
SOME FOURIER INTEGRAL THEOREMS

BY TATSUO KAWATA

1. Introduction.

The well-known general convergence theorem in the theory of Fourier
integral deals with the limit relation (Bochner [1])

(1.1) lim Γ fix +—)κ(t)dt =f(x)Γ K(t)dt,

where Kit) will naturally be supposed to be of Li(— oo, oo).

If K(t) does not belong to the class Li(— oo, oo), the relation (1.1) will not
be expected to be true. Instead it would be natural to suppose the relation

(1.2) Γ f(x+~)K(t)dt = o(l) or 0(1).
J-oo \ W )

We shall consider an asymptotic behavior of the left hand side of (1.2) as w
increases indefinitely when K(t) and f(t) are of L2(— oo, oo).

Similar problems concerning functions of two variables will be to find
the orders of

(1.3) Γ Γ f(x+—9 y+~-)K(s)K(t)dsdt,
J-ooJ-oo \ W WJ

when w-+oo. We shall treat the problem in §2.
Now (1.3) is of the form

-LΓ ΓίfuJLWJt
a2 J-oo J-oo \ a J \ a

(i.4)

with changes of variables and a = 1/w. We shall consider a rather special
function, in place of f(u, v)/a2,

( L 5 )

where j j^eLiC— °°, °°), a = a{A), A-><χ>.
Here the following theorem should be noted:

1 f~ v(t) sin A(u + ξ) sin A(υ + ξ) , V

(1.6) lim - ί f" p(ξ)Sin A(f(+!U) g 1 A% ~ U)dξ = p(0), if

= 0, if u Φ 0,

provided that p(ξ) is continuous and of Li(— oo, oo).
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Grenander ([1], Grenander and Rosenblatt [1]) proved this relation, apply-
ing to the estimation theory of spectral density of a stationary stochastic
process.

(1.5) is the Fejer integral if u = v and tends to p(— u) when A—>oo, a = 1.
On the other hand the integral in (1.5) will become

Π 7) X f °° <D(7) -/) ) s i n A(V + w) s i n A(:η ~ w) βr
( L 7 ) A.aπ) -J{η" /θ) ^T^Z^—^^
if we put

u +v u—v
, , = _ _ _ , w = - γ - .

(1.7) is just the left hand side of (1.6). Hence (1.4) is a type of average
of the square of (1.6). And in fact the limit theorem connected with (1.4) will
provide an important fact which will play an essential role in the theory
of estimation of the spectral density of a stochastic process. We shall deal
with the matter in the forthcoming paper.

I should like to mention that E. S. Parzen has shown the equivalent fact
in his estimation theory (Parzen [1]). The theorem will be proved in §4 and
thereafter.

2. Asymptotic behaviors of certain integrals.

We shall give an estimation of

(2.1) J(x, w) = Γ fix +t)κ(t)dt,
j -co \ W J

where K(t) does not necessarily belong to Li(— oo, oo) and in fact we suppose
K(t) to be of L2(— oo, oo). Similarly we can treat the case where K(t)
e L p ( - o o , oo), p > 1, but we do not do it here.

Put

(2.2)

and denote A such that

(2.3) A/'/]{A) = w

as A(w). Obviously A(w)—>oo if w-+oo. We then get

THEOREM 1. Let f(t) and K(t) belong to L2(—oo, oo). Then

J(x, w) = O(jA(w))

for almost all x, where A{w) is defined by (2.3) and O may depend on x.

Proof. We divide J(x, w) = J(w) into two parts
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Ά«)=[" fίx+J-)

- ( + ί -
J \t\<A J \t\^A

where A = A(w). We have, for the first integral,

\J!(W)\2^ f \K(t)\2dt j \f(χ+±\\*dt

(2.5, = j

for almost all x.

Next we have

= f \K(t)\2dt w[°°\K{t)\2dt'W\ \f{u)\2du

Inserting this and (2.5) into (2.4), we get

^ 0{A + w (̂A)) = 0(A)

owing to (2.3), which proves the theorem.

The analogous argument leads us to

THEOREM 2. // iΓ(ί)<= L 2 (- oo, oo) and f(x, y)(=L2(E2), E2 being two
dimensional Euclidean space, then

J(x, y, w) = \[κ{β)KU)f(x + — , y+~)dsdt
(2.6) -J J V w w/

/or almost all x, y where A(w) is the one defined in (2.3) and 0 may depend
on x and y.

3. Lemmas.

We shall prove some lemmas which will be useful in the sequel.

LEMMA 1. Consider the integral

(3.1) S = ST(a) = Γ s inΓ^±«) sin T(c - .)_
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a being non-negative. Then we have the following estimations.

( i ) If aT<l, then

(3.2)

where CΊ is an absolute constant.
(ii) If aT>l, then

(3.3) ^

C2 being an absolute constant.

We use only (3.3) in §6, but we shall prove the case (i) also for the
completeness.

Proof. ( i ) We divide S into two parts:

(3.4) =[ + f
J if 1̂ 2/2* J

the first integral of this expression does not exceed

ί 2/Tί 2/T

T2dξ
-2/T

We may suppose a > 0. Then the second part of the right hand side does
not exceed

1

noticing 1 > aT and ξ — a>0; which is

which with (3.5) proves (i).

(ii) The part (ii) will be shown in the following way. Put

ί
—a-l/T r-a + l/T ra-ί/T fα + 1/27 (Όo

+\ +\ + +
-oo J-α-i/y J-a + l/T J a-ί/T J a + ί/T

say. Since aT> 1 and then a<ξ + a<3a, if \ξ — a\< l/T, then

|f-«|<l/!Γ
(3.6)

& is equal to S4 and hence

(3.7)

ξ-a
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Furthermore

a )
Lastly,

(3.9)
„ =

3

(3.6), (3.7), (3.8) and (3.9) yield (ii).

LEMMA 2.

sin T{ξ + a) sin!lf°° sir
π J_oo

- a) „ =

The proof will be easy.

4. A limit theorem.

We want to prove the following theorem.

THEOREM 3. Let p(x) be a continuous bounded function of Zq(— oo, oo)
and let K(x) be of L2{— oo, oo). We then have

= 2πp2(u) Γ \K(x)\2dx-δ(u, v
J-oo

),

where Bτ tends to zero in such a way TBT-+oo as T-*oo, and δ(u, v) =
if u = v and = 0 if

As was stated in §1, the equivalent fact was proved by Parzen.

We proceed to prove Theorem 3. The proof of the existence of the in-
tegral in the left hand side will be included in the treatments of Jx and Jz

below.
We shall divide the integral into two parts as

(4.2)
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say, d being a small positive number.
If we put (x - y)/2 = a, (x + y)/2 = 0, «7i will be

B
τ

d x d y

J J \x-V\<S V BT J V BT J VJ-OO

Here we have put
. T) = sinTjξ + a) smTjξ - a)

Yf ; πT(ξ + a)(ξ-a) '
Now we have

+ Γ (p(e-β)-p(-v))L(ξ, a; T)dξT
(4.4)

[[ ( ^ ^ ) ( ^ ) ( r L(ξ, a; T)dξ)\j12

say.
Now we shall prove the theorem showing

(4.6) limJ rπ=-τrί)2(-i;)f \K(w)\2dw if u = v,
r->co J _oo

= 0 if u Φ vf

(4.7)

and
(4.8) 2

!Γ->oo

The proofs of (4.6) and (4.7) will be given in §5 and §6 respectively. The
proof of (4.8) will be done in §7.

5. The proof of (4.6).

We shall prove (4.6) in this section. We have

Here we have used Lemma 2 in § 3. Putting (x — u)/Bτ=λ, (y — v)/Bτ = M,
the last expression will get the form

πBτ f f
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If u = v, then the last expression turns to

πBτ\

83

T

π

TB

, roo

ί oo Cδ/Bτ Q :

p%-V-Bτμ)\K(μ)\2dμ\ ^
-oo J - δ/Bτ

T Z

dz

dz

i/BT

{
δ/Bτ

dZ+ - s £ - Γ VK-V-Bτμ)K{μ)dμ[δ/BT {K(μ + z) -K(μ)}^
1 £>τ J-oo J -δ/Bτ

=Lt+L2,

say. Since K(μ)^L2 and

I TB z2 ^Z ~ \ ί 2 " "^π

as T->oo, we have

(5.1) lim Lt = πp2(- v) Γ IϋΓ(>u) |2cZyu.
y->°° J -oo

On the other hand L2 converges to zero as Γ->oo, because denoting
I P(v) I ̂  C, we have

ί
oo rδT

\K(μ)\dμ\
- o o J-δ

ίoo / rδ

\K(μ)\dμ(\
-co VJ-

δT

δT

TBΊ

-K(μ)

dz

TBΊ

which obviously converges to zero as T—>oo, since 1/TBT-*O.
Hence we get the relation

-K(μ)
2 \ 1/2

(5.2) \K{μ)\2dμt

when u = v.
If, uΦv, then (4.6) will be, putting u — v = θ,

-δ/Bτ-θ/Bτ

-2Θ^T

- βγ

ί
oo Kδ-2Θ1

Jc-δ-2

which does not exceed in absolute value

^C2 Γ \K(μ)\*dμ-[ίS~''

J-oo J-C3-

-dw



84 TATSUO KAWATA

This tends to zero as T->oo, if 3 has been taken as 3<2\θ\ in advance.

Thus

(5.3)

when U^FV.

limJii=-0
T-ϊoo

6. Proof of (4.7).

In this section we shall prove (4.7). We have

Jn = -ft
JJ\X-\w-»\<>

W ^ ) dxdy

2p(- 2/) Γ L(6, a; T)dξ Γ {j>(f - f t - p(- y)}L{ξ, a; T)dξ
J —oo J —oo

(6.1)

\x-y\<δ

"a) ~ p{~y)}L{ξ'a' T)dξΊ
— Jl

say.
We have by Schwarz's inequality

IT I < - O-rr ΠΠT? ~1 1 I I ΊfΊ
e/122 = £ιZ 1. x 5 y \ I 1 ΛΛ.1 "

lJJι*-ίfi>« V BJ

(6.2) .Ϊ2[[ dxdy({
L JJ \χ-y\<δ \Jl:

2 "j 1/2

dxdy>

\y\<2δ

in which

dxdyl \
\*-V\<9 VJ

fί,-,,

- v) - K- ,»
i9i>2ί

(6.3)

dx

The last term in the right hand side of (6.2) does not exceed

ί
oo ry+δ

d\ d

dy\ dx(\

because of the inequality η — 2a > η/2 noticing | a \ = | (a? — y)/2 \ < δ/2 < y/2.
Furthermore the last expression is
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r
J-ooo \J|*|>2ί

(6.4)
(Γ

1/-2Π2

C being a constant and noticing p(w)^L2 owing to the fact that p(w) is
bounded and of Li(— oo, oo).

Now the remaining integral in the right hand side of (6.2) will now be
treated. We have

: <

= β Ψλη,:

where we have put

~ι
dη + 4>T{Y), y)

J
dη,

ΨΛη, y) = {v(η -y)-p(~ y)}-

and 2a = — Γ. Moreover

Λf = cos Γ1 Ψτ(y, y) sin •
Γ 2 5

+ sin r ^(7, y) cos
J

We here appeal to the well known M. Riesz's theorem on the conjugate
function, which leads us to

^Γ dyΓ M2dr
J J-oo J -δ

Γ
J - 2 5

^ 2 ( dy[ \ ψτ(η, y) sin Tη—5-
J _oo J _2δ J —2ί 3y — /

ί
oo (*2δ f2δ Jγ\

dy \ I ψTvjy y) cos -ΓJ?—^
-co J —23 J-2δ 3y — ]

ί
oo Γ2δ

dy\
- o o J -

dΐ

dΐ

foo p2δ

'\ dy\
J-oo J— 2

-2δ J-oo J— 2d

where C is an absolute constant. The last expression is

2C'F dy[U

J_oo J_2

= 2C/Γ Γ \
J-2δJ~oo

Since
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I vty -y)- P(— y) \2dy-+o
-oo

we get, by Fejer's theorem,

(6.5) l i m 4 Γ (T \Pti-V)-P(-V)\

Inserting (6.3), (6.4) and (6.5), we finally get

as η—>0,

( 6 . 6 ) I ^1221

Next it is almost obvious that

(6.7) l i m J m = 0,
y->oo

because by Schwarz' inequality

\χ-y\<δ

x-u\κty-v
Bτ

•p2(-y)(Γ L(ξ,a,T)dξJdxdy~\

BT ) \ BT

{ίxJp{ξ ~β)~ p(~y)} m a'T)dξ

The first factor of the right hand side is convergent as UΓ—>oo since this
is the same as Jn except that \K\ stands for K. The second factor is J122
with \K\ instead K which converges to zero as T—>oo. These prove (6.7).

(6.6) and (6.7) complete the proof of (4.7).

7. The proof of (4.8).

We shall prove (4.8). We have

\Jz

•(ί
χ-y\>δ

dxdy

dξ

C2

~ πTBτJ

C being an upper bound of p(ξ). By Lemma 1 (3.3), we have,
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C2C
2

πTBj \JJl*-2/l

*log22T(x-y)
(x - yf

which becomes, by the change of variables,

C2C
2

πTBτ

•α:
= c2c

2 r°°
πTBτ J -o

which converges to zero as !Γ-»oo. This proves (4.8).
Hence the proof of Theorem 3 is complete.

\l/2

-da\
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