ON SOME LOCAL PROPERTIES OF FIBRED SPACES

By K. YANO AND E. T. DAVIES

One of the most fruitful ideas in differential geometry is the idea ex-
ploited by E. Cartan of attaching a space to every point of a certain base
space B. The attached space in Cartan’s work is usually a homogeneous
space F such that every point of F' is equivalent to any other point under
the action of a certain (structure) group G which operates transitively in F.
The notion of connection as developed by Cartan consists of the establishment
of a correspondence between the spaces F attached to two infinitely near
points and the connection is called euclidean, affine, or projective according as
the group G is the orthogonal, affine or the projective group. This conception
of Cartan’s has led to the modern notion of a fibre bundle developed mainly
by Ehresmann, Chern and Lichnerowicz to whose fundamental works we refer.
The homogeneous space Fr attached to a certain point P of the base space B
is called the fibre. The spaces F'» attached to points of the base space are
all homeomorphic to a certain type fibre F. The so-called bundle space E to
which this leads is a leaved manifold whose dimension is the sum of the
dimensions of the base space and of the fibre. Compound manifolds of a very
similar kind have also been extensively treated by Wagner [25] but his point
of view is somewhat different. In fibre bundle theory the three spaces E, B
and F' are differentiable manifolds. The fibres homeomorphic to the type fibre
F' are holonomic subspaces of the bundle space E and in local coordinates can
be expressed by finite equations satisfied by the local coordinates of E in that
region. The tangent space to E at any point can then be decomposed into
two complementary spaces, one of which is tangent to the fibre and the other
is a non-holonomic subspace (or a non-integrable distribution in the termino-
logy of Chevalley [4]) transversal to the fibre. It has now become customary
to refer to a vector tangent to the fibre as a ‘vertical’ vector, and a vector
belonging to the complementary transversal distribution as a ‘horizontal’
vector. The notion of connection is now often formulated in terms of these
complementary subspaces of E.

In this paper the authors take the general space E to be a Riemannian
space, or a space with a euclidean connection, or a space of paths. The
fibres are differentiable subspaces of E which can be expressed locally in the
form f(§)=x where £ are local coordinates in E. If a geometric object de-
fined in E can be expressed locally in terms of x only that geometric object
will be said to be induced in the base space.
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The paper as a whole is written in the classical tradition with systematic
use made of the ideas and techniques of the Tensor Calculus. A general re-
ference may be made to Schouten’s book Ricci-Calculus [21] for the tech-
niques used.

In the first paragraph we examine the conditions in order that the base
vectors of the horizontal distribution at any point shall be invariant for dis-
placement along the fibre. This is followed by the investigation of the condi-
tions in order that a tensor field and an affine connection may be induced in
the base space. In the fourth and fifth paragraphs the fibred space E is sup-
posed to be endorsed with a system of paths and the conditions for induction
are given. This is followed by the cooresponding investigation for the metric
tensor of E and for motions in E. We examine in the seventh paragraph
some special results which may be obtained by taking a privileged system of
coordinates in E which enable us to obtaine some interesting sidelights on the
theory of connections and of the holonomy group. Conditions are also given
in order that the fibres at two infinitely near points shall be isometric. This
part of the theory leads naturally to the discussion of spaces in which the
fundamental tensors are dependent not only on position but also upon a certain
element of support. Accordingly in the final paragraph we give a treatment
of Finsler spaces as a fibred space when we assume that E is the tangent
bundle of the base space. We obtain the euclidean connection in Finsler space
as the connection induced in the horizontal distribution where the E is sup-
posed to be a metric space with torsion.

§1.

Let E be a differentiable manifold X,,,, of dimension m + n, and of class
C” (r=4). Let an equivalence relation R divide E into equivalence classes
F(P) (the fibres), and let E/R be the base space X. The X, ., is assumed to
be covered by a system of coordinate neighbourhoods U, with local coordi-
nates £4 where A belongs to a set M. For an arbitrary point P, in X,,.
there exists a neighbourhood U(P,) and a subset of coordinate neighbour-
hoods Uz(€%), Bc N c M such that the union U F(P) for P U(P,) is covered
by the union U Ujp(£s) and such that if a point P lies in the intersection
Us, N Us, of two coordinate neighbonrhoods of the set Up then the portion of
the fibre F(P) in Usp, N Us, is represented by » independent equations

1.1) o, =f5(E5) and @b, = f5,(55,)

of class C” in the respective coordinate neighbourhoods and such that there
exist relations
1.2) :L"}ag = gfﬁvz(d}%l)

1) The convention with regard to indices will be as follows: Greek indices run
from 1 to m + m, Latin indices a, b, ¢, d, e run from 1 to m, and Latin indices &, 1, J, k,
I run from m+1 to m +n.
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of class C” with a non-vanishing Jacobian in the domain considered.
We rewrite (1.1) and (1.2) in the forms

(1.3) a"=f"¢) and 2" =f"(£)

and

1.4) " = x™(x).

Now the fibres are m-dimensional submanifolds determined by n equations

(1.5) x* = a™(§) = f(§),

where f*(£) are of class C” and the rank of the matrix whose elements are
o0x™

(1.6) Chy= 0= 07

is n.

Since the the rank of the matrix (C*;) is n, we may regard C*; as n
linearly independent covariant vectors in X,.,,, and we choose m covariant
vectors B%;, which, together with C*;, form a base for covariant vectors in
the whole fibred space X,,,. This will determine a dual base of m + n con-
travariant vectors which we denote by (B.%, C;*). Between these two bases
there exist well known relations

By*B*; =68, By*C";=0, Ci*B% =0, C?C";=07%,

1.7
B, B*, + C*C*, =0..
If we define
(1.8) B!, = B,*B%,, C:=CCt,,

we have two tensors defined in the whole space and which are called ‘projec-
tion tensors’ (See Schouten [21], Walker [24], Yano [31]).

The vectors of the base (B.*, C;*) are so chosen that B, are tangent to
the fibre F,. In view of current terminology in fibre bundle theory, we shall
refer to a vector in the tangent space to F', as ‘vertical’ and to a vector in
the non-integrable ‘distribution’ spanned by the C;* as ‘horizontal’.

Defining
1.9 0,=0/0&*, X,= B,'0;, X,=C0,

we can consider the effect of interchanging the order of these operators. If
we put

(1.10) Lo = (X Bs* — Xy Bo*)B* = — B.*By*(0,B% — 0,B%,),

(1.11) La" = (X Bo* — X3 Bo*) C* = — Be*By*(0,0% — 0;,C*,),

we have, for any funtion f(&*)

1.12) (XX — X0 Xo) f = 22" Xof + L™ X0 f

with corresponding results for the interchanging of operators corresponding
to indices ¢ and ¢, and 7 and % (See Yano and Davies [32]).
In our particular case we have, in view of the definition (1.6) of C*,
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(1.13) L =0, Lo =0, ;" =0,
so that
(XX — Xo Xo) f = L0 X f
1.14) { XX, - XX)f = 2:X.f,
(X, X, — X X)) f = 2:°Xuf,
where
(1.15) { 2. = (X.C.* — X;B:*)B%,
25 =(X,;C:* — X,C;*)B%,.

The first of the equations (1.13) shows that the system of partial differen-
tial equations
(1.16) Xof=0
is completely integrable, with the % independent solutions z*=f"(§) con-
sidered in (1.5).
Any function of the x" only is therefore a solution of the system (1.16)
and any solution of (1.16) is expressible in terms of z* only (Goursat [13]).
We shall need the Lie derivatives (See Yano [30]) of the base vectors with
respect to the vectors B.. From the definition of the Lie derivative we have
immediately
§ By* = Bo#0,Bv* — Bs'0,Be" = 22" Ba*,

(L.17) {
§ sz = Bc#a‘uCi‘ - Ci‘la‘uBc:‘t = -QciaBax

and using (1.7)
£ Ba] = - lgcbaBbl - lgczacib
(1.18) { Bo
£C"=0.
B¢
We note therefore that the C;* forming a base for the horizontal distri-
bution will have its Lie derivative zero for any vector of the base B,* of the
fibre provided that £.%=0.
Hence
The horizontal distribution is invariant for any displacement along the

ﬁbre ’if 2% =0.

§2.

In this paragraph, we examine the conditions under which a tensor field
in the fibre space X,,, induces a tensor field in the base space X,.
If f(&) is a scalar defined in X,.,, we know that it induces a scalar in
X, if and only if
X.f=0.
For our purpose it is convenient to write this in the form

(2.1) § f=0.
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Passing to the case of a contravariant vector field v*(§) we know that it
has a component in the horizontal distribution given by " = C*w*.

Under a transformation of & in X, ,,, the v* undergoes the transformation

e 0% 4
Oux™
and consequently v* induces a contravariant vector field in the base space X,
if and only if
X" = ;Béf " =0.

Since the Lie derivative of C"; vanishes, we can say that v induces a
contravariant vector field in X, if and only if

(2.2) £ =C"(£ v*)=0.
B, B,

If we assume £.°=0 in which case the Lie derivative of C,* also va-
nishes, the argument just used can apply to a tensor of any order. The order
of the operation of Lie derivative and projection on the horizontal distribution
can be interchanged and hence we can state:— The mnecessary and suffi-
cient condition that a tensor field such as Ti*(§) in the fibred space X ,n M-
duces tensor field T, in the base space X,, 1s that

(2.3) ,Bé T = C;*C";(ﬁ T =0.
In particular consider the exterior differential form
(2.4) W= Wy..,dE XN AERN + -« N dE.

By writing down the differentials d&* in terms of their components (dx)*
= B%dé&* and da" = C";d&* where a bracket round the dx indicates that it is
not an exact differential, we can write (2.4) in a form

w = terms containing (d)* + wi...,de 1 A dx2 N\ -+ A da®
where
Wigerap = Ci*1e - - Cip?PWiyeipe
We may therefore state that the form w in X,,,, induces a form w in the

base space X, if the coefficients w,;,...., are functions of 2" only which we
express as

(25) lé‘ Wigeerp = Czlil- . ‘Ciplp(é: w;l...l,,) =0.

§3.

If an affine connection with coefficients I7;:(§) is defined in the fibred
space X,,., the projection tensors B and C enable us to define connections in
the fibre F' and in the horizontal distribution Xr... respectively. The well
known method (Yano and Davies [32]) can be used to define four sets of con-
nection parameters as well as four sets of Euler-Schouten curvature tensors
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relating to F' and X5,, as follows.—
The covariant differential of

VF = Baxva + Chxvh

will be

5.1) 0v* = BoF[(da)(Xov® + o +I'ev?) + da’(X,0* + [y’ +T'Ev%)]
) + Crf[(d2) (X 0" 4+ Tl 4+ ') 4+ da? (X 0" +Do® + i),

where

3.2) I'%=—B./BW,B%, I'%=—CyByF,B%,

ng, = — BcFCiXV,uChl; I_"};l = - Cj#CiZV,uChZ
are connection paramters, and
Fg@ - - Bc/‘CijV,uBab ['?z = - Cj”Ci/zV#Bab

3.3
(8:3) Iy =— Bc‘”BbXVHChj, F?c = — Cj”BCAV;uCh’z

are Euler-Schouten curvature tensors.

Assuming that the contravariant vector field v*(§¢) in X,,, induces a con-
travariant vector field v"(x) in the base space X,, we wish to examine the
condition in order that the connection defined in the fibred space can define a
connection in the base space X, leading to a set of connection parameters
depending only upon the variables x”.

We first assume that the contravariant vector field v* is in the horizontal
distribution so that v*=0. We further assume that the displacement dé&- is
also in the horizontal distribution so that (dx)*=0. In that case, we imme-
diately deduce from (3.1) that

8.4 Crv? = (X0 + i) da?
where I'% are defined in (3.2) in terms of the connection parameters of Xu...
and of the projection tensors.

Under a transformation of the coordinates & in X,.. the I'%(&) undergo
the transformation

(8.5) I'n(&) =

o™ ( 0% | pm s 027 Oxt
890”(690”690"’ +I(€) 0x? 090“)

and consequently I"%(€) induces an affine connection in the base space if and
only if
(3.6) X.Th=£T=0.

But we have
é I'i=— é: [C#CAPCM )] = — Cj’lcix(};g 7,.C™)

by virtue of (1.18). On the other hand, we have
3.7 £V =V £ wi=— (£ ) we
B, B, B,

for a general covariant vector w; (Yano [30]). Thus
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£T'hi=—CiCt Py £ C— (£ ) CM ]
Bc Bc Bc

from which
(3.8 § I'i= C;”CﬂC’h(ﬁ ;)

by virtue of (1.18). Thus

An affine connection II;:(§E) of the fibred space for a vector and displace-
ment both in the horizontal distribution induces an affine connection in the
base space if and only if

3.9) § Iy = Cj"C,;‘C"’t(;BE ) =0.

Similarly we get from (3.3)

An affine connection II;,(§) of the fibred space for a general wvector v*
and a displacement in the horizontal distribution induces an affine connec-
tion in the base space if and only if

(3.10) I-'?b =0, B{: F.’;i = CjFCilcht(é: H;z) =0.

An affine connction II;;(§) of the fibred space for a wvector v* im the
distribution and a gemeral displacement induces an affine connction in the
base space if and only if

(8.11) =0, ﬁl‘?.: j#C,*Ch,(,g ;) =0.

An affine connction II;:(§) of the fibred space for a gemeral vector v*
and a general displacement induces an affine connction in the base space

if and only if
(38.12) F_’jlb =0, I'%=0, é: "7’4‘ = Cj”CilCh;(ng U;z) =0.

§4.

We next consider that there is given in X,., a system of paths defined
by the system of equations
- dg: dg?
&S 4 rse)ds 45T
g TTR® g gy =0
in which the coefficients I";:(§) are symmetrical and ¢ is an affine parameter

on the path.
The solutions & = &#(t) of (4.1) induce curves
4.2) a = fHE(t) = x™(t)
in the base space X,, and the question arises whether the curves induced in
X, are paths in X,.
From (4.2), on using the fact that
dx* _ , d&
at =S ap

(4.1)
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and differentiating, we have

d’x n @ dE
aee =GO

Expressing d&*/d¢ in terms of its two components

4.3

d&t _ p (da) da*
dt B. dt o dt

(4.8) gives us

da" (dx) (dz)® s (dx)° (dx) » Ao’ (da) dx? da
A4 g X ) e A% ext
(4.4) it +I'% i dt +I gt dt + I3 FTRT + 1% =0

dt dt
Since we are concerned with finding the conditions in order that we may
obtain an induced system of paths in X,, we need to take account of the fact
that the parameter ¢ will not in general be a privileged parameter on the paths
in X,, so that we must write down the conditions under which (4.4) takes on
the form

&t nde’ dat _ dat
“-5) ae T g gy = g
We must therefore express the condition in order that (4.4) may have the

form (4.5).

The term I'% (dx)°/dt-(dx)’/dt could mot contribute to a term of the form
¢ dx™/dt since the (dx)?/dt are arbitrary, we deduce that I'; =0 identically,
which means that the fibres must be totally geodesic.

Considering further the terms

. (dz)° da*

ct

0 dx’ (dx)®
dt dt dt dt
they can provide a term ¢ dx"/dt provided ¢ is of the form 2¢.(dx)’/dt, so
that we must have
cz - F”:O
= @,0"
Finally since the 'I'% and the I'; must be coefficients relating to the same
paths, they must be related by a relation
"Tix) =I"%(&) + Op: + 0p,

in which we assume that /" depends only on the z® while the functions oec-
curring on the right will depend on &*.

The fact that the 'I'% are to be functions of %" only can therefore be ex-
pressed in the form

(by means of the symmetry of I'%;).

£ =

c

or equivalently
£ h= _3’351%’—3?51)]’-
B, B,
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Hence, the system of paths in the fibred space X, ., induces a system of
paths in the base space if and only if
I't,=0, I's= %5’5, I'y= sﬂbah,

4.6
(4.6) Cj'uCLZCh :(é: i) = 5?1% + 51"’13”-

It will be convenient for future purposes to express these conditions under

a different form.
By expressing the 7,C"; in terms of its components obtained by contract-

ing with the B and C tensors, using the conditions expressed in (4.6) and
writing ¢; = B¢, we have
4.7 ZuC" = ¢ "1+ 20" + C’,,C"zl“?i.

The covariant derivative of the equation B,*C"; =0 will lead in a similar
way to an expression for I7,B,* in the form
(4.8) VuBa® = ¢haBe* — 0i¢pa
which is an equivalent form of the condition of the first line of (4.6), for if
V,Bg* has the form (4.8), we have

By, "= p:C"y
from which we can conclude I's =0 and 't ="t = ¢.0%

From (4.8) by further covariant derivation and using relations already
obtained, it is possible to express the Lie derivative of the connection coeffi-
cients in the form
(4-9) é: F;Z = B/ﬁsplc + 5;50‘,,0 + Ba‘ﬁoz]-

Conversely if the covariant derivative of B,* has the form (4.8) and the
Lie derivative of I'f; has the form (4.9), the equation (4.6) is also satisfied.
Thus (4.8) and (4.9) are necessary and sufficient condition in order that a
system of paths in X,.. induce a system of paths in the base space X,.

Some interesting interpretations can be given to these conditions in the
case where the fibre is one-dimensional. Let B* denote the unique vector B.*
so that our frame now becomes

(B*, C*) and (B, c™).

The conditions (4.8) and (4.9) for the induction of paths in the base space
then become
(4.10) V,B* = ad; + ¢, B*, ﬁ I =0.p2+ 0ip, + B P2

where « is a scalar, ¢, and p, vectors and p,; a tensor.
We can give a geometrical interpretation to the first of equations (4.10)

as follows.
The point & — a™'B* lies in the tangent space to X,., at the point &*.

Its absolute differential is by definition
o0& —a'B*)=d& + a?daB* — a 10B*
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which, on using (4.10) becomes
Bt (a da 4 a ¢, dE")

so that the vector field B* is tangent to the locus of the point & —a 'B-*.
Therefore the field B* is then said to be ‘torse-forming’ (Yano [27]).

We may also interpret the second equation of (4.10). Consider a curve in
the fibred space X,.,, whose osculating plane contains the direction B*. It is
called a subpath with respect to the vector field B* (Yano [28]). Subpaths
are given by differntial equations of the form

dé dé agt _ dé
dt? dt dt dt

If we consider an infinitesimal transformation ’&* = &%+ ¢B* and express
the fact that this transformation transforms subpths into subpaths, we obtain
the second of equations (4.10).

(4.11) + BB-.

+I'(8)

§5.

An important special case of equations (4.10) has already been the object
of study by Schouten and his collaborators (Schouten and Haantjes [22]). It
is the case in which they reduce to

(5.1) VB =adi+B,B, £ Iia=0.

In this case the infinitesimal transformation ’é* = £ 4 e B* becomes an infini-
tesimal collineation.

In this paragraph we shall consider some applications of (5.1). We con-
sider a vector field v* in X,,,, whose component in the direction B* we denote
by 2° so that
(5.2) v* = B*v% 4 (Cr*v")
and we suppose thrt v* induces a scalar v° and a contravariant vector field v*
in X,, so that

£v0=£Lv"=0 and consequently £ v*=0.
B B B

By writing down the special forms which the various connection para-
meters and Euler-Schouten curvature tensors introduced in §2 take when
m =1, we have on using (5.1)

(5.2) I'iv=1, TI%=0, I't=0, I'}=2a.

The symmetry of the Is in the lower indices enables us to conclude
further that

(5.3) ri=o, I'ti=0%.
Moreover from the second of (5.1) and the results of §3, we have
(5.4) L T=0, L£I%=0,
B B
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so that I'}; and '} are functions of #" only and hence I'}; is a tensor and I'%
are coefficients of a symmetric affine connection in the base space X,.
Now suppose we choose

B;=B;+m
for which
(5.5) é p;=0 and Bp,=0.
The matrix (B*, Ci*) inverse to (B;, C*;) will be given by
(5.6) Ci” =C;* — p,B* with p;=C./p;.
Denoting by a bar the functions relating to this new frame, we have
I__vo =F0L‘_ Vi jlViy
6.7 T wm bbb
Fji =rji - pﬁz —_ pﬁé’

which indicates that I'); and I'; may be interpreted as components of a pro-
jective connection (Yano and Takano [34]).

§6.

In this section we shall assume that the fibred space X, .. is a Riemannian
space with a metric tensor G,(§) defining the distance between two near
points by
(6.1) ds® = Gu(6)dErdE?.

We define the covariant vectors C”*; as in (1.6) and take the vectors B%
to be orthogonal with respect to the metric defined in (6.1), so that

6.2) G B*,C"; =0.

Correspondingly the vectors of the dual matrix (B,*, C;*) will satisfy the con-
dition of orthogonality

(6.3) G,,zBa"Ci2 =0.

If we write down the d&* in terms of its components in the fibre and in the
horizontal distribution as

d&* = B,f0® + C* dx?

where w®= B*;d&* is not an exact differential, then ds? can be written as the
sum ds;®+ ds,> where

(6.4) (@) ds’=g;()da'ds’, (b)) dsl=ga(§)oe’.

We shall now examine under what condition the g, =G;C;*C;i* are functions
of x only and therefore can be regarded as the components of a metric tensor
which has been induced in the base space X,. The condition for this is evi-
dently X,g9;; =0, which, when written in terms of Lie derivation can be
written
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(ﬁ G.)CC + G,;z(;BQ C#C* + nycj"(l:g C:*)=0.

But if we take account of the table (1.17) and of the equation (6.3) we imme-
diately conclude that g; will depend upon 2 only provided

(6.5) (£ Gu)CyCit = 0.

On using covariant derivation and the van der Waerden-Bortolotti operator
(Schouten [21], p. 254) with respect to the connection parameters appropriate
to Riemannian geometry, we may easily modify (6.5) to the form

6.6) GpiC "Dy, Bo* = — G uaBa*D ;Ciy* = gaol %y =0.

The condition has therefore been expressed in terms of the Euler-Schouten
curvature tensor I'§; introduced in table (3.3).

A metric will therefore be induced in the base space if and only if the
horizontal distribution is geodesic at every point (Schouten [21], 263).

Let us now consider whether a vector field v*(¢) which defines a motion
in the fibred space can induce a motion in the base space. The vector v*(§)
is therefore assumed to be a Killing vector so that 7,v; =0. We further
assume that a vector field v*(x) is induced in the base space in accordance
with (2.2). The vector v*(x) will be a Killing vector in the base space provided

6.7 Pviy =0.

On using the fact that v; =C;*v; and the definition of the operator D already
used, we immediately obtain

(6.8) V(j’l)i) =TI, + Cj"Cz’IV(#’Ub

so that (6.6) immediately ensures that a Killing vector will be induced from a
Killing vector in the fibred space. We may therefore state that

A motion in the fibred space X,.,, will induce a motion in the base
space X, provided (a) the Killing wvector v<(€) induces a wector field v™(x)
and (b) the horizontal distribution is totally geodesic.

87.

In this section we use a special coordinate system in X, ... Recalling that
the fibres are given by z" = f*(&) and that in the intersection of two coordi-
nate neighbourhoods (§*) and (£*) there is induced a transformation of the z
coordinates given by (1.4), we now proceed to introduce m functions of class C”

(7.1) Y =¢%&)

such that the Jacobian matrix (0,y%, 0;2") is of maximum rank m-+n. This
will enable us to express & as

(7.2) & = &+(y*, o)

so that on taking a fixed set of values z§ for x*, we obtain the parametric
equations of the fibre F;; as a subspace of dimension m of the X,... If we
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can take B,* to be 0,6 and they can be taken as m independent contra-
variant vectors tangent to the fibre and hence vertical vectors in the sense
used. We may also take C.* to be 0,6, and in fact the relations (1.7) are all
satisfied if we take

(7.8) B, =08, C,*=0,8*, B%=0y* C"3=0x".

The same relations will also be satisfied if, for C,* and B%, we take the
slightly more general expressions

(7‘4) i‘ = azE‘ - Barrza; Ba‘z = a;y“ + Ch]I_'na

where I',* are functions of ¥ and x which are not determined for the moment.
Let us determine them by demanding that the C,© given in (7.4) are ortho-
gonal to B,* with respect to the metric G,; so that equation (6.3) is satisfied.
We can therefore decompose d&* into components in accordance with either of
the two sets (7.3) or (7.4) as

d&r = 0,£°dy* + 0:6*dx* or d& = B, 0+ Cifda*
where
(7.5) o® = B%d&* =dy* +1T'.°dx.
Writing down the two corresponding expressions for G dé*d&* will give
(7.6) an = gabnyabf"aifx-

The coordinates ¥ and x introduced in this section are employed by Muto
[18] under the name of favourable coordinates. The law of transformation
appropriate to them is
(1.7) Y =y"(y, ), ¥ =a"()
and for this transformation of coordinates, demanding that the equation «® =10

has invariant significance is equivalent to having the following law of trans-
formation for the functions I.*

o= Oy [0y | o 03"
(1.8) re= aya<axi' +reg).

In terms of favourable coordinates the table of base vectors is taken on the
special form

B.* = (5%, 0), Cr =(=TI% &%,
B, =% I%, C"=(0,d.

The equation «® =0 is interpreted by Muto as establishing a correspondence
between points in the neighbouring fibres F, and F..... Both the equation
0*=0 and the transformation (7.7) appear also in Wagner ([25], p. 159) in
a similar theory. A curve y*=y%t), 2" =2"t) in X,,., satisfying dy°/dt
+I'¢da*/dt =0 is called an allowed curve by Muto. It is a curve which is
normal to the fibre at every point. In Wagner’s terminology the equations
©® =0 determine a linear connection in the ‘compound’ manifold X,,, and
this connection is of zero curvature if the exterior derivative of «® also

(7.9
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vanishes. In our notation the vanishing of the exterior derivative of «® is
expressed as

(7.10) %=X, =0 with X, =0; — I'%0,.
If I'% is linear in ¥, and expressible as I' =I'%(x)y® we obtain
(7.11) .Q?i = beji,ba

with R representing the usual formation from the three index I”s. More
generally if I'i(x, y) = y°0,1'% = y°I"% then the equation (7.11) still holds with
the R representing the combination 0;I"$— I'50.]% + I'5.]'% — j/1 where j/i
represents the terms obtained from those written down by interchanging J
and 4. The integrability condition of the horizontal distribution therefore de-
pends on the curvature of the connection defined by the correspondence esta-
blished by ‘allowed’ or ‘horizontal’ curves. The close relationship of all this
with the group of holonomy is developed by both Muto [18] and by Ishihara
[15]. Its relation to the problem of the decomposability of a Riemannian
space of dimension m + » has been treated by Walker [23].

An interesting particular case of the transformation (7.7) is obtained by
taking

(7.12) ¥ = Mg (2)y*, ¥ = x¥(x).

In terms of this transformation, defining I'% = 0,1"% and It = 0,1 we easily
verify that the latter is a tensor whose vanishing would imply that I'% are
functions of x only, and hence that I'% are linear in y°.

The correspondence between fibres F', and F',.q, Will be an isometry pro-
vided the distance (in terms of the metric assumed given in X,,,) between
two points in F', is equal to the distance between the corresponding points in
F.qz. Since the fibres are holonomic subspaces of X,,, which in this case
may be assumed to be Riemannian, we may refer to studies which have been
made on the subject ([18], p. 291) in which it is proved that if ds and ds are
the distances between near points in F, and F'..,. respectively, the difference
is expressed in the form

ds? —ds? = (,6{ Goa)dy’dy”
(3

with
Jg Jva = _2F§ﬂ
Cq

so that the fibres will be isometric provided they are geodesic subspaces of

the X, 0.
If the equations X,/ =0 are completely integrable, the horizontal distribu-
tion is holonomie, and £2;°*=0. In that case we may take the functions

y* = ¢*(&) of (7.1) to be the m independent solutions of X,f=0, and it will
follow that the appropriate expressions to take for C,* and B*; are those
given in (7.4) rather than (7.8). In other words if the horizontal distribution
is integrable we can choose a coordinate system of the fibred space in such a
way that I'¢=0.
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§8. Finsler spaces.

Let us assume the existence of a vector field B*(§) at every point of X,
and let us assume further that it is tangent to the fibre at every point, so
that we may also write it as

(8.1) Br = B, y".
Let us put
8.2) GuB*B' = L*=2F =g, y°y’

for the square of the length of the vector at any point, and let us impose the
condition that

8.3) VB* = B,*B*; = B}
then we have
(8.4) B*0,F' = B¥;,F = B*B*7,B; =2F.

Defining X, = B,*0;, X,=C;*0;, 0,=0/08*, D, and.D; as the corresponding
derivatives of van der Waerden-Bortolotti, we can write the condition (8.4)
in the form

(8.5) Y X F =2F = goyy’

and we deduce also

(8.6) X.F = D.F=guy’

and

8.7 DyD.F = gy = Xo X, F — 't X, F.
By using the definition of F' and (8.3) we also obtain
(8.8) X;F=D;F=0.

If we write D.B* in two different ways, we obtain
B = C, Ty + B Vey*
from which we deduce
(8.9) (a) Puy*=20, (b) I'ay*=0.
Similarly by writing D;B* in two different ways we obtain
Co*I5.y* + B y* =0
so that
(8.10) (a) Fy*=0, (b) IWy®=0.
Finally the metric tensors g», and g;; in the fibre and in the horizontal distri-
bution respectively, satisfy the equations
(a) Pegva=XeGoa — chgda —I'&ga=0,
(b) Figsa= Xigsa — L'isgaa — I'Egsa =0,
() Pegji=Xegsi— [eigu — Fc%gjl =0,
(d) Vg i = Xig i — Flégu - chégjl =0.

(8.11)



LOCAL PROPERTIES OF FIBRED SPACES 173

The different connection parameters used in the equations (8.11) can be ex-
pressed in terms of the tensors of X,,,, together with the various ‘object of
anholonomity’ by inserting the appropriate indices in the general formula

8.12) I'gy = “;“g”(Xﬁgrﬂ + X0 —Xogpr) + 28"+ 2% + 2%+ S+ S%:r + S

with 29, = ¢*°g,.2;:* and correspondingly for S%;.

Let us now take the particular case in which the fibred space X, is the
tangent bundle of the n-dimensional base space X,, in which the coordinates
are x". The coordinates in the fibre will consequently be those of the tangent
vectors to X,, which we denote by %*. The law of transformation of coordi-
nates in the fibred space X;, (since m and n are now equal) will therefore be
the extended point transformation

, ox"
LN VYN 3 n_ h
(8.13) " = 2" (2"), & Py &

At this stage we also take the vector field B* in the fibred space which is
tangent to the fibre at every point to be the field of tanget vectors to X,.
This means that y* is identified with &*. Our index convention must there-
fore be modified. We shall make the following convention. Let a +mn==h,
b+n=1i, c+n=7,d+n=%k e+n=10. 1If we put d& it will be understood
that n is to be added to a, so that ¢ = k. Similarly h=h—n=aqa, and so for
other letters in the two groups. It is further understood that ¢ and & occur-
ring in a formula will imply summation from 1 to n for a and from n+1 to
2n for d.
If therefore we take for & the particular interpretations

Er=y'=g"=%" for k=1,2,---, m,
=" for k=n+1, .-+, 2n
the equation 2" =f"(§) of §1 will give a very special form
Ct=0 for A=ua, C"=0% for A=k.
For the vectors B%; we take any vector, which, together with C*;, can form
a base for covariant vectors. For this we take
B%;=0% for A=0, B =I% for A=1.
We may then choose for the dual matrix any matrix which satisfies the con-
ditions of §1.
BB =8i, CiC,;=0), B,C%=0, CiB%=0.
We have therefore the table
B, = (5%, 0), Cr=(—T% o,
B, = (0%, I'Y), C™; =(0, 8%).
If we write 0,=0/0y* 0;=0/0x', X,=0;—I'%, the consequent expressions
for the various ‘objects of anholonomity’ will all vanish except

(8.14)
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(8.15) D0 = X%, Ou = —;—abr‘:.

Before writing down the special forms taken by the general expressions (8.12)
for the various indices we make the following assumptions about the torsion
tensor of X,,

(a) Geodesics and autoparallels coincide, so that S*; + S*%s=0,

(b) Se*=83"=0.
With these assumptions we have from (8.12) the following

(8.16) re= —;—gad(acgbd + Bullea — Buger),
8.17) %= é‘gad 9ao + 2%+ 8% + Sp?,
(8.18) Ih= Lo"0gu+ @+ S,

(8.19) Ih= 1 0"(Xigu+ Xig— Xig.1)-

We further restrict the coefficients g., to be equal to g¢;;, so that the four
equations (8.11) reduce to the last two, and we shall need to have

(8.20) re=ré=ri and Ip=Ip=I%
so that there will be equality between the right hand sides of
(a) (8.16) and (8.18), (b) (8.17) and (8.19).

The equations (8.20) therefore serve to determine some of the mixed compo-
nents of the torsion tensor as follows

(8.21) Sai® = g™0rcgar + 9" goa Xt H,
(8.22) Sic® = 9" X1;9%1 — 9°Gerc0arl .

These will be written in a different form after making a further examination
of the consequences of taking y* = &".
Referring to the table (8.14), we have

(8.23) X,=0,=0/8i" which we write 0,,
(8.24) X, =0;— %9, =0, — "0,

and consequently the equations (8.5) — (8.10) take on new forms

(8.5) "0,F = 2F which expresses the homogeneity of degree 2 of the F' in %,

(8.6) 0.F = g;;2° which shows, in conjunction with (8.5 that g;; is homoge-
neous of degree zero in &,

(8.7 0,0.F — I' 0, F = g,
(8.8) 0.F — 0, F =0,
8.9y sz =0,

8.10Y I'S=I%y’=I%w’ =I% where a symbol 0 appearing as an index will
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indicate contraction with z.
The common value of I's% and 't can now be written, on taking account of

of (8.23) and of g =gsi=g; as
(8.25) I's= ~%g”k(5jgik +0ig 1 — 3kgji) = Csi" = ¢"*Cjur

where we write C;" in view of the indices acturally occurring. With this
notation we may now rewrite some of the quations as

8.7 0,0,F —Cyni*=g;;  on using (8.6),
(8.8)" 0.F —TI'0,F=0 on writing I'ly=1I",
(8.9)” Cjih.’,.tz =0 or Cﬂhd;z =0.

At this stage we impose convention D of Cartan ([2], p. 10) which is equi-
valent to C;i,&" =0, so that (8.7)" gives

(8.26) 9;:;=0,0F and  2Cjn=0,0.0,F.

We may also write the non-vanishing components of the torsion tensor of X,
in the new forms

(8.21y Sai = g" gom Xeil s

(8.22) Sie® = 9™ (Xr;9x3 — 9u0kalh)-

We note that these components of the torsion tensor, as well as the connec-
tion coefficients given in (8.19) are expressed in terms of the function F and
its derivatives except for the I:=1I"%. But this can be expressed also in
terms of F and its derivatives, for if we write (8.19) in full, we have, on
writing 7% for the three-index symbols of Christoffel

(8.27) Iy =74 — %" — I_'?Cjkh + gMI5C i
and hence
I'y=1rh—I6Ci", I'ty=rb,
so that
(8.28) I's=rh— rokOCjkh.

Substitution of I'% from (8.28) in (8.27), (8.21) and (8.22) determines the con-
nection I'% in the horizontal distribution as well as the torsion in the fibred
space Xs,.

The connection thus obtained is the connection given by E. Cartan for
Finsler space. We note therefore that

The euclidean connection im Finsler space given by Cartan can be re-
garded as the connection induced in the horizontal distribution in a metric
fibred space with torsion, where the torsion coefficients are given by (8.21)
and (8.22).

The I'% occurring in (8.27) are written f';*i in Cartan’s tract. We re-
mark that if we attempt to obtain the connection in a horizontal distribution
in a space without torsion, the two sets of components of the torsion of X,
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given in (8.21) and (8.22) would have to vanish. Considering (8.21) we can
easily verify that Xp;["y" = Rj; o™ the vanishing of which is the condition for
absolute parallelism of line elements (Cartan [2], p. 42). Further, from (8.15)
it follows that £ =0 and the horizontal distribution becomes a holonomic
subspace of X,, which is now a space with a euclidean connection without
torsion, i.e. a Riemannian space. So that a Finsler connection cannot be
induced in a horizontal distribution from an X, without torsion.
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