<a?0(ex)a'’? > = {O(ea' ?xa'’?), t)
={eal 2xal’? @) =<a'%al’? ¢ > =0
and similarly (a8 (x), > =0, so that #*(x) and 0 (x) are positive in N. There-

fore 6* and ¢~ are positive.

(2) General case: There exists a family {z.} of orthogonal central pro-
jections of N such that Sl 2.=1I and each Nz, is countably decomposable.
Suppose #, to be the restriction of ¢ on z,Mz,, there exist projections e, and
fa in (V22) N2.Mz, such that O.(e.x) and — 0.(f.x) are positive mappings and

0,1(37) = 0a(eax) - 0a<fax)

by the arguments in case (1). Putting She.=e¢ and >, f.=f, 07 (x)=t(ex)

—

and ¢ (x) =— ¢(fx) are desired ones. In fact, we have
0("”) = d((Za za)x(Za za)) = Ea,a’ a(zaxza’) = Ea,a' zad(x)za’
= 2« zaﬁ(x) = Ea zaﬁ(x)za = Ea Oa(zaxza)

=30 [0a(ea) 4 Ou( fat) 1= D [O(ea®) + O(far)]= O(ex) + 6(fx).

For any positive x € M, z,%z, is positive so that f.(e.x) and — 0,(f.x) are
positive. Hence f#(ex) and — 6(fx) are positive. Finally, we have

0" (axb) = O(eaxd) = O(aexdb) = af(ex)b = ald*(x)b
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and similarly
0~ (axb) = alf(x)b

for all a, b= N and x = M. This concludes the proof.

LEMMA 5. Let A be a commutative AW*-algebra and M a C*-algebra,
with a unit, containning A. If 0 is a positive A-linear A-valued mapping
on M, then there exist a positive element a of A and an expectation 6y such
that 0(x) = ab(x).

Proof. Suppose Q to be the spectrum space of A, Q is a stonean space.
Putting 0(I)=a and G=[t= Q: a(t) >0], G is an open subset of . Let ¢
be the characteristic function of the closure of G, then e is a projection of A.
Putting 6'(z)(t) = 6(x)(t)/a(t) for t=G and x<eMe, the function #y(x)(t) is
bounded and continuous on G because of the mapping = ¢/(x)(t) to be a state
on eMe, which implies

100" (@)@ < l]].

Hence it is uniquely extended to a continuous function on the closure of G by
[2], i.e. #/(x) is considered as an element of Ae. This ¢y is an expectation
from eMe to Ae, and 0(x) = atly/(x) for x €eMe. Now there exists an expecta-
tion ¢y’ from (I —e)M(I —e) to A(I —e) by Nachbin-Hasumi’s Theorem. Put-
ting O(x) = 0y'(exe) + 04/ (I — e)x(I —e)) for x € M, ¢, is the expectation which
is 6(x) = afly(x) for x = M. This concludes the proof.

Combining these lemmas, we get
THEOREM 3. Let A be a commutative AW*-algebra and M a C*-algebra,
with unit, containning A. If 0 is a bounded *-preserving A-linear A-valued

mapping on M, then there exist two positive elements a; and as and two
expectations 0y and O such that

020101_11202.
Proof. Considering their universal enveloping algebras M, 4 and the

bitranspose ¢ =6 of @, there exist o-weakly continuous positive A-linear
A-valued mapping #* and #- such that

G=06"—0"

by Lemma 4. There exists a projection = of norm one from A to A by

Nachbin-Hasumi’s Theorem. Putting 6*(x) = z[6"(x)] and 6 (x) = z[# (x)] for
xe M, 6% and 0~ become positive A-linear A-valued mapping on M such that

0=0"—0".



10

MASAMICHI TAKESAKI

Applying Lemma 5 to #* and 6~ respectively, we obtain

6*=qa,0;, and 0 =a.ls

where a; and a, are positive element of 4 and ¢, and 8, are expectations from
M to A. Thus we have

0= (1101 - 0202.

This concludes the proof.
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