ON CONTINUABILITY OF BILINEAR DIFFERENTIALS

By AKIKAZU KURIBAYASHI

Schiffer and Spencer [3] have derived a condition under which bi-
linear differentials are continuable. In this paper, applying the results due
to Aronszajn [1], we shall give a condition in terms of positive definite
kernels.

Let D be a domain in the z-plane. A function ¢(z,0) of 2, ¢<D is
called a Hermitian kernel on D, if it satisfies ¢(z, E):<,/J(C, z). If for any

points i, ¥z, -+, ¥» € D and any complex numbers &, &, ---, £, the inequality
zé]‘/}(yh y])glg]go (nzly 2y "')

is satisfied, then ¢(z, ¢) is called a positive definite kernel on D. Further,
we denote by Pp the aggregate of all positive definite kernels ¢(z, £), which
are analytic in 2, £ respectively. Let ¢, o= P,. We denote ¢ € ¢ if for any
points ¥, Y2, *++, ¥Y» € D and any complex numbers &, &, ---, &

1§l¢(yir ,.1_/])515] —7]Z=I ?(yu @j)é‘t&] g 0 ('ﬂ = 1! 2! o ')'

Now, generally, the following lemma is well known (ef. [4]).

LEMMA 1. Let E be an abstract set. If a function k(x,y) of x,ys K
satisfies

§1k<yu yj)ézszo (n=17 2: "')
for any points yi, Ys, -, YnE E and any complex numbers &, &, +++, &n,

we can construct a Hilbert space which has k(x, y) as its reproducing
kernel.

Proof. Let F'; be the family of functions f; which are of the form
Ji(x) =J§=_—‘.1 ak(x, y;)

where ¥y, -+, Y. are any points of E, a, -+, @, any complex numbers and
» any natural number. Let the inner product be defined by

max (m,n)
(f1, g0 = 3‘21 a gl kU, y,), (f1, f1) = 1113,

V=

where
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g1(x) = i. 7:k(x, ;) € Fy.

Then we have a normed space and k(z, ¥) is a reproducing kernel of F,
that is, if fe Fy,
Fy) = (), k@, y)
for any y<= E. Therefore we have
[ (f1, ke, w) || f1]] ([, 9)]
and we can easily see that ||fi||=0 is equivalent to fi=0. Completing F},

we get a Hilbert space F' and k(z, y) remains to possess the reproducing
property for F.

LEMMA 2 (Moore [2]). To every positive matrix k(x, y) there corre-
sponds one and only one class of functions with a uniquely determined
quadratic form in it, which forms a Hilbert space admitting k(x, y) as a
reproducing kernel.

LEMMA 8 (Aronszajn [1]1). If k is the reproducing kernel of the class F'
of functions defined in the set E with the norm || ||, then k restricted to a
subset Ey C E is the reproducing kernel of the class F; of all restrictions
of F to the subset E,. For any such restriction, fi € F, the norm ||f1]| is
equal to the minimum of ||f|| for all fEF whose restriction to E; 1s fi.

LEMMA 4 (Aronszajn [1]). If k and k; are the reproducing kernels of
the classes F' and F: with the morms || || and || |1, respectively, and if
ki <k, then F1CF, and ||filli =] fil| for every fi€ F\.

LEMMA 5 (Aronszajn [1]). If k is the reproducing kernel of the class F'
with the norm || ||, and if the linear class FiC F forms a Hilbert space
with the norm || || such that || fil|: =] fi]l for every fi€ Fi, then the class
Fy possesses a reproducing kernel ki which satisfies ki< k.

Applying these lemmas, we have following results.

THEOREM 1. Let ¢(s, t) € Py, where V denote an arbitrary open set in
D. If

G, H< ks, B in V,
then (s, t) is continuable to the whole D and
d(s, )< k(s, t) in D.
Here k(s, t) denotes the Bergman’s kernel corresponding to D.

Proof. We apply Lemma 4 to k and k;=¢ in V, k being also restricted
to V. Let F; be the space corresponding to k. In view of the analyticity



CONTINUABILITY OF BILINEAR DIFFERENTIALS 107

of L3 D) we have
Fir=%D),  |felle= el

Let F', be the space corresponding to ¢. Now, by Lemma 4, we have

F,cF,=.%D)
and

[Ifells Zl|foll  for every fy & Fy,

where || || and || || denote the norms corresponding to Fy and .£%*(D), re-
spectively. Hence ¢(2, ) belongs to F'y C .£¥D) for any fixed (< D, i.e. it
is continuable to the whole D and ¢(z, ¢) is analyticin D. As ¢(z, {) =¢(, 2),
it is also analytic in ¢. Therefore we can apply Lemma 5. Namely, the
class F', possesses a reproducing kernel k; satisfying k; < k. But by Lemma
2 we obtain k;=¢. Thus we have ¢ <k in D.

We can obtain the inverse of this theorem as follows.

THEOREM 2. Let ¢(s, t) belong to P, and also to L£¥D) for fixed t< D.
Then there exists a positive number A such that

Ag(s, t) < (s, t).

Proof. Let D; be a subdomain of D such that D, D, and its boundary
be obtained from that of D by a suitable analytic 'deformation depending on
a parameter e. Let ki(s, £) be the Bergman’s kernel function of D;. Let
further S be any compact subdomain of D;. It is known [3] that under
these circumstances

In(s, ©) = — ky(s, ) + k(s, £) = O(e)
uniformly with respect to s, tS. The kernel ki(s, ) may be expressed in
terms of a complete orthonormal system {¢,}:

ku(s, 1) =2 @,(8)¢ ().
Now ¢(s, t) is regular in D;, and we can apply Mercer’s theorem which
implies
P(s, t) = ]E=] 11_1‘/’](3)95}'0)-
Here, {2,}(1,>0, 7=1, 2, ---) is the corresponding sequence of characteristic
numbers of the equation
Yo =¢.

We may suppose that 4, is the least among the characteristic numbers.
Thus we have

S hae, 2)6E, =3 O ele)ae Bk

2,7=1
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E ‘/}(zu 2]) EZE] = i \2 ¢l(zz)ﬂ;‘7)76i6]
4 7=1 =1 =1 2;
and hence
Sihaten 2068 =4 3 9 2)EE,
SBS e P
= ?_‘:‘: 1,1;‘1 Spl(zi)(ﬁ(zj)gif](]_ _ ZZ—>
_a AN\ &, (2
=2 <1 - ) 21 ()8 ” =0
=1 A =
i.e.

21(/}(81 t_) << kl(sy t_)'
Since ki(s, t) — k(s, t) = O(e) holds uniformly for s, t& S_, we have

Ad(s, t) < ks, t) + O(e) in S.
Consequently, letting ¢ tend to zero, we have
Ag(s, t) < k(s, t) in D.
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