SOME LIMIT THEOREMS CONCERNING
WITH THE RENEWAL NUMBERS

By HIDENORI MORIMURA

Let {X,} be a sequence of independent random variables and let {a,} be
a sequence of real numbers. Denoting as S,=3>7X,, we shall interest the
weighted mean of renewal numbers in the interval (a, £+ k), which is
defined by

(1) A, h)=>}a,P@< Sy Sa+h).

If both {E(X,)} and {a,} are stable sequences” with average m and a,
respectively, and if some further conditions are satisfied, then it is known
that Az, h) > ak/m (x> o) by Cox and Smith [1].

But when {E(X,)} is not stable, A(x, k) is not necessarily convergent to a
finite limit as £ —oo. In this case, instead of A(x, k), the variable

A (X) = HjA(x, h) de

will converge to ah/m as X oo, under suitable conditions. This fact was
shown by the analogous argument of [2] by Prof. T. Kawata.

From a practical problem it was necessary to us to find the distribution
of A(x, k) or A,(X) when {a,} is a sequence of independent random variables
having the mean a. We shall treat in the present paper this problem when
a, are the random variables identically distributed and obeying the ex-
ponential distribution.

First of all, we shall prepare the following lemmas.

LEMMA 1. Let X, (1=1,2, ---) be independent random wvariables having
the distribution function Fi(x) such that E(X;)=m,>0. Suppose that the
following conditions are satisfied :

(2) s.o e dFy(x) < oo for 0=<s=<s,,
(3) lim rx dF(x)=0,
As>0 ) 4
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1) Cox and Smith [1] gave the following
DEFINITION. A sequence {y;} such that lim F—II:T swie (=, uniformly in n, will
Dr00
be called stable with average p.
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(4) lim §—Ae‘”dFi(x) =0,

Aroo

where both (3) and](4) hold wuniformly with respect to © and 0<s=<s, If
A/ ms—m >0 (n— o), then

L1 (X = h
(5) lim j S P@<S,sut+hydo=".

X-)OO.X —o0 n=1

LEMMA 2. The conditions of the Lemma 1 are assumed. Furthermore if
{a.} is a sequence of real numbers satisfying that (1/n)>3_,a;—a(n— ),
then

(6) lim L (*53 anP(w<Sn§x+h)dx=%.

X>o0 0 7=1

These two lemmas are due to Prof. T. Kawata®. From Lemma 2, the
following theorem will be proved directly.

THEOREM 1. Let X, (=1, 2, -.:) be independent random variables satis-
Sying the conditions of Lemma 1. Furthermore, if {a;} is a sequence of
random variables which obey the strong law of large numbers, t.e.,

P(lim 1 i}ai = a) =1,

nr0 N i=1

then the random wvariable

(7) Au(X) =}]—'(jxila,,P(w <S.<z+h)ds
0 n=

will converge to ah/m as X— oo with probability 1.

In other words, the distribution of A,(X) converges to the unit distribu-
tion. Hence we shall introduce the normalized variables by

AyX) — ah/m

A(X)= By

where B(X) is the normalizing factor. In the following, we shall investigate

the distribution of A,(X) when a;(i=1, 2, ---) are distributed identically
with the probability density given by

(8) Pa<a<w+ds) = %e“”’“dx @>0),
=0 @=<0).

Then we have following

2) Lemma 1 is the theorem given in the paper [2]. Lemma 2 can be proved by
the analogous argument with Lemma 1.
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THEOREM 2. Let X, (1=1, 2, ---) be tndependent random variables having
the positive mean m,, and let a, (i=1, 2, ---) be independent random vari-

ables having the probability density (8). Assume that (1/n)> 37 m;—m (n—» ),
and put

ol

(9) B"’(X)=§]{jlffp(msngxm)dx}z.

=1
Then the distribution of Ax(X) will be approximately N(0, a*) as X— .
Proof. Put
X
wn(X)=;(j P <S,<w+h)de.
0

Obviously, for every 7, 0= a,(X)<1. By Lemma 1,

(10) ga,,(X)=0(1) as X oo.
First of all, we shall show that

11) B¥(X) = o(1).

Suppose

a2 Bg(X)-—-”i; a(X)£01) as X oo.

Then we have, for some n,
13) ar(X)#0(1) as X-— oo,

For, if for every =,
a,(X)=0(1) as X- oo,
then
BY(X) S sup an(X)- S an(X) = o) as X oo,

which will be contrary to (12). Now, (13) will be rewritten as
14) § :P(x <8, <o+ h)de=C.X+ o(X)

where C, is a positive constant. Thus, for some constant k>0,
(15) jj"P(Ks,, <@+ h) da= Co-k + o(X).

On the other hand,

ij(x<s,,§x+h)dx§k-P(X<s,.gX+k+h)
X

X+k+h
= k-§ dG(@)

P-4
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where G,.(x) = P(S, < z), and this will tend to zero as X —oco. This is contrary
to (13). Thus, we can conclude that (11) holds. Next, since

S 3 (X) = sup an(X) 3} ad(X) = o(1)- BY(X) = o(BX));
n=1 n n=

repeating this argument, we have

(16) S1ak(X) = o(B(X) as X-roo,

for every k=3.
Under the above preparations, we shall now enter into the main discourse

in proving Theorem 2. Since the characteristic function of A, (X) is

1 ito,h/’mB(X))
(1" f®= H<1 ita a"(X)/B(X)° '
where the exchange between (1/X)g -dr and Y5 in (7) may be allowed

Jo
with probability 1. Taking the logarithm of (17), we have

{)(n(X)> —it ah

Expanding this and noting (16), we have for large X,

s anX) _ @'t an(X))_ ., ah
log f(B) ~ > {”“ BX) 2 B‘-’(X)} ¢ )
1 9 ah
B(X)V::J“"(X) 2 B¥(X) = 1“ KX B
_ e &
B(X) 1X§ Px<S,<x+a)dx
a’t* 1 . ah
) B(X)‘a(X) mB(X)
~a2t‘.:
2

which is the characteristic function of the normal distribution. Thus the
theorem has been proved.

An analogous argument gives the following theorem in the case where
{X.} is a sequence of identically distributed random variables. In the case
where {E(X,)} is a stable sequence, a similar theorem will be proved under
the conditions given by [1].

THEOREM 2/. Let X, (1=1, 2, ---) be independent rdndom variables identi-
cally distributed with the mean m>0. If we 'replqce A,(X) and B(X) by

(18) A'(z, h) = {Y‘ a,Px<S,<x+h)— %},

"B/(z)
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(19)- B*(x) = S‘ {Pe<S.=x+ R},

respectively, then the conclusion of Theorem 2 remains valid.

In the remaing part of the paper, we shall calculate B”(x) in the case
where tne central limit theorem will hold on {X,}.

THEOREM 3. If X, (¢=1, 2, ---) are independent random variables identi-
cally distributed and having the mean m >0 and the variance v, and if a,
(t=1, 2, ---) are independent random variables having the probability den-
sity (8), then the distribution of

V2 (nmvw)‘i‘i{ S a,Ple< Sy <+ h) — “"}
h n=1 m

tends to N(0,a*) as x— .
Proof. Based on Theorem 2/, it is sufficient to show the relation

h?

@0 B = 2 nmv

x—l/2+0(x—1/2)'

By the central limit theorem, for large m, the distributions of S, are ap-
proximately N(nm, mv); more precisely, there is a positive constant N(e)
such as

@1) P@<S,Se+dn)=_, 2}mve“f‘"m>2/2"”dx + Em, z) do
and
22) i}vE(n, ) < ;;, uniformly respect to =z,

for all n > N(e), where ¢ is a negligibly small positive constant. Now, by
the mean value theorem on integral,

S”‘{P(x<S <x+h)}

_ N Sl h*  p-(T+oph-nmd2/ v
@) =RPE<Si=eth S eme
& 1 +0p 2/2 = ‘
For g~ @rOnn=nm2/ 20 By x—f-ﬁh)-}-h SV E*n, v+ 0.R),

n=N+ 12,mv nN+1

where 0 < ﬁ,,, 0., <1. Choosing so large z > Nm that P < S, <+ h) < Ve/N
n=1, 2, -- N), we have

3) Thls theorem is one referred to in [3].
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—a s 2
r/m—a x/m j‘z/m+a.\ x/m+j~oo }'l’-’— e-(x—mv)2/!]vdy+R

0 z/m—a\"z /m z/m+a T /m 2ny'v

SPw<s. s+ my={|
=L+ L+ L+ R, say,

where | R| is negligibly small relatively to other terms. Putting y=x/m
+tv x /m,
I, = 2h* Sa 1 e B/ {/m AL/ B}t

T 2rv )o@+t
= —h2~ d~~ 1 -mt2/v,(t3/v)+0(x=1/2)
B nvfow'5(1+t/¢&’)e ¢ dt
(25) = hf.x—l/zjae—mﬂ/vdt(l_{_ £#0(x17%))
v 0
= P e 1\/2 v ) -1/2
= Pae(van)/ 2~ o) + ol
2 2
= o T O 0,
with d(a) >0 as a—>oco. Next
(26) L= }?24 egzm/vs""’ »1 e_a/v)(zz/g+m2y)dy.
T 2mv s/miavz/m Y

Now, we shall put the integrand as

@7 1re"‘“’, where z= Z‘+ m3y.

Since z is a convex function of y for y >0, the tangent of the curve at
z/m + an'x /m lies below the curve. The equation of the tangent is

2aV & + a® 227
(28) z2=1m? Ny 4en R
(x/x-l—a/)‘y &+ av x’
and we have
h? - 1 w _
L< ™ e@mr-amal/ ramn /0, L j e~ MY/ NVE +ad / (VE +u)2dy
2nv z/m~+ av' & /M) wpmiavaim
29) = mhie?amxx/i/<x+a\/'§)-(l/v) . ‘U(N/ x + @) L em M/ CaVE+ad [ (VE eV
2 m?-2ax(l+a/2v x)

. -
_ mh® v 1+‘Y/\/Wa—1/2x—1/ze<m/m.<-a2\/Z>/<\/}"+a>

T 20 2mPl4 a2z

~ const.-a i 124 o(x"1/%) as I — oo,
Taking « so large that const-a™'/* is negligibly small compared with
h%/4 7mv, we have
(30) I=o0(x1%).
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The same argument shows
@31 Ii=o(z™'"9),
hence (24), (25), (30) and (81) imply (20).

In conclusion, the author expresses his sincerest thanks to Professors T.
Kawata and K. Kunisawa who have given valuable advices.
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