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Introduction.

In [6], Nachbin has shown the real Hahn-Banach extension property of
C#(ίl), the space of all real valued continuous functions over a compact stonean
space ίl, and recently Hasumi has proved the generalization of this result to
complex case in [4]. While C(O) is considered, not only as a Banach space,
but as a commutative algebra, then the extension problem of a module linear
mapping over C(Ω) comes into our consideration. The same problem has been
treated by Nakai in [7] which was independently presented from ours.

On the other hand, Takeda and Grothendieck have shown the Jordan de-
composition of self -adjoint linear functional on an operator algebra correspond-
ing to the Jordan decomposition of real Radon measure on a locally compact
space in [3] and [9], respectively.

In the present note we shall show the extension property of C(ί2) for
module linear mappings over C(ίl) and the generalization of Takeda-Grothen-
dieck's result for self-adjoint module linear mappings over C(ίl).

1. Let M be a C*-algebra, M* the conjugate space of M and Jf** the
second conjugate space of M. If π is a ^representation of M on a Hubert
space H, then π is uniquely extended to the metric homomorphism π from M **
onto the weak closure of π(M) which is continuous for σ(M**, M*)-topology
and <7-weak topology of the weak closure of π(M). Since M* is linearly
spanned by the positive part of M* by Takeda-Grothendieck Theorem (cf. [3]
and [9]), there exists the unique TF*-algebra such that it is isometric to M**
and its #-weak topology coincides with <τ(M**, M*)-topology. Therefore this TF*-

algebra is called the universal enveloping algebra of M and denoted by M in
the following (cf. [10]).

Let E be a normed linear space, it is called a normed left (resp. right)
M-module if the following conditions are satisfied:

( i ) E is an algebraic left (resp. right) Λf-module,
(ii ) For every a(=M and x <Ξ E

|| (resp. \\xa\\ ^\\a\\\\x\\).

If E is a two-sided normed M-module, we call E a normed M-module simply.
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In the following we assume that E is a normed M-module.
For any a e M we define an operator Lα (resp. Ra) on M* as follows:

<δ, Lα^> = <α&, y>> (resp. <&, J?α^> = <δα, ̂ »

for all δeMand y>eM*, where the inner product <#, ^> is the value of ^
at a?. Similarly an operator Sa (resp. 9ϊα) is defined on the conjugate space E*
of a normed M-module E for every α e M as

y (resp. <#, 8lαρ>

for all x^E and φ^E*. Then the following properties are easily verified:

S (jα+/ δ) = ΛSα + ^Sδ (resp. 9tc;ια+AlB) = ^SRα

Scαδ) = SδSα (resp. Dϊ(α&) = ^α^R&),

for all α, 6 e M and complex numbers Λ, y".

Next we define an element ωL(x, φ) (resp. ωr(x, φ)) of Λί* for every
and φ^E* as follows:

<α, fi)t(a?, φ)) = <«, Sα^> (resp. <α, ωr(a;, ρ)> = <», ̂ α^>»

for all αeM. Then one can easily verify that the mapping (x,ψ)-*coι(x,ψ)
(resp. ωr(αj, 0) is bilinear on jEr**χJE

r* and satisfies the condition

IWαj,0||^||a?||||^|| (resp. |μr(», φ)\\^\\x\\\\φ\\).

For any a<=M and cceE1** a functional (a,coι(x,φ)y of #* determines
the unique element of E1** which is denoted by α #.

LEMMA 1. #** is a normed left M-module with respect to the above
product.

Proof. For every αeMand x<=E** we have easily

Since ωt(x, <p) is binear, we get

(λa + μb) x — λa x + μb x ,

= λa x + μb y

for all a, b e M, x, y e £7** and complex numbers Λ, μ. If α and 6 belong to
M, then we have

(αδ) x = α (6 a?)

for all x e £'**. In fact, we have
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<(αδ) α?, <f>y = <αδ, ωt(xt φ)} = <α, Sαδ^> = <&, SδSα^> = <6, ̂ (a?, Sα^)>

= <6 a?, 8α^> = <α, G>ί(δ a?, ?)> = <α (δ a?), ^>>

for all φ<=E*. The mapping a-+a x from M into #** is continuous for

<j(Λf, Jf *) and σ(E**> Er*)-topologies because if {aa} is a directed sequence of

Jf converging to a e M for <τ(M, M *)-topology we have

limα<α« #, ^> = lim«<α«, ωL(x, y>)> = <α, <^(cc, ^>)> = <α a;, ^>>

for all <ρ<^E*. Hence we have (αδ) 05 = α (δ a?) for all α, δeM and x<=E**.
This concludes the proof.

For any αeM a functional (αj, 0— ><α, c^r(x, 0> is a bounded bilinear one
of ExE*, which determines the bounded operator 9ϊα on J57* such as

for all x e J57 and ^> e £7*. Putting *9ϊαa? = x°α for all x e E"** and α e M, where
*9ΐα is the transpose of 9ία, we have

LEMMA 2. E** is a normed right M-module with respect to the above
product.1^

Proof. It suffices only to prove

χo(ab) — (x°ά)°b

for all a,b<=M and x e E**. Clearly x°(ab) = (x°α)oδ for a,b^M and a? e #.

If a? belongs to E, then the mapping α— »#oα is continuous for σ(M, M*)- and

<τ(£r**, £r*)-topologies. For, if {α«} is a directed sequence of M converging to

a^M for <r(M, M*)-topology, then we have

urn* (x°da, ψ} = lim« {x, $taaφ) — lima <a«, cυr(x, 0>

for all y e E*. Hence we get x°(ab) — (x°a)°b for a? e E and α, δ e M. More-

over, the mapping x— »#°α is σ(E**, J5'*)-continuous for α e M because, if {xa}
is a directed sequence of E** converging to x<=E** for σ(E**, ^7*)-topology,
we have

for all φ e E1*. Therefore we get #o(αδ) = (χoα)oδ for all α, 6 e M and x
This concludes the proof.

1) In Lemma 1 and Lemma 2, the left and right products are defined non-
symmetrically, but this is not avoidable in order that we shall show below (a x)<>b=a, (x°b).
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By these lemmas we see that the second conjugate space #** of a normed

M-module E is a normed left and right M-module. Moreover, we have

THEOREM 1. If E is a normed M-module, then the second conjugate

space J5J** of E is a normed M-module with respect to the products in Lemma
1 and Lemma 2.

Proof. It suffices only to prove

(α a;)oδ = α (α5<>&)

for α, b e M and x <Ξ E**. Suppose a belonging to M, then the mapping x—*a x
is 0(E**, J57*)-continuous for, if {x<*} is a directed sequence of E** converging
to x for σ(E**, £r*)-topology, we have

urn* <α #«, <£>> = Km* <α, ωL(xa, φ)) = lim« <#«, £α^>

= <», Sα^> = <α, ωt(x, φ)} = <α a?, y>>

for all y> e £7*. Therefore we get (α αO°& = α 0»°δ) for all α, 6 e Jf and x<^E**.

On the other hand, the mapping α— >α # is continuous for σ(M, M *)- and
σ(E**, i7*)-topologies and the mapping #^#o& is σ(E**, i7* ̂ continuous by the
arguments in Lemma 1 and Lemma 2. Hence we have

for all α, b e M and a? e J5**. This concludes the proof.

In the following, we denote the second conjugate space E** of a normed

M-module by E' as a normed M-module.
If we consider M, itself, as a normed M-module, then we have

xy = # 2/ — #°#

for all x,y<^M. In fact, the mappings y—>xy and x—>xy are <r(M, M*)-
continuous and coincide with the mappings y-*x y and x->x°y for x,y^M
respectively.

Furthermore, if we consider a Banach algebra 5 instead of a normed
M-module, then the slight modification of the above arguments points out that
the second conjugate space J5** of B becomes a Banach algebra in two different
manners. But we shall omit the detail.

Next, we consider a certain linear mapping from a M-module E into M.
A linear mapping θ from E into a normed M-module F called a left (resp.
right) M-linear mapping if

θ(ax) = α#(a:) (resp. θ(xa) = θ(x)a)

for every a e M and a? e £7. If 0 is two-sided M-linear, it is called M-linear
simply. Combining this definition and Theorem 1, we have
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LEMMA 3. If θ is a bounded M-linear mapping from E into F, then the

bitranspose uθ = V of θ is M-linear.

Proof. From the proof of Lemma 2, the mapping &->χofr is σ(M, Λf*)- and

σ(E, J57*)-continuous for x^E. Hence we have θ(x°b) ~ θ(x)°b for x^E and

6 e M. Using the σ(E, jET*)-continuity of the mapping x~^x°b, we get

θ(x°V) = θ(x)°b

for all x^E and b<=M. Moreover, the continuity of the mapping a-^a x
implies

for all a^M and x^E. This concludes the proof.

Now we can state one of our main results in the following

THEOREM 2. (Generalized Hahn-Banach Theorem) Let A be a commuta-
tive AW*-algebra, E a normed A-module and V an invariant subspace of E,
i.e. aVbaVfor a and b^A. If θ is a bounded A-linear A-valued map-
ping on V, then θ can be extended to an A-linear A-valued mapping ΘQ on
E preserving its norm.2^

Proof. At first, we recall that the second conjugate space E of E is a

normed JL-module by Theorem 1. Since the <r(E, jG7*)-closure F of F is the

second conjugate space of F, θ is uniquely extended to an .A-linear .^-valued

mapping ΰ on F by Lemma 3 as the bitranspose of θ. Let Ω be the spectrum
space of A and A0 the space of all bounded complex valued functions on ίl,

that is, ^4.o — ϊ°°(Ω)» then AQ becomes a subalgebra of A. Hence ̂ is considered
as a normed ^-module. For any fixed point t e O, put ψt = Wfa) where <jt is
the pure state of A corresponding to ί,;then we have that ρ teF* and

= α(t}b(t) < ff(x)9 σt > - α(t)b(t) < x, φt >

for all α, b e A0 and x e F. Next, let et be the carrier projection of <rt in Ά,
then et belongs to AQ and we have

2) We call a commutative C*-algebra A ΛT7*-algebra if the self-ad joint part of A
becomes a conditionally complete vector lattice with respect to the usual ordering of
operators. Then the characterization of a commutative C*-algebra A to be A JF*-algebra
is given as follows: the closure of any open set in the spectrum space O of A becomes
open again. And such a compact space is called stonean space (cf. [2] and [5]).
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for all x e V and eta = a(t)et for α e A0. Put Vt = et V°et and Et = et E°et, then

Vt is an JL0-invariant subspace of Et and one can consider ψt as an element of

F{*. Let ^t be an extension of ^ to Et by the usual Hahn-Banach Theorem

and ψt the element of E* which is defined by the equation

<a?, γty = (et χoet, ^>

for x<^E, we have

for all α, δ e ̂ o and x^E. Consider the mapping # from E to ^40 such as

θ(x)(ΐ) = < α;, ̂  > for all x^E and t e $, then we have

for all α, b e A and a? e ̂ , for

^/(α x°b)(t) — < α x°b, γt > = a(t)b(t) (x,

= a(t)b(t)θ(x)(t) =

For # e F, we have

so that t) coincides with ti on V. Moreover, we have

= sup [|<α?, ̂ >|: ||^|| ̂  1, ί e Ω]= sup [||̂ ||: ί e Ω]

= sup[||^ί||: t e Ω]=sup [|<a?, ^>|: αeF||α||^l, ί e Ω]

= sup l\θ(x)(t)\: x e F||α|| ̂  1, t e Ω]

Hence we get ||£il = ||0||.
Now, there exists a projection π of norm one from AQ to A by Nachbin-

Hasumi Theorem [4] and [6]. Put ΘQ(X) = π\_θ(x)~\ for x&E, then ΘQ is required
one. In fact, we have

Θ0(axb) = πΐVQ(axV)] = τr[α#(»)δ] - aπ\β(x)~\b (cf . [11])

= aθQ(x)b for all α, δ e A and x ̂  E,

ΘQ(X) = π\β(x)~\ = πlθ(x)l = θ(x) for x e F

and ||tf| |g| |^oll = lk ^i|^||#i| = ||#||. This concludes the proof.

Connecting with this theorem, we consider a T7*-algebra M with its com-
mutative TF*-subalgebra A as a normed ^4-module, then the <r-weak continuities
of θ and #0 come into our consideration. However, it can be shown that there
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exists no <τ-weakly continuous projection of norm one from the full operator
algebra M on an infinite dimensional Hubert space to its commutative TΓ*-
subalgebra which contains no non-zero minimal projection (cf. [12]).

2. Let M be a C*-algebra and N its C*-subalgebra, then M becomes a
normed JV-module. If θ is a bounded positive TV-linear JV-valued mapping on
M such that θ(a) = a for every a e N, then θ is called an expectation from M
to N. If M and N contain units respectively, then the characterization of a
mapping from M to N to be an expectation is given as #(/M) = Z/V, ||0||^1 and
θ(ά) = a for all a^N in [11], where JM and J^v are units of M and N, re-
spectively. In other words, the expectation is a generalized state, i. e. it is
an operator valued state (cf . [8]). In this section, we shall prove the generaliza-
tion of Takeda-Grothendieck's Theorem.

LEMMA 4. Let M be a W*-algebra, N a finite W*-subalgebra of M and
θ a bounded ^-preserving cr-weakly continuous N-linear N-valued mapping
on M, then there exist two positive a-weakly continuous N-linear N-valued
mappings θ* and θ~ on M such as β = θ+ — β~.

Proof. At first, we recall that we have

for <r-weakly continuous positive linear functionals ψι and φ2 on M if and only
if the carrier projections of ψi and φz are orthogonal each other by [3]. Hence
putting

for self -ad joint ψ e M* and unitary u e M, we have

ψu = (ψuY ~ (ψuY = (<f+)u ~ (ψ~)u

and

w=ιw=ιi(pum
That is, (φuγ = (φ+)u and (φuY = (ψ~)u

(1) Case of N to be countably decomposable: From our assumption for
N it has a faithful trace τ. Putting φ=tθ(τ), we have

<#» <fuy = (u~lxu, <p} = (θ(u~lxu), τ} = (u~lθ(x)u, τ} = <#(#), τ> — <α?, r>

for all α; e M and unitary u e N, so that φu = φ. Hence (φ+)u = φ+ and (φ~)u — ψ~
for unitary u^N from our above remark. Let e and / be the carrier pro-
jections of φ+ and φ~ respectively, we have
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and

The invariancy of φ+ and ψ~ with respect to unitary of N implies that

u-1M(I-e)u = M(I-e) and u^M(I- f}u = M(I- /)

for unitary u of N. Hence we have

u~1eu = e and u~ίfu = f,

so that e and / belong to N' which is the commutator of N.

Now if we put θ+(x) = θ(ex) and θ~(x) — — β(fx), this is a desired decomposi-
tion. In fact, we have clearly

θ = θ+-θ~.

For any a,b<=N and α; e M, we have

θ+(axb) = θ(eaxb) = θ(aexb) = aβ(ex)b = aθ+(x)b

and

0-(α»δ) = - θ(faxb) = - θ~(afxb) = - aθ(fx)b = aθ~(x)b.

For any fixed positive element x of M and every positive a of N, we have

}, τ> = (aθ(ex), τ> = (a1/2θ(ex)aί/2, τ> = <0(eα1/2£α1/2), τ>
2αα1/2, ^> - < a1/2xa1/2, φ + > 5; 0

and similarly <α#"(«), τ> ̂ 0, so that ^+(x) and 0~(cc) are positive in N. There-
fore θ+ and θ~ are positive.

(2) General case: There exists a family {za} of orthogonal central pro-
jections of N such that VJα z« = / and each JVzα is countably decomposable.
Suppose θa to be the restriction of ff on «αifoα, there exist projections ea and
fa in (NzaγΠzaMza such that #«(e«α;) and —θa(faX) are positive mappings and

by the arguments in case (1). Putting Σ«eα — e and Σ«/«— /,
and 6~(x) = — θ(fx) are desired ones. In fact, we have

For any positive x^M, zaxza is positive so that θa(eax) and —θa(fax) are
positive. Hence 0(ecc) and — θ(fx) are positive. Finally, we have

θ+(axb) = θ(eaxb) =
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and similarly

θ~(axb) = aθ-(x)b

for all a,b^N and x<=M. This concludes the proof.

LEMMA 5. Let A be a commutative AW*-algebra and M a C*-algebra,
with a unit, containning A. If θ is a positive A-linear A-valued mapping
on M, then there exist a positive element a of A and an expectation ΘQ such
that β(x) = aθ(x).

Proof. Suppose ίl to be the spectrum space of A, ίl is a stonean space.
Putting 0(1) = a and G=[£eίl: α(£)>0], G is an open subset of ίl. Let e
be the characteristic function of the closure of G, then e is a projection of A.
Putting tfo'G&XO = 0(aO(0/α(£) for t e G and x e eJfe, the function tiϋ'(x)(t) is
bounded and continuous on G because of the mapping x -> 0^(x)(t) to be a state
on eMe, which implies

Hence it is uniquely extended to a continuous function on the closure of G by
[2], i.e. ΘQ(X) is considered as an element of Ae. This #</ is an expectation
from eMe to Ae, and 0(#) = aU0'(x) for α e eMe. Now there exists an expecta-
tion #o" from (I-e)M(I-e) to A(I—e) by Nachbin-Hasumi's Theorem. Put-
ting #o(ff) = Oof(exe) + 0o"((/ — e)#(7 — e)) for # e Jf, ΘQ is the expectation which
is β(x) = aθQ(x) for x^M. This concludes the proof.

Combining these lemmas, we get

THEOREM 3. Let A be a commutative AW*-algebra and M a C*-algebra,
with unit, containning A. If θ is a bounded ^-preserving A-linear A-valued
mapping on M, then there exist two positive elements ai and α2 and two
expectations θt and βz such that

θ = diθi — dzOz

Proof. Considering their universal enveloping algebras M, A and the

bitranspose t) = ltθ of θ, there exist <r-weakly continuous positive A-linear

A- valued mapping (J+ and ti~ such that

by Lemma 4. There exists a projection π of norm one from A to A by

Naehbin-Hasumi's Theorem. Putting θ+(x) = π\β+(x)'] and θ~(x) = π[0-(αO] for
x^M, θ+ and θ~ become positive ^4-linear ^.-valued mapping on M such that
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Applying Lemma 5 to θ+ and θ~ respectively, we obtain

β+ = aiβi and θ" = α2#2

where αi and α2 are positive element of A and θi and #2 are expectations from

M to A. Thus we have

This concludes the proof.
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