SOME FOURIER INTEGRAL THEOREMS

By TATsuo KAwWATA

1. Introduction.

The well-known general convergence theorem in the theory of Fourier
integral deals with the limit relation (Bochner [1])
L1 1imr’ f(w +—£>K(t)dt=f(w)jw K@) dt,

WD | _oo

where K(t) will naturally be supposed to be of L;(— oo, o).
If K(t) does not belong to the class L;(— oo, o), the relation (1.1) will not
be expected to be true. Instead it would be natural to suppose the relation

(L2) s: f<w +;%>K(t)dt =o1) or OQ).

We shall consider an asymptotic behavior of the left hand side of (1.2) as w
increases indefinitely when K(t) and f(f) are of Ly(— oo, oo).

Similar problems concerning functions -of two variables will be to find
the orders of

(1.3) j:j:f(x +2,y +i—>K<s)IT<E)dsdt,

when w—co. We shall treat the problem in §2.
Now (1.3) is of the form

(1.4 izr r k(oo )I}(_yj b_)f(u, o) dudv

[24 —00 ) —o0

with changes of variables and « =1/w. We shall consider a rather special
function, in place of f(u, v)/a?,

1 (= sin A(u + &) sin A(v +§) ..\
(1.5) ( A-ar j_.f’(‘:) (w+ &) +6) dé) ‘

where p(§) € Li(— o, ), a =a(4), A—oco.
Here the following theorem should be noted:

.1 (= sin A(€ + u) sin A(E — u) .
1.6 lim — ) — _
(1.6) lim — f_mp(é; \E T u)E —u) dg=p(0), if u=0,
=0, if w=0,

provided that p(&) is continuous and of L;(— oo, o0).
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Grenander ([1], Grenander and Rosenblatt [1]) proved this relation, apply-
ing to the estimation theory of spectral density of a stationary stochastic
process.

(1.5) is the Fejér integral if u = v and tends to p(— u) when A— o0, o =1.
On the other hand the integral in (1.5) will become

1 (= . _  \sin A+ w)sin A(p—w) ;.
1.7 T — )2t A dr,
1.7 4. S_WP(O 7o) A + w)(7—w) 7
if we put
U+ v U —
MET T WS g

(1.7) is just the left hand side of (1.6). Hence (1.4) is a type of average
of the square of (1.6). And in fact the limit theorem connected with (1.4) will
provide an important fact which will play an essential role in the theory
of estimation of the spectral density of a stochastic process. We shall deal
with the matter in the forthcoming paper.

I should like to mention that E. S. Parzen has shown the equivalent fact
in his estimation theory (Parzen [1]). The theorem will be proved in §4 and
thereafter.

2. Asymptotic bebaviors of certain integrals.

We shall give an estimation of
@.1) J(@, w) = r f(x n %)K(t)dt,

where K(t) does not necessarily belong to L;(— oo, c0) and in fact we suppose
K(t) to be of Ly(— oo, o). Similarly we can treat the case where K(¢)
€ L,(— o0, ), p>1, but we do not do it here.

Put
2.2) § | K(8) %dt = 7(A)
Jtiz 4
and denote A such that
(2.3) A/p(A)=w

as A(w). Obviously A(w)— oo if w—oo. We then get

THEOREM 1. Let f(t) and K(t) belong to Ly(— oo, o). Then
J(, w) = O(y A(w))
for almost all x, where A(w) is defined by (2.8) and O may depend on x.

Proof. We divide J(z, w) =J(w) into two parts
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oo

J(w) = § wf(x +{E>K<t) dt

2.4)
_ S n g = Jy(w) + Jx(w),
lgj<ca  Jitjz4

where A= A(w). We have, for the first integral,

1J1<w>lzsj,le(t)lzdtg &f<x+i>12dt

l71< 4. w

@.5) =j | K(t) |2dt-wj (@ + ) [2du
]t[<.A }u]<A/w

< j“’ | K(t) [2dt-O(A) = O(A(w)),

for almost all z.
Next we have

lJz(ngj IK®) IZdtj !f(x +%>l2dt

1?2 [tz 4’

=jm K@) Fdtw j“’ Fu) 12 du

=7(A)-O(w) = O(w(4)).
Inserting this and (2.5) into (2.4), we get
JHw) = 2(1 1 (w) |* + | Jo(w) %)
= O(A + wr(A)) = O(A)
owing to (2.8), which proves the theorem.

The analogous argument leads us to

THEOREM 2. If K(t)€ Ly(— o, ) and f(x, y)<E L(FE,), E, being two
dimensional FEuclidean space, then

J(z, y, w) =IjK(s)Kr(t_) f(w +2.y +%> dsdt

= 0(A(w))

for almost all x, y where A(w) ts the one defined in (2.3) and O may depend
on x and ¥.

(2.6)

3. Lemmas.

We shall prove some lemmas which will be useful in the sequel.

LeEMMA 1. Consider the integral

? | sinTE+a)sinT(E—a) | 50
J ’

@D § :ST("‘):LJ E+a)é—a)
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a being mon-negative. Then we have the following estimations.
(i) If aT<1, then
3.2 S=CiT,

where C; 1s an absolute constant.
(ii) If aT>1, then

(3.3) ssc el
C, being an absolute comstant.

We use only (8.3) in §6, but we shall prove the case (i) also for the
completeness.

Proof. (i) We divide S into two parts:

3.4) S=§ +j ;
l¢l<2/T |&]1>2]T

the first integral of this expression does not exceed

(3.5) j ¥ pege — 4T

—2/T

We may suppose a >0. Then the second part of the right hand side does
3

not exceed
1 .
T
§|51>2/T E+a)§—aw) t d esor(E+ a)é—a)
noticing 1> aT and & — « >0, which is

102/ T—a _
a10g2/T+0( o)

which with (3.5) proves (i).
(ii) The part (ii) will be shown in the following way, Put

—a—1/T —a+1/T a—1/T a+1/T =)
R iy
—oo —a—1/T —a+1/T a—1/T a+1/T
=8+ 8+ Ss+ S+ Ss,
say. Since aT>1 and then a<¢é+a<8a, if |E—a|<1/T, then

in T(¢ + a) sin T(¢ — a)
3.6 S =§ sin ‘d
@8 T e E+a)é§+a) ¢
é‘l‘j sinT(E—al{de<lj ge= 1,
& J¢—al<YT E—a & J|g—al<l/T a
S, is equal to S; and hence
3.7 S=L,
(24
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Furthermore
3.8 Si=5= S::w@:%
= 2—1a log @aT +1)= 0(5’%711“_)
Lastly,
a—1/T | & . _ v
3.9) = 5—“:2/2' - T(é—'l;t;))(ssm—ﬁf —a)tdf = j-ail/z’m

=Liog@aT—1)= O(Mﬁ).
(44 (44
(3.6), (3.7), (3.8) and (3.9) yield (ii).

LEMMA 2.

-—1—5‘” sin T(§ + a) sin T(§ — ) dé= sin 2aT
—eo E+a)é—a) 20

T
The proof will be easy.
4. A limit theorem.
We want to prove the following theorem.

THEOREM 3. Let p(x) be a continuous bounded fumnction of L;(— oo, co)
and let K(x) be of Ly(— o0, o). We then have

lim L -lr r K( v )m dedy

730 TBy 7 J_col-co B T Br
. ((° msinT@+8)sin Ty +6) ;.\
@1 (S I S ) d§>

= 2rp¥(u) r’ K@) *da-3(x, v),
where By tends to zero im such a way TBr—oo as T— oo, and ou, v)=1
if u=v and =0 ¢f u=x0.
As was stated in §1, the equivalent fact was proved by Parzen.

We proceed to prove Theorem 3. The proof of the existence of the in-
tegral in the left hand side will be included in the treatments of J; and J,

below.
We shall divide the integral into two parts as

4.2) 7= T-IBT %(Hlx—m<a+.”1x—m;a>

=dJi+Js
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say, 0 being a small positive number.
If we put (®—9)/2=a, (x+y)/2=p4, J1 will be

n=srn([ (% K (Vp " et | pte—p IR ORI gt

=nTBT-ﬂ K(xB—T “)K( = >dacdy<S PE—BLE, a, ; T)d&)

|z—y]|<s

Here we have put

4.3) L&, a; T)=

sinT(€ + ) sinT(€ — a)
T+ a)—a)
Now we have

J1=7rTBT"1”[w_ﬂ<6K< - “)K )dxdy[ p(— y)j L, a; T)dé

(*z
+S (0(& — B)— p(— YL, a; T)ds]
Yy—v

B

=nTBT-1H K(“_“)K : )dxdyp“’( y)(j_wL(E, o T)deE) +

4.4)
la—yi<s \ Br
=Ji 4+ Jie,
say.
Now we shall prove the theorem showing

(4.6) lim J,, = = 7p*(— v)S | K(w) [2dw it w=o,

=0 if uzo,
4.7 i1im Ji2=0
and
(4.8) lim J, =0.

T>0

The proofs of (4.6) and (4.7) will be given in §5 and §6 respectively. The
proof of (4.8) will be done in §7.

5. The proof of (4.6).
We shall prove (4.6) in this section. We have

_ — in?T(x — y)
Ju=rTB 1” K(L—@>K< / ) (=) ST@=Y) gy
S A Br = Tow—y) Y
Here we have used Lemma 2 in §3. Putting (x — u)/Br=2, (y —v)/Br=p4,
the last expression will get the form
By

Al P~ — uBKWK()
[(A=mF p +(u~v)]| <o

= ”gTr’ P(—v —BT/«t)d,uj

sin?T(By(A — p) — (u —
(A= By — (u—v))?

*T(Byz — (u — 1)))
K(u+2)K(u) sin z .
—0/Ep ~(u—v)/Bp (2K (Brz — (u — v))* dz

) dad

8/Bp—(u—v)BT
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If w =w, then the last expression turns to

7By sin®TBrz

o 3/Bp
2( . ny — — Wttt Sl
2 L’”( v Brﬂ)dﬂs_a/BTK(ﬂ ARG d
2 VR 2 9/Br sin*TBrz
= 5 Lf'( v Bm)lK(uﬂdu{ e
+—”—r’ pﬁ(—v—Bw)K‘—w)d/«cj (K(u+2)— Kw}fﬂBﬂdz
TBT —co —3/Bp
=L;+L,,

say. Since K(u)€ L, and

#/Br gin?TBr2 T gin%
B g R ; d2—w
—8/Bp TBTZ

—or R

as T— oo, we have
5.1 Jim Ly = ¥~ ) |~ K02 Pdg

On the other hand L, converges to zero as T—co, because denoting
[p(v)| =C, we have

[ o
|Lq | gnmj 1K<ﬂ>|du§

—-oTr

)__ K(/,t)} sin:z dz

sm 2 172
dz>

2
K<,u+ 5,

< 71.3/202 Sw

—o0

K@) d/x(gw

-7

K<M+ ) —K(u)

TBr

sw0(|” Ikeorapy (|7 S5 ae |7 ‘K(’“‘+

—oo

TBy ) —K@® 1 2dﬂ>1/2

which obviously converges to zero as T— oo, since 1/TBr—0.
Hence we get the relation

5.2) lim J;, = mp*(— v)j [K() [2dp,
when % = 9.
If, w=+wv, then (4.6) will be, putting u —v =24,
7By S“ (— p—Bo)d j"/BT X ) sin*T(Brz — 6) d
T _mp( v—Brpu)du oo (u+2) (,u)—”———( Br—0p %
o (o—-200T
=j p(—v—Brpdn| K(/«t+———+ 3. JKG PRS2
- J(—s-20)7 TBr
which does not exceed in absolute value
(6—-20)T sin2w oo 0
<c? d K K( —) d
c X—(uzo)z' w? ws—w( (,u) #t TBT TBT K

(3=20)0T in2
K () |2du-j SIW g,

—{3+20)T w?

gcz-r

—o0
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This tends to zero as T— oo, if 0 has been taken as 6<2|#| in advance.
Thus
(5'3) lim J11 =0
T'»>o0
when u =+ .

6. Proof of (4.7).

In this section we shall prove (4.7). We have

Jiz=nTB, K| w‘“)K(l“—” dad
1 i ’ gglw—yl<ﬁ ( BT BT ) vy

2p(~9)|” L& o 1)de- |~ (06 ~B— p(~ )L, o )i

6.1) - x— U y—v
TB,! K %>K(~-4>d d
+rlBr ﬂlz—yla ( By By )™ Y

-[j:{p@—a) — (=PI, s T)dE |

=J1o1 + J122,

say.
We have by Schwarz’s inequality

| Tisz gznTBT-l{” K(i“—“>K<?"”> 2dwdy}1/2
J@—y|>3 Br By
inT7 sinT () + 2a) 2
6.2 [2“ dud (S — ) — p(—yp S d )
(6.2) s Y |yKM{zo(v y) — p(— )} Toy(p+ 2a) 7
inT% sinT(y + 2a) 2712
veff | deas([  tolr—p—p-pp S @) |
S xdy l“m{zo(v Y)—o(— )} To(+ 2a)
in which
K| u)K(”””)Fd d
jSlx-yl<s < Br Br vy
gr dyf,” K(—‘”““)K(——y_”> “dz
(6.3) —o0 y—39 BT BT

<[ )

_S_JK( = )| dy "KM a
=BT2<F |K(/1)|2d/1>2.

The last term in the right hand side of (6.2) does not exceed

8 j':dygj:dquww (7 —y) — p(—¥) I%)g.

because of the inequality 7—2a>%/2 noticing |a|=|(x—¥y)/2|<d/2< y/2.
Furthermore the last expression is
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qum |p(7 — ) — P(— )] %Z—)g

“d
1628 Ulvbm%qiml (=) — (=) lzdy>1/2T

1635
T2
<

< l)2. 5& R
= (§|v|>2a'772 _wl o(w) |2dw
- C
orT?’

C being a constant and noticing p(w)= L., owing to the fact that p(w) is
bounded and of L;(— oo, o).

Now the remaining integral in the right hand side of (6.2) will now be
treated. We have

20 . .
M= ooy 8inTy sinT(y + 2a)
|-, (=)= oy ST S B g

25 i 25 .
—[" getr, SIS gy (% 4oy, g LIS gy,
—23 7— r _os 7— r

where we have put
$r(n, ¥) = {plg —¥) — p(~ y)}f’%}'ﬁ
and 2« = —7. Moreover
28 28
M = cos TS ¢r(y, ¥) sin Tty-ﬂ— + sinrs ¢(7, ¥) cos Twy—dir.
-25 n—7r —25 n—r
We here appeal to the well known M. Riesz’s theorem on the conjugate
function, which leads us to

” Mrdady < r dy j " Mrdrs S“’ dyj” Medr
[z—y]<5 —oo

-8 —o0 —26
-~ 28
= ZS dyj

—o0 —28
o 29
+ S dyj
—o0 —28
2

oo 26 oo
éC'S dyj 192, y)lzsin2T>7-d>7+C’j dyr | #2(9, 9) |2 cosTydy.
-0 —_ —oo 28

29
§ ¢r(n, ) sin Tyﬂ— )Zdr
—25 n—7

20 2
E G2(, o) cos Ty Y1 { dr
—25 n—7

where C’ is an absolute constant. The last expression is
o 20 in2
2C’g dys 2"110()7—y)—10(—11)ILS—":?TTW—GlW

28 ) s 2
=2C's j lp(v—y)—p(—y)lzdy'fs%?ldv-

—20 J ~0

Since
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j | 97— ) — p(— ) 1*dy 0 as 70,
we get, by Fejér’s theorem,
N A N sin?Ty
©5) tim g | (7190 — o= 91w .
Inserting (6.3), (6.4) and (6.5), we finally get
©6) | T = OB 0B of 1) +0( 75 )]
=o(1).
Next it is almost obvious that
(6.7) ;’lm J121 = 0,
because by Schwarz’ inequality
J. 2_§2[ TB —1‘” K<u>K<u>
| 121| s T 1o—yi<s BT BT
¥~ y)(jw L, a, T) d5)2dxdy]
[ormcff (=5 (s
[n ’ l2—y] <5 Br Br d

-{jl{p(& —B)— p(— L& a, T) ds}j.

The first factor of the right hand side is convergent as T— oo since this
is the same as Ji; except that |[K| stands for K. The second factor is Jiz
with |K| instead K which converges to zero as T—oco. These prove (6.7).

(6.6) and (6.7) complete the proof of (4.7).

7. The proof of (4.8).
We shall prove (4.8). We have

15 o K5 K5,

(om0 )
dxdy(ji}

(o T—U ) [y — v)
=7 K =—)K
_nTBTSLx—yDa ( Br k Br
C being an upper bound of p(§). By Lemma 1 (3.3), we have,

C,C?2 Sg \ (x—u <y——v>f log?2T(x — )
< - K K . dxd
lJ2[ - 7'L'TBT |Z—y|>d BT ) BT ‘ (x_y)z Y

sinT(§+x) sinT(€+9) | 5.\’
(x+8)(y+8) l E),

A
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C,C? (jj (w—u) 2log22T(x — y) >”2
=== K| dad
z#TByr (=<3 By (x—=y)? atd
. x(¥— v) 2 log22T(x — y) dud >1’2
(”Ix—ym ( Br (x—y)» vy

which becomes, by the change of variables,

C.C? /(> x—u) 2 5 log2T« )1/2
—E K| dx- —=—d
nTBr (S—ml ( Br e laj<s  a? “
(| (g |, R )
—o0 BT la|>6 az

= CC? (= 2 j log®z
”TBTS | Kw)[*dw |zl>2rs RE dz

which converges to zero as T—oo. This proves (4.8).
Hence the proof of Theorem 3 is complete.

-0
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